CRLENOSI

USER GUIDE

Imagine That Inc. ¢ 6830 Via Del Oro, Suite 230 * San Jose, CA 95119 USA
408.365.0305 * fax 408.629.1251 * info@extendsim.com

www.extendsim.com

Copyright © 2007 by Imagine That Inc. or its Licensors.
All rights reserved. Printed in the United States of America.

You may not copy, transmit, or translate this manual or any part of this manual in any form or by any
means, electronic or mechanical, including photocopying, recording, or information storage and retriev-
al systems, for any purpose other than the purchaser's personal use without the express written permis-
sion of Imagine That Inc.

The software described in this manual is furnished under a separate license and warranty agreement. The
software may be used or copied only in accordance with the terms of that agreement. Please note the
following:

ExtendSim blocks (including icons, dialogs, and block code) are copyright © by Imagine
That Inc. and its Licensors. ExtendSim blocks may contain proprietary and/or trademark
information. If you build blocks, and you use all or any portion of the blocks from the
BPR, Discrete Event, Flow, Item, Items (db), Mfg, Rate, SDI Tools, or Quick Blocks li-
brary in your blocks, or you include those ExtendSim blocks (or any of the code from those
blocks) in your libraries, your right to sell, give away, or otherwise distribute your blocks
and libraries is limited. In that case, you may only sell, give, or distribute such a block or
library if the recipient has a legal license for the ExtendSim product from which you have
derived your block(s) or block code. For more information, contact Imagine That Inc.

Imagine That!, the Imagine That logo, ExtendSim, Extend, and ModL are either registered trademarks
or trademarks of Imagine That Incorporated in the United States and/or other countries. Mac OS is a
registered trademark of Apple Computer, Inc. Microsoft is a registered trademark and Windows is a
trademark of Microsoft Corporation. GarageGames, Inc. is the copyright owner of the Torque Game
Engine (TGE), Simulation Dynamics, Inc. is the copyright owner of SDI Industry, Wolverine Software
Corporation owns the copyright for Proof Animation, and the copyright for Stat::Fit® is owned by Geer
Mountain Software. TGE, SDI Industry, Proof Animation, and Stat::Fit are licensed to Imagine That,
Inc. for distribution with ExtendSim. All other product names used in this manual are the trademarks
of their respective owners. All other ExtendSim products and portions of products are copyright by
Imagine That Inc. All right, title and interest, including, without limitation, all copyrights in the Soft-
ware shall at all times remain the property of Imagine That Inc. or its Licensors.

Extend was originally created by Bob Diamond

Chief architects for ExtendSim 7:
Bob Diamond, Steve Lamperti, Dave Krahl, Anthony Nastasi, and Cecile Damiron

Graphics, documentation, and production for ExtendSim 7:
Carla Sackett, Pat Diamond, and Kathi Hansen

ExtendSim 7 is dedicated to the memory of Peg Feasby — she would have been so proud.
Special thanks to Lynn Scheurman, whose insight and dedication inspired us all.

Table of Contents

T2

Table of Contents

Table of Contents

................................... .1
About ExtendSim
Preface. .uueeieeeerrneeeeeeciirseneeeeceessssseeeececsssssseesesssssssssesssssssnsssessssssasssssesssssnssssssssssnnnss 1
INtrOAUCHON. .ceeeecreeeecreererrsneeerseeeessneeeessaseesssnseesssneesessnssesssnsessssnsssssansssssasassssanasen 3
Why simulation is IMPOLTANT c..c.evveueriererieirieirteiertee ettt sttt ettt ettt se b e seeneneen 4
Simulation with EXtendSimcccooiiiiiiiiiiiieiece ettt e et 4
What ExtendSim Can doccueeeieiiiiiiiecie ettt ettt ete et eee et eareete e etaeeereenaeeens 4

Modeling capabilitiesccocoiiiiiiiiiiiccc s 4

SIMUIALION ATCRILECTUTE 1.uvivisvietietietietieiteietesteste et e e e et eee e e se et et esessesbessessessesseesaesaessesaessessenseas 5
Levels of use
ADBOUL this USEr GUIAE......ccviiivieriiiicieceie ettt ettt ettt et te e eaeeeeereeeaesteeabeebeeabeereeaseeneenns 6
AddItIONA] FESOUITESvvevvirieerieticie ettt ettt et ettt et et v e et e ete e e e eaeereeese e s e sbeetbenbeeasereeaseneenns 7

Electronic dOCUMENTATION ..i.viveriititietietieteeeietetetetetete et e e steseeseesseeseeseeseesseseessensesensessensensenses 7

EXtendSim Help...ovoveiiiiiiiiiciiicctc s 8

User forums

SUPPOIT ettt st b et a et ettt h ettt nenenenene
MOl HTUSEIATIONS 1vevvvieveeetiecteeeee et et ete et e et et e e e eeteeete e eteeeteeeeveeaseeaesebeeeaseeareesseeenneenses 9
Tutorial
Running a Model ceseetesnesesee e se e ae s e b e s e a et e sa e s e a e b e aassaes 13
Opening the Reservoir Model... ...t 14
IMOAEL DASICS...veeuvivieerietieieete ettt ettt ettt et ettt e et e b et e teeateseeabeeaeensesaeersesbeenseeteenseereens 15

BLOCKS .ttt ettt ettt b e bbb e et e e st ea e e s e e s e e st et et entenaentenaeeseeneeneas 15

COMMECTIONS . evvnveteteete ettt eit et et et e testesbesbesbe s bt s st ese e st e st es b e st estesbessebesbeshesseeseestentententeaesesessessenean 16
Blocks used in the Reservoir Modelcuiovuieeuiiiiieeiieie ettt et e 17
Running the Reservoir model.............cociiiiiiiiiiiiiiicic e 18
Displaying the results on the PIOtter......cccouviiiiiiiiiiiiiiiiiccccccereee e 18
INOLEDOOKS. ...ttt ettt et e e et e e eteeete e eaaeeeteeereeenaeeeae s enreeeaeeeareenreeenreenees
Making changes to the model..........ccciiiiiiiiiiiie e

Adding and removing blocks

Changing dialog Parameterscooieieiiiiriinininin s
Other MOIICALIONS c.vviiuviiiieciiieieeeie ettt et eeee et e et e eteeereesteesbeebeesaseebeesaseenbeessseenseenses
Building a Modelcuuiienenieniiininiiieiiininienncneinnsesesesnssssssessesnsssssssssnees 23
Steps to create the Reservoir model ..o 24
Opening a new model WOrKSheetcciiiiiiiiiiiiiii e 25
Setting the simulation Parameters.........cocoviviiiiiiiiiiiiiiic s 25
Building the model................c........

Basic stepsocvieiiiiiiiiiei,

About libraries.......ccceevevreruennene

Adding blocks to the model

Connecting blocksc........

Working with block dialogs.........c.ccervirreuiriiniiieiiriieciecerreee s

Table of Contents

RAINFAIL SOUICE....vveveetiete et ettt ettt et et e et e et e teeeteeeaeesaeetseeteeessaseeseenseenseeasesaseensenseenseens
SETEAIM SOUTICE .euvvvieuiiieettieetieeeiteeeetteeetteestteeebeeebeeetaeessseessseasssaeesseeessaeasssaessseesssesansaeansseesssaasnseesnsnens
Combining the sources
Water in the reservoir...............
Displaying the results................
Running the simulationcccoiiiiiiiii e
Additional ways of connecting blocksccccoiiiiiiiiiiiiie
Straight line CONMECHON w...uiuiiiiiiiiiiiiiiicccic e e
Multi-segment line CONNECHON.......ccviiiiiiriiiiiiiiiir s
Named connection............c.ccu.....
Plotting against multiple axes
The final Reservoir model..........
Additional enhancements...........
Introduction to hierarchy.....
The ExtendSim NavIgator........cccoiiieuiuiieuieieeeeieiereteieeeeieeseesesese et sesesesesesesssesesesssesesssesesens
CLONINEG ..
Other MOIICATIONS. .. c.viietieiieeeiiecee et eeee ettt e ettt e eeteeeteeeteeeteeeteeeveeeseeeaseebeeeseseareeessesaneas
INEXE SEEPS 1.ttt ittt b bbb s ae e s

Simulation COnCEPLS cccuieuinuensnisenneisseisinssensensseessesssesssesssesssesssessassssesssessasssessns

Systems, models, and SIMUIAtION. ...c..c.eoveirieiieiiee e
SYSTEITIS ...ttt
IMOGES 1.t nene
Simulation .c.c.cooveveieineccnennnn

Modeling methodologies
Comparison of main modeling methodologies
ComPAriSON TADIE . .c.vvveieuiiriiteciictcc ettt ettt
Table of continuous, discrete event, and discrete rate differencesoovveeeveeeeeeeeveeeeeeeeeeeeeeeeereeene 45

Other modeling approachesc.cccoveeciririercirinieecneeer e 47
Monte Carlo MOAEliNg......c.ccvvviueueiniiiiiiiiiiciiieerc s 47
State/Action models
Agent-based models

The modeling process.................
Goals Of MOAELINE.....oviiiiiii s
The SIMUIATION PIOCESS ... veuveverereiriereiitrieteretrr ettt ettt re sttt se st se s b seeneseeteseesenenaenen
Before you build a model
Refining models.................
Model verification
MoOdel ValIAATION 1.ttt ettt ettt ettt

Additional modeling terminologycccccioiiiniiiiiiiiiiiiic s 57

Model parameters, variables, inputs, and OUEPULS ...c.veveuereriereuiririeictriniencenetecestecee e 57

Constant values and random variables.........c..ooieeiiiiiieceeciccecere et 57

Continuous Modeling

INtrOdUCiON ...cuueeeeeiieeiirrcneetiecccssneeeeecsssnsseeecssssnsassesssssnssssssssssssssssssssnassssssssnnas 39
How the Continuous module is organized
Blocks for building continuous models..........

Using the ExtendSim blocks.......c.cceueueuiuiiiiiiiiiiiiiiiieieiieieieieeeeeieeeie e

T3

T4

Table of Contents

Building custom continuous blocks...........cccceviviiiiiiiiiiiiiii 60
Third-party IDrariesv vttt be bbb sene 61
APPLICATION ALCAS ...ttt ettt 61
INEXE STEPS...vervveeeuertenirteuerteat st sttt et e r et s ae st st s e e s e e e e s e e s seene e se e e se e ae e ene e ene 62

Tutorial .eueeeenienrenensinniieninenieneesnneeeseneseaene e aesaesaaaaes 63
Removing overflow from the Holding Tankccccccuvueoiniininncniiinincneneeceeceeeeene 64

Setting the maximum capacityccccceocueveriucueincnnne
Determining if there is too much water....

Comparing contents to overflow limit......
Calculating how much water t0 FEMOVEcciuiiiiiiiiiiiccee e
Removing the overflow.........coiiiiiiiiiiiiii s
Simplifying the model.......ccocoiiiiiii e
Adding an EQUation block.........cccciuiiiiiiiiiiiiiiiiiii e
Specifying input variables
Specifying OULPUE VAIADLESc.vueiiirci ettt s
Entering the eqUation........cciviiieeiniiieiiiniceieeee ettt
Improving the accuracy of the modelcccciiiiiiiiiiiiicce s
INEXE SEEPS...veeurertteirerttete st ettt st ettt a e st e s e st e b st e s e bt e e s st e e e sb e et e s et eaesateaesaeesaesueennesaens

Areas of APPLICAtioN c.ccuvevueieisicinenininincinistnnisiessessesnssessesssssessessssssssssssesessases
SCIENTLC tovttiiieretcctr ettt ettt n st ne
Predator/PIEYc.cuiviiieuiiiiiieiciieiec ettt ettt

Drug INGEstion ...c.cuiiiiiiiiiiiiiiiici e
Engineering.........ccccceenunnen.

Noisy FM system
Businesscccocviiiniiiiinnne.

Inventory Management
SOCIAL SCIENCES 1evenvivinteiiriciirtctct ettt ettt ettt

Clty PIANNING. ...ttt s
CUSTOIM DLOCKS ..ottt

PlAnet DANCE....vviuiiveiiiietcieire ettt ettt ettt ettt

FASH PO ..ttt ettt et ettt e e be et e et e etaeeat e teeeteereebeeeenraens

Concepts, Tips, and Techniques........ccocevvueruerensecsninrenensensncssensensecssessessesssessessenss 81

SIMUlation THMINGoveevevirerieeiee ettt et
Delta time.....cccccevevrrervenenen
Delta times other than 1c.ccccevveveuenennne
Determining which dt to use
Specifying dt or the NUMDEL Of STEPS ...cuvuvrieiiiiieietciciretrr et 83
Feedback and delayscceoiiiiiiiiiiiiiiiiiiccc e 84
FeedbDackcueuiieiiiiiiiciiicic s 85
Delays in feedback I00Psc.cueuiiiiriiiniiiniiiiicirr s 85
INTEGIATION w.ovviiiiiiiiiicit s 85
SIMUIATION OFAET .ttt 86
Flow order
Left t0 right OFder ... s 86
CUSTOM OFAET vttt ettt et et e bt st st seenesenean 86

MiXing BIOCK EYPES.c.cvevviuiriireieieiriereteictrtetee ettt ettt 87

Table of Contents

Connections t0 MUltIPIE INPULS c..vevevireririetiietiieenetrtetrre ettt e ne e 87
USING PLOLLELS @S IMPULS.c.cveuerrerirrenirieirteetetet ettt et er ettt r et sne st ne e sre st eneneene 87
Using a plot line as reference or standardcocceeverieineineiineiniccncccceecseeeeee 88

Uncluttering models

Discrete Event Modeling

INtrOdUCHION coverereererenneeenseeseerneneeeeesssssesssssssssssssesesssssssssssssssssssosssssssssssssssssssssssssose 9

About the Discrete Event moduleoouiiiiiuiiiiiiii ettt 90
How the Discrete Event module is organizedcccoovniiininininininininiinncccecceeeeaes 90
What the Introduction to the Discrete Event module covers91

Discrete event systems and processes........c.coeeeeveerreerrenenne .91
Blocks for building discrete event models...........coccoviiiiiiiiiiniiiiiniice 92
TEEI LIDEAIY .ottt b e 92
Third-party libraries......cccccouererecenruenenne .92

Creating custom discrete event blocks....
Terminology and architecturec.cccovveveerernenenee. R .93
Overview of a discrete event model e ta e enns ...93

Layout of a discrete event model93
EXCCULIVE DIOCK ..ttt sttt eb et 93
Items and informational ValUes.........ccoveueuiiniriciininiecrnc ettt 93
LTECIIL PLOPEITIES ..vevvenrvveaiietenteestetest sttt ettt s et st sa et st a bt se bt se b st e esenenenesaenenean 94
BVENES 1ot
Activities ...
Resources
Connectors
Closed and OPEn SYSTEMSc.coveueuiririeteiiirieeeeeristereees sttt sttt st ses e bt b sttt ebeae st saebesesaenenens 95
Types of item handling BIOCKSccciuiiiiiiiiiiiii s 96
APPLICATION ALCAS.....eeviniiiiiiecierece ettt ettt n e 96
INEXE STEPS 1.vvvitititite ettt st b bbbt 97

TULOLIAL eeeeeeeeeeirrrrrennnenreeeeeeeeeeeeeeesessessssssssssssssssssssssssssssssassssssssssssssssssssssssssssnnnsanae DD

A basic discrete event MOdel..........coouuiiiiuiiiiiiie et 100

About the model ettt100
Starting a model and setting simulation parameters.100
Start SMAll ..ottt 101
AddIng COMPIEXILYevrvreviiiriireieiiirieiec ettt en e nene 103
Creating a second Wash Daycccoviiririiiiiiiiitc e 103
EXPLICIE FOUTIEZ ...ttt bbb bbb bbb nene 104
REQUITING TESOUICES «.vivvviiiitiiiiiitcietcte e a e s ne e 105
TECIML ALEEIDULES ..ttt ettt ettt st b et b et st b e b ebesenenaenenean 106
Further eXplorationco.eiveeuirieirieinicinctre ettt 108
Items, Properties, and Values............c.u..... ceeserescsnsesnececes 109
BlOCKS Of INTEIEST. ...t euveverietiieiiiei ittt ettt b e st 110
Item generating and FEMOVING.......ccuviiiiiiiiii e 110
JECIM PLOPEITIES...uviiiiiiiitiiiciic e 110
Property-aware DIOCKSc.ccovviueuiiniiieiiiiccerece e 111

[tem GeNeration.......cciiiiiiiiiiiiiiiiiiiii s 111

T5

T6

Table of Contents

Generating items at random INTErvals.........cccciiiiiiiiiiiiic s
Random intervals with dynamic parameters....

Generating items according to a schedule........
Item properties.......ccceveeceeviieieinieiecneenenne.
Attributes.....
Priority........
QUANTITIES ..ttt ettt ettt ettt s a et e s et s a e se st sa e s se s st st et enessese s et esennenennene
Oher ITEM PrOPEITIES. cv.veuvrvererieirirtereeirreteieairee sttt teseetee et b bt sese et sestse st se st ses s bt sesesenesesaesenean

QUEUEING. c.uuverirerrrensrensrensnessnessnessnessanessasesssnessssesssnsssassssansssasssssassssassssasssaassss 127
Blocks Of INTEIEST.....vviiiiiiiiiiciccic e

Queueing disciplines
Queue/server systems

IMIMIT QUEUES .ottt ettt et sa et a e a et be e se e neseen
Priority queues
Queueing CONSIAEIATIONSc.veveveeeiriirereiirretectreere sttt sne s snenes 131
Blocking.....cccoeevicinicuicinnnenee et 131
BalKing.....cooviiiiiiiiiiiii s 131
RENEGING ...oviiiiitiiiittct e e 131
JOCKEYINE . 132
Sorting items using the Queue Equation block........ccocoiiiiii 133
Variables and rules.........ououiiviiiiiiiii e 134
Least dynamic Slack........couevrieuiirnieriirinieeiiniece ettt ettt 135
MINIMIZINE SETUP c.vvviiiieiiiteieieiet ettt ettt st ae et et eb et en s ssassnenen 136
Maximizing SEIVICE LeVElS.......ueveuiiriiiiiiiiiiiieiieiccene s 136
Combined TUles........c.ccoiiiiiiiiiiii 137
Matching items using the Queue Matching block ..., 138
Queue Matching modelocoiiiiiiiiiii s 138
Other models that use the Queue Matching blockcccciiiiiiiiiiiiccces 138
Advanced qUeUE tOPICS ...coveuerveerriiiriireeeeeeeeeeeeee e 139
Viewing and manipulating queue contents.........c.ccccccucueunnnee. ettt et 139
Initializing @& QUEUE.....c.cviiriererieiiieiciicccee e et 139
ANIMAting QUEUE COMIEILLS. c...vururiurtiererieeterereeeeteseeneseereseenesaesenesenesesaesessesesesesnenessenesneneanens 140
ROULING c.vveveiriiieteneninientenenienesnesessesessesesssssessessesssessesssssssssessessessasssssnessesss 143
Commonly Used DLOCKSc.ovveirieirieiiciricrce e 144

Blocks that route items...................... ettt atreeaeeaeerans 144
Blocks that affect the flow Of TtEMISeviviireeriiticri ettt ettt et ere e e eveeaeereereereereeaeas 144

Items from several sources................... ettt 145
Select Item In dialog.......cvvveveviininieiiiiiieciiic e 146
Merging several item flows into 0Nne SIreamccuviiiiiiiiiiii s 146
Balancing multiple input lIes......cccooioiiiiiiiiiiiiic s 147
Throw Item and Catch Item blocks for merging item Streams..........cccocoioieciicciiciciececeenens 148

Items going to several Paths.......occveiniiiiniiniic e 149
Select Item Out dialogc.cucvriiiiiiiiiiiiiiiii s 149
IMPLCIE FOUTINEZ. c.vtnvvveiiiiiciiiec ettt ettt
SIMPLE TOULIEZ ..ttt ettt sae e
Scrap generation........

Sequential ordering

Table of Contents

EXPLICIT OFAErING ..ot s
Routing decisions based on properties...........coecevvvuereicvrerevirinnenercnnne.
Conditional Foutingc.ceivvrieueininieieiiiecteee e
Machines that can only process certain types of items

Processing.......cceeeueenesunesnnene N 163
Commonly used DlocKS.c.coveuiiriiririiieiiieiee e e 164
SYSTEMS ANA PLOCESSES. . veviuirriiriieieiiiieeieitt ettt ettt s et 164
Processing Il SELIES.......civiuiruiiiuiiitiiiiiieti ettt e e 165
Processing in parallel.........cccoiiiiiiiiiiic e 166
Parallel processing using one block..........cceueueiiuiiiiiiiiiiiiiiieeeeeeeeeee e 166
Simple paralle] CONNECTONScovrveveuiririeieieiieici ettt ettt sttt be et saenenens 166
Setting the Processing tMEcuciiiiriiuiiiiiiieii e 167
Processing time fOr an ACHVILYcoviiiiiiiiiiiieceticieici s 167
Processing time for other activity blocks. ..168
Fixed processing timeccceceervruenenne168
Scheduled processing time.....168
Random processing timieceuiueueuiuieeuiieieeiiiieeeeeeeieieieses et sesebesesese e e sesesebesesesssesenes 169
CUSTOM ProCESSING THMEviviuvviiiiiiietiiiteies ittt s nenas 170
Implied ProCesSing tIMEcueueuiriririiiiriicii et 171
Cumulative processing time: time Sharingccccceeiriiiiiiiiiiii s 171
Adding setup time.....ccovvvevievriereriinrnenennns 172

Bringing an activity on-line........cccccorieieriininnieicinnecicreeece e .. 173
SChedUling ACHVILIES c.uvuveeeiiiei ettt bbb benenes ...173

Controlling the flow of items t0 an ACHVILY ...ccvveueviiiiiriicicirircer e w175
Fixed number of itemsccoevuviriiiiinnnes s w175
Fixed period of time........ 177

Interrupting processing..... e 177

Preemptionccocueuee. e178
Shutting down s ...179
MULEIEASKING ...cvnvriiiiererccitere ettt ettt s ettt en st nnen 183
Simulate Multitasking Activity MOdelccocuiuiiiiiiniiiiiiieeteecirieeeeeeerierenereaereseseienenes 184
Kanban SYSTemi......cuerieuirieiiieiie ettt 185
Transportation and material handlingc.cocoveeieinirieciinniieiiccec e 185
Travel timeceevvveereicininiciiniieenns
Transport blocks
ConVey Ttem DIOCKS. c.c.cvevuiiteieiiirietct ettt sttt st 188
How the length is calculatedcooiiiiiiiiiiiic s 189
Transportation MOAELSc.cvvveviiririeriiririeicie ettt 190

Batching and Unbatching........ccvueeenensuisnininsensecsninensinsnisinensecsnesensessessscsseeses 193

BlOCKS Of INTEIEST. v euvveieiirieiiieiirtcitce ettt ettt bbb s e 194
BatChing ...c.oviiiii e 194
Batch dIalogc.cuiuiiiiiiiiici s 195
Simple batchingc.cciiiiiiiiiiiiiiiii e 196
Batching by matching itemsc.cocoiiieiniiiiiiiii ettt 197
Batching a variable number of Items........c.ccceuiuiueiuiiuiiiieieieieeeeeeeetereie e rerenes 198

Properties when items are batched

Delaying Kitsc.cueveueieiiieieieieieieiiieieeieet ettt

T7

T8

Table of Contents

UNDALCRINE cvviteiictcc ettt e
Simple Unbatchingc.ccuiiiiiiiiiiiiiiii s
Variable batching and unbatchingc.ccceeeiriririninininirirrrs e sene
Properties when items are unbatched.........cccociiiiiiiiiiiiiiiince s

Preserving the items used to create a batchcccoeeucuiciiiiiiiiiiiiiiicccee
Both blocks choose to preserve uniqueness......
Either block chooses to preserve uniqueness....

Additional Models.......cocouviiviiiiiiiiiiieee e ..

Resources and Shifts.....
BlOCKS Of INEEIEST . .eeiiieeieieie ettt ettt ettt e et e et e et e eeateeesaseeestteessnseesenaeessnteessseesennes
ResoUrce POOL BIOCKS......c.cuiuiuiuiiiiiiiiiccicci e
Other 1eS0UICE DIOCKSviiuviieiiceeiceiecee ettt et ettt et e eeteeteeteeneeeaseeneeeneens
MOdeling FESOUICES.....c.vvviiiiiiiiiiiic et
HOW 0 MOAEL FESOUICES ... vveviievietieieeteeee ettt ettt ettt e eae e e et e et e eseeeseeeseeseenteenseeneesnseeneesseens
Resource Pool MEthod..........ccvioiiiiiiicecee ettt ettt ettt eaeeeeeeaeens

Resource Item methodccocevvenennnnen.

Other methods for modeling resources.....
Closed and open systems..........ccccceeeneenee.
Scheduling resourcesccceevverueiciininncnene.

Scheduling resource pools and resource items..

Scheduling reSOUICe ITEIMSovviiiiiiiiiicii s
The SHIft BIOCK ..ottt e et e s e s eaa e e s snteeeenaeeesaneesneeeean

Shift types and what they control ...

SEALUS COMMECTOTS .uvveieureeetieeitreeeteeeteeeteeeeteeeesseeasseeeseeesesaasseaasseesnsaesnssaeasseessssaasssaansseesssaseasesenssens

SHIft MIOAELS ..ttt ettt ettt ettt ettt ettt et e et e ebeereeteeasersensenserse s e s eaeeae et e ereereereenean

Ttem types ...oooovvvininiiiiiiiiiiis

Defining costs and cost rates

Combining resources with cOSt 2CCUMUIALOLScveviriiiiiir et 229

Combining cost aCCUMUIATOLScuevveiiieieiiiiieieieieeetetee e 231

Working With COSE datacociiiiiiiiiiicc e 231
How ExtendSim tracks COSES cuuiiiuiiiiiiiriiiiiieitieeteecreeeteeeteeeteeeteeereeeeeeeteeeaeseeaeeeseeeveeesaeeaneenses 234

Setting the _cost and _rate attribULEs.........ceuiuiuiuiiiiiiiiccccccc s 234

Combining resources with cost accUmMUIAtOrs ..o 234

Calculating costscoeveueeirrererinineriiierenees

Combining multiple cost accumulators..................

Statistics and Model MEetrics c....coueeeerrerirensensensuesssessunsssicsacssesssesssssesssesssssssessas 237
Commonly used DLOCKSc.ovveirieinieiriciniccncccce e 238
GAthering STALSTICS c.vuveuveviererieetitetiiete ettt ettt ettt b e b e se et sa et sene e e 238
Clearing STATISTICS ..e.veveuvererrerirrerirrerirrestrtertrrestrtetsresessesesseseeseeesesseseseebesseseseeseseesesaeseaesenseneneene 239
Clearing Statistics MOdELc.ceviriiieiiiriiieiiiiiceiree et s 239
Using the History block to get item informationcoeveueueininrereeccinnierccineeeeeneereneeeees 239
HiStory MOdel......oiiiiiiiiiiciiiiicciec et 240

Verifying Information model..........cciiuiiiiiiiiiiiiieeeeceieeee et ene 240

Table of Contents

Accumulating data....c.ooueeeveiriiieiinieeee et 241
Non-Processing Modelccciiiiiiiiii s 241
Processing MOdEl......ooveveuiiiiiiiiiicciiec e 241

Time weighted versus observed STAtIStICSoveveveirirrereiriniiiereerinrereeer et ee 242
Time Weighted Statistics MOdelccvuiiiiuiiiiiiiiieiiceeeeeeeeee et esesenenesenene 242

Timing the flow of items in a portion of the model...........cccccoviiiiiiiniiiice 243

Tips and Techniques.......cccecerveruennense reesaeesateaee sttt st s st esaassaasbesene 245

Moving items through the siImulationc.ccccvieiiinniiiinncccceeeeenen 246
How items move through the sSImulationccccciieiiiiiiiieiiiecreeeeeeeeee e 246
Connections to multiple item INPUE CONMECTOLSvuvveuiirieieiriireiiirieieetiere et enereneas 248
A Htem’s travel tME.. ... 248
Using scaling for large numbers of Itemscoeuviviriririininiiiiecr s 249
PLEPIOCESSINEZ. ...t 249
Restricting items in a system249
Connecting to the select connector250

Continuous blocks in discrete event models........... et ...250
Setting time-based parameters using connectors....... s ..251
Varying a distribution’s arguments..........cccocoeeeeerennee ..251
Using the Holding Tank block to accumulate valuescccoccuiucuiiiiiiiiiiiicicccccceecees 252

Cycle HMING ...t 254
Using the Timing attribute featirecccucuiiiiiiiiiiiiiiiicicec s 254
Using a Set or Equation(I) and Information blockscccoviviiiniinninniiiine 255

Ttem [IDrary BLOCKSc.cvveuiriiirieiiciic e bbb 255
EXECULIVE BLOCK ... vceiiiiiiiiciciiciciciictctctee ettt ettt ettt bbb nene 255
BlOCK TYPES..c. ettt 256
Common connectors on discrete event blocks.........cciiiiiiiiiiii 257

Event scheduling. ..o 258
EVENT CAlENArs ...c.vveeieeieiciciicteer ettt ettt 259
Zero time events............. ..259

Event Scheduling model....
Messaging in discrete event models........cccoeeneen. e ...260
Block messages........cocoeuierrrerencnnne. et260

Discrete Rate Modeling

INtLOAUCHION auueeeeeeeeeererieereeeeeeecsssssssssssssnssssssssssesseesesssessssssssssssssssssssnssasssassssssasssssss 209

What this Chapter COVELS ..c..oueriiiniiinitiniititeietet ettt ettt naeaen 266
Discrete rate appliCAtion IEascouvueerierirueirieinieinetneeseni ettt ne 266
Simulating diScrete rate SYStEImScucueuiiriiieuiiiiiicieiisce e 267
Comparison to discrete event and continuous modelingcccoceueeuiiiiiiiciiiccncceeennas 267
Discrete rate MOdelsccoviiiiiiiiiiiiiiiii s 268
Blocks for building discrete rate models........cceevieirieineinerneincnceeceeee e 269
Rate librarycccoeeieininieiinicciiccceccnen s .. 269
Creating custom discrete rate blocks..........c.cce.c... s .. 269
Terminology and architecturecccoeueueinenuennee. e ...269

LP technologycccoeueueueueucrennnne
Layout of a discrete rate model....
EXCCUTIVE DIOCK ..ttt b bbbt 270

T9

T10 [Table of Contents

CoNNECtOrs ANd COMMECTIONSvveveereereereeiteeteeeeeeeseeteeseeseeesseeseeessesseessesseeseesssesssenseeseesessesssens 270
Units and UNIT GrOUPS .veuvveveviiiiiieiiiiiiieeieiett ettt sa ettt st 271
RATES 1.ttt ettt e et e et e e et e et e et e e e bee e be e e taeeetbeeetbe e e baeebaeebae e tbaeesbeeeraeeasaaenareas 271
How the Discrete Rate module is organizedcccocoiiriiiiinniiiiiiiiicinncccsecccns 272
Tutorial for Discrete Rate Systems ...ccevueveesresensnnsncsnesensensnnsnesnnsessnessessessessasnens 273
A basic discrete 1ate MOdElcc.ecviiiuiiiiiiiiiiiiiecece et eae e 274
ADBOUL the MOAEL.....cuviviiiiricieciecie ettt ettt ettt ettt ettt e eteeteersersersersensensenseereereeneas 274
Starting a model and setting simulation Parameters.........cccvveveveeriiieieiniiieiireeiereeeee e 275
SEAFE SMALL.c.viieiiieieeee ettt bbbt et e bt et e et e b e st et et eseseneeban

Add a dynamic constraint....
Add a fruit processing line...

Add MaiNteNanceco.eveeevvreereeieereeeeieceesenereee e
Change the flow unit to containers for the filling Processcccoeriereriiirerninirereriireneicesenecens 281
CO0L The MUIXTUIE .c.cuvuiaieieire ettt ettt ettt ettt
Package the CONTAINELS......c.cviiriiiiieiirci e
Add 2 palletizing areacccuiuiuiuiiiiiiiiiiiiciec e
Add a second palletizing area
Further eXplorationcociv ettt ettt
Sources, Storage, and Units.......ccoueeueeercenincsnesensnesnesnenanes .289
BlOCKS Of INTELEST .vevtuvviieiirieiiriciriet ettt e 290
Residence blocks for holding flow ... 290
Changing the flow UNIt GEOUPcovviiiiiiiiii s 291
CAPACILY coeneiieiiiieictt e ettt sttt b e
Full and not-full....c.ccovviieiiiicicccec ettt
Tank block’s capacity
Interchange block’s capacity
Convey Flow block’s capacity
Setting an initial contents..........cccccc.c....
Empty and not-empty.............
Tank INTHAlIZATION c.evveiiirierciirietc ettt ettt ettt enen
Interchange initialiZation..........ccocoviiiiiiiiiiiiniiiii s
Convey Flow INTHalIZATONviviviiieviiiiiieiciiniecteeete ettt
INICATOTS ¢ vttt ettt
SEtting INAICATOLS w...viuivviiiiieieiiit ettt sttt
Getting information about Levels.........ccciiiiiiiiiiiiiiiiicccec s 296
Units and UNIE GrOUPS ..c.coveueuiiiiiiiciiiie ettt 297
DI INITIONS ¢ttt ittt ettt ettt ettt ettt b ettt b ettt a bbbt e b neae 297
Declaring and selecting flow UNIsccooevvirieiiiiiiiriiiiic s 298
Defining bIock UNILs ...c.cviieieiiiiiiicccc s 299
TIME UNILS cevviiiiiiiiicii s e 300
Changing the UNIE GrOUP ...c.covvivieiiiirierccrrec ettt 300
Change Units DIOCK.....ccueviiririeiiirr sttt 300
Rates, Constraints, and MOVEMENt.....uueeeeeeeeeeeeeeeeeeesesessssssssssssssssssssssessssessssssssssses 301
BlOCKS Of INTELEST .evenvevieeeiricitrieirieirtce ettt ettt st 302
Rates, rate sections, and the LP areacccoecveeinieinieiniecineincncinceeceeee e 303

TYPES OF FALES .ottt sttt ettt sttt a ettt s bt s b b et s b enesenenenen 303

Table of Contents

RALE SECTIONS 1veuvivierierieteetieeteiestetestestestetestessestessessesseeseeseessessessessassessessassessessaesesssessessessessessesensans 305
Rate precision e 306

LP area ettt ea——aeeer——raeeaaraeeeaaees 306
Flow rulescooovviveieiniiiieieeieeeee e et e e e e e saeeas ...306
Ciritical and relational CONSIIAINTScveververreereereerierrerresresresreereereereereereereensessessessessessessens307
Defining a critical CONSEIAINT........cooiiiiiiiiiiiiicii s ...308

Valve ..o ..309
Tank and Interchange.310
CONVEY FLOW .ttt ettt sttt st ne s 311
Merge and DIVEIZE....cevivueuiiiiiiiieiieieetrteteee ettt sttt 311

Meeting the critical cOnstraint reqUITEMENT......ccveverereuiririereueirinrererereneerereeseseerereeseereseeennes 312
Valve 0r Convey FLOw ..ot
Tank or INTErChangec.oveviiirieiiiiieie et e
Merge or Diverge blocks

Comprehensive EXAMPLEecvrueiriiririiieiiietet ettt
RALE SECTIONS ..uviiiiiiiiiiiic e
Critical constraintscceceevreereuiennnns
Relational CONSIIAINTcviuiiiieiiiiiicciieecte ettt
Simulation’s impact on the effeCtive FAtescceueuieueuiiuieiiiieeeeeeeeiereee et rerenes 315

Merging, Diverging, and Routing Flow.............. 317
BLOCKS Of INTEIEST. . .cveeuviriceiecie ettt ettt ettt et ettt aeete e eaeeteeteeasesbeeaeeteersebeesseeteensenseens 318
Merging and diverging flowc.coeeueiririieeinnieie et 318
MOAE TADE ...ttt ettt e et re e ae b e ebeereeaaeeaneeanas
SElECt NOAE .. uiivierieiiete et ettt ettt et ae et et eete e teebeebeeaaeetseereeeteebeeseenseenseeaseeaseensereenreens
Batch/Unbatch mode
Proportional mode..........
Priority mode.............
Distributional MOAE.....c..ecviieiiiciiciecieeeeeeeee ettt ettt et teete et e eareeteeeteeeaeereeareeereereens
SENSING MOAE.c.viiiiiiiciiiic et
INEULTAL MOiviiiiiiieiecieei ettt et ettt teeeteebeeaeetbeetaeeas e teesssenseenseenseeaseensesanas
Features of the Merge and Diverge blockscoociviiiiiiiiniiiiiciiccceccees

Bias Order — resolving competing requests for flowccooviiiiiiiiiiiiiics

Internal throw and CAtCHcuiiviieiiciieeceeece ettt et ettt e reeaeeree e reenaeens
Changing decision rules dynamically
Throwing flow and catching flow remotelycccoueveueece.
Creating a throw/catch connection..........ccccccucueuneene.
Filter options to facilitate throw/catch connections

Examples of throw and catch connectionscoevevverieinrinirnnrsrre s

Delaying FIowcoeveeiinnennnnnsncssensensncsnessessnssnessessens .333

BlOCKS Of INTELEST. ... euvvireiirieiiieitcitc ettt ettt s eae 334

Controlling a Valve’s Maximum FAE.....c.eoveuirierirreririerirterinrererteenreenresenre et sesesreseenene 334
Using the Flow Control tab.........ccc....... SR e335

Observing the maximum rate for a goal

Setting a Valve’s quantity goal................. ...335
Setting a Valve’s duration goalcccceiieiiiiiiiiiiieeeieeeeeeeee et 338
Setting hysteresis in @ VAIVEccoiiiiiiiiiiiicicc s 341

Delaying flow with the Shift BIOCK......c.ccctvriereirinieiiiinniciciceccrrecceece e 342

T11

T12

Table of Contents

Adding a Shift to a model
Convey FLow DLOCK.c.coviiriiiriiieieiee ettt
DHAlOZ SETUNES ..vevevirrrereiiieietiietetet ettt ettt et
CONSLIAINIIEG TALES ...uviiiiiitiiiit ettt st s e

Convey Flow information
When to avoid using the Convey Flow blockccccoiiiiiiiiiiiiiicciccccccccceces 346

Mixing Flow and Itemscoueeerenieenenenicnnenenensnnsnesenennnensesessnsssessesessesseses 347

Controlling flow with items and items with flow..........cccccooviiiiin
Items controlling flowocceviiiiniiiii s
Flow controlling items...........cccouviivininiicniiccinne.
Flow controlling items and items controlling flow
Step The Flow Process modelcevvcenvvercecnnereniennnee

Using the Interchange block to mix items with flow.......c.cccoveieiciinieiccnniicnnecccnnes 352
Behavioral FULESc.cueveueueieieiiieiciciciccc e 352
The flow cONNECtOr CONFIUIALIONvvuiuiuiuiieeeiiiiieieueteieueaeietererereieteseteueuesereresesebesesesesereseseneresenene 353
Item release CONAILIONScveveviririeeirieieice et 353
Interchange MOdesc.cuiuiiiiiiiiiiiiiiii s 354

Miscellaneous......cceeeeee

| o) (o) s VO RRRURRRRRRRNt
Biasing flow........
Bias order
Bias block
Merge and Diverge BIOcKsc.cuiuiuiiiiiiiiiiiiiiiiciicc s 362
Global and advanced options in the EXeCUtIVE.......ccovveireirieineinicincinceneenee e 364
GLODAL OPTONS vttt ettt a ettt seene et
Advanced options
Common connectors on discrete rate blocks

Sensor
CONVEY FLOW .ttt ettt s b et

Advanced TOPICs....cccereereerresrensecsuissesensensuessissesseessissessessssssessesseessessessesssessessessesses 379
What this chapter covers
LP technology
Overview........
THE LP QT€a...uviiuiieeiieiieeie ettt ettt ettt et ettt e et e e te e beeeteeveeseensessaeesseebeeaseenteenseenseeseeessesseenseenns
The sequence of events
Types of information provided to the Executive

The LP calculationccceueueeeueueieeieieieieieiceieieiennes

Upstream supply and downstream demand
DIEfINITON ..ttt s
Requirements for the supply/demand calculationccoovieiviiininininniiiicccee 383
Cautions when using potential Fatesccociiiiiiiiiiiic s 383

Messaging in discrete rate MOdElS....ccoveirieiriiiriiinieinieinercrc e 386

Table of Contents

BIOCK MIESSAZES ... s 387
3D Animation

Introduction t0 E3D.....uuiiiiniiiiienteninnnienienecnensenennssnsnnessssesnesssssssssssessess 389

What this Chapter COVELScouiriiiniiiiniriiniiiieietet ettt sttt st saenen 390

Blocks and objects for 3D animationcceciriiueiiiiininiciince e 390
Ttem HIDrary BlOCKScveveueeiririeiiiniiieicircc ettt 390
Animation library
Custom 3D 0bjects and BIOCKScveveviuerieiereiiriiieicieriectreicee ettt 391

OVEIVIEW ..ttt r e n s e r e 391
FQATULES ..ttt e 391
Controlling the E3D enVIFONMENTvcviiriiiiiiiiiieiiiiieiciieieeese ettt nene 393

PrErEqUISITESvivviiiiiitiicitct e e
Software and hardwareccciuiiiiiiiiii s
Preparation.........ccocevueniniincniniiiiiiiinns

How the E3D module is organized
Tutorial I

The E3D enVIFONMENT ..veeviieuviereieeieereeeteeeereeereeereeeteeeeeeeveeeneenneeens
Opening the E3D window
Exploring the E3D WinAOW........ccciiiiiiiiriiiiiiiiiricreers s
Changing the associated modelcccooiiiiiiiiiiii s
Navigating within the E3D window....
Manipulating the E3D window............. .

3D animation modesccccceerveerrereennnnne.

MoOde dESCIIPLONSveiieriiniiciieie ettt en e
QuickView versus Concurrent or Buffered.........cocovieirieiniiiiinieiiciiccee e

Running a model with 3D animationccccccciiiiiiiiniiiicce s
Opening the MOdel ... s
Running the model with 3D animation

INEXE SEEP wvviiiiiii ittt s

Tutorial IL....ucueeeeennenenenninnnnennenne
Adding 3D behavior to an existing model...........cccociiviiiiiiniiiiie
The goal
Open the starter MOdel ..o
Cause objects t0 move SIMUItANEOUSLYc.evvvereuieirieiiirctcee e
Create ObJECts 10 FEPIESENT ILEIIIS ..uuvevviuriereririreieieirteiestt et es b te s bt en st sn s snenenens

Create objects t0 represent blocks.........ccireiuiuiiiiiiiiieeitieeeeeereieiereree e eresesererese s enenes
Enhancing the model
Add scenery......cccovueuveninnnnee
Add a 3D Controller block
Launch with the E3D window
Some things 0 MOTICE «.eoveuvevieeiiieiiietitetet ettt et s seene
Internal animationc.c.......
Rotation of 3D objects
Mounting objects.......cccceeurueuenene.
Moving blocks linked t0 OBJECESvvveieiiiiiiiiirieicccec e

T13

T14

Table of Contents

COMVEYOL .utriteteiirtereeteeeie ettt ettt a ettt b bt e stk et ee s b et st ea b se st sa b st s sabeneneesenenentan 413
Ttem LENGLR covviiieiicecect ettt 413
CONVEYOL CAPACITY ..vvvneervieirierereiireteteiie ettt be et s bt s et e bt st b bt sssnesenean 414

Tutorial II..........cceeeeeeee.
Animating a bank linec.coeeeioiniiiiiininiccc e
The goal..c.ccceuerereerercnnns
Open the starter model
Animate the model in 3D
Unmount the Activity BIOCKScccvueiriiiriiiniiincinicc et
Add Transport BIOCKS «....coveerueeirieirieiniciriciriccee ettt et
Animating the travel HMe........cciiiiiiiiiiic e
What the model needs.......................
Walking and waiting in a line............
Leaving the bank.......cccoevvvivivinviniiirccceeeee

Minimizing the icons of the existing Transport blocks
The MOdel SO farcucuiiiiiiieiciiiei e
Block positions to determine a path’s length
Setting the speed and determining the distance
Mounting 0bjectsccviriiiicininiiiiircce
Steps for MOUNTING AN ODJECT.......cuiuiiiiiiiiiiicicccc s
Create the ODJECT.uuiiiiiuiirictctrt ettt ettt st eae et
Create an attrIbULEvviiiiiii s
Mount the object 0n the Itemc.ceueviuiueiiiiiiieieieeeieieeeeeeereee et sesene e nene
Create a hierarchical block
Unlinking objects from blocks
Unlinking positions................
Creating custom pathways
Use the correct Transport BERavior........c.ccoveuciririeciiriniccrc et
Creating Pathis........coiiiiiiiiii s
Create a new environment file
Create a path object
Create path MAarkersc.covieiiiiiiiiiiie s
Select the PAth...vcuceiiicicic ettt
Repeat the process for another path........ocuccereieeinnieciininicirccene e
Enhancing the modelc..ccviiiiiiniiiccece e

Environment Files & E3ID Editorsccceeeeeeeeeeeeeeeeeeeeeeccecssssssssonsesssssssssssesseeecessess 431
EnVITONMENE fIlES...eiiuviicriieeee ettt ettt ettt e ete e e e eaeeeae e eteeeaeeenreeeaeeenneennes
Modifying the environment ...
The E3D Editor...ccvevevuieieiiiiiiieeeieeeens
Learning about the E3D Editor
E3D Editor modes
Mode categories
WWOTIA MOAES.....viieviiiiieeiieeeete ettt ettt ettt et te et e e e e e b e s taeetsebeeabeeaseessesasesseesssesseenseanns

Table of Contents

3D ODJECLS vt
TYPES OF ODJECTS vttt st b e n bt saenes
ODJECT PIOPEITIES «..vvvrvivnieiiereiesiteteieiee ettt ettt a et st enene
AACTIONS ..ttt
Creating objectscoccevevecueiinininicccnenen
Create an object that represents a block
Create an object that represents an item or other moveable entity
Create 2 3D ODJECE @S SCENEIYvuiiiiiiiiiiciciiiieccicce bbb
Create an environmental effect.........eciviiueuiinnieininecec et
Deleting ODJECSveuveviieiiieiiec e e
Changing ODJECt PLOPEITIEScevevviuirirrereriririereiieiteteiestesseresees s sesesesseseseessseseseesaenenesesnnes
Changing skins
Move an object....
Show or hide objects
ROTALE AN ODJECE 1.
Scale AN ODJECT ... s
Saving changes........cccccevveernencnn.
Saving an environment file...
WayPoints.....c.ccecveveevueneenenne.
Creating @ WaAYPOIINcouiuiiuiiiiiiiiiiitiiei ittt
Choosing a waypoint as @ destinationc.ceceeeiriniieneieieeesieieeteeeseeteereseseeeeereseseseaesesesesenenes
MoOUNTING ODJECTS..c..ecuiiiciiiiiicicci et
Item object 00 BIOCK ODJECT..c...cuiuiuiiiiiiiiiiiiiieiciiicccceeceet e
Object on item objectccceveneeee.
Scenery object on scenery object
Other object information..................
COILISION ettt sttt ettt n bt naene e
Gravity, friction, and MOMENTUML......c.ccciiiiuiiiiiiectte ettt
Sound ..o
Object ID
BlockNumberc.ccc.......
GroupTag and UserTag

Movement, Paths, and Terrains....ecccceeeeeeeeeeeeeeeeeeesseeeseeesssssccessssessssssssssssssssssssseess 205
Traveling LIMEoiiieiiiiiie ettt 466
Setting travel time in a Transport or Convey Flow blockcooiviiiiiiiiiniiiiiiccs 466
Creating Pathisooucuiiiiiiiiiiii e 467
TELTAINS .ttt ettt ettt ettt sttt st a et et h ettt et bt b et h et b et bt s e bt st ebe et ebe st ene 470
Modifying the terrainc.ciiiuiiiiiiiiiiiic e s 471

Tips and Referenceoucuuenuinnenseinninecnnnsnnsnensenssensnensennensensensenssseessesennss 473

TIPS ettt ettt ettt ettt b et b e bbbt b et b etttk b et ekttt b et b et ebentere 474
Using an Equation block to call E3D functions............ccoceciiieiiiicincccececeeeeneveenenenes 474
Hierarchical blocks and 3D animation
Items stack on top of €ach OtheEr ..cviiiieuiiiiiciice et
Performance Considerations........c.uuiieriieeieietriitceteteeeeeteteesteeeeseateesesee e eseseseseaeseseseenencs

E3D commands, options, and SELHNESc.cueeererrereririrrrrerererineereresetseeresesesesseseseessssesesesessenes
Opening the E3D WINAOW ..c.ccviiiriiiiiiic ittt ettt eaeseses e senes
3D tab in Options dialog ... s

T15

T16 [Table of Contents

3D Animation tab of Simulation Setup dialogccccceuiuiuiiiiiiiiiiic 477

Dialog tabs for animation.........c.ccceerirrereiririereeinieereetsereee et sese s ene e seenenes
Ttem ANImMation taD......cciiiiiiiiiiiccie ettt ettt re et e be e e an e e aeereens
Block ANIMAtiON £ab c...cviiiiciiiiicicciecce ettt ettt ae e er et e tbeeabe e eteeeaneeraens
Transport Animation tab

Animation 2D-3D DLOCKS.....c..iciuiiiiiieieeetii ettt ettt ettt et et et e reeeaeeeaaeenreas
) D e o1 o) |1 ol o) (e Yol USRS
3D Scenery BLOCKoiiiiiiiii s
B Xt DLOCK 1.ttt ettt ettt et et ettt e te et e eeteerbeeteeaeeereereeaeens
Animate 3D block........cccoevveeviiniennnnne.

E3D Editor menu commands

How To

Libraries and BloCKS......ccccevieruinsuiireicsuiiseinsennsinninsissinsnecsnecssesnissesessssssesssesses
The ExtendSim LDraries.....c.covueveueirniererinininierecnenieeccneneneeseseenereeesenenesenes
Animation 2D-3D librarycceveveiviniiinniecincieecens
Electronics libraryc.ccceevveeveininniccninicnccne.
Item library (not available in ExtendSim CP)ccceovirueiiriniiieienirieiecerieicie sttt
PLOTEEE LIDIATY ...eevveieireetceiitetce ettt ettt ettt bttt ettt st b et sa b s
Rate library (not available in ExtendSim CP or ExtendSim OR)
UHHEES LIDEATY .ottt st
ValUe TIDIArycvviiiiiciiicc e
Example Libraries fOlder. ... oottt eieieieieieeseserese e sesenesesenenesenene
Legacy fOLAEr ..ottt
Using librariescc.c.....
Opening a library
Closing a library........cccoceevvivvnnnnnnnne
Searching for libraries and blocksccooiiviiiinininiiiiii
LIbrary WinAOWS ...c.coveveveiiiiiiiiiniciciine ettt
Creating and maintaining IDIariesc.cccovieveueeriniirecininieec et enene e
Creating @ NEw LIDrarycco..oeuiiviiieiiiniieciicccc ettt
Saving and compiling libraries
Substituting one library for another..........ccciiiiiiiii s
Arranging blocks in Ibraries..........oovviiiiiiniiinii s
Protecting the code of library blocks............
Converting libraries to RunTime format
Working with blocksccceeerviecinnrnnenae.
Customizing DIOCK ICOMS ...c.cueuieieiuiiiiiitictititte ettt st taeaes
JCOM VIEWS .ttt
COMMECIOLS. c1vetvtetisietet ettt ettt b bbb bbbttt ae e s bt ne e

Table of Contents

Connecting to different connector types
DHALOES .ttt a e
Animating blocks.................

Hierarchical blocksc.cc.c.......

Managing blocks...........ccccccunee
Copying blockscccceueueunennne
Changing a block’s name
Removing BIOCKScuiuiiiiiiiciic s

COrTUPLEd DLOCKS ...ttt ettt

Creating a Custom User Interface......covuivuirueninicsnisninensensncsninensensncsnessensecseenneess 503
CLONINEG .. 504

How to clone a dialog item 504

Using cloned items 505
Unlinked clonesc.cccceueueeee. 506
Centralizing data in a database 506
HIEIATCRY ...ttt ettt ettt b et 506
Creating a dashboard INTEIACEc.covvveviuiiriereieiiricrccirec et 506
BULLONS 1. 507
POPUP MEIIUS «..vvvitiitetctite ettt bbbttt 508
On/OME SWILER 1ttt ettt 508
Additional blocks to control model eXeCUtionc.ccerieueeiriniereirinieictricc et 508
INOLEDOOKS ..ottt sttt st 508
COMLIOLS vntinietiietie ettt ettt ettt ene 509
STACE ettt ettt n et saene s 509
SWILCR -1ttt a ettt b btttk h ettt b et b ket et ebe st et enenens 510
IMLELET i s 510
Interacting with the model USerccccoviiiiiiiiiiii 510
Notify block....c.covvveverirerieecnennen
Equation blocks
Additional interactive features if you Programcocovvirivirinirininnninenisisi e 513
External applications as an interface..........cceveiriecirieinierinieineenenccnee e 514
Documenting MOdELSc.coveirieiniiiniiiniineineneeee et 514
Text and Graphics ...ccovviiiiiiiiiiiii e 514
HEIP BIOCK 11ttt 514
Model EXECULION...ucirirriiiiseisrissinsiesrissessessecssessesseessessessessessssssessessessssssesenns 515
SIMUIATION SETUP c.vevenvevirreiirtciirteirt ettt ettt et ne e eae

Setup tab
Continuous tab.................
Random Numbers tab
3D ANIMALION TAD.vuiitiietiiteiieteiet ettt ettt ettt ettt e e eb et e s e be e be s esebasaesensesessaneeseneans
COMMENTS TAD 1.vveievieiieie ettt ettt ettt ettt et e et e e e e eteeseeeaseeteeeteeseenseenseenseeseeessensseeseenseens
Running a model.......ccccoiiiiiniiinnn.
Menu commands and toolbar buttons....
Running a model multiple times............
Stepping through @ model.........cccoooiiiiiiiii
Other points when running MOdels.......c.cceeuiuiiiiiiiiiiiieeeeeeeeeee et renenes
SEALUS DAL 1.vivitictieteete ettt ettt ettt ettt e vt et eteete et eaaets e b e besbeebabeebeebeessersersersessessessessesesseereereas

T17

T18

Table of Contents

Continuous simulation tMINGccccuveeririiiieiniiiiieee et
Discrete event simulation timing
Simulation order (Continuous MOAEls)c..ocecueiveeeeeieiiiieiiiieeeeeeeeeeeeie et
TIINIE UNITS ettt ettt ettt st sh bbbt e et et eatenesuesae
GLODAL THME UMttt ettt ettt ettt sttt st bt seeaenenenn
L0Cal THME NI ettt ettt sttt sttt et st sb bbb bt bebeseenaenen
Calendar dates.....c.covvvveevecennrerecnnencinieennes
Time unit conversions (non-Calendar dates)
Other Units...c.ceoeneereueeninrereiineeecineerenecsesreneenenns
Flow unitsoevevrieveininriiecinnenecnn
Length oceeeiiiiiicicccicccceeens
Length and number of runs........ccccoiiiiiii e
Terminating SYSLEIMS.cveuiiiiiiuiiiiiiieie st
Non-terminating Systemsc.cceveervevverennens
Determining the length and number of runs
Speeding up a simulationoccecivineeccinnnenenae.
Displaying data 0r MOVEMENT....c.coueviuiriiiiieiiiiieieiinieeci ettt sn e
Inefficient settings or BIoCk COME ...oviuiiriiuiriiiii et
Other factors that affect simulation Speedcoevvieirieiriiinieiniec s
Slowing down sImulations..........cccccoiiiiiiiiiiiii
Working with multiple models.........ccoiuiiiiiiiiiiii
How ExtendSim passes messages in models...........cccoeiiiiiiiiiniiiiiicncccccccs
Application messages
Block messages

Presentation
Working with text
Entering text.....cccooveuennene.
Moving and COPYING LEXL......cucuuuiuiuiuiiiieieieieieieteteie ettt b s bbb bbb naes
Drag and drop teXu....ouiuiiiiiiiiiiiiiiiiiii s
FOrmatting tEXUccuiiiiiiiiiiiiiiiiiciic e
INGVIZATOT ..ttt s
Hierarchycccoceovveinienenncnnnn
Uses for hierarchy.....
Hierarchical blocks
Making a selection into a hierarchical blockcccoiiiiiiiiiiicce
Building a new hierarchical block ...
Saving hierarchical blocks..................
Modifying hierarchical blocks
ANimation.......ccccveeerevieescieeeceee e
Blocks with built-in animationeeveververveireereireereereereeeeeeseeeeeesseesesseeseerseseessessessessessessenseesens

Blocks for customized animation..........eeeueiererieinieieieieesieeeetesteresseeseteseesessesseseeesesseseseseesensesensans

Animation functionsceeevevereenennnns

Animation pictures

Displaying messages on a block’s icon
ExXtendSim databasesccueevirieciisiieiiiiesie ettt ettt sa e e reesae e sbeeereseennens

Table of Contents

CONMECTIONS ...ttt ettt ettt e sa e b e e ettt ebe b sbesa e b saenesnen
CONNECTON LINES 1.veveuinireviiiieteieiitrie ettt ettt sttt st
INAMEd CONMECTIONS .vevnieiiiiiiiieiiirieie ettt st sa et b et setnen

MOdel APPEATANCEceevriiiiereiciiite ettt er ettt
Showing and hiding connections and connectors............

Changing model stylesecevvurrivuririnniririrnrne

Graphic shapes, tools, and commands
Drawing objects in the Shapes menu
Shuffling graphicscccooiiiviiiiii e
MOdIfYINg ODJECES ...vvieiiiiiiiiiiici s

Patterns and COLOIS.....curriiiiuiiriiieiiiiree ettt ettt

Working With PICTULES .c.vvveveueirierereiiiriereicirin ettt ettt ea ettt ne et enene s

Blocks that calculate STatiSTCS.....veverveuireeririeirieirie ettt
STATSTICS 1.ttt
Clear Statistics
Mean & VAIANCE ...ccuiviiiiiiiiccii e e
I OIMATION. ettt ettt
COSE SEALS 1.ttt e

Confidence INTEIVALS ..c.eoveuirieirieiritirc ettt bbb

SenSILIVIEY ANALYSIS cveuveverteririeiirieirtc ettt
OVEIVIEW. ..ttt ettt ettt et e st e e et a e b se st st e e be s e st eae st enenneneenene
Steps for using sensitivity analysis....
Specifying the sensitivity method ...
Turning sensitivity on and Off.......cccccoeiuiiiiiiiiiiiiiieeeeeere et sene 570
Reporting the results.................

Multi-dimensional scenarios

Optimization..........cccceeerervenennee
HOW OPtMIZAtION WOIKS .. .c.ceveviviuiieietiirieictcenteieie sttt et e bt se e bbb ese st seebesessenenens
Steps for using optimization
Optimization TULOTIAleveuerieieueiiirieicicrce ettt ettt et
AddINg CONSTIANLS ...ttt s e ee
Using the Optimizer block

Stat::Fit (Windows only)............

Tutorialcoevevveveveririeierine

PLOCEETS vttt ettt ettt bbbttt et b et bbbt b et bbbttt b e ene
Plot and data Panes ..ot
PLOTEET TOOIS. v vturrereuieteteteietetettt ettt ettt ettt st bbbt b et st bbb ebenenenaeneneas
Plotter dialogsccvvviiiriiiiiiiiiiiii s
Types of plotters
Copying plotted INfOrmMationc.couieeriieiiitrinit sttt 596
Clearing plotted INfOrMAation.......c.cvieuiiiiiuiiirit s 596

REPOIES .t e
TYPES OF FEPOTTS .vvenerrrereiereeteteient sttt ettt s ettt st b bttt et b st sa bttt bt se et b ettt eseseesebesensnaenen
Generating reports
Steps for reporting
Reporting eXampleccciiiiiiiiiiicc e 597

T19

T20

Table of Contents

Math and Statistical DiStriDUtionseeeeeeeeeeeeeeeeeeeeeeseeesesssssssssnssssssssssssssssesssssssse 399

Blocks that represent fUNCHONSe.eevevervevirieirieirie ettt 600
OhEr OPTIONS.c.vvveuiteretiirietet sttt ettt ettt ettt b bttt b ettt be st et b bt st b enenesaebenens 601
Equation-based BIocks........cccviriiiiriiiiniiiiiniienccecece e 601
OVEIVIEW . ..eeeteeeetieeciteeetee ettt e et e e eteeetbeeetaeeeseeeesaeaassaeesbeeeaseseasaseasseeessaaansaeersseensssanssseessaesnsesensaaanseean 602
EqQUation COMPOMNENTSc.eueuiriiieieiiiieietiiieieeiste ettt sttt n e sa e s snenes 602
Random NUMDELS.......ccviiiiiiieicii ettt ettt ettt et et et be et eas e beersenseensens 604

Random nUMDbEr GENEratorscouvueuiiriiieuiirieieieii ettt 605

Random seeds

Resetting random numbers for CONSECULIVE FUNSvveiiiiiiciiiiiiiiceceee e 606
Probability diStriDUtIONS .c..e.evveeirieirieiiriciercrcre et 606

Characteristics Of diSTHDULIONSvievvieuiiieieetieeteeie ettt ettt ete e e e ee e et e eteeereeteeveeneeeneeas 606

Choosing a distribUtion...........cccviiiiiniiiii s 606

Distribution fItlNE......cviueiiiiiiici e 607

ExtendSim distributions.........c.ccceeveeeenieecieecieeiecieeneenne rrreerreneenn. 607
Integration vs. summation in the Holding Tank blockccccoiciiniiiiiiiiiciis 610
Debugging Toolscouevueirenensnesnesessensnnsnesessnnsnessessenns .

Debugging RINTS.....c.eiririeueiinieieciirercce ettt et
Verifying results as you build a model

Connector informationc..ceeveeveneene.

Cloning dialog ItEmSc.cvriiieuiiriiiiiiiieiece ettt
Blocks for debugging.........c.ccoiviiiiiiiiiiiiiiiicc e
Measuring performance to debug models..........ccociiiriiiiiiniiiceces 616
FINd COMMANG...c.viiiiiiciii ittt ettt ettt e ete e aae e re e et eeteeeaeeeteeeaeeenteeeaeeenreennes 617
The Source Code DeDUGEETvviviiiiciiiiiccc s 618
Dotted lines for unconnected CONNECTIONS.coviievieeeeereeeteeeereeeteeeereeeteeereeereeeaeeeereeeaeeereeenns 618
Animation features for debuggingocociiiiiiiiiiiiiiii e 618

Animating the modelc.cccceuiiiiiiiiiiiiiii e 618

Animating item properties (discrete event models only)ccocoviiiiiiiiiiiiiiiie 618
DA Lo 1T o0 Yo) RS ORRRRRRR 618
Stepping through the simulation ... 619
Show Simulation Order commandc.eoeieeiiiiiieeieee ettt 619
Slow sImUlation SPEedc.coveerieirieiriiiiiiicc e e 620
Model FEPOITINE ...ttt 620
Model traCing......ccveuiiiiiiiiiiiiicc e 620

GENETALINE TIACES ...vvuvivriuiiiietieiiee ettt b bbb sa e 620

Tracing eXamplec.ciuiiiiiiiiiiiiii e 621

Data Management and Exchangecoeeveeveeninensecsnisnensensensncsnenensecsnessecsesseeseess 623
User interfaces for data exchange...........ccccocoioiiiiiiiniiiiiccice,
Copy/Paste....cceerueeeeneeinicineeeeees
Importing and exporting data ...
Read and WIITE .c.vueiniireeet ettt ettt st et ettt b et b bt
Dynamic linking to internal data SEIUCEULES.c.coeuiuiueueuiireiiieeetieeeecetecesesteieresreereneseeenesearaenenes
DDE links (Windows only)c.cccoveeernereennienenes
Internal data storage and management methods
ExtendSim databases for internal data StOragecccoccevvrieieiininiiiiinniccccececeeees

Table of Contents | T21

How this section is organized ..o
Advantages of using internal databasescoeuvvreriririririninirr e
Creating and interacting with internal databases
How to create an ExtendSim database........c.cccoeveevierienreniennne.
Establishing Parent/Child relationshipsccccoevuviiiciiinnes
Linking a database t0 data.........cccccuiuiiiiiiiiiiiiiiiiiic s
Database MAaNAZEMENEviuiuuieiecieiriierietrescecieesescaes e cssae et cae e easae e sesaesee s ssae s s ssasaeseesasaenes
Database dialogs and popup menus
Excel Add-In for ExtendSim databasescccevvereieiveiviiirierierecteereeee et eeecreeeeere v ereere e eeereenensennes
Monte Carlo MOEL......c.ociiriiiiiierieictetet ettt ettt e b b teere et re et a e b b nas
Other internal data storage and management methods...........ccccoviiiiiniiiiiniiiiccs 651
GLODAL AITAYS ..ttt ettt sttt sttt b ettt b et naebenenn
Dynamic arrayscccecevevenincnciinnns
Embedding an object (Windows only)
Linked LiSts....coveerieriereerieriereereeeeeerecreerenenne
Exchanging data with external applications
SPIEAASHEELS ...ttt
ExXternal databasescecueeviiuiiiiiicieiecececeetet ettt ettt ettt eaberennn
Blocks for data management and exchange
Read and Write blocks
Data 2CCESS DIOCKS ...ovviieviceieceie ettt ettt ettt e e e te et e e e et e ereeeaeeeaeenaeenreereens
Other blocks fOr MOELELSccuvieveieieeiieceecteee ettt ettt ettt eeteeereeteeaeeraeereeeaeeereeeneens
BloCks fOr deVelOPerS.vvvviiiiiirieieicietce ettt
Data source indexing and Organizationc.cceceererueueeirineeeeineerereinennereeereereseeseereneeenne
Transferring data between a data table and a spreadsheet....
Transferring data between a spreadsheet and a database.......
Communicating with external devices
Technologies for communication..................
Text files..coueinreeerieeeeeeeeeeeeeeeee e
ActiveX/COM/OLE (Windows 0nly) .c.c.cereeueuiemrieieririnieeeieninieiesttniesescesseseseeseeseseeesessesesessesesenenes
DDE (WiIndows ONLY)c.ccuvueueiriniereiinieieienieiesesisereeseseesesteseesesesessesesesesseseseseseesesesessesesenessenesens
ODBC/SQL
FTP oo
DLLs and Shared Libraries
Mailslots (WIindows ONLY) ...c.ceerieueiriririeirinieieenineie ettt sttt sttt s et b s ee e beenaenes

Miscellaneous ...eeeeeeeeeeeeeeeeeeeeeeerssssssssnnnnnnns
INGVIZATOT ..ttt
Opening the Navigator
Model Navigator mode
Database List mode..................
Library Window mode
PIINTIE oot
Selecting what to print

The Print command........ccceveneee

Printing and Print SEtup RINCS... ..ottt
Copy/Paste and Duplicate commands............ccoeeiruiiiiiinniiiiinniieieeereeee e 674

Copying within EXtendSImcovviiiiiririiiiirii s 674

Copying from ExtendSim to other applications............ccevrivirinirininininininiicicccccccceaas 675

T22

Table of Contents

Copying from other applications to ExtendSim.........cccccoevvininninnnniicces 675
TOOL TIPS cvevenerereeitreetetc ettt ettt 676
Changing parameters dynamically.........cccccouveieeiininieiiininieieneeecrercee et 676

MEthOdS ..o 676
Sharing Model fIles.......couiveuiiriniiiiiiiieciecr et 677

Locking the MOlcoveviririiiirr ettt 677

The ExtendSim LT-RunTime Version........cccceuviiuiuiiiiiiiiiiiiiiiiiissscessssse s 678

Reference

Menu Commands and TOOLDALS c.ceeeeeeeeeeeeeeeeeeeeeieeieeeeeeeeeeeesssssssssssssssssssssssssesessssses
ExtendSim menu (Mac OS 0nly) .e.coueiriiiiiiirienieieeieeeeeee st
ST (ST o L TR

Revert Model/Revert Text File.......
Save Model and Save MOdEl ASooviiuvieeieieeceeecee ettt et ettt eteeeteeereeaeeeeeaeens
Save Text File and Save Text File As......cvooiiiiiiiiiiiciicieeeeeteee ettt et aeeaae
Update Launch Control (Windows only).....
Import Data Table ...c.cccceevvviinivnne
Export Data Table.......cccccocvveveueennnnee

Import DXF File (Windows Only)cooveueieirieieinniieeninieictinieiecenteseeesestsieseesestesesessssesesesessesens
Show Page Breaks........ccciiiiiiiiiiiiiiiiiiiiii s
Print Setup (Windows) and Page Setup (Mac OS)

Network License (Windows only; network license only).......cocoueuerevreeninieieininieieinenicecneseecnenenes 683
PrOPertiesccuivuiruiiuiiiiiiiiiiciciccc
Five most recent models or text files

Exit/QUit coeeeeeneeicieieicencececcee
e FTa s T o L ORI RRR

SELECT Al bbbttt ettt
DIUPLICALE 1.ttt st
Find
FINA AGAIN 1.t s
REPIACE ..ttt ettt st b et ea bt
Replace, Find Again
Replace All............
Enter Selection.........ccoueuneee.

Create/Edit Dynamic LINK......cccovueueirnieeiiiiceiieieieieiectri ettt sttt esenenens
Open Dynamic Linked BLOckSccovoieieiiiiiiiinic e
Sensitize Parameter.......ccecuevveveenenennennenne.

Open Sensitized Blocks

Table of Contents

Paste DDE Link (Windows only).......cccoueeeinieeniniieiineeiineeeniseereeeseereseesssseesesesseseseseenens
Delete DDE Link (Windows 0nly)ccccceeiiiiiiiiiiieiieeeeeereierereseerereseresesesereseseserenenes
Show DDE Links (Windows only).....
Refresh DDE Links (Windows only)
Insert Object (Windows only).......ccccevveeneee
Design Mode (Windows only)ccoeeiiiiiiniiinniiieccccce e
Object (WIndows ONLY)ceriereueiririeieirinieieerieteetr ettt ettt st s et sae bt saenenenn
Show Clipboard
OPLIOMS. ..ttt
TEXE MIEIIU .ottt e et e e et e e et e e e e te e e e ae e e e teeeeenaeeeetaeeeetreeeenns

LIDIary MENU.....oucuiiiiiiciiiiieicctr ettt e
OPEN LIDIALY ..t
ClOSE LIDIALY weuvvvveuirieieuieinieteictnt ettt ettt sttt ettt sttt b et s et b st ssebenenenaenenens

Make Selection Hierarchical..........ceeiiviieeeieeieierieteerecteete ettt ere v v ere v ereereereee e eneereenas
New Hierarchical BIOCKcvciiriiiiiiiiiiteieeteceeteeteeteee ettt et es et v s ereereereere s s ensensesreenis
Open Hierarchical Block Structure
CONNECHION LINES....uiiiiviiiiieiiie ettt ettt e et e e et e e e teeete e e etaeeetbeeeasseenseeeeateeeseeeneeas
Show Named CONNECHIONS.......c.ceiiiueeerieceeeeeetee et eeteeeteeeteeeteeeteeseeeseeeseeesseeseeseeseesseeseeassenseenseenseens
Hide COMMECTIONS ...c.vvievrectieeteecte et ete et e ete et eeteeeteeteebeeaseeseetsessaesssesseesseeseesseesseessesssesseesseseensenns
Hide COMMECIOTS....viiuiiitieitieeteecte ettt et et e et eteeeteeeteeveeereesaeetseeseeeseesseesseeeseessessseessenseeassenssenseenssens
Controls
ALIGIL oo
ROTALE SHAPE ..ttt ettt sttt sttt bttt b et st b b ne e ebeneae
Flip Horizontally/Flip Vertically..
Border Thickness
Shape Fill/Border
Change Model Styleouoiiiiiiiiiice s
LOCK IMOMEL. ...ttt ettt ettt eae et eeteenteente et e eneeeaseeteesaseseeneeenneeans
Use Grid ...ooooveenveennnns
Show Block Labels
Show Block Numbers
Show Simulation Order
Set SIMUIAtION OFdEL....c..euiiiiiieiiieieieieieiecee ettt ettt ettt b e be sttt asseseetesaneeseneens
Database menucoceeevuveenne
New Database................
Import New Database........
EXPOIt Database.......cuvvvveueuirinieieiiirieieieneeteetes ettt sttt sttt sttt beseeee
ReName Database.........ccuiiiiiiiciiiiicecciececte ettt ettt b e e bbb e str e te e reeabeens
New Table..............
Import Tables................
Export Selected Tables.......
ReENAME TADIE ...ttt et et e et e et eete e teeteenr e et e eneeeaeeeaeeeaeenreenreens
INEW TAD .ttt ettt ettt e e et ete e et e te e te e e e eat e eaeeeaeeete e teeate et e eae e et aereeetseteeneeeareeanas
Rename or Delete Tab..............
Clone Selected Tables to Tab....

T23

T24

Develop menu......

Table of Contents

Append New FIeldcovvveviiirieiiicciric ettt
Insert New Field.......cccccunnneee.
Append New Records

Insert New Records........

New Blockooovevvieerieieenrenee.
Open Block Structure
ReENAME BIOCKevivviiteeeteecte ettt ettt ettt e e ettt teete et e eaeeeaeeeteeessenteenteenseenseeneeereens

St BloCk Category... cuevviririiirieieertsetet sttt sttt 704
COmMPILE BIOCK ...ttt s
INEW Dialog TEEML...c...ueieieiniiiiceitieeicii et nene
INEW TAD ..ttt ettt ettt et e e et e et e ete e bt et e et e eaaeeateete e tt e bt e bt enr e et e ereeersenreereenreenns
Rename or Delete Tab.............

Move Selected Items to Tab
New Include File.................
Open INClude Fle ..ot
Delete INCIUAe FIle ..ouvouiiuieieieieciicieciect ettt ettt et et et ers s essesse s e s e besaesresseereereeneas
Shift Selected Code Left......oiiiiiiiiiiiiciieee ettt ettt ettt eteeete et e eaeeaaeereeeseeeseeeneeeneeas
Shift Selected Code RIGHE......cvuiiiiiiiiiiiic e
Go To Line cccveeeeveeiiieieeeeeee

Go To Function/Message Handler ...

Match Braces......covevvevevevvevvecnenns
Match IFDEF/ENDIFEooiiiiitiiitietieeeteete ettt et ere et et eveeveesserseseeseessensensessessessessesssessensenns
SEt BIEAKPOINES ..veveveuveereuiiietiitieteteitt ettt ettt ettt sttt b et b ettt b et st be e sseaenenens
Open Breakpoints WIndOW.........ceeiiiiiririiiniiiiiin s
Open Debugger Window.......cccviviiiniiiniiiiiii s
Continue......ccveeeveeeeveeennnnn.
Step Over....
Step Into ...
SEEP OUL ottt

RUID INENU 11ttt et e e et ee et e et aeeereeseseeaeeeeeeseeassesssssssranenees

RUN SIMUIATON .ttt ettt sttt ne b bt
Continue SIMUIALON. ...cveuiirieieiiirictcc ettt ettt s sae et
Run Optimization........ccciiiiiiiiiiiiiiiiiiii e
SIMUIATON SEUP..viiieiiiiiitc et
Prioritize Front Model......
Use Sensitivity Analysis
Show 2D Animation
ShOW 3D ANIMATION 1.ttt ettt ettt sa et be st s bt saenenean
Show Movies (Mac OS 0nlY)cueuiueiriiiiieieiririeiirressse ettt sttt
Launch Proof (Windows 0nly) ...ttt eaeaeseseiesenes
Launch StatFit (Windows 0nly) ...c.ccveeciririeiinnieeinieertee ettt
Generate Report........cccveeveuenee

Report Typecoveeevenenee
Add Selected To Report....
Add Al 'TO REPOTT..iviuiiiriiiiiiiieiiiieieitinicct ettt ne
Remove Selected From REPOLT .c.cvvviiiiiiiiiiiiiiciiiiicc e
Remove All FIom REPOITcvuiiiiiiieieiciiei sttt
Show Reporting BIOCKSc.cueuiiiiiiriiiiiiieiiiiiiieiireess et

Table of Contents

Debugging
Window menu

Notebook

Navigator

Database LISt ..cccviciiiieeiieiie ettt ettt et ete et et e e teesbeeeteebeeabe et e erbaeaeeetaeebeebeeateeraeeaeenreenreens 713

Calendar

E3D WANAOW .ttt ettt ettt ettt et et eteesseasesbe s esseseeseeseebeereeseeneensensensensensansan
HELP MENU t1ttitiicc ettt

ExtendSim Help.....c.cccooocuiuiiiiiiiiiiiiiciieccceeceesse

Support Resource Centerccceevvenenee

Downloads and Updatesccevveennnnenee

User Forume......cccovevveiecvieeniieciiecieeenen,

What's NeW....c.covverierieeeeereeneereereesennenns

ExtendSim Product Linec.ccvevveuvennen.

Imagine That Inc. Online ...

About ExtendSim (Windows only)
Toolbar BULtONS ...cveeeiiciiciiccie et
ExtendSim database t00] Bars.........cciieieeiiiiiiieiieciicce et

Value Library BIOCKS ...c.covceiireisuisuensensinsnininensensnininsissnsscnsissesesssisscesssssssesseses

SUDIIEIIUS .ttt e et e e e e e st eesat e e e eaaaeesaaaeesanteeesnteeesataeesnnteesnteesnaes

OPUIMUZATION ..ottt ettt et st b e s e sa e st et eae bt ebesbeeresbessennen
OULPULS .ttt sttt ettt ettt ettt e b e sh e b e be s et s et et ebeebesbesa e st e saessennen
ROULING ..ot
SEALISEICS 1vveeeeeutrreeeeeeeiteeeeeesettaeeeeeeetaaeeeeeeasaeeeeeeasasaeeaeeassaaaaeeeaassaaeeeeasbaseeseaassseseesannssaaeseeannsres

Item Library Blocks...... teeeseeseesee e sa e b e b e b e sab e e esaaes 723
SUDIIEIIUS ..ttt ettt ettt ettt ettt et eteeete et e eteetbebeeraebeets e teesseteensenreens 724
ALCTIVITY 1ottt s 724
BatChIng ..ottt sttt 725
DDALA ACCESS. veuvvierreeureetieetteeireesteere e taesbeeseestbeeseessse e saasssessseasseaaseessaeasseenseessseanseasseasaeseeas 725
INfOITATION c.veivvitieiiete ettt ettt et ettt et e v e eteeveeteeeteeteeseeatesbeetsenseersebeessenseessenreeasenseenes 726
PLOPEITIES. .. vttt ettt ne e 726
QQUEUES ..ttt ettt ettt ettt ettt st et e s bt e e bt e s bt e s be e bt e sat e e bt e s ateeabeeshb e e be e bt e eabe e beesbeebee s 727
RESOUICES ... viieeiiie ettt ettt e et e e ettt e et e e st eeeseseesessaeesssaeaassseeassaeessaeessseeennsseennnsens 727
ROULINEG ..o s 728
EXECULIVE 1ottt ettt ettt et e e st e e et e e st aeeestbeeessseeessseeessseeesssaeesnseeeensseennnses 729

Rate Library BIOCKS c..ccucvuiiuicinsuisuinnensinsinsnininsnnsnisnesensessnissesessesssessessesssessessesees 731
BlOCK deSCIIPONS . ..cuvveveviieiiietiiciitcitrtetrte ettt eae 732

T25

T26

Table of Contents
Utilities Library Blockscccovueruiruinensunsuinninensinsncnnininsinnninessnnsninneseseesessesssesees 735
SUDIMIEIIUS ..ttt ettt sttt ettt et e a et beebe et e s besb et en b et eneeneeneeaesbenan 736
DEVElOPEr TOOLS ...ttt ettt 736
Discrete Event TOOlSs......c.ciuiiuiiiiiieieieee ettt sttt bbb 736
I O MIATION ¢ttt ettt ettt ettt et et e ae bbbt et bese et e st et ne bt ebeebesbeaan 737
IMATR ettt a e h e a e bbbtk b et et e et et et entene bt ebe b eee 737
IMOEL CONTIOL ..ttt ettt ettt e be bbbt et ettt et aeebeeae e 737
TTEITIE ettt ettt e b e et s b e et s b e et bt et bt et h e ea b e bt et ehe et saeenbeeaean 738
UPPer LImits ..couceeineeninrenseentineninntenteninneessesesseessensessssesssesssssssssessssssssssssssssssans 739
Cross-Platform Considerationsccceceiesseresnsesseresssssssesssssssssesssssssssssssssssssssssassss 741
LIDIATIES 1ttt ettt ettt sttt ettt b et b et b et b et st be st bbb ene 742
IMOELS .ttt ettt b et b et be e 742
Menu and keyboard equIvalentscccouvveueuieiniireiininirececce s 742
Transferring files between Operating SyStems.c.cvrvevereueeiririereernierereenerereeereerereesesreseneees 743

File name adjustments..........c.eoeveunee.
Physically transferring files

FAlE COMVELSIONvivietietietieiietetect ettt ettt ettt ettt e st eebe b e beebeeseeaeersersessessessensessesesenseeseeseeseas

Index

About ExtendSim

Preface

ExtendSim’s architect
talks about simulation

“What we experience of nature is in models,
and all of nature’s models are so beautiful.”
— R Buckminster Fuller

N

ExtendSim

Preface

Dedicated to the pleasure of finding things out

Simulation is defined as the act of imitation. Even a word processor simulates pen and paper, but
how do you get the computer to behave like the stock market, or an electronic circuit, or even a
car, and how can you communicate this power to the user? My search for the answer began in the
early days of the space race.

I was attending the Polytechnic Institute of Brooklyn when the head of the Electronics Engineer-
ing department told us that a new department was being formed... a combination of mathematics,
computers, physics and engineering. Being into math, and curious about the large IBM mainframe
lurking down the hall, I immediately joined and made a constant pest of myself at the computer
center.

The bug bit hard, I guess, and I began to realize that I could use computers to duplicate the labo-
ratory experiments in class so well, that I never really did them, I just simulated them on the com-
puter. NASA then asked if T could develop a simulation of their new liquid fuel booster for
something called Project Apollo. I came up with the Rocket-Drop simulation, a monstrously large
program that only had one function: follow the path of a single droplet of fuel, from the shower
heads (as the fuel sprayers at the top of the engine were called) to the rocket engine exhaust, via
subsonic, supersonic, and hypersonic flow.

It hit me then that simulation was inaccessible, except to the select few who had the resources to
put together an entire system dedicated to one function. A generalized simulation application
would be a great and useful thing, if one could find the computer that was both powerful enough
and widespread enough to support it. This was 1965, and Seymour Cray was still building his
superfast (at the time!) computers by hand and graphic user interfaces were still decades in the
future.

When I saw the graphical user interfaces (GUIs) on the Mac OS and Windows machines, I real-
ized that I could use these tools to fulfill that long awaited dream. ExtendSim is built upon those
roots. Imagine That Inc. was founded in 1987 to develop and market Extend and its successor
ExtendSim, the first simulation applications allowing users of any discipline to use simulation and
to develop their own libraries of customized simulation tools.

Imagine That! is dedicated to bringing the art, science, and fun of simulation to the desktop, in a
form digestible and accessible by everyone. ExtendSim is the first user-extendible simulation pack-
age that meets those expectations.

Bob Diamond
President

“You see? Thats why scientists persist in their investigations, why we struggle so desperately

for every bit of knowledge, stay up nights seeking the answer to a problem, climb the steepest obstacles ro the

next fragment of understanding, to finally reach that joyous moment of the kick in the discovery,
which is part of the pleasure of finding things out.” attributed to Richard P. Feynman

About ExtendSim

Introduction

Learn about ExtendSim’s capabilities
and how to get started using them

“Begin at the beginning,’ the King said, gravely,
and go ‘til you come to the end; then stop.””
— Lewis Carroll

N

ExtendSim

Introduction
Why simulation is important

ExtendSim is a powerful, leading edge simulation tool. Using ExtendSim, you can develop
dynamic models of real-life processes in a wide variety of fields. Use ExtendSim to create models
from building blocks, explore the processes involved, and see how they relate. Then change
assumptions to arrive at an optimum solution. ExtendSim and your imagination are all you need
to create professional models that meet your business, industrial, and academic needs.

Why simulation is important

Simulation involves designing a model of a system and carrying out experiments on it as it
progresses through time. Models enable you to see how a real-world activity will perform under
different conditions and test various hypotheses at a fraction of the cost of performing the actual
activity.

One of the principal benefits of a model is that you can begin with a simple approximation of a
process and gradually refine the model as your understanding of the process improves. This “step-
wise refinement” enables you to achieve good approximations of very complex problems surpris-
ingly quickly. As you add refinements, the model more closely imitates the real-life process.

Simulation with ExtendSim

ExtendSim is an easy-to-use, yet extremely powerful, tool for simulating processes. It helps you
understand complex systems and produce better results faster. With ExtendSim you can:

¢ Predict the course and results of certain actions

* Gain insight and stimulate creative thinking

* Visualize your processes logically or in a virtual environment
* Identify problem areas before implementation

* Explore the potential effects of modifications

¢ Confirm that all variables are known

* Optimize your operations

* Evaluate ideas and identify inefficiencies

* Understand why observed events occur

* Communicate the integrity and feasibility of your plans

What ExtendSim can do
ExtendSim allows you to simulate any system or process by creating a logical representation in an
easy-to-use format.
Modeling capabilities
With ExtendSim, you get powerful modeling constructs, including:
* A full set of building blocks that allow you to build models rapidly
* A customizable graphical interface that depicts the relationships in the modeled system

* Unlimited hierarchical decomposition making enterprise-wide models easy to build and under-
stand

* Dialogs, Notebooks, and an integrated database for changing model values, so you can quickly
try out assumptions and interface with your model dynamically

* 2D and realistic 3D animation of the model for enhanced presentation

Levels of use

A full-featured authoring environment for building user-friendly front ends that simplify model
interaction and enhance communication

The ability to adjust settings dynamically, while the simulation is running

An equation editor for creating custom-compiled equations

The ability to create new blocks with custom dialogs and icons

Complete scalability since model size is limited only by the limits of your system
Evolutionary optimization, Monte Carlo, batch-mode, and sensitivity analysis
Customizable reports and plotters for presentation and in-depth analysis
Activity-based costing capabilities for analyzing cost contributors

Full connectivity and interactivity with other programs and platforms

Simulation architecture
A robust architecture adds advanced features to make it the most scalable simulation system avail-

able:

Multi-purpose simulation. ExtendSim is a multi-domain environment so you can dynamically
model continuous, discrete event, discrete rate, agent-based, linear, non-linear, and mixed-mode
systems.

Library based. The blocks you build can be saved in libraries and easily reused in other models.

Integrated compiled programming language and dialog editor, optimized for simulation.
Modify ExtendSim’s blocks or build your own for specialized applications.

Scripting support. Build and run models remotely, cither from an ExtendSim block or from
another application.

Integrated support for other programming languages. Use ExtendSim’s built-in APIs to
access code created in Delphi, C++ Builder, Visual Basic, Visual C++, etc.

Over 1000 functions. Directly access functions for integration, statistics, queueing, animation,
IEEE math, matrix, sounds, arrays, FFT, debugging, DLLs, string and bit manipulation, I/O,

and so on; you can also define your own functions.
Message sending. Blocks can send messages to other blocks interactively for subprocessing.
Sophisticated data-passing capabilities. Pass values, arrays, or structures composed of arrays.

Full support for a wide range of data types and structures. Arrays, linked-lists, and integers,
real, and string data types are built in.

Integrated data linking. Connect block dialog data to internal databases.

To see the new features added in this release, go to the ExtendSim web site or choose the menu
command Help > What's New.

Levels of use
You can use ExtendSim on many levels:

Run pre-assembled models and explore alternatives by changing the data. If you work in a group
environment, one or more authors can create models for others to run for experimentation. The
author can also build a custom front end to facilitate user interaction with the model. The LT-

RunTime version of ExtendSim allows non-modelers to run pre-assembled models, change data,

wigpuaXy

()]

ExtendSim

Introduction
About this User Guide

and obtain results. For more information, see “The ExtendSim LT-RunTime version” on

page 678.

* Assemble your own models from the blocks that come with ExtendSim. ExtendSim is shipped
with libraries of blocks to handle most modeling needs. To assemble a model, pull blocks from
libraries and link connectors on the blocks. You can also assemble your own hierarchical blocks
of subsystems and save them in libraries. This saves starting from scratch when you're building a
model of a process that has elements in common with a previous model.

¢ Use the integrated development environment to create new blocks that conform to the
ExtendSim modeling architecture. The development environment is optimized for simulation
and allows you to create blocks with custom code, dialogs, and icons and use them in your mod-
els just as you would other ExtendSim blocks. You can also modify the blocks that come with
ExtendSim to work with your specific needs.

* Develop your own modeling architecture, conventions, and features. With the ExtendSim
development environment, you can create a custom set of blocks with unique interfaces, com-
munication protocols, and behaviors. This new architecture can be continuous, discrete event,
discrete rate, agent-based, or an entirely new type of simulation.

* Automate your model building using the scripting functions to build wizards, or by using
ActiveX/COM. You can use ActiveX/COM or block-based wizards to cause models to be auto-
matically created or modified. Models can be also be programmatically created from a user input
form or data file. This allows the modeling environment to be utilized indirectly by end-users
who have little or no simulation experience.

An ExtendSim ASP license is required to distribute the functionality of ExtendSim to other users
or to provide internet or intranet access to ExtendSim or to its functionality. Contact Imagine
That, Inc. for more information.

As you read this manual, you will see how ExtendSim caters to the needs of users at all levels.

About this User Guide

This manual is a general-purpose tutorial and reference for using ExtendSim. Every effort has been
made to present sample models that you can easily understand, whatever field you are in, so you
can quickly learn how to use this powerful tool. While you may find that your subject area is not
represented in the manual, or that the sample models reflect some disciplines which are unfamiliar
to you, remember that their purpose is to teach you how to use ExtendSim. What you model, and
how you model it, are determined mostly by your knowledge and expertise in your subject area.

This manual is divided into several modules:
¢ About ExtendSim

This module includes the preface and introduction to ExtendSim.

¢ Tutorial

The Tutorial module starts on page 14. The first two chapters use a simple model to explain the
most important concepts of modeling with ExtendSim. It is highly recommended that you build
and run the models as you read the tutorials.

Additional resources

The third chapter in this module provides a more in-depth discussion of simulation technolo-
gies, general modeling concepts, and terminology.

05" The first two Tutorial chapters use a very simple model to make it easier to learn basic modeling
techniques. In real life, ExtendSim is used to simulate complex processes, as illustrated by the
models shown at the end of this chapter.

Continuous Modeling

An introduction to continuous modeling concepts, a tutorial, example areas of application, and
additional modeling tips not covered elsewhere in the manual. The Continuous module starts
on page 60.

Discrete Event Modeling

An introduction to event-based modeling of discrete items, a tutorial, and several chapters with
tips and concepts specific to discrete event modeling. The Discrete Event module starts on

page 90.

Discrete Rate Modeling

An introduction to rate-based modeling, a tutorial, several modeling tips and concepts chapters,
and an advanced topics chapter. This module starts on page 266.

E3D Animation

Shows how to use 3D animation to enhance the simulation experience. This module starts on
page 389.

How To

The chapters in this module provide additional concepts and techniques for developing and
running models, such as creating a custom user interface, statistical analysis, data management
and transfer, and so forth. The How To module starts on page 488.

Appendix

The Appendix module, which starts on page 680, has several reference chapters, including a
description of each of the menu commands and toolbars, lists and descriptions of blocks in the
main libraries, and upper-limit values for a variety of parameters.

I A separate Developer Reference is also available for advanced users who want to create libraries of
blocks for specific purposes.
Additional resources

In addition to the printed documentation, there are several resources to support your simulation
experience.

Electronic documentation

If you install ExtendSim from a CD, PDF files of the User Guide and Developer Reference are
installed in the application’s Documentation folder. You can also download the documentation
files from www.ExtendSimManuals.com.

wigpuaXy

oo

ExtendSim

Introduction
Additional resources

ExtendSim Help

Context-sensitive help
Context-sensitive help is available any time you are using ExtendSim. Just select the menu com-
mand Help > ExtendSim Help or press F1 on your keyboard.

Block help

Blocks provide a complete definition of how they work, including descriptions of their dialog
items and connectors. You can access this information through a button labeled Help in each
block's dialog. The window that opens also has a Blocks button at the bottom left that will let you
access the Help information for blocks from any library that is currently open.

Tool tips

Additional information, such as the name of a block and its purpose, or the name and sometimes
the value of an output connector, can be obtained by mousing over the block or connector, respec-
tively.

User forums

The ExtendSim E-Xchange is a user forum for sharing ideas, insights, and modeling techniques
with other ExtendSim users. Use this forum to post issues and solutions, share blocks and models,
and to talk directly to other people developing simulations. You will also find useful information
about upcoming training sessions and seminars. You must register to join, but access is free and
available to all ExtendSim users at

www.ExtendSimUsers.com, or select the command Help > User Forum.

The ExtendSim Academic E-Xchange is a user forum for educators using ExtendSim to teach
modeling concepts and simulation to their students. Access is free but there is an approval process
to obtain membership in this forum. To apply, go to www.ExtendSimAcademic.com.

Support

Following are some suggestions if you need help while using ExtendSim.

How to get technical and modeling support
To find answers to your modeling or technical questions as quickly as possible, we recommend that
you refer to the various resources in the order shown below:

1) ExtendSim context-sensitive Help, as discussed on page 8.

2) User Guide or Developer Reference.

3) Frequently Asked Questions at www.ExtendSimFAQ.com.

4) For modeling questions, the ExtendSim E-Xchange or the ExtendSim Academic E-Xchange, as

discussed at “User forums” on page 8. (Note: User forums are for modeling questions and are
not appropriate for technical support questions.)

5) For technical support questions, choose the command Help > Support Resource Center or go
to www.ExtendSimSupport.com and submit your question online.

Contacting Imagine That Inc. Technical Support

You must be a registered customer to receive technical support from our support staff. Register
online when you install ExtendSim (Windows only), register online after installation using the
Register.exe file in the ExtendSim7\Online Registration folder (Windows only), or mail or fax the
registration card that was included in your ExtendSim package.

Model illustrations

When you contact our support representatives, please provide the following information:
1) ExtendSim serial number, product name, and release number:
Windows: Located in the Help > About ExtendSim menu command, on the title

page of the User Guide, or on the tear-off remainder of your registration card.

Mac OS: Located in the ExtendSim > About ExtendSim menu command, on the
title page of the User Guide, or the tear-off remainder of your registration card.
2) Name and contact information (telephone, email, and/or fax), so we can reply.
3) Type of computer.
4) Operating system and version.

Model illustrations

The tutorials used throughout this guide are specifically simplified so that you can easily learn how
to use ExtendSim. In contrast, simulation is more typically used to model complex processes, like
the ones shown on the following pages.

wigpuaXy

Model illustrations

Introduction

10|

ungpuaIxy

.WHD%N~ SJOW U249 UTEIU0d Jn!ﬂg

JO SWOS ‘S[D0][q [ESTYDIBINY [EUONIPPE (5 SUTEIUOD JO0[q [eIIYITLIINY DI\ -BMEIE)) DOURISUT 10 [949] d03 onIsIfeat s [opowr
a1 m0[aq s194e] UT s[TeIap doo3] SPPOWNS P2ISIU YIIM SOO[q [EITYDTRIANY JO SIS 7 "UONEIIUF 1omod PUE S[9AI] 358 UO $109JJ2 o))
ssasse sd[oy pUE So[TWI 12ALI ()¢ 1240 UT MO[J Weans 2ao1dwr 01 pardife 9q ued suoneado Wep Moy SIZA[RUE 1] "SIST I9IEM PUE ‘MO[j
Wrean)s-ul ‘s[oAd] ase[‘uonerdusd romodoIpAy 109JJe [[im saaneuIaife [euonerado moy s1orpard ppour 5130[0IpAY snonunuod Iy,
Te 32 “aymnsuy a8eILId)] TeuoneN a3 A4q pado[assp ‘(JARIS) [PPOIN Ulseq IoARy J21ueg

7 |4 noe IaH
&
I mopul
pEINGa1un 2Hem,
" (s mou pajeinamn
ibat sl o217 dopoy
=1y E2)
(e monul
peienbaau e jesio
() w g pjenBsuny
i Bty
52) oy
(s mar_ pateinBaun st
P nBaIun pUEE WY
ueusy sy
L i
; souer =1
I A Ao ey o
() moy| m,, =z ()

pajeInBa uewISY

(s oy payeInBiun
sieoug mowoa

¢ Y mojpu) sawer
(5] mapu)

eSS) ol
poteingiun sspouy

apeuapg
— saimien
- equeiey
=i 5 2asmem-eqmere] [sec] 7

fojo) sasenpmy fsj0) sacemmy (o) sasempmy (s) mop)

wmues saddn ewmves famey sy Ja0000 e e

fego) saseaing
st oo

Jadang-aalieg.

feja) saseamy
(wos) yesaminy

azmues Aoy r

k o oL
e12) sms eopm w17 e ¢
aues saddr

saeueg syl

Epnies

(i) aseamnl_|

Fmen ey
sas e BqMEIR]

(E3=]

(23] mapn
Aeunp 24e]

AIULAIZSUO?) 2IMEN 2
103 aynpsu| abeyiey [einey sy Aq padojanag)

[3pojy uiseq 19Aly 93jue

|11

Model illustrations

ExtendSim

*SOUI'] A[qUISSSY PUE ‘S1UTO]

3018 ‘sdnoIny NS SIS Surpn[our “EIEP JO IUNOWE JAISUIIX YY) 2I03S 01 SEeIEP [EUIANUT UE SIST [SPOW I T, SIUSWUOIIAUD SSIU
-1snq jo Airesur]-uou oYy pue sorwreudp ureyd A[ddns jo soouerrea o :saniear ureyd Ajddns L3 om1 sormides [opowr 124 21210STp STY T,
sarepossy pue Aoqre(] sawref £q ‘ppouwr urey)) A[ddng revoneussiuy

Model illustrations

Introduction

12|

‘winisodwiAg £30[ouyda], pue YoIeasay [oNUOY) PUE PUBLIWIOY) [EUOIIEUINU]

YT 2y Ul paysIqny ‘e 39 suryong '0) uesng £q 1deouoy) srarrenbpeap] 2010 utof Surpuelg ayp 10y 1r0ddng uonemuig pue SurEpPOI, :20UIRJoY
‘s1jowered UONR[NWIS PUE 21N109IIYDTE [DPOUT Y ALIP O3 SINT JO 135 € ST 01 I[IPOUT Y SMOJ[E SEQEIEP Y], *SIUSWIUSISSE €D [ENPIA

-Ipur 0009 pue swn sj1om [euonerado jo soy (9g Funenuits ‘s3ssad01d Jo 34> [ng suo y3noIyy uni 01 spuodds 1) APrewrxordde saser uonemwis
oy [, "s1uswrugisse s[sel [puuosiad pue ‘smopj uonewIojul s3ss3301d-qns sassa001d [Te sarnides 17 -aourwIojad Jo soInseIW WalsAs UTRIqO 01 SATPNIS IPEIY
surrojrad pue ‘swisAs uonewIojut [ednL-own sazd[eue ‘sraquiawr O[S 4q pauriojiad sassaoord Guruueld oy sorenuls [pOwI 1U2AD 2110STP STY T,
Auedwo)) Sursog oYy, pue [ooydg arenpeidiso] [eaeN a1 £4q [ppowr (OHI[S) s1o1renbpeayy a010 3utof Surpuerg

la | E iy [i¥]

o gbdn s s
]

= g
A Lo

i i Lr]
i g el |
i i i

. i .n..n.!n-.i_nu_: ;

| weamel aguosa

|uenenus OHIrS|

£ Q0D FD-E-dM ¥ Tvel 3 Rty GAnEuisng

iz S AU A BT - O B R T DR A U O 1 ks

CLTER T TN N T

(- - - - - e - -
(- - - - - -
(- - - - = - -
- - I - - - -
L= - - O e - - -
coooo00000O0C

eocooCO

ungpuaIxy

Tutorial

Running a Model

Learn how to run an ExtendSim model
and investigate its components

“For the things we have to learn before
we can do them, we learn by doing.”
— Apristotle

14

Tutorial

Running a Model
Opening the Reservoir model

The first two chapters of this User Guide provide a tutorial that will help you learn the basics of
working with ExtendSim models. This chapter covers:

* Opening a model

* Blocks, including their icons, connectors, and dialogs

¢ Connections between blocks

* Running a model

* Displaying simulation results on a Plotter

* Using the Notebook to display model inputs and outputs

* Modifying models

The following chapter will show how to build the model seen in this chapter. To get the most out
of the tutorial, we recommend that you follow along by performing the actions described.

The ExtendSim Tutorial uses a continuous model to illustrate how to run and build a model. Even
if you will be building non-continuous (discrete event or discrete rate) models, it is important to

complete this Tutorial because:

e The tutorials in the non-continuous modules assume you have completed this Tutorial.

e It is common to use continuous blocks when building non-continuous models.

Opening the Reservoir model

The tutorial uses the sample Reservoir model. This simple continuous model is useful for illustrat-
ing concepts because it can be accessed and understood by all ExtendSim modelers.

To open the model,
P Select File > Open.

» Browse to
\ExtendSim7\Exam-
ples\Tutorials\

» Select Reservoir 1 and
click Open.

This model simulates a reser-
voir being filled by two water
sources—rainfall and an
incoming stream. The purpose
of the model is to see how
much water accumulates in the
reservoir over time.

2| ExtendSim
File Edit Text Library Model Database Develop Run Window Help
O w | 100% |5 # @ B e KO | b)

2| Reservoir 1.mox

CEX
Time

Rainfall

Rairfall
Contents
1
| Rairfall
v wal
FRand — = et Stream
Reservoir
Ohdnimum
-

Stream

Interface with Reservoir 1 model open

Running a Model
Model basics

Model basics

In the simplest terms, ExtendSim models are made

. . Input Output
up of blocks and connections. The Reservoir model, connector connector Block
for example, has five blocks, as you can see in the
model window. As the model runs, information
goes into a block, is processed and/or modified, and

is then sent on to the next block via a connection. |
Blocks B—F]

F

Block Connection

Each block in ExtendSim represents a portion of
the process or system that is being modeled. Blocks Owant O
have names, such as Math or Queue, that signify the w Jet
function they perform. A Queue block, for exam- BReservair
ple, will have the same functional behavior in every

model you build. You can also add your own labe/ ~ Parts of a model

to a block to indicate what it represents in your spe-

cific model, such as a Queue block labeled Waiting Line.

4t b

U5 Blocks are stored in Libraries. You will learn more about libraries and how to access blocks from
them at “About libraries” on page 26.

Most blocks are composed of an icon, connectors, and a dialog.

Icons

A block’s icon is usually a pictorial representation of its function. For instance in the Reservoir
model, the block labeled Reservoir is a Holding Tank block. Its icon symbolizes an actual tank that
can have quantities added or removed from it. The small squares attached to the sides of the icon
are connectors, which are discussed in more detail in the following section.

IS Place your cursor over a block’s icon to see a Tool Tip with its number (a unique identifier based on
when the block was placed in the model), block name, and the library it comes from. To also dis-
play a description of the block, go to Edit > Options and check Include additional block
information in the Model tab.

Connectors

Most blocks in ExtendSim have input and output connectors (the small squares attached to the
block). As you might expect, information flows into a block at input connectors and out of the
block at output connectors.

A block can have many input and/or output connectors; some blocks have none. For instance, the
Holding Tank block labeled Reservoir has an input connector on the left for values to enter. The
output connector on the right reports the results of the block's computations; in the tank it reports
the contents at each time step. Additional inputs on the bottom are for controlling specific tank
behavior.

The function of a connector is specific to the block; you can get information about a connector’s
function by clicking the Help button in the bottom left-hand corner of the dialog, as discussed in
“Dialogs”, below. Since connectors are more important when you build a model (as compared to
when you run it), they are discussed in more detail in “Connecting blocks” on page 27.

I=5" Place your cursor over a connector to see its name and current value. You may also see additional
information depending on how the block is programmed.

eroing,

16

Tutorial

Running a Model
Model basics

Dialogs
Most blocks have a dialog associated with them. Dialogs are used to enter values and settings
before running simulations and to see results as the simulation runs.

To open a block’s dialog, double-click the block’s icon,
or right-click the icon and select Open Dialog. For

example, if you double-click the Holding Tank icon,
the dialog at right opens. Accumulates inputs; o

outputs desired amount {if available) Cancel
At the top of the dialog is the block’s global block num- Define conditions

ZII[7] Holding Tank <Value> (=3

Options | Animation | Comments

ber, its name, and, in braces, the library it resides in. Initial contents (optional; I]
Global block numbers are unique identifiers assigned Currentlevel: [100.84310396057
sequentially to blocks as they are placed in a model. Inputs are:

™ "Want cannector can take Tank negative
I™ Retain contents between consecutive runs

At the bottom of every dialog is a Help button. The
block’s Help provides information about the block,
such as its purpose and use, connector usage, descrip- Help |Reservor] DefaultView] | [
tions of each dialog item, and so on. Beside the Help
button is a text box where you can enter a label for the
block, up to 31 characters. The View popup is for
changing the icon’s orientation or appearance when you build models—for example, the Holding

Tank offers a choice of Default View and Default View Reverse.

Some dialogs also calculate and display values that are generated as the model runs, so if you leave
a dialog open during the simulation, you can watch the impact on different variables. This interac-
tive simulation capability means you can even change some of the settings in a dialog during a
simulation run, such as choosing different buttons or typing new values.

Holding Tank dialog

I When you click a button while the simulation is running, the block gets that changed value on the

next step. However, if you type text or enter numbers into a parameter field, the model pauses
while you are typing in order to get your entire input.

Connections

Connections are the lines that are used to join blocks together. They represent the flow of informa-
tion from block to block through the model. The simulation itself is a series of calculations and
actions which proceed along the path of the connections repetitively. Each repetition is called a szep
for continuous models or event for discrete event and discrete rate models.

In the Reservoir model, the blocks calculate in an order determined by the connections, starting at
the left and going to the right.

Blocks used in the Reservoir model
There are five blocks in the Reservoir model.

Running a Model
Blocks used in the Reservoir model

Lookup Table Holding Tank

Time

B——Rainfall
v
Rainfall
B—a
Hhan
-

Random Rand f apream
Number i
Stream

Math

Blocks in the Reservoir model

The following chart lists the blocks and their functions.

nJ—E!cvrvtent —|_EI
g

=
Rairfall —& __/ﬁ
Quart & ctream T o

Feservoir

Plotter I/O

Purpose in Reservoir Model

Name (Label) Block Function
Lookup Table Acts as a lookup table. You can choose
(Rainfall) to set it to output data based on the
current time or based on the value it
Time & receives at its input.
b

Represents rainfall entering the reser-
voir each month. The amount of rain-
fall is based on historical averages and
varies with the month.

Random Number Generates random integers or real

Generates random values that corre-

(Stream) numbers based on the selected distri- spond to the changing flow of the
bution. stream. In this model, the stream
Rand o increases the reservoir level between 0
and 1 inch of water per month.
5
Math Performs mathematical functions. The Adds the amounts from the two differ-
same Math block can be used for a ent water sources and transfers them
O o wide variety of purposes by selecting to the Reservoir.
g ' the desired function from a popup box
in the dialog.
Holding Tank ~ Accumulates the total of the input val- Accumulates water from its two
(Reservoir) ues. It also allows you to request an sources. In this model, the tank has an
amount to be removed and outputs infinite capacity and nothing is
O B that requested amount, if available. removed.
guart B,

Plotter I/O Displays plots and tables of data for up

= to four value inputs for continuous

O :/ﬁ models. Can be used to input its
results to another section of the model

or to another model.

Shows the amount of input from the
two sources and the level of water in
the reservoir, as it is affected by the
amount of water entering it.

17

eHom .

18 Running a Model
Running the Reservoir model

There is nothing fundamentally different about the structure of these different blocks. Any block
may create, modify, or present information, and many blocks perform more than one of these
functions. You can, of course, have multiple instances of the same block within a model.

Running the Reservoir model

Now that you have seen the basic parts of a model, you are ready to run the Reservoir simulation
and see how models operate. After running the model, you will see how easy it is to modify models
as you change your assumptions. For now, do not change anything in the blocks” dialogs.

P Select Run > Run Simulation or click the Run Simulation button || in the toolbar.

Tutorial

As the simulation runs, progress information will be displayed in the status bar at the bottom left
of the model window. (For a simple model like Reservoir that is completed very quickly, the mes-
sages may go by too quickly to be read.)

You can learn more about commands for running, stopping, and pausing models in “Running a
model” on page 522.

Displaying the results on the Plotter
Plotters show both a graphical representation of the numbers fed to them as well as a table of the
numerical values. As described on page 588, ExtendSim comes with a number of flexible plotters
to use in your models.

The Reservoir model runs for a simulated 36 months.
While the model runs, ExtendSim displays the results on
the Plotter, which by default remains on the screen when

the simulation is finished. This is your primary method B o
for determining what happened during the simulation. = N

21l [11] Reservoir 1 Model =13
ELE 7 [EILAAA2]]

Inches 2 Inches

The Plotter block in this model has information enter- 0 e
ing three of its four input connectors, so the graph dis-
plays three lines. The Plotter also has two value axes, o 2 ™ 02 v
each using a different scale. The legend below the graph inll-E

indicates which axis is used for each line (Y2 indicates Hortrop M corterts et allresm . elloack
the values are plotted on the right axis) and what each
line represents.

0 9 18 i L

303 4.40 014
2 757 570 0.03
3 14.30 3.40 0.63
4

1833 1.90 072

In this case, the blue line, labeled 1, is matched with the potter results for the model

left axis to show the total contents of the reservoir over

time. Using the right axis, the red line (2) shows the amount of water entering the reservoir from
the rainfall alone and the green line (3) shows the input from the stream. (Because the model uses
random numbers for the stream, specific values may be different after each run.)

The bottom of a plotter window shows the data points which produce the line. Scroll down this
list to see the numerical values for each line. You can also observe the values for any given point by
moving the cursor anywhere in the graph. The corresponding values are displayed above the data
table’s column headings.

I ExtendSim plotters remember the pictures (but not the data) of the last four plots. You can see the
previous plots by clicking on the small turned-up page symbol E at the bottom left of the graph
part of the plot window.

Notebooks

ExtendSim features like the Notebook give you capabilities that go beyond the basics of building
and running models. A Notebook is a window you can customize to help organize and manage the

Running a Model

data in a model.

You can use a Notebook as a “front-end” to the model - to control model parameters, report simu-

Notebooks

lation results, and document your model. Each model has its own Notebook which can contain
plots, text, pictures, drawing items, and cloned duplicates of dialog and plotter items.

» Select Window > Notebook or click the Open Notebook button |l in the toolbar.

The Notebook for the Reservoir model opens. As you can see, the important parameters and
tables you saw in the dialogs of the Reservoir model have been placed in its Notebook.

» Run the simulation again. Note that the results shown on the Plotter and the results shown in
the Notebook are the same (the results will change slightly from one simulation run to the next

because the Stream source uses a random distribution).

2l ExtendSim

File Edt Text Lbrary Model Database Develop Run Window Help
on e 4w | @ Il - o[k Y

%Rawau

Rainfall Contents
[1
| “’%‘*}‘—E‘Lﬂ_tfnmu =

. |—E'- i Stream — I O B

Fand + et

i e Reseryair

Chdnimum

Stream _l| Motebook - Reservoin 1.mox

Rairtall Inflow by Morth Results
Tewe oy 4| EDEEENEERERE
0 o 18 Inches ¥2 Inches
1 1 a4 Reseruoir 1 Model
H E 6.7
a 3 13 150] 5.25
g 5 1.4
g F 04 &) 1.75
a a o7
10 10 6 DD i zﬁﬂ
- Morths
Link) » Black 2]]

Reservoir 1 model with Notebook containing clones of dialog items from the Lookup
Table, Random Number, and Plotter 1/0 blocks.

Notebooks are easy to create and are especially useful for documenting models and to view the
impact of inputs on results. For more information, see “Notebooks” on page 508.

Making changes to the model
So far, you have run the simulation and viewed the Notebook without changing any of the
assumptions that were supplied when the model was created. One of ExtendSim’s strongest fea-

tures is the ability to change assumptions on the fly and see the results instantly. Since the Plotter

remembers the previous four plots, you can easily compare the results after you change assump-

tions.

19

[euomy,

20 Running a Model
Making changes to the model

You can change a model by adding or removing blocks or by changing parameter values in a block’s

dialog.

Adding and removing blocks

If you have some processes running in parallel (such as the two water sources in the
Reservoir model), you can easily test the results of adding additional parallel processes or removing
existing ones.

You will learn how to add blocks in “Building a Model” on page 23.

To remove a block, click it to select it, then choose Edit > Clear Blocks or use the Delete or Back-
space key. Note that deleting a block removes its associated connections as well.

Tutorial

Changing dialog parameters

You can change a dialog value by clicking in a parameter field while the model is running. When
you do this, ExtendSim pauses the simulation. To continue the simulation, select Run > Resume
or click the Pause/Resume tool in the toolbar. Note that when you make changes to a dialog and
then save the model, the changes are saved with it.

On page 509 you will see how to vary a dialog value manually using Controls, such as Sliders, and
on page 568 how to use sensitivity analysis to automatically explore various scenarios. For simplic-
ity, parameters in the following blocks are entered in the dialog as static values that do not change
based on model conditions. To see how easy it is to change dialog parameters and see the impact
on results, try some of the following suggested changes.

Lookup Table block (Rainfall)
The Lookup Table block provides a time-

Time . .) . Z1[0] Lookup Table <Value> =11
g varying value (in this case, the amount of rainfall T e
each month) for the simulation. Loaks at the ime or input value, then -
outputs the corresponding table value Cancel
This block looks at the current simulation time, [Speciy behavior —————————————————
H 1 H Logkup the
compares it to the time valuF:s in th.e co.lumn labeled Months, ot
and outputs the corresponding Rain (inches) value. Time units
Right now, the Lookup Table block shows that 2.6 inches of [Enter valuas in tha table
water are fed into the reservoir at time 0, the beginning of the —— “”"“%:ﬂ

run, 4.4 units at the beginning of the next month, and so on.

» Change the first value in the Rain column from 2.6 to a
high number, such as 90, then run the simulation again to
see the impact on the results. L‘}l " bt |

¥ Repeattable every

“mode] default

Help ‘ﬁinfall Default View — w] «| A

PR AP PRI

(1]

Lookup Table block dialog

Random Number block (Stream)

Running a Model
Other modifications

Fand The Random Numbc?r b.lock' generates values ZI13] Rantom Mumber. <Velue CER
B based on a random distribution. In this model, Distributions | Options | Distiution Fifing | Cormments
g it outputs a real number from 0 to 1. Generates random humbers gl
- Cancel
. . . . Specify a distribution
» Change the distribution’s maximum output
.
from 1 to a different number, such as 30, and run the wmmome B] PlotSampls|
simulation again. Woimum: B]

I ExtendSim lets you choose from dozens of probability dis- Result
tributions or create your own. Learn more about how to (EEETEELF]
use random numbers in your models in ¢, Math and Statis- Defaukvisw) (| ®
tical Distributions”. Random Number block dialog
Math block

The Math.block can be used to perforrp any R eyl OB
o g mathematical function. In this model, it is used options | Comments
o 4 | to add the amounts of water coming in from the | ticuates s matematicat runction &
M ance|
ralnfau and the stream. Select category Specify function —————
. & ai
» To add a constant value to the input number, enter an © Financil add
amount in the Add ﬁeld " Logical I Ignore blanks
: Math
. T i
The Math block is very versatile. By clicking radio buttons it
you can quickly change the type of mathematical function T 3

that the block performs.

Holding Tank block (Reservoir)
In addition to accumulating the amounts
o b entering, the Holding Tank allows you to
Hiadg enteran initial amount and to remove
- 22t some or all of the contents. You can also
specify which mathematical method is per-

formed on the inputs to calculate the contents. N o
Initial contents {optionaly: D
» Enter an amount in the Initial contents field and Current level: [100.84310396057
run the simulation again to see how the results Inputs are:
change, ™ "Want cannector can take Tank negative

Accumulates inputs;]
outputs desired amount (if available) Cancel
Define conditions

I™ Retain contents between consecutive runs

Math block dialog

ZII[7] Holding Tank <Value> (=3
Options

Animation | Comments

Other modifications

As you have seen, ExtendSim offers many options to 2L | AN LR 2 I A 7
change the way a model runs so that you can explore Holding Tank block dialog

different scenarios. The Reservoir model can be

expanded upon in other ways that will be explored later since they involve more advanced tech-

niques. For example, you can:

* Add more real-life contingencies by adding blocks to the model. For example, add more water
sources, then use a Notify block (Utilities library) to monitor the simulation and sound an alarm
if the water level goes above a certain value. For more information, see “Notify block” on

page 511.

* Add blocks and connect them to the Holding Tank to remove some of the water from the
Reservoir. The blocks can cause the water to be removed randomly or based on a table of

21

[euomy,

22

Tutorial

Running a Model
Other modifications

expected outputs. The Reservoir models in “Tutorial” on page 63 demonstrate some ways of
doing this.

* View the status of blocks by connecting their outputs to the Plotter, by leaving their dialogs
open while running the simulation, or by taking some of their dialog items and putting them in
the model window, which is referred to as cloning. You'll learn more about cloning in “Creating
a dashboard interface” on page 506.

* Perform analysis such as Sensitivity Analysis or Optimization and have ExtendSim find the best
set of parameters. See the chapter “Analysis” on page 563.

* Build a user interface for the model by putting sections of the model in layers (hierarchy), build-
ing custom reports (Notebook and reporting features), or creating a dashboard front-end (using
buttons and cloned dialog parameters to run the model). These features are discussed in “Creat-
ing a Custom User Interface” on page 503.

Now that you understand how easy it is to run an ExtendSim model, the next chapter will show
you how to build a model from scratch. When you are finished with that chapter, you will see how
easy it was to create the Reservoir model and the ease with which you can create your own models.

Tutorial

Building a Model

How to build an ExtendSim model
and use the model window features

“He builded better than he knew;
The conscious stone to beauty grew.”

— Ralph Waldo Emerson

24 Building a Model
Steps to create the Reservoir model

This chapter continues the Tutorial by describing the steps required to create the Reservoir model
that you ran in Chapter 1. As stated earlier, this model uses continuous simulation, but the con-
cepts described in this chapter also apply to other types of modeling.

1= Other modules in this guide describe specific discrete event and discrete rate concepts and show
you how to build those types of models, but they assume that you have already completed this
Tutorial.

The topics covered in this chapter include:

* Opening a new model window

Tutorial

* Simulation setup and run options

* Opening a library of blocks

* Adding blocks to the model

* Connecting blocks using different methods
* Using dialogs to set parameters

* Making adjustments to the Plotter graph

* Hierarchy - top down

* Navigating the model

* Cloning duplicates of dialog and plotter items

Steps to create the Reservoir model

The basic concept behind the Reservoir model is to simulate what happens to a reservoir’s water
level as water enters it over a 36 month period. There is no water in the reservoir at the start of the
simulation and no water is removed from it. As water sources add their contributions each month,
the water level rises.

The steps to create the Reservoir model are:

1) Open a new model worksheet

2) Set simulation run parameters

3) Build the model using blocks from libraries

4) Select block settings and enter dialog parameters

I=5” For your reference, the final version of the Reservoir 1 model is located in the ExtendSim7\Exam-
ples\Tutorials folder and is shown on page 36. However, you will learn more about ExtendSim and
modeling if you build the model yourself.

Setting the simulation parameters

Building a Model
Opening a new model worksheet

Opening a new model worksheet

To start a new model:

Pl D Tet Lty Modd Datasbess Dreske Bun Wi beb

smE e EQ

I T

» Choose File > New Model. SR ;

ExtendSim opens a blank model worksheet titled
Model-1.

You enter simulation parameters, such as the model’s time
units and duration, in the Simulation Setup command.

» Choose Run > Simulation Setup New model worksheet (Windows)

The Simulation Setup command opens a dialog for set-

ting a variety of simulation and 3D animation parameters, such as how long and how many times
the simulation will run, when the random number seed gets reset, the mode of interaction between
the simulation and the 3D window, and so forth. The dialog has tabs for Setup, Continuous, Ran-
dom Numbers, 3D Animation, and Comments.

The most common simulation settings you will need to enter in the Simulation Setup window
(and often the only ones) are the End time and Global time units parameters located on the
Setup tab. For most purposes, you want the simulation to start at the beginning, so you would
use the default start time of 0.

Customize the Setup tab by entering the follow-

A 2| Simulation Setup @@E\
1ng pal‘ameters: Setup | Continuous | Random Mumbers | 30 Animation | Comments
. [Define simulation duration and number of runs
4 :
End time: 36 Endime stattme: f]
» Start time: 0 (Default) Runs:
rSelecttime units and Calendar or non-Calendar system
» Runs: 1 (Default) Global time units: | Months >
7 Use Calendar dates
» Global time units: Months Calendar Date definifions Maor-Calendar Date definitions
. Start Hours in a day
» Click OK End: 17172010 0:00 Days in a week
[~ European farmat (ddfimmiyy) Days in a maonth
This model will run for 36 months, performing [Macintosh dete system {1904) Days In a year
calculations once each month. Runbow] __ ok | _Cancl |

Each time you run a simulation, ExtendSim uses
the same values entered in the Simulation Setup
window. Thus, you will usually only configure
the settings once per model. The Simulation Setup command is discussed fully in “Simulation
setup” on page 516.

Setup tab of Simulation Setup window

Building the model

The Reservoir model requires five blocks. There are two sources of water: rainfall and a stream; the
data for rainfall comes from a table while the stream contributes a random amount. You need a
block to add the two water sources, another block that can hold values (representing the reservoir),
and a plotter to display the results of the simulation.

Basic steps
The basic steps for building a model are:

1) Open the relevant libraries, if necessary.

25

eroing,

26

Tutorial

Building a Model
Building the model

2) Add the blocks to the model.
3) Move them to the desired positions.
4) Add connections between blocks.

About libraries

Blocks used in a model are stored in repositories called /ibraries. The entire definition for a block
(its program, icon, dialog, and so on) is stored in the library. When you include a block in a model,
the block itself is not copied to the model. Instead, a reference to the block is included in and
stored with the model. Any data you enter in the block’s dialog is also stored within the model.

There are many advantages to this method of using references to libraries instead of actual blocks
in models. If you change the definition of a block in a library, all models that use that block are
automatically updated. Also, block definitions are quite large, so storing just a reference to the
library saves memory and reduces processing time.

=" When you save a model, ExtendSim saves the names of the blocks as well as the locations of the

libraries that store the blocks. The next time you open the model, ExtendSim automatically opens
the libraries the model uses. You can also set a preference in the Options window to have up to
seven libraries load automatically whenever ExtendSim is launched (see“Options” on page 688).

Opening the relevant libraries
To add a block to a model, the library in which that block resides must be open. For the Reservoir
model, you need to open the Value and Plotter libraries.

To open the Value library:
» Choose Library > Open Library. ExtendSim takes you to the Libraries folder.
» Select the Value library.
» Click Open.
» Repeat the above steps to open the Plotter library.
Open libraries are listed in alphabetical order at the bottom of the Library menu.
Adding blocks to the model
There are two methods for adding a new block to a model:
* Select the block from its library within the Library menu.

* Drag the block from a Library window, as discussed on “Library Window mode” on page 671.

For this Tutorial, you will use the first method and select blocks from the Library menu.

Building a Model 27
Building the model

The first block needed for the Reservoir model is a _
Lookup Table block, which will be used to enter data I Model Databass Devskp Run Window Help
about the amount of rainfall entering the reservoir. Zom vy P EOI Xk h

To add the Lookup Table block to the model work- ! i

Taols »
sheet:

Plotter lix 3

Open Library window
» From the Library menu, scroll to the Value library, i ,
which is listed at the bottom of the menu. When the e -
Value library is highlighted, a secondary menu opens iz b maten g
. . ’ wtputs reegrts
that lists several categories, each of which further Routing v 5.
. . Statistics 13 Math
expands to show the blocks contained in that cate- " Maxatn =
gory. Timne Unit
» Under the Math category, click Lookup Table. Library menu with Value library categories
An lcon.for the Lookup Table block pTpE— LEX
appears in the top-left corner of the model E
window. By default, the icon is selected. ol

To deselect a block, click anywhere in the
window. To move a block, select it and
then drag it to the desired position in the
model window or use your keyboard arrow
keys to move it one pixel at a time.

If you click at a location on the model win- [g B 4l | L,j
dow before you pick a block from the
menu, the block will appear at the point
where you clicked.

Lookup Table block added to model

» From the Library menu choose the Ty— CER
library, category, and block (as indicated —
below), to add the four remaining ol
blocks to the model:

» Value library > Inputs category > e o g:ﬂ
Random Number block =
» Value library > Math category >
Math block :
= [=] Fun LLI LIJ

» Value library >Holding category >
Holding Tank block

» Plotter library >Plotter I/O block

When you have finished, the model should look similar to the screenshot above.

All blocks added to model

This is a good time to save the model so far.

» Choose File > Save Model As and name the file My Reservoir.

Connecting blocks

As mentioned in Chapter 1, connections pass information from one block to another. Blocks are
usually connected together by drawing connections from one block’s output connector to another
block’s input connector.

28

Tutorial

I=" Each input connector can only have one source of information. Therefore,

Building a Model
Building the model

Connectors

In ExtendSim, the behavior of most connectors is predefined for each specific block. For example,
when you set a Math block to use a function (add, subtract, divide, etc.) it knows what to do with
the values that are input into the block. This makes model building easy since you can connect
blocks and run simulations without having to write equations to define what each block should do
with the inputs or outputs.

There are several types of connectors in ExtendSim. Continuous models,

such as Reservoir, only use va/ue input and output connectors to pass infor- | [[] [u |
mation from one block to another. Other types of connectors will be dis-
cussed in later chapters. Input Output

Value connectors

blocks that need to have many sources of input require a separate input
connector for each piece of information.

Types of connections

There are two types of connections in ExtendSim: line connections and named connections. Line
connections join the output of one block to the input of another using connection lines; named
connections use text labels as outputs and inputs, causing data to jump from the output to the
input without using connection lines.

Connection lines can be drawn using three different styles: right-angle, straight, and multi-segment.
The default style is right-angle, which you will use in the following example.

The other styles of line connections, as well as named connections, will be discussed at “Additional
ways of connecting blocks” on page 32.

Connecting the Lookup Table block to the Math block’s variable connector
In the Reservoir model, the two water sources need to be connected to the Math block so that the
amounts of water entering the reservoir from rainfall and from the stream can be added together.

The first step is to connect the Lookup Table block to the Math block.

As mentioned earlier, blocks that need to have more than one source of input require a separate
input connector for each piece of information. ExtendSim provides for this by putting variable
connectors on blocks that might need them. This is usually indicated by a black arrow beneath the
connector that can be dragged to display additional connectors.

The Math block, for example, has a variable input connector as indicated by the black arrow below
its input. However, since the Math block displays two inputs by default, you do not need to
expand the variable connector. For more information about using variable connectors, see “Vari-
able connectors” on page 498.

To connect the Lookup Table block to the Math block:

» Move the cursor to the output connector of the Lookup

Table block. o value

The cursor changes from an arrow to a technical drawing
pen: R

» Click the Lookup Table’s output connector, then drag a
line to the top input connector on the Math block. You v
can tell when you are over the connector because the line
you draw becomes thicker.

Thickened line = successful connection

Building a Model 29
Working with block dialogs

P Let go of the mouse button.

“walue
I If you accidentally release the mouse button before the line |)

has thickened, a dotted red line will appear to indicate the
connection has not been made. To remove it, double-click
the line so that the entire connection thickens (indicating L 5 o
that you have selected it), then press the Delete or Backspace o

key, or choose Edit > Clear Connection. (A single click will

select one segment of the line only.) You can then make a Right-angle connection

correct connection.

eroing,

Connecting from the Random Number block

The next step is to connect the second water source, the Ran-
dom Number block, to the input of the Math block. To do

thiS: L]

o “walue kL
]

» Draw a connection line between the output connector on =
the Random Number block and the second input connec- —
tor on the Math block, just as you did for the Lookup p—
Table block earlier.

[u]
-
Connecting the remaining blocks Connect from Random Number block

Connect the other blocks in the model as follows:

» Draw a connection line between the output connector on —= B— o
the Math block and the input connector on the Holding —& = s
Tank block. - et

Connection from Math block
» To monitor the reservoir’s level, draw a connection

line between the Holding Tank’s output connector | __ n—l—ﬁ @

and the top input connector on the Plotter block. =

Working with block dialogs

Now that all the blocks have been placed and con- Connection between Holding Tank and Plotter
nected in the model, you can enter data and select blocks

options in block dialogs. The data for this model

comes from a table of values and from a random sample. The sections below will describe the set-
tings used in each block’s dialog.

Owant B
- get

Rainfall source

The amount of rainfall entering the reservoir is determined by a Lookup Table block that contains
each month’s expected rainfall. In a real-life situation, for example, these numbers may have been
determined by annual recorded averages.

» Double-click the Lookup Table block to open its dialog.
By default, the Lookup Table block is set to Lookup the: input value. In that mode, the block

outputs a value that corresponds to the value it receives at its input. However, you want the
Lookup Table block to output a value--the amount of rainfall for the month--that corresponds to
the current simulation time.

» Customize the dialog’s 7zble tab by setting the behavior of the block to look up simulation time
each month:

30 Building a Model
Working with block dialogs

» Lookup the: time
» Output is: stepped (Default)
» Time units: months (Model Default)

Time means the block will compare current simulation time to a time in the table and output the
corresponding value. Stepped means that ExtendSim will use the exact values you enter in the
table, not an interpolated amount.

—
=
v
5 » Increase the number of rows so the table has room for ry— Faintall nohes) J
] twelve months of data: o i TR
= b Click the +/- sign in th he b ‘] o
ick the +/- sign in the green square at the bot- 2 2 67
tom right of the table. 3 3 3.4
4 4 14
» Enter 12 for the number of rows and 2 (the 5 5 11
default) for the number of columns.] i 0.y
T T 0.5
» Click OK] & 0.4
. . a a 0.7
» Enter data into the table as shown in the screenshot at 10 10 16
right. 11 11 34
Link prd

I=° Ifyou click Enter after each value, the cursor will auto-
matically move to the next cell. Table settings for Lookup Table

» Check the Repeat table every checkbox and enter
12 in the months box.

This causes the determination of monthly rainfall to start over every 12 months.

» In the label entry box beside the Help button, type in Rainfall.

Labels can have a maximum of 31 characters, including spaces.

elp [Farar____JOetauttview v | [} | e

Adding label to the Lookup Table block Block labeled “Rainfall”

o “walue L
]

» On the Options tab, enter the following text in the column labels
box to give more meaningful headings to the table (be sure to include the semi-colon):

» Month;Rainfall (inches)
» Return to the Table tab

The table’s left column now specifies the month and the right column specifies the amount of
expected rainfall in inches. At each step, ExtendSim will check the block’s table for a time in the
first column that is less than or equal to the current simulation time and output the corresponding
value (inches of rainfall) to its right. For instance, for the fourth month the block will output 1.9.

» Click OK to close this block’s dialog.

Stream source

In this model, the Random Number block is used to specify a random distribution of water enter-
ing the reservoir from the stream. The distribution is a real number between 0 and 1, indicating
that the stream will add between 0 and 1 inches of water to the reservoir’s level each month.

Building a Model 31
Working with block dialogs

» Open the Random Number block’s dialog.

» By default the dialog’s parameters already have the set- T B
tings you want: Cancel
Specify a distribution
» Distribution: Uniform Real (Default)
.. Minimum: @] Plot Sample |
» Minimum: 0 (Default) N
» Maximum: 1 (Default) -
Result c
» Enter Stream in the label field next to the Help button. e
. Help Distribufion View w | « | [:.
» Click OK. =

Random Number dialog settings

Combining the sources
The Math block combines the values from the two water

Z[2] Math <Value>

sources. As indicated by the plus sign on its icon when you Options | Comments

placed the block in the model, the Math block is set by Cakculates a mathematical function -

default to add its inputs. There is no need to change its dialog | s casgoy somciyuneton —Cance |

Settlﬂgs. f(i '::‘nancial Ad.:dd: I:l
I=" Although you don’t need to for this model, the Math block v I+ fonore bianks

function can be changed directly in its dialog or by right- © Trgenomety

clicking a special area on its icon. For the Math, Decision, Result

and Simulation Variable blocks (Value library), the icon’s AL 2T T [

lower right corner has a sensitized area that looks like a par- Math dialog settings

tially turned page. You can right-click that area to change dia-
log settings.

Water in the reservoir
The Holding Tank block represents the level of water in the reservoir. In this model, the Holding
Tank has no beginning contents and does not release any of its contents.

» Open the Holding Tank block’s dialog.

ZI[71| Holding Tank <Value> (=3

» In the dlalog’ set: Options | Animation | Comments
» Initial contents: 0 (Default) Accumulates inputs; =
outputs desired amount {if available) Cancel
» Inputs are: integrated (delay) Define conditions
» Enter Reservoir in the label field next to the Help Initial contents (optionaly, @I]
button Current level: 100.84310396057
. Inputs are: [integrated (delay) |
} Cth OK ™ "Want cannector can take Tank negative
I=" The Holding Tank should be set to integrate, rather ™ Retain contents hetwaen consecutive runs
than sum, its inputs. This will output the value at time Help [Feseror | DefaultView 1 «| ¥

1 that has been calculated for the period from time 0 to
1. These continuous simulation concepts are discussed
more thoroughly in “Integration vs. summation in the

Holding Tank block” on page 610.

Holding Tank dialog

32

Tutorial

Additional ways of connecting blocks

Building a Model
Running the simulation

Displaying the results

The Plotter I/O block monitors the total amount of water in the reservoir. (Later in this chapter
you will learn different techniques for connecting the Lookup Table and Random Number blocks
to the Plotter, to also monitor the amounts flowing in from the rainfall and the stream.)

» Double-click the Plotter to open its plotter window.

Notice that the first column in the table is titled Contents. The Plotter automatically named it
when you connected from the contents output of the Holding Tank block.

To further personalize the plotter window:
» Click the text label Value in the upper left corner of the Plotter’s graph to select its text box.
» Type Inches in the text box and click the Tab, Return or Enter key.
» Using that same process, change other Plotter labels in the graph pane as follows:
» Change Plotter I/O (located at the top of the graph) to Reservoir Model.
» Change Time (located below the graph) to Month.
» Close the plotter window

» Save the model.

I When you save a model, ExtendSim creates a backup, ModelName.bak, of your previously saved

model. To open a backup file, add the extension .mox after the .bak so that the file reads Model-
Name.bak.mox. Then Open the backup file from the File menu.

Running the simulation

Now that you have placed block§ on the quel, con- um— EX
nected them, and configured their dialogs with data, it is ELEEEEEENRER

time to run the model. e bioter v

» Select Run > Run Simulation or click the Run Simu-

100|
lation button in the toolbar. « /

A plot similar to the one at right will be displayed. It ’ ! e i >
. . . K’ : g‘om:ms — Red — Gresn
only shows one line because only the Holding Tank is
currently connected to the Plotter block. Tvei[lcerterts _e[Jed _ s[loresn _a[eizck
13587 1411686643
2 |8.17T15950357463
3

15.5145465 19376 _IJ
For this simulation, you need to also connect the rainfall
and stream blocks to the Plotter so you can compare their outputs to the total water collected in
the reservoir.

When you built the model, you used the right-angle connection line style to connect blocks. This
is the default setting for all new models. You can also connect blocks using the straight and multi-
segment connection line styles. In addition to using connection lines, you can connect blocks
using named connections. These methods are discussed in the following topics.

Straight line connection
You draw this line style in exactly the same way as the right-angle style, but it displays differently.

» Select Model > Connection Lines and select the straight line option (second item).

Building a Model 33
Additional ways of connecting blocks

I=" Changing the setting in the Model menu will only affect subsequent connections in this model.
You can change the default setting for all models by choosing Edit > Options > Model tab and
unchecking “Default connection line style is right angle”.

» Draw a line from the output connector on the Lookup Table block to the second input connec-
tor on the Plotter.

Both the straight line and right-angle line connections have the disadvantage of running directly
over other blocks and connections, making the model more difficult to read.

» Delete the straight line connection by selecting it and pressing Delete or the Backspace key.

eroing,

Multi-segment line connection
This style has the advantage of letting you draw the lines so that they go around blocks rather than
over them.

» With the straight line option still selected, click the Lookup Table’s output connector and drag
your cursor until it is above the space between the Holding Tank and the Plotter blocks.

» Release the mouse.

Time

This creates the first segment. The cursor P %
remains a technical pen because you are pointing | aitai o | b=
. |
at an anchor point. - gt b o
» Immediately click again and drag the cursor to Fend Ressrvet

the second input connector on the Plotter, then | §Hnimum

release the mouse button. fiream
First segment and anchor point

You now have a multi-segment connection. (Note =

. ime
that a right-angle connection is simply a multi- g
segment connection that is automatically created | rara JEk

. | g
by the application.) B_|—s o, s
I=" Anchor points can be moved if the connection did Fand Reservair

not come out as you intended. Simply move your ghnimum
mouse over the anchor point until the cursor stream
changes into a hand, then click the anchor point Multi-segment connection

and drag it to the desired location.

Although this connection no longer crosses over any other elements of the model, you can see how
a larger, more complex model could become very cluttered with so many line segments in the win-
dow.

» Delete the multi-segment connection by double-clicking a segment until the entire connection
line thickens, then press Delete or the Backspace key. (To delete just one segment of the line,
you would click the segment once and press the Delete key.)

Named connection

Named connections are text labels that are used to represent one output at many locations in your
model. If you have two labels with the exact same text, you can use these to have the flow of data
jump from one part of the model to another. Named connections are often used when you do not
want to clutter up your model with many lines. You can place the names near the blocks to which
they connect and leave much of the area of your model free from connection lines. Named connec-
tions are discussed in detail at “Named connections” on page 560.

34 Building a Model
Plotting against multiple axes

I Named connections are not case sensitive and spaces and returns are ignored, but you must use
identical spelling in the text names.

Creating a named connection between the Lookup Table and the Plotter
To add a text label for the named connection:

» Choose Model > Connection Lines and select either the right-angle or

straight line style. Reairifall|

» Double-click in the model window, slightly above and to the right of the Typing in text box
Lookup Table block’s output connector. This opens a text box.
» Type Rainfall in the text box.
» When you are finished typing, click anywhere else on the model —
--RalnTal

window.
Time

» Join the Lookup Table’s output connector to the word v
Rainfall by dragging a line from the connector to the text and, Fai
. € ainfall
when the line thickens, release the mouse.

Tutorial

: : Lookup Table joined to named
I Until you connect the text to an input connector on another block, connegtion teit

the line will remain dotted.

» Click the Rainfall text to select it, then choose Edit > Dupli- =
cate. Reairifall _I_ﬁ l::/ﬁ;:E

» Drag the duplicate text to a spot slightly below and to the left of

the Plotter and release the mouse. Named text connection joined

to Plotter
» Draw a line between this text and the second input connector on
the Plotter. Note that both the connection lines are now solid.

Named connection between Random Number and Plotter
Repeat the process above to create a named connection between the Random Number block and
the Plotter:

» Create a Stream text label and place it near the output of the Random Number block.
» Connect from the Random Number block’s output connector to the text label.
» Duplicate the text label and drag it to a spot below and to the left of the Plotter.
» Connect from the text label to the third input connector on the Plotter.
I To display the actual connection lines between blocks, choose Model > Show Named Connections.

Plotting against multiple axes
» Click the Run Simulation button on the toolbar.

The Plotter that appears now has three lines on it: the Z0[11] Platten U LER

blue one displays the amount of water in the reservoir

walue

Building a Model
Plotting against multiple axes

Flatter i0

over time, the red one displays the amount entering the
reservoir from the rainfall, and the green line displays i
the water entering from the stream. "

0|

At the end of the simulation run, the Plotter automati- s
cally scales its axis to be able to display all values for both [= &&™

9 18 7
Time
— Rainfall — Stream

=

columns of data. However, because the total amount of |

e [JContents _z[JRainfall
[

76 0384786665817

. . [
water in the reservoir has a much greater range than the | oz e 4307000021783
3

amount entering it each month, the lines representing

2 2221230087578 6.7 0.3112128727242
15.13330607 1482 3.40.3420053202119

3[Jstream 1o (ZER

2

the rainfall and stream amounts can barely be seen. They
simply look like horizontal lines across the bottom of the graph.

To solve this problem, you can add a separate axis (Y2) on the right-hand side of the graph and set

the Plotter to display the rainfall and stream values against that axis.

P If its not already open, double-click the Plotter to open its plotter window.

» Click the Trace properties button , which is the left-most button in the toolbar at the top of

the plot window.
The Tools dialog opens.

» In the second row, labeled Rainfall, click the Y1/Y2 button ,
second from the right.

The button changes so the vertical line is to the right of the hori-
zontal line. Iil

» In the third row, labeled Stream, click the Y1/Y2 button, causing
the stream to also be plotted against the Y2 axis.

» Close the Tools dialog box.

» Click the Run Simulation button on the toolbar.

™ Delay changes until close

Rainfall

Contents {ererzl

erers]

erers

Plotter Tools dialog

[T

35

eroing,

36

Tutorial

Building a Model
The final Reservoir model

The graph now displays the Rainfall and Stream lines using the right-hand axis.

21| [4] Reservoir Model

Inches . i
200 IResler-.n:nlr Mc:del i

1501
o0

i) g

1]

i a 1& 7 3
nth
W — COntents = 2 Rainfall — 2 Stream — Black
i
worthjl Clcorterts 2 [CJRairfall a[Jstream a[JElack
0 2.6 0.1766046085868

2 7TRG045085868
7185086408243

14.77043309063
12.285026126248

FoRE N =)

4.4 0.00928 19296613
6.7 0.8845474023817
340.1151921462165
1.0 0. 1167520022002

o

The final Reservoir model

If you have followed all the steps, your model should look similar to the Reservoir model shown

here.

2| My Reservoin.mox

X

Rainfall
Time
v
Rainfall
B—
A

Rainfall

Rand

Ohnimum
-

Stream

Cwant 0
- get

Reservoir

Stream

Stream

ae

= Fun

My Reservoir model

Additional enhancements
Now that you know how to create a model, you can explore some other features, such as hierarchy
and cloning, that are easy to do and will greatly enhance your models.

Introduction to hierarchy

The Reservoir model displays one block per function performed, i.e. the Lookup Table block out-
puts the amount of water coming from rainfall, the Random Number block outputs the water
coming from a stream, etc. For such a simple model, this works fine. However, models created for
real-life simulations can involve thousands of blocks. Building, organizing, and presenting a com-
plex model with all the blocks on one layer of the worksheet would be very difficult.

Building a Model 37
Additional enhancements

To help simplify and clarify models, ExtendSim lets you create hierarchical blocks (H-blocks) that
group several blocks together into one block while still allowing you to drill down into the lower
levels to access the individual blocks.

Creating a hierarchical block from existing blocks

In the Reservoir model, you can group the blocks that represent sources of water together into one
hierarchical block. This process is extremely easy.

» Shift-click the Lookup Table, Random Number, and Math blocks to select them.
A Do not select the text labels (Rainfall and Stream) of the named connections!
» Select Model > Make Selection Hierarchical.

A dialog appears prompting you for a name for the hierarchical block.

eroing,

Streamm

» Enter Water Sources.
» Click Make H-Block.

The three individual blocks are replaced with a single hierarchical Rairfall
block with a white rectangle for an icon. By default, hierarchical
blocks have drop shadows to distinguish them from other blocks; you
can change that option by choosing Edit > Options > Model tab.
Note that there are three connectors, including the Rainfall and Stream named connections, on
the hierarchical block’s icon.

Hierarchical block

» Double-click the hierarchical block to see the sub-

model, or individual components, inside it. B ot g@
I=" The hierarchical block and submodel may look Time | [
slightly different depending on how the blocks were T
l' d Rainfall 0
placed. il o

s
The window’s title bar displays the name of the

hierarchical block. Note that connections for
transferring data from within the hierarchical e

block to the outside model are represented in the M
submodel as named connections with red borders o] a1 e 7
around the text. Those connections correspond to ~ Water Sources submodel

the three connectors on the block’s icon.

Rand

Obdnimum
-

» Close the Water Sources window.

ExtendSim provides many more features for creating and using hierarchical blocks, including
building hierarchical blocks from scratch, assigning custom icons to them, and providing Help
information. To learn more, see “Hierarchy” on page 540.

The ExtendSim Navigator

The Navigator is an explorer-like window that can be used for multiple purposes:
* To navigate through the hierarchical structure of a model

* To access any databases used in the model

* To add blocks to the model worksheet, as an alternative to using the Library menu

38 Building a Model
Cloning

Navigating through the Reservoir model
Since your reservoir model now has a hierarchical block (the Water Sources block you created ear-
lier), you can see how the Navigator is helpful for exploring a model.

To open a Navigator:

P Select Window > Navigator or click the Open Navigator tool in the Toolbar.

By default, the Navigator opens in Model Navigator mode, pr— -
— | "
-8 with the word “Model” selected in the leftmost popup menu. wgamr |Simu|ation
S The name of the active model is listed at the top of the win- i i
[_45 dow and below the Navigator’s leftmost popup menu, and i B0t wete Sources
each blocK’s icon and information (name, label, and global I:F
block number) is displayed. o[b 12 Lockup e
» Click the plus sign beside the Water Sources hierarchical e
block. Fand & 113 Random Humber
Stream
g
The hierarchical block expands to show the blocks within it. o b Erie wan
» Select the Lookup Table block in the Navigator. ‘
The corresponding block is selected in the model window. Ds L Sy
» Double-click the Lookup Table block in the Navigator. =7] ¢ nater. 1o
The block’s dialog opens. b7
As you can see, the Navigator is indispensable for exploring Navigator in Model mode

complex models, especially for models with many layers or
instances of hierarchy. For additional information, see “Navigator” on page 670

Cloning
In “Running a Model” on page 13 you saw how Notebooks help organize, monitor, and interact
with data during simulations. ExtendSim lets you add dialog and plotter items to your Notebook
using a technique called cloning. Clones are exact replicas of dialog items, behaving exactly like the
original. When a cloned value changes, the original dialog item or plot graph also changes.

To clone a plot from the Plotter block to the Notebook:
P Select Window > Notebook or select the Open Notebook tool in the toolbar.
An empty Notebook window opens.

» Double-click the Plotter block in your reservoir model.

Building a Model 39
Other modifications

» Using the Clone layer tool % from the toolbar, click the plot (graph portion) of the plotter
and drag it to the Notebook window.

— My Reservoir.mox

Rairfall

Time
=]

Rainfall E}_‘_g‘ 1

i

| Notebook - My Resenvoir.mox [
2 3
imopes Resarucir Mods! i - TICICTEATAT T L1 =.
Indhe Ressrucir Modsl X2 &
150, 525
10 s 150 5.25
] s 100 2.5
ol o 50| 1.75
[] 18 7 £
harth
— Contents — V2 Rainfall — Vi Stream — Black] 3 12 a7]
N Morth
]~ Corents — 2 Rainfal — Y2 Stream — Black
I
Morthh [Corterts o [IRairfall s[stream a[JBizck
[0 15 0. 1766045085588
1z 440, .
2|7 1858804082481 6.7 0584547 RLIRT ®
3| 1477043309063 3.40.1151831452165
4119.265625135646 1.80.1167599022003 il i
- Lk 2L
L

Cloning plot onto Notebook

» Run the simulation again.
The plot in the Notebook is the same as the graph on the Plotter.
For more information, see “Cloning” on page 504.

Other modifications

Since it is so easy to add and modify elements in ExtendSim models, there are many ways you can
enhance them. Here are just a few examples.

* Add blocks to represent more sources of water entering the reservoir.

* Add an additional Plotter to see the various lines on different plots--for example if the scales of
the results are very different and you do not want to plot against the Y2 axis. There are four ways
to create a second instance of a Plotter:

* Insert another Plotter block from the Library menu, as you did earlier in this chapter.

* Insert another Plotter block from the Plotter library’s library window, as discussed at
“Library Window mode” on page 671.

* Copy and paste the existing Plotter.

o Select the Plotter, choose Edit > Duplicate, and move the duplicate Plotter to the desired
location.

You can use these same techniques to duplicate any block in the model. Note that if you copy or
duplicate a model’s existing block, any dialog settings for that block will also be copied.

* Configure the Holding Tank block so that it outputs water over time. For an example of this, go
to “Tutorial” on page 63.

* Run the model with Show 2D animation enabled to display the water level in the Holding Tank
block. Learn more, see “Blocks with built-in animation” on page 551.

40 Building a Model
Next steps

* Set delta time to a value less than 1, as discussed onpage 83. This calculates output values
between the steps, so you can see finer resolution of the model results.

Next steps
You have learned the basic techniques for running and building models and some additional tech-
niques for enhancing your models. The following are some suggestions on which sections of the
manual to explore next, depending on what your own simulation requirements are.

* The Tutorial module’s “Simulation Concepts” chapter discusses more general simulation and
modeling concepts and how ExtendSim can be used for all types of modeling. It describes the
three main modeling methodologies (continuous, discrete event, and discrete rate) as well as
modeling approaches such as Monte Carlo, Agent Based, and State/Action.

Tutorial

* If you already know the type of modeling you want to do, the specific modules are:
* “Continuous Modeling” starting on page 59.
* “Discrete Event Modeling” starting on page 89.
* “Discrete Rate Modeling” starting on page 265.
* “3D Animation” starting on page 389.

* The “How To” module starting on page 488 has several chapters that show how to use
ExtendSim to do common modeling tasks (such as creating a user interface, analyzing model
results, etc.).

Tutorial

Simulation Concepts

Learn about systems, simulation,
and modeling methodologies

“It must be remembered that there is nothing more
difficult to plan, more doubtful of success, nor more
dangerous to manage, than the creation of a new system.”

— Niccolo Machiavelli

42

Tutorial

Simulation Concepts
Systems, models, and simulation

The first two chapters of the Tutorial showed how to build and run simulation models in
ExtendSim. Since you have seen some of what can be accomplished with ExtendSim, now is a
good time to explore some modeling and simulation concepts. The following discussion is meant
to familiarize you with modeling and simulation terminology and concepts used throughout this

guide. This chapter:

* Explains modeling concepts and terminology

* Discusses model types and common approaches to modeling

* Describes the modeling process, including goals and steps

* Shows how to verify and validate a model

After reading this chapter you will have a better grasp of modeling concepts and will be ready to
start using ExtendSim for your modeling needs. Note that an in-depth exploration of simulation is

beyond the scope of this document. For more detailed definitions and theory, please refer to the
numerous books on simulation.

I If you are already familiar with the concepts to be presented in this chapter, skip it and proceed to

one of the other modules, as discussed in “About this User Guide” on page 6.
pag

Systems, models, and simulation

All professions use models of one form or another. But the word “model” does not always have the
same meaning to business professionals, managers, scientists, and engineers. Even within a specific
discipline, such as manufacturing, modeling has many different definitions. The following discus-
sion serves to clarify what “modeling” means as it relates to ExtendSim.

Systems

The real world can be viewed as being composed of systems. A system is a set of related compo-
nents or entities that interact with each other based on the rules or operating policies of the system:

* Entities are the internal components of the system. Entities are involved in processes—activities
in which they interact with each other.

* Operating policies—the types of controls and availability of resources—are the external inputs
to the system. They govern how the system operates and thus how the entities interact.

Opver time, the activities and interactions of entities cause changes to the state of the system; this is
called system behavior or dynamics. Systems can be mathematically straightforward, such as a
flower growing in the soil and turning towards the sun to maximize photosynthesis. Or they can be
more complex, such as supply chain operations composed of planning, selling, distribution, pro-
duction, and sourcing subsystems.

Models

A model is an abstracted and simplified representation of a system at one point in time. Models are
an abstraction because they attempt to capture the realism of the system. They are a simplification
because, for efficiency, reliability, and ease of analysis, a model should capture only the most
important aspects of the real system.

Most models can be classified into four basic types:

* A scaled representation of a physical object, such as a 1:18 diecast model of a Ferrari, a clay
model of a proposed packaging bottle, or a scale model of the solar system.

Simulation Concepts
Modeling methodologies

* A graphical or symbolic visualization, such as a flow chart of office procedures, the board game
Monopoly (which represents the hotels and facilities of Atlantic City), or an architect’s plans for
a building.

* An analytical or mathematical formula that yields a static, quantitative solution. For instance, an
analytic model might consist of several independent sample observations that have been trans-
formed according to the rules of the model. Common examples of analytic models are spread-
sheet models or linear programming models.

* A mathematical description that incorporates data and assumptions to logically describe the
behavior of a system. This type of model is typically dynamic—it has a time component and
shows how the system evolves over time. ExtendSim products are tools for building mathemati-
cally-based, dynamic models of systems.

Dynamic modeling is the foundation for computer modeling. Thus, for purposes of this manual,
the word “model” will be used to mean a description of the dynamic behavior of a system or pro-
cess.

ExtendSim models typically have a time component and can show cause and effect and the flow of
entities throughout a system (you can also create ExtendSim animations that show spatial relation-

ships.)

Simulation

The Merriam-Webster OnLine Dictionary defines simulation as “the imitative representation of
the functioning of one system or process by the functioning of another.” This means that to deter-
mine how an actual system functions, you would build a model of the system and see how the
model functions.

Simulations run in simulation time, an abstraction of real time. As the simulation clock advances,
the model determines if there have been changes, recalculates its values, and outputs the results. If
the model is valid, the outputs of the simulation will be reflective of the performance or behavior

of the real system.

Simulation with ExtendSim means that instead of interacting with a real system you create a logi-
cal model that corresponds to the real system in certain aspects. You simulate the operations or
dynamics of the system, then analyze one or more areas of interest. You do this in order to reduce
risk and uncertainty so that you can make informed, timely decisions.

Modeling methodologies

The formalism you use to specify a system is termed a modeling methodology. The three main
modeling methodologies are:

e Continuous

* Discrete event

* Discrete rate.

These methodologies are described, compared, and contrasted in the later topics in this chapter.

In addition to the main modeling methodologies listed above, other modeling approaches are use-
ful and will be discussed in this chapter. These approaches are usually based on one of the three
main methods and include:

¢ Monte Carlo

43

erom .

44 Simulation Concepts
Modeling methodologies

* Agent-based
¢ State/Action
For more information, see “Other modeling approaches” on page 47.

As you might expect, you can use different methods to model different aspects of real-world sys-
tems. For example, at a chemical plant you could model the chemical reactions as a continuous
process, the control logic of the chemical process using discrete event modeling, and the tanks,
valves, and flow of the production process with discrete rate.

It is good to note, however, that there is no such thing as “the” model of a system: a system can be
modeled in any number of different ways, depending on what it is you want to accomplish. In
general, how you model the system depends on the purpose of the model: what type, level, and
fidelity of information you want to gather and the amount of detail, or level of abstraction or gran-

ularity, of the model. Once that has been determined, you can intelligently choose which type of
model to build.

I=5" The types of models that can be built depend on the ExtendSim product that was purchased.

Tutorial

Comparison of main modeling methodologies

The three main modeling methodologies are continuous, discrete event, and discrete rate. Contin-
uous modeling (sometimes known as process modeling) is used to describe a flow of values. Dis-
crete event models track unique entities. Discrete rate models share some aspects of both
continuous and discrete event modeling.

In all three types of simulations, what is of concern is the granularity of what is being modeled and
what causes the state of the model to change.

* In continuous models, the time step is fixed at the
beginning of the simulation, time advances in | I I I I

equal increments, and values change based directly 0 1 > 3 4
on changes in time. In this type of model, values
reflect the state of the modeled system at any par- ~ Time line for continuous simulation

ticular time, and simulated time advances evenly

from one time step to the next. For example, an airplane flying on autopilot represents a contin-
uous system since its state (such as position or velocity) changes continuously with respect to
time. Continuous simulations are analogous to a constant stream of fluid passing through a

pipe. The volume may increase or decrease at each time step, but the flow is continuous.

* In discrete event models, the system changes
state as events occur and only when those events I |

occur; the mere passing of time has no direct 23 27 4
effect on the model. Unlike a continuous model,) :
simulated time advances from one event to the Time line for discrete event simulation

next and it is unlikely that the time between

events will be equal. A factory that assembles parts is a good example of a discrete event system.

The individual entities (parts) are assembled based on events (receipt or anticipation of orders).

Using the pipe analogy for discrete event simulations, the pipe could be empty or have any num-
ber of separate buckets of water traveling through it. Rather than a continuous flow, buckets of

water would come out of the pipe at random intervals.

Simulation Concepts
Modeling methodologies

* Discrete rate simulations are a hybrid type, com-
bining aspects of continuous and discrete event I | |

modeling. Like continuous models they simulate
the flow of stuff rather than items; like discrete
event models they recalculate rates and values Time line for discrete rate simulation

whenever events occur. Using the pipe analogy

for a discrete rate simulation, there is a constant stream of fluid passing through the pipe. But
the rates of flow and the routing can change when an event occurs.

23 27 4

I [n some branches of engineering, the term discrete is used to describe a system with periodic or
constant time steps. Discrete, when it refers to time steps, indicates a continuous model; it does
not have the same meaning as discrete event or discrete rate. Continuous models in ExtendSim are
stepped using constant time intervals; discrete event and discrete rate models are not.

Comparison table
The three main modeling methodologies are summarized in the table below.

Modeling method ExtendSim library =~ What is modeled Examples

Continuous time Value library Processes Processes: chemical, biologi-

o cal, economic, electronics.
Electronics library

Discrete event Item library Individual items Things: traffic, equipment,
work product, people.

Information: data, messages,
and network protocols at the
packet level.

Discrete rate Rate library Flows of stuff Rate-based flows of stuff:
homogeneous products, high
speed production, data feeds
and streams, mining.

Table of continuous, discrete event, and discrete rate differences

Although not definitive, the following table will help to determine which style to use when model-
ing a system.

Factor Continuous Discrete Event Discrete Rate
What is modeled Values that flow Distinct entities Bulk flows of homoge-
through the model. (“items” or “things”). neous stuff. Or flows of

otherwise distinct enti-
ties where sorting or
separating is not neces-
sary.

What causes a change A time change An event An event
in state

45

eroing,

46

Tutorial

Simulation Concepts

Modeling methodologies

Factor

Continuous

Discrete Event

Discrete Rate

Time steps

Interval between time
steps is constant. Model
recalculations are
sequential and time-
dependent.

Interval between events
is dependent on when
events occur. Model
only recalculates when
events Occur.

Interval between events
is dependent on when
events occur. Model
only recalculates when
events occur.

Characteristics of what
is modeled

Track characteristics in
a database or assume
the flow is homoge-
neous.

Using attributes, items
are assigned unique
characteristics and can

then be tracked
throughout the model.

Track characteristics in
a database or assume
the flow is homoge-
neous.

Ordering FIFO Items can move in FIFO
FIFO, LIFO, Priority,
time-delayed, or cus-
tomized order.
Routing Values need to be By default, items are Flow is routed based on

explicitly routed by
being turned off at one
branch and turned on
at the other (values can
go to multiple places at
the same time.).

automatically routed to
the first available
branch (items can only
be in one place at a
time.)

constraint rates and
rules that are defined in
the model (flow can be
divided into multiple
branches.)

Statistical detail

General statistics about
the system: amount,
efficiency, etc.

In addition to general
statistics, each item can
be individually tracked:
count, utilization, cycle
time.

In addition to general
statistics, effective rates,
cumulative amount.

Typical uses

Scientific (biology,
chemistry, physics),
engineering (electron-
ics, control systems),
finance and economics,
System Dynamics.

Manufacturing, service
industries, business
operations, networks,
systems engineering.

Manufacturing of pow-
ders, fluids, and high
speed, high volume pro-
cesses. Chemical pro-
cesses, ATM
transactions. Supply
chains.

Some systems, especially when a portion of the flow has a delay or wait time, can be modeled using
any of the three styles. In this case, you would generally choose how to model the system based on
the level of detail required. Discrete event models provide much more detail about the workings of
these types of systems than continuous models. Continuous and discrete rate models, on the other
hand, usually run faster than discrete event models.

Remember that you may combine blocks from different libraries within the same model. For
example, it is quite common to use continuous blocks from the Value library when creating a dis-
crete event model. However, the discrete event blocks in the Item library and the discrete rate
blocks in the Rate library can only be used in event-driven (non-continuous) models. If you use
any discrete event or discrete rate blocks in a model, the timing will change to event driven (time
steps will not be periodic) and it will not be a continuous model.

Simulation Concepts
Other modeling approaches

Other modeling approaches

Although there are several other approaches to modeling, they usually fit within one of the three
major categories (continuous, discrete event, or discrete rate) discussed above. For example, System
Dynamics and Bond graphs are subsets of continuous modeling, and queueing theory models are
subsets of discrete event modeling.

Because of their specialized use, three specific modeling approaches (Monte Carlo, State/Action,
and Agent Based) are described below.

Monte Carlo modeling

Widely used to solve certain problems in statistics, Monte Carlo simulations provide a range of
results rather than a single value. This approach can be applied to any ExtendSim model and used
wherever uncertainty is a factor.

Monte Carlo modeling uses random numbers to vary input parameters for a series of calculations.
These calculations are performed many times and the results from each individual calculation are
recorded as an observation. The individual observations are statistically summarized, giving an
indication of the likely result and the range of possible results. This not only tells what could hap-
pen in a given situation, but how likely it is that it will happen.

You build a Monte Carlo simulation in ExtendSim by incorporating random elements in a model
and obtaining multiple observations. There are two ways to do this:

* The classical Monte Carlo method is to take a single mathematical equation or set of equations,
then cause the equation to be calculated many times. In this type of simulation, time is not a fac-
tor. The entire model is run to completion and evaluated at each step; each subsequent step per-
forms a new calculation. An example is the Monte Carlo model, discussed later in this section.

* An alternative Monte Carlo approach, typically applied in a discrete event model, is to either
divide a single simulation run into multiple sections (batch means) or run the simulation many
times (multirun analysis). Monte Carlo is incorporated by adding randomness to the model,
running it many times, and analyzing the results. This method can be applied to any continu-
ous, discrete event, or discrete rate model. It is shown in the Queue Statistics model, described
later in this section. For more information about using the Statistics block (Value library) for
performing batch means or multirun analysis, see “Statistics” on page 564.

Monte Carlo model
An example of the classical method is the Monte Carlo model. This model determines the
expected revenue from a new product. It runs for 10,000 steps, from time 0 to time 9999, and
each step results in an observation. This cycle is repeated 24 times, once for each of the cases.

47

erom .

48 Simulation Concepts
Other modeling approaches

For scenario experimentation purposes, the inputs and outputs for this model are stored in an
ExtendSim database.

Run All Scenarios Run number: 23

Monte Carlo Simulation ™o

About This Model

Cost and Revenue Success or Failure Collect Statistics

i

= 0

o
Soenaris ——GR o
¥ Unsuces=ful
Revenue/Unit

e ol

Seanaric ——2IF

Tutorial

& a B4 i J
d)
P = OREH

> Seznaric —EIR
v

Units Sold
Rand

i 0
P Chinimum
B—o T4 hd Soenario — 5| % Fe
hd 0B A 8
Scanaio ——aR i
b AR
GostiLinit

4
Scenaric —gf (s
[b

g/ P of success
Scenaria ———BR
E
Stanup Cost
i — v

Seanaric ——2IF

2 o scenano
Inwestment

Seenario

Monte Carlo model

I=" The Monte Carlo model is located at \Examples\Continuous\Standard Block Models.

Queue Statistics model
The Queue Statistics model is an example of an alternative Monte Carlo modeling approach. It
applies batch means analysis to a discrete event model. The model uses the batch-means method
to collect multiple observations of the queueing statistics. Every 100 time units a new set of
observations are recorded. Information (such as the maximum and average queue length, the
number of arrivals and departures, and utilization) is stored and displayed in a table in the dialog
of the Statistics block (Value library).

F

-
Queue 1 Queue 3 Queue 3 Queue 4 Queue §
stats
T %

Black Black Name _Awe Length Wex Length e Wit W Wit Queus Length Aetivals Depanures Reneges Whilization Time -
[] TQusue 1 21.060] 1833 9,959 il 127 197 [LT
1 Queue 3 Qusue 62752 15 44975 133 1 1 18 [0.69198 EL]
i Queue 3 Qusue 1514 1] 61219 18238 11 1] 171 [1 EL]
El Queus 4 Qusue 22933 7 27949 74184 [1o 170 [0.73425 EL]
4 Queue § Qusue 45312 iz 35188 95349 H 105 168 [0.56721 EL]
] Queue | Qusue 24945] 18323 012 40 124) [1 EL
] Queue 3 Qusue 30759 14 44935 11314 [o) I [0.54514 EL
7 Queue 3 Qusue 15621 i 1104 24.000] 10 i) [1 EL
] Queus 4 Qusue 18597 7 24318 64151 4 10 L] [069056 EL
F] Queue § Qusue 44708 15 41154 14483 7 o) 5 [0.50094 ELT
i Queue | Qusue 3.709] 13354 49.550 L]]] [1 400
11 Queue 3 Qusue 13763 1] 6.4049 5,737 Fij 107 360 [0.74561 400
iz Queue 3 Qusue 15804 [60349 64197 3 @ L o 057673 400 =
Link

Queue Statistics model

I=" The Queue Statistics model is located in the folder \Examples\Discrete Event\Statistics. It is not
available with ExtendSim CP.

Simulation Concepts
Other modeling approaches

State/Action models

With state/action modeling a system is modeled as a collection of discrete states. Sometimes
known as a state chart, a state/action model represents a system that responds to an event by tran-
sitioning to another state. The model is composed of a series of states where each state depends on
a previous state. A state has an associated action and an event that will cause that state to change to
another. The transition from one state to the next is not sequential; each state can lead to any other
state.

There are rules that govern the communication and transition between the states:
o All states accept events.

* One or more states may create an event as a result of a transition by another state or group of
states.

* A group of states can be set to transition conditionally, for instance to only change if another
state or group of states achieve a specific stage. These are known as guard conditions.
State/action models are independent of any of the three modeling methodologies (continuous, dis-

crete event, or discrete rate.) They are useful for specification and verification in many areas, from
computer programs to business processes.

In ExtendSim, the most common ways of creating state/action models are:

* Define one or more discrete event items as objects with behavior that is determined by their
states. The information about each state and its next state is stored in a Lookup Table block
(Value library) or an ExtendSim database table. This uses ExtendSim’s internal event queue and
scheduling capabilities to signal and manage events for the item/objects within the system. This
method can only be used with discrete event models and is illustrated in the State Action model,
described later in this section.

* Store each state, action, event, and next state for the system in rows in an ExtendSim database
table. This maps the states for the entire model into one block and works with any type of
model. This method can be used with continuous, discrete event, and discrete rate models and is
shown in the Markov Chain Weather model, described later in this section.

* Create new blocks that store their current state in a static variable and send messages to other
blocks at appropriate state change events. To do this, use ExtendSim functions and its simula-
tion modeling environment to create a custom block. For more information about creating new
blocks, see the Developer Reference.

State Action model
In the State Action model, items are created with attributes that determine the item’s state. The
items are then routed to one of three operations depending on their state. After processing, the

49

erom .

50

Tutorial

Simulation Concepts
Other modeling approaches

item’s state is changed based on entries in a Lookup Table block (Value library). The item contin-
ues to be routed to various processes until it reaches state 4, at which point it leaves the simulation.

— @
Jeit]
| o
o’ 4 State 1 Operation
] v
Initial ems

B
T |—deep—a |

c
v
State 2 Dperation

|

o>
Create hem Set Inial Stte olg

herge Streams
Raoute By State

Curent StateHext State - |

I

2

F

Finished Al Operations

State Action model

Initially, each item has a CurrentState attribute with a value of 1. The Lookup Table block causes
each item with CurrentState 1 to be changed to CurrentState 3 after processing, then to Current-
State 2, and finally to CurrentState 4. The operations are represented by Workstation blocks,
which can hold and process the items. After each operation, the item is examined and its state is
transitioned accordingly.

Running the simulation with animation on shows the items changing from state 1 (green), to state
3 (red), then state 2 (yellow), and finally state 4 (blue).

I The State Action model is located in the folder \Examples\Discrete Event\Routing, It is not avail-

able with ExtendSim CP.

Markov Chain Weather model

A Markov chain represents a transition from one state to another as defined by a table of probabil-
ities. The Markov Chain Weather model simulates the weather based on a Markov chain. The
states are the weather — sunny, cloudy, rainy, and so forth; they are stored in an ExtendSim data-
base named “Weather”. The model runs for 365 days. Each day there is a probability of transition-
ing from one weather state to the next. For example, if today is sunny, the next day could be sunny
(50%), partly cloudy (30%), cloudy (10%), light rain (5%), or rainy (5%). As the model runs, the
states move through a probability table, changing the weather for each day.

Most of the calculation in this model is done by a single Equation block (Value library) inside the
hierarchical “Weather Forecast” block. In the equation, a random input and the previous state (the
output of the equation) are used to lookup a probability for the next day’s weather in the Weather
database. The number and percent of days at each weather state is also calculated and recorded in
the database. Additionally, if the model is run with animation on, the current weather state is ani-

Simulation Concepts
Other modeling approaches

mated on the icon of the Weather Forecast block. It does this by showing different icon views,
depending on the state. (For information about icon views, see page 496.)

Markov Chain Weather Simulation

Fiand 1‘;');_“ Open Weather Tahle
IO Open Forecast Tahle
EMnimum Clo:‘l_ujgb R
Y Ahout This Maodel
Jh Wiew Equation

Initialize results

Markov Chain Weather model

I=" The Markov Chain Weather model is located in the folder \Examples\Continuous\Standard
Block Models.

Agent-based models

Most of the models discussed in this User Guide represent a system where the behavior of the com-
ponents of the system are known or can be estimated in advance. With agent-based modeling you
usually do not know model dynamics in advance; instead, you obtain that information from the
interaction of the agents in the model.

Agent-based models share the following characteristics:

¢ The identification of individual entities within the model

* A set of rules that govern individual behavior

* The premise that local entities affect each other’s behavior

Agent-based modeling is concerned with individual entities (called “agents”) that interact with
other agents within their specified locality. All the agents have a set of rules to follow but they also
have a degree of autonomy such that model dynamics cannot be predefined. This is because agents

can have intelligence, memory, social interaction, contextual and spatial awareness, and the ability
to learn.

Programming for agent-based models

The agents used in agent-based modeling are programmed as ExtendSim blocks. Blocks and their
enclosed data have unique searchable identities and locations within the model. ExtendSim func-
tions can find and send messages to blocks that have specific characteristics, locations, and values.
This makes it easy to create intelligent behavior, facilitate block-to-block interaction, and cause
blocks to be moved in, added to, or removed from, a model.

The Developer’s Reference includes several categories of functions that are helpful when creating
agents for agent-based modeling:

e Scripting functions are used to build a new model or to add or remove blocks from an existing
model. They do this by creating, placing, and connecting blocks, then populating the blocks
with specific data. These functions can be called from an ExtendSim block within the model or
from an external application.

* Block and inter-block communication functions query the status of a block — its type, label,
data, location, size, and connectivity with the rest of the model. They also get information about
block dialog values and data table settings.

51

erom .

52

Tutorial

Simulation Concepts
Other modeling approaches

* Message sending functions can use the results of inter-block communications to send messages
globally to unconnected blocks or blocks that are connected in specific ways.

* Animation functions provide a visual indication of block-to-block interaction, such as the influ-
ence of one block on another.

For example, in constructing an agent-based model of the robotic clean up of a chemical spill, you
could use the inter-block communication functions in a “Controller” block to locate all of the
“Robotic Clean Up” blocks in the model. The Controller could send messages to the robots asking
them to move towards a spill and clean it up. The robots could send messages back to the Control-
ler stating whether they were available or were currently being recharged, and whether they were
too far from a chemical spill or close enough to be useful. The scripting and animation functions
would show the robot blocks physically moving around within the model and the spill being
removed.

The Game of Life
The Game of Life was devised by British mathematician John Conway in 1970 and published as
an article in Scientific American. It is the most well known example of cellular automata (CA), a

type of modeling studied in computability theory, mathematics, theoretical biology, and other
fields.

A CA model represents a regular grid of finite state automata (cells) that sit in positional relation-
ships to one another, with each cell exchanging information with the eight other cells to which it is
horizontally, vertically or diagonally adjacent. A cell can be in one of a finite number of states and
the state of a cell at time t is a function of the states of its neighboring cells at time t-1. Every cell

has the same rule for updating; each time the rules are applied to the whole grid a new generation
of cells is produced.

You interact with the Game of Life by specifying an initial configuration of effects and observing
how the CA universe evolves. At each step in time, the following happens:

* A cell is born if it has a specified number of neighbors who act as parents.
* “Loneliness” causes any live cell with fewer than a specified number of neighbors to die.
* “Overcrowding” causes any live cell with more than a specified number of neighbors to die.

The initial pattern constitutes the first generation of the system. The second generation is created
by applying the above rules simultaneously to every cell in the first generation. In other words,
births and deaths happen simultaneously. The rules continue to be applied repeatedly to create fur-
ther generations.

Life has a number of recognized patterns that emerge from particular starting positions, including
static patterns (“still lifes” such as block and boat), repeating patterns (“oscillators” such as blinker
and toad), and patterns that translate themselves across the board (“spaceships” such as gliders).

The Life model
The one-block Life model was created using the Life block (Custom Blocks library) that was spe-
cifically developed for this model. The code of the block contains the algorithm for Conway's

Simulation Concepts
Other modeling approaches

Game of Life. The block's dialog has fields for specifying initial settings and rules; the dialog items
have been cloned to the model worksheet for convenience.

To zee this model animated in 30 when you have EdendSim Suite,

JOhn Conwayls Game Of Llfe give the command Mindow » 30 Window before running the model. In

the 30 window, seroll around and zoom in to see the animation.

Parents (3)

u u L Lonely (1) : 1
- Crowded (4) 4
Initial Population: (1000
. W Use Custorn Start
o o r ¥ r
|]
. 0 - W W I
Lt o a N
= r - r
u W Color ™ Wra
[l L P

Life model

The concept for this model is that each cell of the grid is defined as living or empty. On each gen-
eration, a given cell can give birth to a new life, survive, die, or remain empty. Using the default
settings in the Life block, the model adheres to the following rules:

* Count the number of neighbors a given cell has (the maximum possible is 8).

e If an empty cell has 3 neighbors, it will produce a new life (birth).

e Ifa full cell has less then 1 or zero (loneliness), or 4 or more neighbors (overcrowding), it will
die.

Changing the default rule values causes some interesting affects on the population.

There are two ways to set the starting population for the model:

¢ Define an initial number of cells (1000 is a reasonable starting population for the size of this
block.) The cells will be populated randomly.

* Use the Custom Start grid to select up to 16 initially populated cells in specific locations. This is
a quick way to begin with a recognized pattern, such as a glider or a blinker.

One feature of the Life block that is not specified in Conway's algorithm is that the color of the
cells varies with the age of the cell - new cells are green and older cells vary from light gray to black
as they age.

Variations

The Life block is open source so you have complete access to the dialog editor and block code. To
see the underlying structure of the block, select it on the model worksheet and give the command
Develop > Open Block Structure. The procedures that define cell birth, death, or survival are listed
at the top of the block's structure window.

The Life model is located in the folder \Examples\Agent Based. The Life block is located in the
Custom Blocks library.

53

erom .

54

Tutorial

Simulation Concepts
The modeling process

Boids

The Boids model is based on an artificial life program, developed by Craig Reynolds in 1986, that
simulated the flocking behavior of birds. It can also be applied to schools of fish, herds of animals,
or any other type of flocking behavior.

I=" The Boids model requires 3D animation; it requires ExtendSim Suite to run. The model is located

in the folder \Examples\3D Animation.

-

Boids model in E3D window

In the model, each bird is an individual agent that interacts with other local agents based on a set
of rules:

* Separation — birds steer to avoid crowding their local flock mates.

¢ Alignment — each bird steers towards the average heading of its local flock mates.
* Cohesion — birds steer toward the average position of their local flock mates.
Other agent-based models

Additional agent-based models, including “Sheep and Wolves” and “Breakout” are located in the
folder \Examples\Agent Based.

The modeling process

An ExtendSim simulation project involves creating a logical model of the system, running the sim-
ulation, analyzing the data, optimizing the solutions, and interpreting and presenting the results.

Goals of modeling

The Introduction chapter gave several examples of what you can do with simulation. As stated in
Modeling Tools for Environmental Engineers and Scientists (N. Nirmalakhandan, CRC Press), the
“...goals and objectives of modeling are two-fold: research oriented and management oriented.
Specific goals of modeling efforts can be one or more of the following: to interpret the system, ana-
lyze its behavior, manage, operate or control it to achieve desired outcomes; to design methods to
improve or modify it, to test hypotheses about the system, or to forecast its response under varying
conditions.”

Simulation Concepts
The modeling process

The simulation process

Like all tasks, you can start modeling simply by jumping into it. Also like other tasks, it is usually
better to have a plan before starting. ExtendSim makes following a plan for making a model easy.
The basic steps to creating a model are:

1) Formulate the problem. You should define the problem and state the objectives of the model.

2) Describe the flow of information. Determine where information flows from one part of the
model to the next and which parts need information simultaneously.

3) Build and test the model. Build the system with ExtendSim’s blocks. Start small, test as you
build, and enhance as needed.

4) Acquire data. dentify, specify, and collect the data you need for the model. This is usually the
most time-consuming step. It includes finding not only numerical data values but also mathe-
matical formulas such as distributions for random events.

5) Run the model. Determine how long you want to simulate and the granularity of results, then
run your model.

6) Verify the simulation results. Compare the model results to what you intended or expected.

7) Validate the model. Compare the model to the real system, if available. Or have system experts
evaluate the model and its results.

8) Analyze your results. Draw inferences from the model’s results and make recommendations on
how the system can change.

9) Conduct experiments. Implement and test recommended changes in the model.

10) Document. State the model’s purpose, assumptions, techniques, modeling approaches, data
requirements, and results.

11) Implement your decisions. Use the results in the real world.

Before you build a model

Remember that building a model is an iterative process and each step in the process will require
comparing the model to the existing system, analyzing the results, and refining the model. A natu-
ral inclination is to immediately start building the model. However, you will end up with more
useful models if you begin the model-building process by asking a few basic questions, such as:

o What is the goal of the model? It is important to determine the purpose of a model. This will indi-
cate the levels of detail required and will help keep you focused.

* What are the boundaries of the model and what level of detail should be included? The model goal

should dictate what to include in the model and what to leave out.

o Where is the required dara? It is useful to start collecting data early in the model building process
because it can often take a while to obtain all of the necessary information. You will also need to
know if the input data is an absolute value or if the data is from a statistical distribution. Addi-

55

erom .

56

Tutorial

Simulation Concepts
The modeling process

tional data requirements may surface once the model building process has begun. Your model
may, for example, lead you to explore alternatives that had not been considered before.

* How shall the model be conceprualized? Before even running ExtendSim, think about what the
various components of the system represent. Roughly determine the time delays, resource con-
straints, flows through the system, and any logical actions that occur in the model. This will
help you determine how to build the model.

o What alternatives will be investigated? Although the model may lead you into new, unexpected
directions, try to think ahead so that the model can be easily changed from one alternative to the
next.

It is common to use a constant or a uniform (integer or real) distribution in the early stages of
model building so that modeling problems and variations can be more easily detected. After the
model is verified, you can easily change the distributions to correspond to real-world processes.

Refining models

It is important to remember that models may not give you a single “correct” answer. Instead, they
make you more aware of gaps in your thought process. These problems may involve over-simplifi-
cation in the model, false assumptions on your part when creating the model, or missing connec-

tions between parts of a model. Refining your model step by step helps eliminate these and other

pitfalls.

Every model can be made more complex by adding assumptions and interconnections. The
model-building process commonly begins with the creation of a simple model. After analyzing the
simple model, complexity is added, followed by further analysis, the addition of more complexity,
and so on. The complexity takes one of two forms:

* Taking one block (a process) and turning it into many blocks (a more complex process)

* Adding a connection between two previously unrelated blocks, usually through a mathematical
operation (finding an interconnection between two processes)

At each step, look at your results and make sure they make sense relative to the data. If you can,
verify the results in the real world. If one result is way off, check the output from each step to
determine where the process went awry.

Model verification

The process of debugging a model to ensure that every portion operates as expected is called model
verification. In the tutorial, you performed part of this verification process by building the model
in stages and with minimal detail, then running it at each stage to observe the results. A common
verification technique could be termed reductio-ad-

absurdum (reducing to the absurd), which means reducing a complex model to an aggressively sim-
ple case so that you can easily predict what the outcome will be. Some examples of “reducing to the
absurd” are:

* Remove all variability from the model, making it deterministic

* Run the deterministic model twice to make sure you get the same results

* Output detailed reports or traces to see if the results meet your expectations
* Run a schedule of only one product line as opposed to several

* Reduce the number of workers to 1 or 0 to see what happens

Simulation Concepts
Additional modeling terminology

* Uncouple parts of the model that interact to see how they run on their own

* Run very few or very many items through the model to determine if the model responds prop-
erly.

Other methods for verifying models include making sure that you can account for all the items in
a model, animating the model or portions of the model, or using diagnostic blocks from
ExtendSim’s libraries. For more information, see “Debugging Tools” on page 613.

Model validation

Once the model is verified you need to validate it to determine that it accurately represents the real
system. Notice that this does not mean that the model should conform to the real system in every
respect. Instead, a valid model is a reasonably accurate representation based on the model’s
intended purpose. When validating, it is important to make sure that you know what to compare
to and that you verify that measures are calculated in the same manner.

For validation, your model should accurately represent the data that was gathered and the assump-
tions that were made regarding how the system operates. In addition, the underlying structure of
the model should correspond to the actual system and the output statistics should appear reason-
able. While you would normally compare critical performance measures, it is also sometimes help-
ful to compare nonessential results that may be symptomatic and therefore show the character of
the system.

One of the best validation measures is “Does the model make sense?” Other methods involve
obtaining approval of the results by those familiar with the actual process and comparing simula-
tion results with historical data. For example, when validating model performance compared to
historical data, try to simulate the past. If you have sufficient historical data, break the actual sys-
tem performance into various windows of time, where all of the input conditions correspond to
the input conditions for multiple runs of your model.

For more information, see “Debugging Tools” on page 613.

Additional modeling terminology

In addition to the following general information, each of the modules in this User Guide has a sec-
tion with tips specific to that module. For additional general information about using ExtendSim,
see also the How To module that starts on page 488.

Model parameters, variables, inputs, and outputs
A parameter is any numerical characteristic of a model or system. Parameters describe something
about the model and are known or can be estimated.

* An input parameter is a value that is required as part of the model specification.

* An output parameter is a value determined by the input parameters and the operation of the sys-
tem—output parameters specify some measure of the systems performance or system dynamics.

Constant values and random variables

You enter parameter values in block dialogs to specify settings for a model. Constant values never
change; random values are based on distributions and change each time they are used. Models that
have no random input parameters are referred to as deterministic models. Models that are based on
one or more variables that are random are said to be stochastic, as discussed below:

57

erom .

58

Tutorial

Simulation Concepts
Additional modeling terminology

* Deterministic models contain only non-random, fixed components. No matter how many
times a deterministic model is run, unless some parameter is changed there is no uncertainty and
the output will be exactly the same. Thus the behavior of the model is “determined” once the
inputs have been defined.

The advantage of a deterministic model is that only one run is necessary, since it produces an
exact measurement of the model's performance. It is also helpful in when initially building a
model since you can be assured that changes in results will be due to changes made to the model
and not to randomness. The disadvantage is that these types of models can only accurately be
used to model a few types of processes, since real-world systems typically contain some element
of randomness.

* Adding randomness to one or more inputs to a deterministic model changes it to a stochastic or
Monte Carlo model. Stochastic models are run repeatedly and then analyzed statistically to
determine a likely outcome. Notice that the occurrence of randomness does not mean that the
behavior of a process is undefinable or even that it is unpredictable. Random variables vary sta-
tistically as defined by a distribution. This means that their range and possibility of values is pre-
dictable.

While stochastic models can be applied to very complex systems, a disadvantage is that the out-
pp y plex sy: g

put is itself random—the average of the simulation runs provides only an estimate of the

model's true behavior.

ExtendSim provides several methods for including randomness in models. For instance, as you saw
in the chapter “Building a Model”, the Random Number block (Value library) allows you to select
a random distribution or enter a table of values which specifies an empirical distribution of proba-
bilities. For more detailed information about ExtendSim’s random number capabilities, see“Ran-
dom numbers” on page 604.

Continuous Modeling

Introduction

Some things to know before you begin
modeling continuous systems

“A journey of a thousand miles begins with a single step.”
— Confucius

60

(2}
2
e
2
g
o vl
e
g
Q
&)

Introduction
How the Continuous module is organized

The Continuous Modeling module is focused on building models where time advances in equal
steps and model values are recalculated at each time step. It is also a helpful reference if you use
continuous blocks in discrete event and discrete rate models.

How the Continuous module is organized
* Introduction
* Blocks for building continuous models
* Application areas in which continuous modeling is commonly used
* Next steps
* Tutorial
* Application areas and examples
* Continuous concepts, tips, and techniques
Blocks for building continuous models
To create continuous models you can use:
* Blocks from continuous libraries that are packaged with ExtendSim
¢ Continuous blocks that you create

* Libraries of continuous blocks developed by third parties

I You can use continuous blocks and the ExtendSim database to build State/Action models, as dis-

cussed in “State/Action models” on page 49.

Using the ExtendSim blocks
You can easily build continuous models in many fields using only the con-

tinuous libraries (Value and Electronics) included in every ExtendSim prod- [vau N

NI 48Tk THIG00T 41 A

uct. The blocks in those libraries allow you to perform complex modeling =
. . . Catch Yalue =i

tasks often with just the click of a button. For example, you can use a popup ' wbazaons o1 a1, com—|

menu to specify a distribution in the Random Number block or to select a] coweommer

=]

function in the Math block; both blocks are in the Value library. o
hiod 7 2/2007 9:41 A, Com

For added power and flexibility, the Equation block (Value library) allows

you to enter formulas and equations to calculate values for models. The T i o o
Equation block gives you access to over 1,000 internal functions. You can o[] sowweteen
also use operators to enter logical statements (if a then b), write compound P

conditions (if 2 > 0.5 or & < 0.5 then ¢ = 8), and even specify loops (do MeATHILI0T 6261 44, Com
task while input > 5). BN Do e

0" See “Value Library Blocks” on page 715 for a listing and brief description g o
of the blocks in the Value library. =

B
& ModFA22007 9:41 A, Com Y |

If your model becomes too cluttered with blocks, you can encapsulate por-
tions of it into a hierarchical block, then double-click the hierarchical block Value library window
to see the submodel. Hierarchical blocks are created using simple menu

commands and can be stored in libraries for reuse in other models. They are discussed in “Hierar-
chy” on page 540.

Building custom continuous blocks
Continuous simulation is used in a broad number of diverse fields, and it would be impossible to
supply one solution that would meet everyone's needs. To provide complete flexibility, all

Introduction 61
Application areas

ExtendSim products include a development environment for creating custom blocks. You can cre-
ate your own blocks—even your own libraries of blocks—and use them to build models. Because
you have the source code for the blocks that are packaged with ExtendSim, you can adapt an exist-
ing block to your needs or create an entirely new block from scratch.

ExtendSim has an integrated, compiled development environment, so it is easy to build blocks
with custom dialogs and behavior. And because the development environment is optimized for
simulation and user-interface design, you can build blocks with less effort and more flexibility than
by using a traditional programming language. ExtendSim's development environment has the
functionality you need to create blocks that can:

* Process data, perform calculations, and show results in numerical, graphical, and animated form
* Communicate with other ExtendSim blocks and with external applications

¢ Interact with the user

By programming your own blocks you can:

Q)
)
s
=8
)
e
)
£

* Obtain specific behaviors not available in the blocks included with ExtendSim

¢ Combine the functionality of several ExtendSim blocks into one custom block for increased cal-
culation speed and convenience. (Note that this is different than using hierarchy to encapsulate
several distinct blocks as a submodel within one block.)

* Develop a library of blocks for a specific discipline, such as for control systems or paper-making
processes

* Design your own modeling architecture

Blocks you create can be saved in libraries and used throughout your models just as you would use
any of the standard ExtendSim libraries. And the blocks that are packaged with ExtendSim, such
as the Value library, are designed to work well as supplements to any custom blocks you may
develop.

I=" The ExtendSim Developer Reference has all the information you need to program your own

blocks.
Third-party libraries

Third-party developers use the ExtendSim environment to create libraries of blocks customized for
specific fields. For more information about third-party libraries, please go to www.extendsim.com/
prears_developers.html.

Discrete event or discrete rate blocks built by third parties will not run with the ExtendSim CP
product.

Application areas
Computer simulation is indispensable for understanding, analyzing, and predicting the behavior
of complex and large-scale systems. It is used to gain an understanding of the functioning of exist-
ing systems and to help design new systems by predicting their behavior before they are actually

62

(2}
2
e
2
g
o vl
e
g
Q
&)

Introduction
Next steps

built. The following table gives some of the most common areas where continuous modeling is

used.

Discipline Fields Applications

Science Biology, Biotech, Chemistry, Chemical reaction kinetics, ther-
Ecology, Genetics, Mathematics, modynamics, paper making,
Medicine, Pharmaceuticals, population dynamics, growth/
Physics decay, competition/coopera-

tion, chaos, genetic algorithms

Engineering Aerospace, Agricultural, Auto- Hardware design verification,
motive, Control Systems, Elec- electro-mechanical systems, neu-
tronic, Environmental, Forestry, ral networks, adaptive systems,
Material Science, Mechanical, algorithm validation, signal pro-
Mining, Nuclear, Petroleum cessing

Business Finance, Information Technol- Forecasting, credit risk analysis,

ogy, Inventory Management,
Human Resources, Operations

asset pricing, derivatives trading,
data flow and sharing, inven-
tory replacement strategies,
resource allocation, process flow

Social Sciences

Economics, Gender Studies,
Migration, Psychology, Social
Dynamics, Urban Studies

Econometric studies, trade poli-
cies, relationship modeling,
finite capacity planning, eco-
nomic booms and recessions,
immigration policies

Next steps

The next chapter in the Continuous Modeling module provides a tutorial that expands upon the
Reservoir 1 model used in the guide’s Tutorial module. Chapter 3 describes typical industries and
applications for continuous simulation such as scientific, engineering and business; it uses models
provided with ExtendSim as illustrations. The final chapter of the Continuous Modeling module
discusses concepts specific to continuous simulations and give additional tips when building mod-

els.

The How To module that starts on page 488 includes chapters on topics relevant to all types of
modeling, including creating a custom user interface, using mathematical and statistical functions,
and statistically analyzing models.

Continuous Modeling

Tutorial

Building a more complex
continuous model

“Be the change you want to see in the world.”
— Mabatma Gandhi

64 Tutorial
Removing overflow from the Holding Tank

The Tutorial module showed how to build the Reservoir model. This chapter illustrates some
additional modeling techniques to enhance that model:

* Removing content from a Holding Tank block if it exceeds a specified limit
¢ Using the Equation block to replace the functionality of several blocks
* Adjusting delta time (dt) for more accurate simulation results

If you haven't already done so, it is recommended that you go through the chapters in the Tutorial
module (starting on page 13) to familiarize yourself with the basic techniques for building models
and running simulations.

I Example models for comparison to the Overflow model you will build in this chapter are located in
the ExtendSim7\Examples\Tutorials\Continuous folder. Reservoir 2 shows a series of blocks that
calculate and remove the overflow and Reservoir 3 is the same model using an Equation block to
perform the calculations.

Removing overflow from the Holding Tank
The Tutorial chapter “Building a Model” on page 23 assumed that the reservoir had an infinite
capacity. In this chapter, the model is modified so that there is a limit on how much water the res-
ervoir can hold and overflow is removed. To do this you need to add model elements to:

(2}
2
e
2
g
o vl
e
g
Q
&)

¢ Establish a maximum reservoir capacity

* Compare the contents of the reservoir to the maximum limit

¢ Determine if and when the contents exceed the limit

¢ Calculate the amount to remove if there is any excess

* Remove the excess water

With these changes, the reservoir would behave more like an actual reservoir with a dam where

water spills over if it reaches the top.

Setting the maximum capacity
» From the \Examples\Tutorials folder, open the model

Time

Reservoir 1. F o "L
Rainfall BJ—CDMEMS
» So that you don.t overwrite the original model, give . E- gy B L o
the command File > Save Model As and save the L o] Reservi
Chinimum
model as “Overflow”. e
» In the Overflow model, add a Constant block (Value -,
library) at the bottom left of the model. vl

This block will represent the overflow limit for the res- Constant block added to Overflow model

ervoir, in this case, 50 inches.

Tutorial 65
Removing overflow from the Holding Tank

» In the dialog, set the Constant value to 50 and enter Res depth as the block’s label.

Z1|[28] Constant <Value> g@g|

Options | Comments

Outputs a constant (or the sum of the]

constant plus an optional input value) Cancel
Define a constant to output

Constant value:

Result:

™ Retain constant if updated from hierarchy

™ Update once at start of simulation

Help |Res depih DefaultView | «| ”

Constant block dialog

Q)
)
s
=8
)
e
)
£

» Close the dialog.

Determining if there is too much water
Add elements to the model to determine at each step if the capacity is exceeded or not.

» Add a Decision block (Value library) below the Constant block and to =

its right. i
g Ohald
» In the Decision block’s dialog, choose A > B (the default setting) from | ™= *"
the popup menu. Label the block If too high... oa
B
Zl[29] Decision sYalue> g@g| " :\;049
Options | Comments Adding a Decision block
| ISI
Compares the A value to the B value =
Cancel
Outputs 1 &ty (TRUE) and 0 at N (FALSE) if
andBis i]
™ Use hysteresis
Y=
Helpn |ffioo high... DefaultView — w| < | [A
Decision block dialog
» Close the dialog.
» Add a named connection (Contents, the same as the connection from
. .. 5 . 1]
the output of the Holding Tank block) to the Decision block’s A input. |
Ohold
» Connect from the Constant block’s output to the B input of the Deci- Res depth
sion blOCk. Conteris —l_gA
. B
When the model runs, the Constant will set the B value to 50. ~0 R
NO
If too high...

During the simulation run, the Decision block will evaluate whether or not
the value of the Contents (A) is greater than the value of the maximum Decision connected
Reservoir Depth allowed (B). If yes, it will assign a value of 1 to the Y out-

put connector. If no, it will assign a value of 0 to the N output connector.

66 Tutorial
Removing overflow from the Holding Tank

Comparing contents to overflow limit
To calculate the difference between the capacity limitation and the tank’s contents:

» Add a Math block to the right of the Constant block, set its function to Subtract, and label the
block Subtract excess.

I Tn addition to selecting functions directly in the Math block’s dialog, you can choose settings by
right-clicking near the sensitized area (looks like a partially turned page) on the lower right of the
block’s icon.

» Add a Contents named connection to the top input of the Subtract block.

Time

B——Fairfall
Rainfal ortents —|_E|

Rainfall —EN——7=——]
GO B, strear FE'[:

eeeeeee

Rand E—Slream

(2}
2
e
2
g
o vl
e
g
Q
&)

Cfiald

11100 high...

Calculating the excess water
» Connect the output of the Constant block to the bottom input of the Subtract block.

Validating intermediate results
When building a model, it is good practice to frequently test if the model is working correctly.
Even though this model isn’t yet finished, validate that model elements are calculating as you
would expect them to.

» Run the simulation.

» Click the model window to make it the active window. _E.L% A

subf¥aluesin=108.7
» Hover the cursor over the connectors of the blocks you've added to see

the results. 8y §
. S
For example, the top input of the Math block shows the current con- ST = 80
tents from the Holding Tank, the bottom input shows the Constant i
value (50), and the output connector shows the result of the subtrac- %

tion. (Note that your results may be slightly different from those at subtract exed ResUltOUt= 58.72

right because the Stream source is random.)
Subtraction results

Calculating how much water to remove
The Decision block’s Y connector outputs 1 (one) if the tank’s contents exceeds the limit, but out-
puts 0 (zero) if it doesn’t. This information can be used in a calculation.

» Add another Math block to the model, set its function to Multiply, and label the block Then

overflow.

Tutorial 67
Removing overflow from the Holding Tank

» Connect from the output of the Math block labeled “Sub- P——
tract excess” to the top input of the Math block labeled ol —L

Then overflow”. Bhold 4
. . > Fies depth Subtract excess
» Connect the Decision block’s Y connector to the bottom conterts
input of the Math block labeled “Then overflow”. . las h
B rob @ ol
. . . 4 -
This multiples the amount of excess water, if any, by the ne?

.« . > . If too high...
Decision block’s Y output (1 or 0) to determine the amount il

of water that should be removed from the Holding Tank at Multiply block connected
each step.

I=” You do not need to connect the Decision block’s N connector to anything since, if the reservoir’s
contents is less than capacity, nothing further needs to be done.

Removing the overflow
When the contents of the Reservoir/Holding Tank are greater than its capacity, water needs to be
removed.

Q)
)
s
=8
)
e
)
£

» Connect the output of the Multiply block to the w (want) input connector on the bottom left
of the Holding Tank.

e B——Rainfall

Rainfall Conterts
bt
p/ Rairfall
h wart B strear

Rezervair
Chinimum
¥

Stream

Corterts
i
o

ol
Res depth

Subtract excess|

Canterts
Toa

I too high

Requesting overflow amount

I=" The Holding Tank’s want input connector is used to request an amount to be removed. If the tank
has that amount, it will be reported at its get output connector. If the tank does not have that
amount, and “Tank contents can be negative” is not checked. only the amount available will be at
the get connector. Since this model is only concerned with overflow, the amount requested and
the amount available will be the same.

» Create a named connection called Overflow from the get output of

the Holding Tank block to the fourth input on the Plotter. | JE:&ZT%

Stream

want B—UOverflow
v get
Reservoir

Overflow connection

68 Tutorial
Simplifying the model

» Run the simulation.

211 [11] Reservoir 1 Model FEX
[@]

Inches

Reseruoir 1 Madel V2 Inches

18
Morths
Cortents [] V2 Rainfall [5] V2 Stream
b Dverflow

Morthsf [TICorterts 2 [FIRairall 3[E]stream afowertcw
357 p) 047 [

PN
gl

Simulation results

(2}
2
e
=1
g
o vl
e
g
Q
&)

Scroll through the Plotter’s table of data to see the point where the reservoir is beginning to reach
its capacity. Column 4 (Overflow) shows the amount of water that overflows. Because the inflows
continue even while the excess is being removed, and because there is a calculation delay, it is
unlikely that the reservoir will be at exactly 50.

I The equivalent model is Reservoir 2, located in the folder \Tutorials\Continuous.

Simplifying the model
Although the model works perfectly well, the blocks that make up the calculation of the overflow
can be a bit confusing to follow. You can easily replace the functionality of those four blocks with a
single Equation block that explicitly defines the mathematical expression.

Adding an Equation block
» Delete the Math blocks labelled “Subtract Excess” and “Then Overflow”, as well as the Con-
stant and Decision blocks from the Overflow model.

» Add an Equation block (Value library).

» Add a Contents named connection to the
Equation block input.

Tme b Rairfall
w
infall

Rai Contents

Rainfall
. F Strearm E __/f
» Connect the Equation block output to the 1 T s gt b Ovetiow _g'_gl:
. B—>Stream N
w connector of the Holding Tank block. Reserwoir

Ohdnimum
b d
Stream
Conterts —1 |v¥=1(x)

Model with Equation block

Specifying input variables
» Open the Equation block dialog.

In the Input Variables table at the left of the dialog,
note that by default Connector 0 is selected from
the popup menu in the Variable Type column. This
is the option you want, because the equation will get
its values from the top input connector. To give the
input a more relevant name:

» Type Contents in the Variable Name field to the
right of Connector 0.

Specifying output variables

In the Output Variables (results) table at the right of
the dialog, note that by default Connector 0 is
selected from the popup menu in the Variable Type
column. This indicates that the results of the equation
will be sent to the top output connector, which is the

Tutorial 69

Improving the accuracy of the model

A[28) Lgmation <Vabes>
Ugmetwm | Cotens | Commants

Compuies am eopastion and sURES Bha reselts

tariaties

by [DRV -]

Equation block dialog

Q)
)
s
=8
)
e
)
£

option you want for this example. To give the output a more relevant name:

» Type Overflow as the Variable Name.

Entering the equation

» In the equation pane, delete the default equation and enter the following code and comments:

real reservoirDepth; // define a new variable as a real number

reservoirDepth = 50.0; // set its value

it (contents >= reservoirDepth) // i

T contents is >= depth...

overflow = contents - reservoirDepth; // then calculate outflow.
else
overflow = 0.0; // 1f the contents is too low, outflow = O.
I Comments, which are preceded by //, are optional but helpful for documentation.
» Enter Calc overflow for the block’s label. T OEm

» Close the Equation block’s dialog. ExtendSim dis-
plays a message that it is compiling the equation; the
message may appear too quickly for you to see it.

» Run the simulation.

Note that the results haven’t changed - you've simply
substituted the Equation block for the deleted blocks.

For more information, see “Equation-based blocks” on
page 601.

Improving the accuracy of the model

Because the contents of the Holding Tank block is used
to calculate the amount of water to remove from the

Cortents
7 Owertlon

Mortt

[contents _zERainfall _ 3E]stream AEJoverfiow
3 H [[

hs|
o
1
2
3
4

Final simulation results

70 Tutorial
Next steps

Holding Tank, the model incorporates feedback. When a model has feedback, the default delta
time (dt) of 1.0 is too long and results won’t be accurate. (See “Feedback and delays” on page 84
for more information.)

» Choose the command Run > Simulation
Setup > Continuous tab and change the Time

2l Simulation Setup

Continuous | Random Numbers | 3D Animation | Comments

per step (dt) value to 0.1. [Setings fram Setup tah
. . . End time: [36 | Starttime: [0]
» Close the Simulation Setup dialog. Runs [| elpatmewns Mahe %

Notice that the Holding Tank is properly already | [8eteteetans for continuous simutation
set to integrate its inputs, rather than sum them. £ e ver sieb)
Summation only gives the same results as inte-
gration when delta time is exactly 1.0, but inte- = Autostep st gty = Flow onter (st
1 1 M " Autostep slow " Leftto right
%l’atlon VV.OrkS Wlth any delta ume. Learl'.l more at ~ Use only entered steps or dt Custom (advanced only)
Integration vs. summation in the Holding Tank

block” on page 610.

Stepsize Calculations Simulation Order,

Run how QK | Cancel

(2}
2
e
=1
g
o vl
e
g
Q
&)

When delta time is small, such as for this model,
simulation results will be more realistic if
Lookup Table inputs are interpolated rather
than stepped.

Simulation setup dialog

» In the Lookup Table block (labeled Rainfall), change Output is: to Interpolated. This setting
smooths the change between rows in the table.

» Run the simulation again.

2 [0] Lookup Table =Value>
Table Qptions | Comments

I Because this model is small and only includes one feedback
Looks at the time or input value, then o

oop, there is only a sli ifferent in the results between this outputs the corresponding table value G ancal
loop, th ly a slight different in th Its bet th
run and the previous one with the larger dt value. However, in [[Snecity behavior
:
a larger model where there are many instances of feedback, the ;Z?;:'ﬂ e
second run would produce much more accurate results. Time units
I The equivalent model is Reservoir 3, located in the folder [[Ertervalues inthe table
. . Werths Fain Gnehes) _ &
\Tutorials\Continuous. g g 33:‘
2 2 67
3 3 34
Next steps : : I
. . . & & [
The next chapter describes typical areas where continuous : : o3
modeling is applied; the final chapter in this module discusses i : A
concepts specific to continuous modeling and provides addi- I T
tional tips to help you build and run continuous models. ¥ Repesl bl ever.
. . Trmode] default
You should also explore the How To module, beginning on Help Defaultview | 4| %

page 487. Those chapters illustrate many more of the features
and capabilities you might use when creating models, such as
sensitivity analysis, controls, and optimization.

Lookup Table dialog

Continuous Modeling

Areas of Application

Some of the many ways continuous modeling is used

“(Science is)...the separation of the true from the false by experiment or experience.”
— Richard P. Feynman

72 Areas of Application
Scientific

ExtendSim is used to build continuous models in the fields of physical science, social science, engi-
neering, and business. The first four sections of this chapter describe models created using the
ExtendSim Value and Engineering libraries. The last section shows two models built with custom
blocks: a physics model called Planet Dance and a Fish Pond simulation that examines predator/
prey interactions.

Continuous modeling is very broad and diverse field. While it is possible to create almost any con-
tinuous model using the standard blocks (such as the Value library) packaged with ExtendSim, it is
more common to use a combination of standard blocks and custom-built blocks. For example,
ExtendSim customers have created libraries for proprietary and commercial use in the fields of
analytical chemistry, environmental decision making, chemical process control, pulp and paper
making processes, and so forth.

Scientific
Common areas where simulation is helpful in science include biology, chemistry, physics, and ecol-

ogy. This section describes two models, a classic predator/prey model and a simulation of some fac-
tors that affect drug absorption in the human body.

(2}
2
e
2
g
o vl
e
g
Q
&)

Predator/Prey

This model shows a small ecosystem composed of hare and lynx. Each population has a direct
effect on the other: the lynx feed on hare so the hare population declines, the diminishing food
supply results in a decrease in the number of lynx so the hare population grows again and so forth.

Model assumptions
The model particulars and assumptions are:

¢ The 100-hectare ecosystem initially

contains 6000 hare and 125 lynx. i—L _ sbout i Mode |
1 Hare Pop R'un Simulation

* Each hare produces 1.25 offspring
per year and each lynx produces LWPW
025 offspring. Ly Pop ——& @

Hare Fup ares Killed

Vare it
Mare Bnh fate Hard Popu\aﬂ%\w

* Hare always have sufficient food
Lvnx Pop

supply; their only cause of death is o T
being eaten by a lynx.

Lyr\x Births LAl

Lym BrlhRat Lynx Fopulation

Ecosyslem feza
\mlue

* The lynx hunting range is 1 hectare,

Ly Mona\

their only food source is the hare,
Ly Pop _‘ e Diaths

and each lynx can consume every
hare in its area. Predator_Prey model

* The number of hare killed depends
on their density in the ecosystem and the number of lynx who hunt them.
* The lynx mortality rate depends on how many hare they consume in a year.

* There are no outside factors (such as the time of year) which affect the rate at which the popula-
tions change.

¢ The final model runs for 24 years and calculations are done 12 times per year (dt is 0.0833).

05" The Predator_Prey model is located in the folder \Examples\Continuous\Standard Block Models.
This model uses blocks from the Value and Plotter libraries.

Areas of Application
Scientific

Model details
This model illustrates some interesting continuous modeling concepts:

Because the model has feedback, the Holding Tank blocks are set to [nputs are: integrated (no
delay). For more information, see “Integration vs. summation in the Holding Tank block” on

page 610.

The Holding Tank block has a want input connector that is used to tell the block how much of
the contents you want removed. The amount wanted and the amount that is actually removed
(indicated at the get connector) may differ, as discussed below.

By default, the Holding Tank block is set to not allow its contents to become negative. This
means that the population of hare cannot be reduced below the available amount, no matter
what is requested through the want connector. The amount that is actually removed is reported
at the get output connector. If the tank were allowed to become negative, the amount at the
want connector and the amount at the gez connector would be the same. Since it can’t go nega-
tive in this model, the amount at want could be higher than the amount actually removed and
reported at gez.

Dividing the hare population by the area of the ecosystem (100 hectares) determines how many
hares there are per hectare. The lynx can eat every hare in each hectare, but if they eat too many
and the hare population decreases, the lynx mortality rate increases. This contributes to the
cycles seen in the model.

Notice that, at each point in time, the result in the Hares Killed block is higher than the hare
population shown on the plotter. This occurs because hares are constantly being born and the
lynx kill not just the previous step’s population but also some of the new births.

The Lookup Table block is set to Outpm‘ 18! interpo[ated, which means that intermediate values
can be used. For example, an input value of 65 (which is halfway between the Hares Eaten val-
ues of 60 and 70) will cause the block to output 0.175 (which is halfway between the Lynx
Death Rate of 0.2 and 0.15).

Further exploration
If you review the initial assumptions for this model, you can probably see several enhancements
that could be made.

The birth rates for both the hare and the lynx could vary based on model conditions or on out-
side factors. For instance, the birth rate might be dependent on the health of the parents, the
level of crowding, or the amount of pollution in the ecosystem.

You might add a predator or an additional food source for the lynx.

The model assumes an unlimited food supply for the hare. To a food source, the hare would be
considered the predator, so modeling a food source would follow the same logic as adding the
lynx predators.

Hares could have predators other than lynx.

You could factor in outside conditions, such as the time of year and expected weather condi-
tions. Then examine the effects of those conditions on mortality rates.

Drug Ingestion

There really can be too much of a good thing. For some drugs, such as blood thinners, it is impor-

tant that the patient get enough of a dose to cause the desired outcome, but not so much as could

73

Q)
)
s
=8
)
e
)
£

74 Areas of Application
Scientific

be harmful. One method is to monitor the concentration of the drug in the patient's bloodstream
to determine if it is at effective, but safe, level. Many factors influence drug absorption - the
amount ingested, the rate of absorption, the patient's diet, and so forth - and simulation is the best
method to explore the effect of those factors.

I=" The Drug Ingestion model is located in the folder \Examples\Continuous\Standard Block Models.
This model uses blocks from the Value and Plotter libraries.
Model assumptions
* Constant blocks specify the dosage amount (1500 mg) and frequency (3 doses/day)
* The stomach’s volume is 500ml and the absorption percentage is 0.693

¢ Blood volume is 5,000ml and the metabolic constant 0.0433

@\

2 ¢ The model runs for 96 hours; delta time is 0.25

=

E. Model details

3 The Drug Ingestion model - AboutThis Model
illustrates the bloodstream 8 s M . RunSmulaten

stream based on the amount e A
of the drug ingested, the spe-
cific rate of absorption for

B S I
the drug, and the metabo- Concantration -
0.

L. ..
concentration for a periodi- e — brug i Stamach
cally ingested drug. The drug =

is taken at even intervals and ot

is absorbed into the blood- o R

Bloadstream

Elood Conerttration

lism, stomach volume, and yo

0.15

blood volume of the person aors

involved.] 24 5 72 9%
. . ﬂ — Drug Level Hours

Hierarchy compartmentalizes ‘

the Drug Ingestion model Drug Ingestion model

into submodels representing

the stomach, intestines, and

blood stream. (To see the contents of these hierarchical blocks, double-click their icons or use the
Navigator in Model mode to drill down to the underlying layers.) In the Stomach hierarchical
block, the drug is introduced with a Pulse block that generates a periodic pulse based on the value
from the Constant block that outputs the number of doses per day. This is then multiplied by the
drug dosage and placed in a Holding Tank block representing the amount of drug in the stomach.

In the Absorption section, an Equation block calculates the absorption rate by dividing the
amount of drug in the stomach by the stomach volume, subtracting the concentration of the drug
in the bloodstream, and multiplying that by the absorption constant and the stomach volume con-
stant. The absorption rate is then used to reduce the amount of the drug in the stomach and
increase the amount of the drug in the bloodstream (represented by the Holding Tank in the hier-
archical block named Bloodstream). The concentration of the drug in the bloodstream is then cal-
culated by dividing the amount of the drug in the bloodstream by the blood volume. Finally, the
amount of the drug in the bloodstream is reduced by metabolism, calculated in the Equation block
that uses the concentration of the drug in the bloodstream, the blood volume, and a metabolism
constant. A Plotter I/O reports the concentration of the drug in the bloodstream.

Areas of Application 75
Engineering

Variations

Try changing the dosage amount and the frequency of application using the cloned dialog parame-
ters on the left side of the model. Then observe the changes in the concentration of the drug in the
bloodstream. Of, to illustrate the affects of different drugs, vary the metabolism and absorption
constants.

Engineering
Simulation is extensively used for modeling electronic, signal processing, control, and mechanical
systems, as well as neural networks and other engineering systems. The following electronic signal
processing example investigates the performance of a receiver in a digital FM system.

Noisy FM system

When designing receivers and demodulators, engineers need to balance quality and cost. Simula-

tion helps illustrate the trade-off, for example when the objective is to filter noise without reducing
the quality of the reception. Fewer components can result in a product that is cheaper to produce
and maintain, but a product with more components might have a better sound.

05" The Noisy FM System model is located in the folder Examples\Continuous\Standard Block Mod-
els. The model uses blocks from the Electronics and Plotter libraries.

Q)
)
s
=8
)
e
)
£

Model assumptions
* FM center frequency is 91.6khz

* Antenna tuner uses an elliptical filter

* Demodulator is a passive RC phase locked loop using an exclusive OR comparator

Model details
This model shows the performance T
of a receiver in a digital FM trans- Run Simulation
ceiver system, within a noisy envi- ‘
ronment. The Transmitter is a
hierarchical block with a submodel
containing a bitstream generator and
an FM carrier generator. The bit-
stream generator is comprised of two
Voltage Controlled Oscillator blocks
(VCO:s) and two Clipper blocks:

¢ The first VCO outputs a square

wave that varies between -1 and

Comp. Delay

8 I o Receiver
/1)‘//\/ FT Transmitter H-Block

Phase noise

PLL Demed
Zero Crassing LU
Phase
Pulses [* smoothing
PLL demadulator

Noisy FM model

+1 volt output.
* The first Clipper limits the square wave signal to 0 and +1 volt, so that it can modulate the sec-
ond VCO and produce the periodic bitstream for testing.
* A second Clipper limits this square wave output for the Frequency Modulation (FM) generator.
The Clippers can be eliminated, but limiting the VCO input voltage to between 0 and +1 volt

makes it easier to enter frequency modulation range parameters.

The Filter-Bandpass block (labeled Antenna tuner) is set to elliptical because of its economy (fewer
poles & zeroes yield the fewest components). The Comparator block after the antenna acts as a
limiter and detector of the FM signal. The Phase Locked Loop (PLL) block demodulates (sepa-
rates) the input signal from the FM carrier signal. The output from the loop has a lot of pulses on

76 Areas of Application
Business

it, so it is filtered slightly by a simple Butterworth filter. The low-pass filter after the PLL smooths
out the switching transients always present in PLL outputs.

Variations

Because elliptical filters have very large group delays at their edges, a Chebyschev might be better.
Try setting the noise to 1.0 volts and running the simulation with the elliptical filter. Then try set-
ting the filter type to Butterworth, Chebyschey, click “Recalculate poles...” and rerun the simula-
tion. The Chebyschev option works better than the elliptical filter, but notice how many poles are
generated and how complex (costly) the filter will become.

The PLL's parameters can be easily changed for experimentation. For example, enter different
bandwidths, damping, loop types, and phase comparators, and running the simulation again.
Playing with the amount of noise on the signal can give interesting results. For example, increasing
the amplitude in the Noise Generator block will quickly destroy the signal.

Business
Finance, economics, inventory management, and marketplace competition all lend themselves to
analysis through simulation. The following example explores how to minimize costs while still
being able to provide products based on customer demand.

(2}
2
e
2
g
o vl
e
g
Q
&)

Inventory Management
A company holding inventory incurs both ordering costs and holding costs:

* Ordering costs include order processing, labor transportation, inspection, and so forth. They are
generally stated as a fixed cost per order.

* Holding cost includes such expenses as warehousing, insurance, taxes, obsolescence, and man-
agement. They are generally stated as an amount per item per time period or as a percent of unit
cost per time period.

These costs are involved in a classic trade-off because as the number of orders per time period
increases, ordering cost increases and holding cost decreases. The objective of inventory manage-
ment is to minimize the sum of the two costs.

I=" The Inventory Management model is located at \Examples\Continuous\Standard Block Models.
The model uses blocks from the Value and Plotter libraries.
Model assumptions
¢ Initially there are 50 units of inventory on hand
* Demand is 10 units of product per week and increases to 12.5 units at week 4
¢ The lead time from stock order to stock delivery is 4 weeks for the first run

* Sensitivity Analysis automatically varies the lead time by two weeks per run, from 4 weeks on
the first run to 10 weeks on the fourth run

* The stock-ordering pipeline is full at 10 units/week for the 4 weeks
¢ The Correction Factor is 1
¢ The Target Inventory is 50 (4 week lead time * 12.5/units expected to ship each week)

¢ The model runs for a simulated 52 weeks

Areas of Application 77
Social sciences

Model details
This model shows inven- o N :
tory Stocking/depletion Tt e — Demand o o [fnvertory Cevel | - [order baokdon | w
. Inwerteny g ’ BL'"“E"‘”W —L, - Run Simulation
cycles. Its purpose is to camin % o 724711 g e L IEEETTET
stabilize the inventory s ,ﬁmw P] Lo =l fm b
level so that over- or gl = i . dr Shipmerts
ovel I i
under-stocking is camcin o
. o
avoided. The model
. Calculations T e]
examines the effect on B L
. — e e .
1nvent0ry ICVCIS ofa 25(%) i, B—Demand O b - [gy nmrﬁg“g L/—ﬁf_\
1 1 2 T i5im Plomer
increase in product = e S

demand. It also uses Sen-
sitivity Analysis to
explore the effect of
changing the lead times for stock delivery. The MultiSim plotter displays the difference in inven-
tory from one run to the next.

Inventory Management model

)

=]
=
[=¢
=]
[
=]
a

About the model

Customer demand for product is indicated by a Lookup Table block. The demand amount is the
basis for the Customer Order Backlog amount and is also the basis for ordering more stock. Note
that stock ordering, inventory replenishment, and shipments are shown as a flow, while the calcu-
lations (target inventory, etc.) are shown in a separate section. This helps clarify the model for pre-
sentation.

The demand for product determines what is shipped, unless there isn't enough inventory to meet
demand. The Correction Factor indicates that a discrepancy between target and actual would be
cured in 1 week (the lower the Correction Factor, the faster a discrepancy is cured.) Since you do
not have Just In Time (JIT) delivery, you want to order sufficient stock to meet future demand,
without over-ordering. You could order just enough to meet current demand, but because there is
a delay until stock is received, inventory levels would not necessarily meet future demand (if
demand increased, you'd be under stocked. If it decreased, you'd be overstocked). You could also
correct the stock order amounts so that they approach target inventory levels (target inventory
considers stock lead time as well as current demand).

Because the model is set to run four times for sensitivity analysis, each page of the plotter will show
the results of one of the runs. Flipping from one page to another quickly shows the effect of
increasing the lead time.

Variations
Parameters you may want to change include the Correction Factor, Target Inventory, and/or Lead
time.

Social sciences

Simulations in the fields of psychology, social dynamics are common. The example that follows
investigates the effect of available office space on new business growth in a small city.

City Planning

Cities and other governmental agencies forecast tax revenues, infrastructure needs, and operational
expenses when setting their annual budgets. Whether predicting population changes, business
usage, or housing needs, growth projection models help provide realistic estimates for budgeting

78 Areas of Application
Social sciences

purposes. They are also helpful when developing policies such as environmental protections and
residential growth ordinances.

=" The City Planning model is located at \Examples\Continuous\Standard Block Models. The model

uses blocks from the Value and Plotter libraries.

Model assumptions

The City Planning model represents office occupancy in a city with a limited amount of offices. A
projection provides the number of new businesses that will require office space each month over
the next 240 months. There is also an estimate of the number of businesses that will fail.

* 4,000 offices are initially available

* Each business requires an average of 5 offices

L]

2 ¢ 29% of the businesses fail each month

g

‘E‘ About the model

6 The model examines hovs{ T
many of the businesses will T
be able to occupy offices, the
number of businesses lost PP ! (S | I = oo |
because offices are not avail- Rd—L = - L jmwmgL IS
able, and what effect busi- Tl e Lt s o =k i L e
ness failures have on the DM:—L, || 2 rropl e r — . r
availability of offices. This il Buses i
model is notable because it oooomning
mainly uses the Math block, S . — ;jn&%f
rather than the Equation e [§d et T Fallurs f’z—ﬁ
block, to calculate data. That == -
way the relationships and City Planning model

calculations that occur in the
model are shown explicitly.

Growth projections (see the Lookup Table block labeled “Demand”) are derived from a study esti-
mating growth over a 20 year time period.

For clarity, this model is separated into sections:

* Office Bank: The Holding Tank represents the number of offices available. The initial amount
of 4000 is reduced as businesses occupy offices and is increased as businesses fail. Multiplying
the demand for offices by the expected number of offices required per business (5) gives the
amount that will be withdrawn from the office bank. If there are not enough offices available,
businesses cannot relocate to this city. These “lost businesses” are also calculated.

* Businesses Occupying: The number of offices occupied each month is divided by the number of
offices required per business (5) to determine the number of businesses that occupy offices per
month. This amount is accumulated to get the total number of businesses occupying offices, so
that the number of business failures can be calculated.

* Business Failures: There is a 6-month delay, then 2% of the businesses fail and move out of their
offices each month.

Notice that the number of failures is based on the net total number of businesses, not just on the

total number of new businesses occupying offices. The failure amount is removed from the “Busi-

nesses Occupying” Holding Tank, so that failures are calculated on a net number. The number of

Areas of Application 79
Custom blocks

offices recovered due to businesses failing is returned to the Office Bank, making more office space
available.

Variations
Vary the available office space, office space usage per business, or growth projections to explore
alternatives.

Custom blocks
As mentioned previously, it is common to develop custom continuous blocks. The advantage is
that you can use the full capability of the ExtendSim development environment, including the
ModL programming language and dialog editor, to create blocks that behave and look exactly as
you want. Then use those blocks to build a model that accesses ExtendSim’s robust simulation
architecture.

Planet Dance

The Planet Dance model demonstrates the inverse square law of gravity. It uses the Planet and
Planet Plotter blocks from the Custom Blocks library. Both blocks were created specifically for this
model.

Q)
)
s
=8
)
e
)
£

05" The model is located in the folder \Examples\Continuous\Custom Block Models.

About the model
When you run the Planet Dance model, the three

. .
Planet blocks pass information about the planets) A:Z:::i::::‘
they represent to the Planet Plotter block. This s j@wﬂm
block plots the location of the blocks on the s _: -
model worksheet by drawing them as animation =~ @ AZ‘MW
objects that move over time. et s
v g
Each Planet block in the model contains the defi- 45‘@/ Qép

nition of one planetary object whose mass will

Planet Dance model

affect, and will in turn be affected by, each of the
other objects in the model. The dialogs of the
Planet blocks contain parameters that define the mass, position, density, and initial velocity of a
particular planet. The block’s code contains the math for calculating the gravitational attractions of
the objects to each other.

When this model runs the planets display the “slingshot effect.” As one object approaches another,
the attraction between them increases, leading to the less massive object being accelerated to a high
speed. Scientists sometimes use the slingshot effect to accelerate vehicles on their trips to explore
the outer planets in our solar system.

Note that the units of the various parameters are not defined in this model. The numbers entered
in the dialogs are just used relative to the other objects in the model.

Variations
This model provides lots of room to experiment with the physics of objects:

* Small changes in initial positions or velocities of the objects can cause big changes in model
behavior.

* You can either add or remove an object, resulting in a four-body or two-body problem. In each
case, make sure that each object has one, and only one, connection to each of the other objects
on the worksheet; otherwise the math will get confused.

80 Areas of Application
Custom blocks

* One interesting problem, which demonstrates the complexities of the physics involved, is to try
to modify the parameters of the objects in the three body problem to produce a system of stable
orbits like the sun, earth and moon. (Before you get too frustrated trying to set this up, please
note that no one has yet been able to get those parameters right.)

* Notice that even light objects will have an effect on the location and velocity of heavy objects.
To replicate a relationship like that of the earth and the sun, increase the mass and density of one
of the objects. No matter how much you do this, however, the heavy objects will be affected by
the position of the light object.

Fish Pond
As opposed to the Predator/Prey model shown earlier that uses blocks from the Value library, the

2 Fish Pond model uses a custom-built Fish block to represent both predator and prey.
=]
E] "< The Fish Pond model is located in the folder \Examples\Continuous\Custom Block Models. It uses
g‘ a Plotter I/O block from the Plotter library and the Fish block from the Custom Blocks library.
S The Fish block was specifically created for this model.
About the model
This is a small pond with two types of fish: a preda- e
tor and a prey. The goal is to balance the pond by ABOUETHS Wodel

reducing the number of predators. The model uses a

Fish block from the Custom Blocks library and a J

Plotter I/O from the Plotter library. T o, f:;
This two creature ecosystem shows how a single L%—“%.“

block design can model many types of creatures. By Crmomm))l e

entering different parameters and connecting the Fish Pond model

blocks differently, a more complex ecosystem can be

created. The Fish block is used to model two different species: a carrion-eating fish and a natural
predator. At the left of the model, carrion-eating fish eat other fish that have died in the pond. The
block to the right (a piranha) eats the carrion-eaters. Run the simulation and look at the graph; the
Piranha periodically decimate the carrion-eating fish population.

Variations

Each Fish block added to the model represents another species. You can add another predator to
the right of the second block and, based on the default parameters, it will control the piranha pop-
ulation. Try adding a controlling predator to reduce the Piranha population. To do this:

» Add a Fish block and position it to the right of the “Piranha” block.

» Connect the “Pot. food in” connector on the new block to the “Pot. food out” connector on the

block to the left.
» Connect the “Carrion” connectors.
» Connect the “Pop” connector to the plotter.

The addition of a predator to control the Piranha population allows all the species to propagate in
cycles. You can also experiment by changing the parameters in the dialogs.

Continuous Modeling

Concepts, Tips, and Techniques

Building robust continuous models

“The work of adult life is not easy. As in childbood, each step
presents not only new tasks of development but requires
a letting go of the techniques that worked before.”
— Gail Sheehy

82 Concepts, Tips, and Techniques
Simulation timing

This chapter discusses some concepts specific to continuous modeling and provides tips to keep in
mind when building continuous models. The areas discussed are:

* Simulation timing

¢ Setting delta time to determine the granularity of calculations

* Feedback and delays in continuous models

* Choosing between integration and summation

* Determining the order in which blocks execute

* Mixing libraries within a model

* Connecting to multiple inputs

* Using plotters as inputs for other blocks

* Using a plot line as reference by comparing new runs to a baseline

¢ Techniques to unclutter your models

(2}
2
e
2
g
o vl
e
g
Q
&)

I=" Concepts applicable to all types of models, such as deciding whether a model should have random
elements, are discussed in the chapter “Simulation Concepts” that starts on page 41. The following
topics are specific to continuous modeling.

Simulation timing
Most simulations run for a specified time. ExtendSim determines the duration of a simulation run
based on the values entered in the Run > Simulation Setup > Setup tab; the duration is the period
from the start time to the end time.

In continuous simulations, the duration is divided into intervals or szeps of equal length, where
start time is the first step and end time is the last step. The length of time, in time units, for each
step is known as delta time or dt. The delta time setting determines how frequently model data is
recalculated.

As the simulation runs, simulation time advances from start time to end time at delta time per
step, calculating model data at each step. At the first step, ExtendSim calculates what the status of
the model is initially. Then it calculates the changes that take place over the next time step and
determines a new set of data points. Model data is generated as a string of successive points corre-
sponding to the steps in time. Notice that, for each step, data is calculated for the entire period
from that step up to, but not including, the next step.

Continuous simulations require that either the number of steps or the time per step be specified.
As discussed below, in most cases a delta time of 1 is adequate. However, for model accuracy it may
be necessary to set a different delta time.

Delta time
Delta time (dt or At) literally means the change in time. It is defined as the length of the time
interval between the present time and one time interval later. When you select a delta time, you are
selecting how finely the total simulation time will be sliced up, i.e. how short the intervals between
calculations will be and thus how frequently the computations will take place. Delta time is set in
the Run > Simulation Setup > Continuous tab.

For the simulation results to be correct, the delta time for a continuous model needs to be small
enough to accurately reflect changes that occur in different parts of the model. In many cases, the
default delta time of 1 is adequate. However, for simulation speed or model accuracy it may be
necessary to set a delta time other than 1.

Concepts, Tips, and Techniques 83
Delta time

Delta times other than 1

Although 1 is the default setting in the Continuous tab, delta time can be set to any number. For
example, to cause the model to run faster and perform calculations less frequently, delta time could
be set to 2 or any other number larger than 1.

A delta time less than 1 reduces the step size, causing calculations to be made more frequently. It
also results in more steps, so that the simulation takes longer to run in real time for the same simu-
lation run time.

If delta time is not 1, it is most common that it would be less than 1. There are many reasons why
delta time would need to be less than 1. Feedback loops and stiff equations in the blocks can
require a smaller delta time to ensure that all calculations are reflected in the graph. Simulations
that are run with too large of a delta time often show values jumping from very high to very low.
This is known as instability or artificial chaos. Examples of models where a delta time of less than
1 may be required are:

* Signal processing models need to have their specific time per step (dt) either entered in the Sim-
ulation Setup dialog, or have it calculated by blocks in the model. For example, the Filter blocks
calculate the stepsize based on their entered parameters.

Q)
)
s
=8
)
e
)
£

* Differential equation models (models with integrators in feedback loops) may need to have a
time per step (dt) or number of steps other than 1.

¢ Ifyou are building custom blocks in process control models, you might set up the blocks so that
they have a Stepsize message handler that can calculate the value for the DeltaTime variable,
automating this process. See the Electronics library for some examples of blocks that do this.

If a model contains the Holding Tank block (Value library) and delta time is not exactly 1, you
may need to change the Holding Tank to integrate its inputs, as discussed in “Integration vs. sum-
mation in the Holding Tank block” on page 610.

Determining which dt to use

To determine what delta time setting is reasonable, first run the simulation with a delta time of 1
(the default setting). Then run the simulation with a delta time of 0.5 (one half of the original set-
ting). If there is no significant difference between the two graphs, then delta time of 1 is appropri-
ate. If there is a significant difference, reduce the delta time to 0.2 and run the simulation again.
Continue halving delta time until you determine a delta time which results in no significant differ-
ences compared to the smaller delta time. The main idea is to use the largest delta time that will
give accurate results without slowing down the simulation unnecessarily.

Specifying dt or the number of steps

Extendsim requires that either the time per step (delta time) or the number of steps be specified in
the Run > Simulation Setup > Continuous tab. You can enter delta time directly in the dialog or
you can enter the number of steps and ExtendSim will calculate the delta time for you.

A value for the number of steps is automatically calculated based on the setting entered for Time
per step (dt). It is computed as: floor(((EndTime-StartTime)/DeltaTime) + 1.5). You can see this
by choosing the Number of steps radio button after changing the Time per step (dt).

You can also determine the granularity of the simulation run by manually entering a value for
Number of steps. In most cases, this would be a number equal to the duration (length of the sim-
ulation run) so that the model calculates values once for each step, and each step would be one

84 Concepts, Tips, and Techniques
Feedback and delays

time unit long. A default value for delta time is automatically calculated based on the number of
steps you enter; it is computed as (EndTime-StartTime)/(NumSteps - 1). You can see this by
choosing the Time per step (dt) radio button after changing the Number of steps.

Setting the end time when delta time is 1

Assume you want a continuous simulation to run and calculate values each year for 40 years where
start time is 0 and dt is 1. The value you enter for the end time depends on whether there is inte-
gration in the model.

* If there is no integration in the model, set the end time to 39. Data will be calculated at each of
the 40 steps, starting at step 0 and ending at step 39. Each step’s calculation would represent
data for the entire year, the period beginning at that step and continuing up to but not including
the next step (one delta time unit). Thus the model would calculate 40 years worth of data. If
you specified start time as 1 and end time as 40, the duration would also be 40 years.

o If there is integration in the model, set end time to 40. Data will be calculated (but not outpur)
at each of the 41 steps, starting at step 0 and ending at step 40. Each step’s calculation would
represent data at the beginning of the year, the period beginning at that step. However, blocks

(2}
2
e
2
g
o vl
e
g
Q
&)

that integrate take their inputs at one step and output their results at the next step. Thus the
model would calculate 40 years worth of data. If you specified start time as 1 and end time as 41,
the duration would also be 40 years.

I Integration is discussed on page 85.

Setting the end time when delta time is other than 1

If you specify delta time as 0.5, the start time as 0, and the end time as 39, the simulation will run
from time 0 to time 39 calculating data for 79 steps, each of which is one half time unit long.

If you specify a delta time which will not result in the duration being divided into equal segments,
ExtendSim will adjust the end time to a higher value. This is to insure that the segments are of
equal duration, and that the simulation will end at the end time displayed in the dialog. Alter-
nately, you can select a new end time or delta time. For instance, assuming end time is 39, you
could specify the Time per step (dt) as 2 years. Data could be calculated every other year, from 0
through 38; however, the last step of the simulation (step 39) would not be calculated. In that case,
rather than omit a step, ExtendSim will adjust the end time to 40. This means that model data will
be calculated once every two years, starting at time 0 and ending at time 40, for a total of 21 steps.

Feedback and delays
Sometimes it is necessary to create a model that tries to compensate for, or vary itself to match,
changes in its inputs. For example, a public address amplifier should output the same sound level
even if the speaker's voice varies in loudness. A good technique to accomplish this involves feeding
back some of the amplifier's output to control its input, so that the amplifier can effectively moni-
tor itself.

Concepts, Tips, and Techniques 85
Integration

Feedback

The practice of connecting an output of a model

back to an input is called feedback; it is the main =~ sy, .

factor that causes complex behavior in continuous " —|_E L =
models. A model with feedback will cause the J—E L gy f
result of a calculation to be fed back to one of the il p——=r Feseeer

original variables in the calculation, influencing gmmn e R

its own rate of change. Thus feedback causes iter- F:m ovartos

ative changes to model variables as the simulation R T et = S e Eon o
runs. The ir'litial output variable ripples through o .~ o ontents of Holding

the calculations such that the effect loops back Tank back to Equation block to calculate overflow

and re-affects the initial variable.

Delays in feedback loops

ExtendSim is designed to facilitate feedback in models, but using feedback correctly entails some

additional modeling techniques. Since continuous models are recalculated at every time step, there
will be a delay between when the initial variable first affects the model and when the chain of cal-
culations ultimately and indirectly affects the initial variable. The introduction of a delay can cause
the behavior of a model to change significantly, because there is a difference between the effect that
instantaneous access can cause and the response that would happen if access is not instantaneous.

Q)
)
s
=8
)
e
)
£

When you run a model that uses feedback, the feedback is delayed by one simulation time step.
This happens because the output feedback signal has to be calculated before it can be used on the
next simulation step, effectively delaying it for one time step. When feedback is delayed too much,
it can have a deleterious effect as it arrives too late, causing the system to over- or under-compen-
sate. Reducing the time step or delta time of the model will reduce feedback delay and result in a
model with more accurate results. See “Determining which dt to use” on page 83 for more infor-
mation.

Integration

Integration is a method of estimating the present value by estimating the past and/or future values
of the inputs, calculations, and outputs in a model. It is another way of summing or accumulating
values when the input is a rate (expressed as units per time). The advantage of integration over just
summing values is that integration will accumulate correctly when delta time is not exactly 1.0,
making it especially useful in feedback models that need a smaller delta time to work well. A sim-
ple form of integration (Euler) just multiplies the input rates by delta time and accumulates the
result.

The Holding Tank and Integrate blocks in the Value library have integration capabilities. You can
also use ModL functions to add integration to blocks you create. The Holding Tank block accu-
mulates and, if wanted, releases values. Its dialog gives the option to either sum or integrate the
inputs. (Whichever option you choose will have an impact on the accuracy of continuous simula-
tions. To learn more, see “Integration vs. summation in the Holding Tank block” on page 610.)
The Integrate block is used to perform the mathematical function of integration in models.

I=" There is no feedback in the My Reservoir model you built in the ExtendSim Tutorial on page 23
and it uses a delta time of 1. For that model, the Holding Tank could be set to either sum its inputs
or integrate them (but the end time would need to be adjusted). The Overflow model, described in
the “Tutorial” on page 63, has feedback and uses a smaller delta time, so the inputs to the Holding
Tank must be integrated.

86 Concepts, Tips, and Techniques
Simulation order

Simulation order

The Run > Simulation Setup > Continuous tab allows you to choose the order in which
ExtendSim executes block data for continuous models. (Simulation order is also used by a discrete
rate system to determine initial bias order settings for Merge and Diverge blocks.)

The choices are Flow order (the default), Left to right, and Custom. To see the order in which
blocks are executing, select the command Model > Show Simulation Order before the model is
run.

I Tt would be unusual to change the simulation order from the default choice, Flow order.

Flow order

During a simulation, the blocks that compose an ExtendSim model perform calculations that gen-
erally depend on their inputs. After doing their calculations, the blocks set their output connectors
to the results of that calculation so that other blocks may use their results.

In this type of system, there has to be a “first” block: a block that calculates before all of the others
that depend on its results. After the first block calculates, the other blocks should calculate in the

order and direction of their connections. This order is repeated for every time step of the simula-

tion. To see this order, choose Model > Show Simulation Order.

(2}
2
e
2
g
o vl
e
g
Q
&)

The following are the rules that ExtendSim uses to derive the order of the block calculations in
continuous models:

* Blocks that generate inputs to the simulation go first. For example, Lookup Table or Constant
blocks with only their outputs connected to inputs of other blocks would be put first.

¢ Next, ExtendSim executes blocks that are connected to those first blocks, in the order and direc-
tion of their connections.

* Unconnected blocks and bi-directional network blocks (that have only inputs connected to
inputs) are executed in left-to-right order.

I=5" The Feedback block (Utilities library) is useful when there are flow-order issues due to feedback in
a continuous model.

Left to right order
A‘ Use caution when changing from Flow order.

If you choose this option, ExtendSim looks at the left/top corner of each block on the worksheet.
The left-most block gets executed first, and the next left-most block gets executed second, and so
on. Blocks with equal left edges get executed in top to bottom order. If your model flows to the
right, and then continues at the left below that flow, this choice will still calculate all the left-most
blocks first. If you use this order, be sure that blocks that calculate values are to the left of the
blocks which need those values. Otherwise, there will be a one step delay in calculating the values.

Custom order
&‘ Use caution when changing from Flow order.

In continuous modeling, there are some situations with multiple feedback loops that do not auto-
matically settle into the desired flow order solution. This occurs because there are multiple solu-
tions that solve the DAG (Directed Acyclic Graph) ordering problem, and it is possible for the less
desired solution to be picked.

Concepts, Tips, and Techniques 87
Mixing block types

To solve this ordering problem, start with the model set to Flow order and then change the order
for a few selected blocks using the Model > Set Simulation Order command.

I To use the Custom order option effectively, the Model > Show Simulation Order command should
be checked so that the user can see which blocks need a changed order.
Also, note that the Set Simulation Order command is not enabled unless Custom order is selected
and a block is selected.

In the Set Simulation Order dialog, you can
enter a new order number for the selected

block and it will be moved into that position Enterthe simulation order for the selected
block

in the simulation order. (0 far the first block, and a number areater
. P than the number of blocks in the model for
Note that any custom order is lost if either the last block) Q
Flow order or Left to right order is selected =
. ok | cancel | E
again. 2
. . . =]
Mixing block types Set Simulation Order dialog g

You can use continuous blocks, such as those

from the Value library, in discrete event and discrete rate models. You cannot, however, use discrete
event or discrete rate blocks in continuous models. All blocks in the discrete event and discrete rate
libraries require an Executive block that changes the timing of the model to event timing,.

I=" The types of modeling you can perform depend on your ExtendSim package.

To learn more about what types of connectors can be connected to each other, see “Connector

types” on page 498.

Connections to multiple inputs
In a continuous model, you can connect from one output con-
nector to as many input connectors as you want. Multiple
inputs from one output is useful when many blocks need the
results of a preceding block. For instance, if you have one out-
put connector connected to four input connectors, the model
might look like the image at top right.

=
==
=
==

One value output connected to four
inputs in a continuous model

(e |
e }
[|
(o |

Four value inputs connected together

O Some block

I As discussed in“Event scheduling” on page 258, the connec-
tions work differently in discrete event models.

For aesthetic reasons, you may want to only have one con-
nection coming from the output connector, for example
when the blocks are far away from each other. Instead of four
connections, connect to one of the input connectors, then
connect the input connectors together (sometimes called
daisy-chaining) in the image at bottom right. (Note that
this method may be confusing to others trying to understand

the model.)

Using plotters as inputs

The blocks in the Plotter library can store every point that was plotted in the table at the bottom of
the plotter. After running a simulation, you can easily access all those points.

Some block @

88 Concepts, Tips, and Techniques
Using a plot line as reference or standard

There are some instances where you may want to use the plotter data as input for another
ExtendSim model. For example, if you have a larger model divided up into many smaller models
in different files, you may want to use this technique. To quickly pass data from one continuous
model to another, use the Plotter I/O block (Plotter library). That block has four output connec-
tors that correspond to the four input connectors. To get data out of the plotter into another
model, simply select the block, copy it to the Clipboard with the Edit > Copy command, select the
second model, paste the plotter at the beginning of the second model, and hook the plotter’s out-
puts to the places where you need the data.

If you want to use the data in the plotter in another computer application, open the plotter, click
the columns of data that you want, copy to the Clipboard with the Edit > Copy command, move
to the other application, and paste the data there. If you want less than a full column, select the
desired cells by clicking and dragging.

Using a plot line as reference or standard

You may want to plot the current results of a continuous simulation relative to a previous run of a
simulation that you are using as a standard. This is fairly easy with the

Plotter I/O block (Plotter library). First, run the simulation to get the line that you want as a refer-
ence in the Plotter block. Select Edit > Duplicate to create a copy of the Plotter, including all the
data contained within it.

(2}
2
e
2
g
o vl
e
g
Q
&)

Connect the output connector that is associated with the line you want to the input connector on
the original plotter block. When you run the simulation again, the data that generated that line
will be plotted as a reference line.

For example, assume that you want to replot the line that came

from the top input connector of a Plotter. Following the steps 2 =
above would make your model look like the image at right. B—=]

You could also paste data directly into a column of a Plotter and
use that as a reference. If you want just a straight line for a refer-
ence, instead of following the above steps, simply use a Constant
block (Value library) to generate the reference line. You can also generate a reference line from a
formula by selecting a function and connecting the output of the Math block (Value library) to the
Plotter.

Second Plotter for standard line

Note that these approaches are different than using the Plotter MultiSim blocks in the Plotter
library. Those blocks allow you to plot the results of several runs of a simulation on a single plot.

Uncluttering models
You can use a block to mathematically combine the output of one block with the output of other
blocks. You can also use a block to feed the output of blocks into the inputs of several other blocks.
However, using individual blocks to represent each function, step, or portion of a complex model
can quickly cause models to become too busy. If your models end up being cluttered, combine the
functioning of many blocks into a single block. To do this:

* Combine groups of blocks into a hierarchical block. See “Hierarchy” on page 540.

* Use an Equation block (Value library) to replace the calculations of several blocks. See “Equa-
tion-based blocks” on page 601.

¢ Create custom blocks that combine the functionality of many blocks as discussed above. See the
ExtendSim Developer Reference.

Discrete Event Modeling

Introduction

Read this before you start
modeling discrete event systems

“If we all did the things we are capable of,
we would astound ourselves.”
— Thomas Edison

90 Introduction
About the Discrete Event module

The goal of every company, government agency, and educational institution should be to develop

an extremely strong competitive organization. Cost reduction and quality improvement alone are

not sufficient to achieve market share. Organizations must also be able to quickly develop and pro-
vide innovative new products and services. Invention, innovation, quality, productivity, and speed

are the keys to making companies competitive.

One way to maximize competitiveness is to improve operational systems and processes by:

* Eliminating nonessential, non value-adding steps and operations
¢ Implementing and inserting technology where appropriate

* Managing the deployment and utilization of critical resources

* Identifying key cost drivers for reduction or elimination

In spite of recent and rapid advances in technology, many companies and institutions still suffer
from outdated equipment and inefficient work practices. This is due in part to the prohibitive
expense and time required to explore alternative methods of operation and try out new technolo-
gies on real systems and processes. Simulating a system or process provides a quick and cost-effec-
tive method for determining the impact, value, and cost of changes, validating proposed
enhancements, and reducing the resistance to change. Simulation models allow for time compres-
sion, are not disruptive of the existing system, and are more flexible than real systems. They also
provide metrics for meaningful analysis and strategic planning.

-
b,
>

o8
L
=1
[
P
9

<t

a

ExtendSim’s graphical interface and dynamic modeling capabilities are designed to help organiza-
tions answer questions about how they do work: what they do, why they do it, how much it costs,
how it can be changed, and what the effects of changes will be.

About the Discrete Event module

The Discrete Event portion of the User Guide shows how to build comprehensive models of
industrial and commercial systems so you can analyze, design, and document manufacturing, ser-
vice, and other discrete processes. Build a dynamic model composed of iconic blocks, run the sim-
ulation, and analyze the results. Change aspects of the model and run it again to perform what-if
analyses. Whether you model current operations or test proposed changes, the resulting models
make it easy to find operational bottlenecks, estimate throughput, and predict utilization.

Discrete event modeling is an integral part of Six Sigma, business reengineering, risk analysis,
capacity planning, throughput analysis, and reliability engineering projects. Discrete event models
are also useful for examining the effects of variations such as labor shortages, equipment additions,
and transmission breakdowns. They allow companies to look at their fundamental processes from
a cross-functional perspective and ask “Why?” and “What If?”

How the Discrete Event module is organized
¢ Introduction

* Tutorial
* Chapters that discuss specific discrete event modeling concepts:
* Items and their properties
* Queueing
* Routing items from several sources and to multiple destinations

* Processing, travel, and transportation

Introduction 91
Discrete event systems and processes

* Batching and unbatching groups of items
¢ Resources and shifts

* Activity-based costing

* Statistics

* Tips, techniques, and information about the discrete event architecture

What the Introduction to the Discrete Event module covers
* Simulating discrete event systems

¢ Discrete event blocks
* Conventions and terminology for discrete event modeling in ExtendSim:
* Overview and layout of a discrete event model
¢ The Executive block
¢ Items and informational values
* Properties of items, such as attributes and priorities
e Events
* Activities

¢ Resources

=)
=
e}
o}
I
-
o
3!
<
I}
=
-

¢ Block connectors
* Closed and open systems
* Types of item handling blocks
¢ Application areas in which discrete event modeling is commonly used

I For detailed information about discrete event modeling in general, including how it differs from
continuous and discrete rate modeling, see “Modeling methodologies” on page 43.

Discrete event systems and processes
Most systems are composed of real-world elements and resources that interact when specific events
occur. The Item library simulates those systems using blocks that mimic industrial and commercial
operations and timing that represents the actual occurrence of events. Use blocks from this library
to create simulations of business operations, manufacturing processes, networks, service industry
flows, information processing, material handling, transportation systems, and so forth.

Discrete event systems have several things in common:

* They involve a combination of elements such as people, procedures, materials, equipment,
information, space, and energy (called 7tems in ExtendSim) together with system resources such
as equipment, tools, and personnel.

* Each process is a series of logically related activities undertaken to achieve a specified outcome,
typically either a product or a service. Activities have a duration and usually involve the use of
process elements and resources.

* Processes are organized around events, such as the receipt of parts, a request for service, or the
ringing of a telephone. Events occur at random but somewhat predictable intervals and can be
economic or noneconomic. Events are what drive most businesses.

92 Introduction
Blocks for building discrete event models

Industrial and commercial processes therefore represent the utilization and underactivity of ele-
ments and resources driven by events.

Blocks for building discrete event models

The blocks in the Item library are used to build discrete event models. In addition, third-party
developers have created customized discrete event libraries. Plus, you can program customized dis-
crete event blocks.

Item I!brary ' . o ' Activity
Blocks in the Item library correspond to typical activities, operations, and Batch
resources in many environments. These blocks are connected in an activity or Catch Item
data flow diagram that represents a system. The complexities of generating and
. S L Convey ltem
posting events are handled within the blocks, alleviating the need to do any Cost By It
programming in the ModL language. ost By fiem
. o . .) Cost Stats

Item library blocks are optimized for modeling service, manufacturing, mate- raate
rial handling, transportation, and other discrete systems. They incorporate Equation ()
high-level modeling concepts such as variable batching, conditional routing, Executive

b= and preemptive operations as well as blocks that represent machines, labor, Exit

L:-J; conveyors, and so forth. Built-in performance calculations and statistical Xl

° reports allow you to predict the value, effectiveness, and cost of implementing Gate

8 changes before committing resources. Get

2 . . . History

A These blocks have been specifically designed to meet most discrete event mod- Information
eling needs, allowing you to quickly and easily perform complex modeling
tasks. For instance, you can use a popup menu in a Queue block to specify that Queue
stored items are sorted in first-in-first-out order, last-in-first-out order, or in a Queu?
custom order based on their assigned priorities or attributes. Equation

As mentioned in the Tutorial, blocks from the Value library are frequently used e library blocks

for data management and model-specific tasks in discrete event models. Using

Value library blocks with Item library blocks does not change the fundamental architecture of dis-
crete event models; they will still be event-based rather than use the time-based architecture of
continuous models.

I=" See “Item Library Blocks” on page 723 and “Value Library Blocks” on page 715 for a listing and
brief description of the blocks in those libraries.

Third-party libraries

Third-party developers use the ExtendSim environment to create libraries of blocks customized for
specific fields, such as semiconductor manufacturing or multi-stage manufacturing systems. For
more information about products that can be purchased from third party vendors, please go to
www.extendsim.com/prenrs_developers.heml.

Creating custom discrete event blocks

Because of the Item library’s extensive capability, it is not likely that you would need to program
your own discrete event blocks. If you do want to do this, it is important to note that discrete event
blocks use different data structures and programming methods than continuous blocks. Start with
an existing discrete event block as a base: either use a copy of an Item library block similar to the
one you want to build, or use one of the discrete event template blocks in the ModL Tips library;
those blocks” names start with “MYO” for “Make Your Own”. The ModL code of an MYO block
is commented to explain how certain features are implemented. Read the Developer Reference

Introduction 93
Terminology and architecture

before modifying discrete event blocks so you have a better understanding of how those blocks
work internally.

Terminology and architecture

Before building a discrete event model, it is helpful to understand the terminology that will be
used and to have an overview of ExtendSim discrete event architecture.

Overview of a discrete event model

Discrete event models pass entities (called zzems) from block to block as events occur during the
simulation run. The items in the simulation are usually generated as a random distribution within
specific parameters, or as a scheduled list of when events will occur. These items can have proper-
ties, such as attributes and priorities, which help them correspond more closely to parts, custom-
ers, jobs, and so forth in real life. Items are processed by activities, and the time and extent of
processing is often dependent on the availability of resources.

The main source of discrete event blocks is the Item library. Most of the blocks in the Item library
have item connectors and value connectors. An item connector passes an item and all the informa-
tion associated with it to the next item connector. Value connectors and dialog parameters provide
specific information about the item and its properties (attributes, timing, and so on) as well as
information about the effects that the item has in the model (such as queue length and wait).

0= Tt is this value information which is plotted and displayed in a discrete event model, not the items
themselves.

=)
=
e}
o}
I
-
o
3!
<
I}
=
-

Often the object of the simulation is to determine where there are bottlenecks in the process and to
see which parts of the process might be improved. Each branch of the flow diagram should either
feed into another block or end in an Exit block.

A model can combine continuous blocks, typically those in the Value library, with discrete event
blocks from the Item library. If you use any discrete event blocks in a model, the model will
become discrete event and will require the Executive block (Item library).

Layout of a discrete event model

You can place the blocks in a model anywhere you want, remembering that ExtendSim evaluates
discrete event blocks along the path of the connections. The only exception to this generality is
that the Executive block (which is required for all discrete event simulations) must be to the left of

all other blocks.

Executive block

The Executive block controls and does event scheduling for discrete event and discrete rate models.
An Executive block must be placed to the left of all other blocks in a discrete event or discrete rate
model. Its use in a model changes the timing so that simulation time advances from one event to
the next, rather than at uniform intervals.

For more information, see “Executive block” on page 255.
I=" Most of the Executive’s options are for advanced users. Unless you use string attributes, it is rare

that you would need to make any changes in the Executive’s dialog.

Items and informational values

The basic units that are passed between discrete event blocks are zzems. An item is an individual
entity that represents an element of the system being modeled; it can only be in one place at a
time. Items have a life cycle in which they are created, transformed, and eventually destroyed. They

94 Introduction
Terminology and architecture

change state (physically move, are delayed, or have their properties altered) when events occur,
such as a part being assembled, a customer arriving, and so on. In manufacturing models, items
may be parts on an assembly line; in network models, an item would be a packet of information; in
business models, items may be invoices or people. Items are passed from block to block through
item connectors. The Create block can generate items with a random distribution, at a constant
rate of arrival, at a fixed schedule, or on demand. The Resource Item block provides a finite pool of
items.

Items can have properties — different pieces of information attached to an item that make the
item unique. Item properties include attributes, priorities, and quantities, as discussed in “Item
properties” on page 94.

Values provide information about items and about model conditions. Values tell you the number
of customers in queue, how many parts have been shipped, and how frequently telephone calls
occur. Values also report processing time, utilization, and cycle time. These informational values
are passed through value connectors. When you use a plotter in a discrete event model you are
plotting information about items, not the items themselves. For example, when the top output of
an Exit block (total exited) is connected to a plotter, it displays the time that each item left the
model and the number of items that have exited.

Item properties
A property is a characteristic of an item that stays with the item as it moves through the simula-
tion. Item properties include attributes, priorities, and quantities.

-
b,
>

o8
L
=1
[
P
9

<t

a

Attributes

Attributes are an important part of a discrete event simulation because they provide information
about items. Each attribute consists of a name that characterizes the item and a value that indicates
some dimension of the named characteristic. For example, an item’s attribute name might be
“color” and its value could be “1” (for “red”). Or the attribute name might be “ProcessTime” and
its value “4.76”. Attributes are often used for routing instructions, operation times, or part quality
in statistical process control; they are discussed fully on page 115.

Priorities

Priorities allow you to specify the importance of an item. For instance, there might be a step in a
manufacturing process where a worker looks at all the pending job orders and chooses the one that
is most urgent. Each item can only have one priority. The top priority has the lowest value, includ-
ing negative values (that is, an item with a priority of “-1” has a higher priority than an item with a
priority of “2”). Priorities are discussed fully on page 122.

Quantities

Each item can be a single entity or a group of duplicates. If the guantity of an item is 1, it repre-

sents one item; if it is greater than 1, it represents a group. By default, items have a quantity of 1.

The quantity can be changed by a block like the Set block. For more information, see “Quantities”
on page 124.

Events
ExtendSim moves items in a discrete event model only when an event happens. Events are occur-
rences such as receipt of an order, a telephone call, or a customer arriving. They are managed by

the Executive block (discussed on page 255) and only occur when particular blocks specify that
they should.

Introduction 95
Terminology and architecture

Blocks that depend on time cause events to happen at the appropriate time. For instance, an Activ-
ity block holding an item until a particular time will cause an event to be posted to the ExtendSim
internal event calendar. When the time is reached, the event occurs and the model recalculates its
data.

Blocks that do not generate events allow the blocks after them to pull items during a single event.
Thus a single event can cause an item to pass through many blocks if those blocks do not stop
them. For instance, a Set block could set the item’s attribute and pass the item to the next block in
the same event.

For more information, see “Event scheduling” on page 258.

Activities

Activities are undertaken to achieve a specified outcome, typically either a product or a service.
They have a duration and usually involve the use of process elements and resources. An activity
could involve processing, moving, transporting, or otherwise manipulating an item. For more
information, see the chapter “Processing” on page 163.

Resources

Resources are the means by which process activities and operations are performed. Typical
resources include equipment, personnel, space, energy, time, and money. Resources can be avail-
able in unlimited quantities but are most often limited or constrained. In ExtendSim, resources
required to be present for a process or activity to take place can be modeled as either item resources
that are batched with other items, or as a count of resources (a resource pool) where the count is
known, managed, and made available to model processes. See “Resources and Shifts” on page 207
for complete information.

=)
=
e}
o}
I
-
o
3!
<
I}
=
-

Connectors

Most of the discrete event blocks pass an item index through item connectors at each event. Each
passed index contains a set of information about the item — its attributes, priority, quantity, and so
on. This is different from value connectors which only pass values.

Blocks in the Item library can contain value connectors as well as item connectors. When combin-
ing discrete event blocks with blocks from other libraries, you will only be able to connect compat-
ible connectors. Item connectors can only connect to item or universal connectors; they cannot
connect with value input or output connectors. Likewise, value connectors can only connect with
value or universal connectors; they cannot connect with the item input or output connectors. For
more information about connector types, see “Connector types” on page 498.

Closed and open systems
Blocks that provide a finite number of resources can be part of closed or open systems. How blocks
are connected in the model determines whether the system is considered open or closed.

Closed systems

In a closed system, resources are routed from a resource block and used in the model. Once they are
no longer being used, the resources are recycled back to the resource block and become available
for further use. For example, assume a technician (the resource) is required to assemble parts of a
television. While the technician is assembling the parts, he/she will be busy and will not be avail-
able to perform work elsewhere. In a closed system, the technician will return to the technician
pool after assembling the parts and will become available for other assignments.

96 Introduction
Application areas

In a partially closed system, only a portion of the resources are returned to the resource block for
re-use. For example, consider a case were there are different shifts of laborers (the resource). Sup-
pose three laborers are assigned to a task. Upon completion, the shift for one of the laborers is fin-
ished and he does not return to the labor pool to be assigned to a new task.

Open systems

Resource blocks may also be part of gpen systems when the block’s resources are not recycled. In an
open system, resources at the end of the line are not passed back to the Resource block. The most
common example of an open system is stock. Normally, stock passes out of the model at the end of
the line. Another example of an open system is a consumable resource such as a disposable fixture
that makes only one pass through the manufacturing process.

Types of item handling blocks

Each Item library is identified in its dialog as being a residence, passing, or decision type of block,
as follows:

o Residence blocks are able to store an item for some amount of time. Examples of residence-type
blocks are the Queue and Activity.

* Puassing blocks must pass the item along before any simulation time elapses. Example blocks
include the Set, which sets item properties, and the Equation (I) which performs a calculation as
an item passes through.

* Decision blocks conditionally allow an item to pass through. Examples include the Gate and
Select Item In blocks.

-
b,
>

o8
L
=1
[
P
9

<t

a

Knowing these categories of blocks and how they relate to the processing of items will help you to
build better models. For complete information, see “Block types” on page 256.

Application areas
Simulation is indispensable for understanding, analyzing, and predicting the behavior of complex
and large-scale systems. It is used to gain an understanding of the functioning of existing systems
and to help design new systems by predicting their behavior before they are actually built. The fol-
lowing table gives some of the most common areas where discrete event modeling is used.

Discipline Fields Applications

Manufacturing Aerospace, Biotech, Agriculture,

Semiconductor, Food and Bev-

Inventory and resource manage-
ment, Six Sigma/Lean initia-

erage, Automotive, Pharmaceu-
tical, Consumer products

tives, scheduling, capacity
planning, evaluation of proce-
dures.

Service Industries

Retail, Banking, Finance, Res-
taurants, Hotels, Insurance,
Utilities

Service levels, scheduling,
throughput analysis, evaluation
of procedures, Six Sigma/Lean
initiatives, workflow.

Communications/Networks

Call centers, Satellite Systems,
Airborne and Ground Commu-
nication Systems

Capacity planning, perfor-
mance evaluation, throughput
analysis, determination of reli-
ability and fault tolerance.

Introduction 97
Next steps

Discipline Fields Applications

Transportation/Material Han- Airlines, Railroads, Freight and ~ Emergency planning, schedul-

dling Mail, Moving and Cargo, Ware- ing, service level, Six Sigma/
housing, Logistics Lean initiatives.

Next steps

The next chapter is a tutorial showing how to use the Item library to build a discrete event model.
Other chapters in the Discrete Event module provide some tips you may find useful when building
models and illustrate specific discrete event concepts, such as item generation, assigning properties
to items, and activity-based costing.

The How To module that starts on page 488 includes chapters on topics relevant to all types of
modeling, including creating a custom user interface, using mathematical and statistical functions,
and employing different types of analysis for your models.

=)
=
e}
=
[
-
o
1
<
o
=
-

98 Introduction
Next steps

-
b,
>

o8
(2]

=1
[
S
9
2
a

Discrete Event Modeling

Tutorial

Building a discrete event model

100 | Tutorial
A basic discrete event model

The key to discrete event modeling is the construction of a flow diagram using blocks to represent
the problem’s operations and resources. The Item library is designed for building discrete event
models of commercial and industrial processes. It is often used with other ExtendSim libraries,
especially the Value and Plotter libraries.

The following example shows how to build a discrete event model of a car wash; it will use most of
the important blocks in the Item library. Starting with a simple model, then adding complexity
and features, this chapter will show how to:

* Model a single waiting line with a single server

¢ Add a second server

¢ Animate the model in 2D

* Route items through the model

* Add constraining resources

¢ Use attributes to characterize items so they can make decisions about which route to take
I This tutorial assumes you have completed the chapters in the Tutorial module that starts on

page 14 and that you have read the introductory discrete event chapter that starts on page 90.
A basic discrete event model

The most common discrete event model involves the handling of one or more waiting lines or
g g
queues, such as those found in supermarkets or factories.

-
b,
>

o8
L

=1
[
P
9
<t
a

About the model
The Car Wash model represents a business operation where cars can be washed and waxed. The
assumptions for the final model are:
¢ The model runs for a simulated time of 8 hours (480 minutes)
e Cars arrive approximately every 4 minutes
¢ There is only one route into the car wash
* There are two bays, one for washing only and one for washing and waxing
* It takes 6 minutes to wash a car; it takes 8 minutes to wash and wax a car
* Approximately 25% of the cars want to be waxed
¢ Cars have to be driven through the operation by an attendant
* The blocks come from the Item, Value, and Plotter libraries
I=" The Car Wash models are located in the folder \Examples\ Tutorials\Discrete Event\Car Wash.

Starting a model and setting simulation parameters
The following steps are typical when starting any discrete event model.
» Open a new model worksheet
» Give the command Run > Simulation Setup. In the Setup tab enter the simulation parameters:
» End time: 480
» Global time units: minutes
P If they aren't already open, open the Item, Plotter, and Value libraries

» Place an Executive block (Item library) on the top left corner of the model worksheet

Tutorial | 101
A basic discrete event model

A The Executive block does event scheduling and manages discrete event simulations. It must be
present in every discrete event model.

Start small

In building any simulation model, it is easiest to start with a simple subset of the process and add
detail until you arrive at a completed model that approximates the system that’s being modeled.
This allows you to test at various stages while making the model building process more manage-

able.

The first step is to model the car wash with one bay that just washes cars. Since there is only one
line into the car wash, each car must wait in line for the preceding car to move through the wash
before it can enter. When finished with this portion of the tutorial, your model should look like
the one shown below.

=)

47 i L&) —mmmm 7

(3_} O—o=o 2

—_/)E = —_/ [- e

o

- 0% 9F Exit Plat Results :ﬂ
Dirty Cars Entry Line fash Bay 8
-

Modeling a waiting line with a single server

Modeling a waiting line with a single server

The following table lists the blocks that will be added to the worksheet and their use in the model.
Except for the Plotter block from the Plotter library, the blocks in the table are from the Item
library.

Name (Label) Block Function Purpose in Car Wash Model
Create Generates items or values, either ran- Generates cars that arrive randomly,
(Dirty Cars) domly or on schedule. If used to gen- approximately every 4 minutes.
erate items, it pushes them into the
J |_—/ simulation and should be followed by
¢ a queue-type block.
Queue Acts as a sorted queue or as a resource Holds the cars and, when the wash bay
(Entry Line) pool queue. As a sorted queue, holds is available, releases cars one by one in
items in FIFO or LIFO order, or sorts first-in, first-out order.
o F items based on their attribute or prior-
v v lty.
Activity Processes one or more items simulta- Washes the cars for a simulated 6 min-
(Wash Bay) neously. Processing time is a constant utes.

or is based on a distribution or an
@ | item’s attribute.

Ow wF

102 | Tutorial
A basic discrete event model

Name (Label) Block Function Purpose in Car Wash Model

Exit Removes items from the simulation Removes the cars from the model.
(Exit) and counts them as they leave.

F

Plotter, Reports the length of the waiting line
Discrete Event and how many cars have been washed.

[=[1]

%

[|
O _n=s
o|—o=g
O_amm

P Starting at the right of the Executive block, place the blocks on the model worksheet in a line
from left to right, based on their order in the table. The model should look like the one shown
on page 101.

» Label the blocks as indicated in the table.

I=" An easy method for placing blocks on a model worksheet is to access an open library using the
Navigator, as discussed in “Library Window mode” on page 671.

Entering dialog parameters and settings
There are only a few values to enter to reflect the basic car wash assumptions.

-
b,
>

o8
L

=1
[
P
9
<t
a

» In the Create block’s dialog, the default setting is that items are created randomly using an expo-
nential distribution. Since this is exactly what you want, just enter Mean: 4. With this setting,
one car will arrive approximately every 4 minutes.

» By default, the Queue block is specified as a sorted queue, with items stored and released in
first-in, first-out order. Since this is what the model specifies, do not make any changes to the

Queue.

» The assumptions indicate that cars are washed one at a time and that it takes the same amount
of time to wash each car. In the Activity block’s dialog, the default settings are that the capacity
is 1 and the delay is a constant amount of time. Since those settings are what you want, just
enter Delay (D): 6, indicating that it takes 6 minutes to wash each car.

» The Exit block automatically counts and passes items out of the simulation and the Plotter will
graph results as the simulation runs. There are no settings to enter for those two blocks.

Making connections and running the simulation

» To indicate the flow of items, connect the blocks’ ztem connectors as follows:
» From the Create block’s item output to the Queue’s item input
» From the Queue’s output to the Activity’s input
» From the Activity’s output to the Exit’s input

» So that the model will display results, connect the following value connectors:
» From the top (total exited) value output on the Exit to the top Plotter input
» From the L (queue length) value output on the Queue to the second Plotter input

» Save the model.

Tutorial | 103
Adding complexity

» Run the simulation.

Verifying results] Yk Tl DE®
This is a good opportunity to verify the results. Because B[P IEICIERA] 2]

the model has random numbers your results will differ Ly Wash Rasuls

slightly, but the plotter graph should be similar to the pic- 0
ture at the right.

At the end of the simulation, the plotter might show that .
80 cars have been washed and that there are around 40 cars o

waiting to be washed. This would correspond to the infor- o R . I
mation in the Create block, which shows that about 120 -
cars were generated. These numbers make sense consider-
ing that 1 car is generated approximately every 4 minutes and the simulation runs for 480 minutes.

Animating the model
You don’t have to animate the model, but it is sometimes helpful to see the process in action.

» In the Create block’s Item Animation tab:

» Choose Select item animation from the popup menu 20 picture gU
[¢]
» Select Car from the animation object popup menu Car . 81-;1
» Click OK to close the dialog & ;:
» Select the command Run > Show 2D Animation

» Run the simulation

Now cars are displayed as they flow through the model. With animation on, it is easy to see that
cars are arriving faster than they can be washed.

Animation is very useful for debugging models or for making presentations, but it can consider-
ably increase the time it takes a simulation to run. To turn animation off, unselect the command
Run > Show 2D Animation or unselect the Animation On/Off tool in the toolbar.

Adding complexity

Now that you understand how to build the basic model, you can add more details and features.

Creating a second wash bay
Since long lines deter customers, it would be better to keep the entry line short. There are two
ways to model this:

* Increase the processing capability of the Activity block
* Add a second wash line
Both of these are examples of parallel processing (described in more detail on page 166.)

To increase the number of cars that the wash bay can process at a time, you would simply change
the capacity setting in the Activity’s dialog. For instance, allowing a maximum of 2 items in the
Activity would simulate a wash bay that could wash two cars at a time.

Since the assumptions state that the final model has two bays, instead of increasing the Activity’s
capacity you will add a second bay:

104 | Tutorial
Adding complexity

» Copy the Activity block in the Car
Wash model and paste it below the
original Activity block. Label the

new block “Wash Bay 2”. o
sh Bay 1 115 ———
» Connect the Queue’s item output to J ¥ ‘ n'd | E oi—ima
the item input on Wash Bay 2. This Ty cars ey] n’jﬁ Bt Flat Resuits
@

creates a parallel connection with
the original wash bay. s B

» Expand the Exit block’s variable
input connector so that it reveals a
second input.

Adding a second bay

» Connect Wash Bay 2’s item output to the Exit block’s second item input.
P Save and run the simulation.

With the second wash bay, the entry line length stays near 0 most of the time, as shown in the
plotter and the Queue block’s Results tab.

Explicit routing

In the model so far, the number exiting from one wash bay is probably larger than the number
exiting from the other. (You can see this in the Exit block’s dialog.) Since you have not specified
any rules concerning how the cars are routed to a wash bay, a car will go to the first available bay.
However, if both bays are free, the car will go to the bay that was first connected in the model. This
implicit routing is not obvious and is rarely what you want.

-
b,
>

o8
L

=1
[
P
9
<t
a

A Unless it is completely unimportant in the model, you should always explicitly state the routing of
items using the Select Item In and Select Item Out blocks. Otherwise, the order in which their
connections were made will dictate the routing, as discussed in “Implicit routing” on page 151.

To explicitly specify the order in which items go to free inputs, use the Select Item Out block.

» Insert a Select Item Out block (Item library)

between the Queue and the two Activity blocks ’6
and label it “Select Route”. s B
= Mfash Bay 1 124 E

» Connect the item inputs of the blocks. =/
This section of the model should look like the screen- | Btvtie selet R%* @ B
shot to the right.

0w wF
The Select Item Output block has many options. You Wiash Bay 1
can specify that the item is routed to a random out-
put, to a specific output based on a value at the Explicit routing

“select” input connector or based on the item’s
attribute or priority, or sequentially. Using the various
options to route items is described fully in “Select Item Out dialog” on page 149.

In the dialog of the Select Item Out block:
» Choose the option Select output based on: sequential
» Select If output is blocked: item will try unblocked outputs

This causes the items to be sequentially routed between the two bays. If the selected bay is blocked,
the item won’t wait for it to be free but will instead be routed to the other bay if it is available.

Tutorial | 105

Adding complexity

When you run the model, the same number of cars will have been washed as in the previous
model, but each wash bay will have been used equally.

The preceding examples have two wash bays and purposefully don’t take into consideration the
model assumption that 25% of the cars want wax in addition to a wash. You could specify the sec-
ond bay as also providing waxing, and use the option Select output based on: random in the
Select Item Out block to route 25% of the cars to that bay. But this tutorial will explore a more
powerful method for accomplishing this in the section “Item attributes” on page 100.

Requiring resources

Up to this point, the Car Wash model assumes that you drive the car through the wash. However,
many car washes require that an attendant do this. This situation can be easily modeled as a num-
ber of resources (the attendants) which are required by and made available to the model. As is dis-
cussed in “Modeling resources” on page 209, there are two methods to model resources:

¢ Asa count of resources that are made available to the model as a whole and released when no
longer required.

* As items that are joined with other items and flow through the model with them until separated.

In both situations, items cannot continue traveling through the model unless the required resource
is available.

» Add a Resource Pool block (Item library) to the model and place it in any convenient place.
Label the block “Attendant Resource”. In its dialog, enter Resource Pool name: Attendants,
and enter Initial number: 1 (the default).

» In the Queue block’s dialog:
» Change the type of queue by selecting Type: Resource Pool queue.

=)
=
o]
=
[}
-
o
o3|
<
o
=
-

P In the table, select the Resource Pool named Attendants and set the Quantity to 1. This
indicates that each car will now require one attendant to drive it through the car wash.

» Delete the connections from the Activity blocks to the Exit block.

» Add a Resource Pool Release block (Item library) after each of the two Activity blocks, and con-
nect from the Resource Pool Release blocks to the Exit block.

» In each Resource Pool Release block, select to Release by: name and choose that the name of
the resource pool is Attendants.

The model should look sim-

ilar to the one at the right.

Running the model shows
that the scarcity of atten-
dants causes a constraint on
the process, and fewer cars
get processed than when an
attendant was not required.
In the dialog of the Resource
Pool block, you could try
increasing the initial num-
ber of attendants to 2 or 3 to
explore the effect that has on
model results.

EE

_') Fttendant: .\"
c
Ftendant Resource Dw W Release Aetendant;
\.Ill‘ash Bay 1 SD
_ O —ooo
/ | E [
Plot Results
Entry Line Select Rote S—

Release Atendants

t

Dlrty Cars

Ow wF
Mfash Bay 2

Requiring resources

106 | Tutorial
Adding complexity

Item attributes

Most car washes allow cars to have wax applied after the wash. Attributes are a very powerful fea-
ture that give items unique properties and characteristics. You can use attributes in this model to
indicate that specific cars should or should not be waxed. This is accomplished by adding an
attribute to the cars coming from the Create block, then checking for the value of that attribute as
the car gets washed.

As discussed in “Attribute types” on page 116, ExtendSim supports both string and value

attributes. The following example uses a string attribute type.
and Queue blocks so they look like the screenshot

to the right. Label the Set block “Set Attribute”. J = _n{_}ﬁ=ﬁ|

» In the Set blocK’s dialog, choose New String v
Attribute from the table’s Property Name Qirty Cars
popup menu.

Creating a string attribute

» Add a Set block (Item library) between the Create
24

Set Atribute

- . . .

g » Name the string attribute Preference and click OK.

>

Lﬁ This causes the Executive block’s Attributes tab to appear. The table in this tab is where the

s attribute values (and the corresponding strings) for the Preference attribute are declared.

S

3] . . .

.2 » In the table for selecting an attribute, enter the strings Wash Only EESe—

2 and Wash and Wax as shown in the screen shot to the right. Wiazh only
‘Wiash and Wax

» Close the dialogs of the Executive and Set blocks.

I The Executive block’s lookup table provides a descriptive text label
(string) for each attribute value. That string can then be used in the
model in place of the corresponding attribute value, making the model
more understandable. But the underlying architecture is that the values
for an attribute are still numbers. In this case, the values for the Prefer-

ence attribute are 1 (for Wash Only) and 2 (for Wash and Wax).

DD th L Ry —

:
=
o
[1<

Generating the correct types of cars
To specify that items are correctly generated as 75% Wash Only and 25% Wash and Wax:

» Add a Random Number block (Value library) to the model.
» Connect its value output to the first value input of the Set block.
» Choose an Empirical table for the distribution in the Random Number block.
» In the dialog that appears, give the table 2 rows.

I=" Connecting to a Set block causes the Random Number block’s empirical table to be aware of
attributes. In this case, connecting the Random Number block to the Set block’s first value input
causes the empirical table to be populated with popup menus that relate to the first atcribute (Pref-
erence) in the Set block’s properties table.

» In the first row of the empirical table, select Wash Only from the popup menu and enter a
Probability of 0.75.

P In the second row of the empirical table, select Wash and Wax from the popup menu and
enter a Probability of 0.25.

Tutorial | 107
Adding complexity

» Close the Random Number dialog.

P So that there will be sufficient attendants to drive all the cars that are generated, in the dialog of
the Resource Pool block enter Initial number: 2.

P Since the bottom bay will now be used for cars that also need waxing:
» Change the label of the bottom bay to Wash/Wax Bay.

» Enter Delay: 8 in that bay’s dialog, to indicate that waxing and washing takes longer than
washing alone.

Each item generated by the Create block will now have a Preference attribute. In 75% of the cases
the car will be characterized as Wash Only; 25% of the time the cars will be designated as Wash
and Wax.

The next step is to have the model determine which car is which.

Checking the attribute
In the dialog of the Select Item Out block:

» Choose to Select output based on: property.
» In the property popup menu, select the string attribute named Preference.

» Check the box to Display string attributes in table.

=)
=
e}
o}
I
-
o
3!
<
I}
=
-

This causes the Preference attribute to be listed in the table’s header and puts popup menus for
that attribute’s strings in the table.

The Select Item Out block routes items to its outputs based on the selection conditions and inter-
nal rules. When attributes are used to select the outputs, the block’s top output is referenced as
number 0, the second output as 1, and so forth.

To cause cars that don’t need waxing to be routed to the top output:
P In the table’s first row, select Wash Only from the Preference popup menu.

» Enter 0 in the Select Output column for the Wash Only row. That setting will route the Wash
Only cars to the top output.

To cause cars that need waxing to be routed to the second output:
P In the table’s second row, select Wash and Wax from the Preference popup menu.

» Enter 1 in the Select Output column for the Wash and Wax string. That setting will route the
Wash and Wax cars to the second output.

» Close the dialog, save the model, and run the simulation.

You may notice that fewer cars pass through this car wash than in the example without attributes

or attendants. This is due to the problem of a car with a particular attribute following another car
with the same attribute. There is only one entrance to the bays, and the bays now have designated
purpose. This means that the second car must wait for the first one to finish even if the other bay
is free. Note, however, that every time you run the model, the numbers for the two lines in the Exit

block indicate that the cars have been processed in roughly the same proportion as specified in the
Random Number block.

108 | Tutorial
Further exploration

Final model
For your reference, the completed i

Y E"da"‘ Run Simulation
model, titled Final Car Wash, is ¥ u—/ : Anirraton on
located in the folder \Exam- o s Eﬁfr __Animation 0 _|
ples\Tutorials\Discrete Event\Car MTEF o m
Wash. This model also has buttons = E%
for running the model and turning EE s Se':mT_EE i) P_ e
animation on and off. For infor- Fand IE Re.em o

Washiliax Bay

mation about adding buttons to
models, see “Creating a dashboard
interface” on page 506. Final Car Wash model

Pnzfmnng Percentage

Further exploration

There are many other ways to modify the model shown in this section. Some possible variations
are:

* Have the wash or wash/wax times be dynamic rather than static. There are several ways to do

this:

¢ Specify that the delay in the Activity block is from a distribution. This would cause the
processing times to be random, rather than fixed as shown in “Random processing time”
on page 169.

-
b,
>

o8
L
=1
[
P
9

<t

a

* Use a Lookup Table block to schedule the wash or wash/wax times to be dependent on the
time of day, as seen in “Scheduled processing time” on page 168.

* Have an Equation block (Value library) calculate a wash time based on model conditions.
Then connect the Equation’s output to the Activity block’s D input.

* Assign attributes to the cars to represent the expected time to process it, with each type of
car requiring a different processing time. This is especially useful in a manufacturing envi-
ronment where there are several types of products that require different process times.

* Add more wash or wax bays, then use the Select Item Out block to give preference to specific
bays rather than just letting cars randomly go to any available bay.

* Have arriving cars look at the waiting line and not enter the car wash if the line is too long (balk-
ing) or leave the line after arrival if the wait time reaches a certain point (reneging). These con-
cepts are discussed more in “Queueing considerations” on page 131.

* Model other aspects of the car wash, such as the limited capacity of a parking lot to hold cars
after the wash process. To do this, use the Resource Pool block to represent the total number of
parking spaces available. Then set the Queue block as a Resource Pool queue to hold cars wait-
ing for a parking space. The Resource Pool Release block would release parking spaces as the cars
pass through it.

Discrete Event Modeling

Items, Properties, and Values

Generating and removing items, and using item properties

110 | Items, Properties, and Values
Blocks of interest

As discussed in “Items and informational values” on page 93, items are what flow through the
model, properties contain information about items, and values provide information about model
conditions. This chapter discusses items and their properties and how information about them is
reported as values. It will cover:

* Generating items randomly and by schedule
* The Create block’s Start connector
e Attributes, priorities, quantities, and other item properties

05" Most of the models illustrated in this chapter are located in the folder \Examples\Discrete
Event\Items and Properties. For other models, location information is provided at the beginning of
their respective discussions.

Blocks of interest

The following blocks will be the main focus of this chapter. The block’s library and category
appear in parentheses after the block name.

Item generating and removing

Create (Item > Routing)
,J |__ /E Creates items randomly, by schedule, or infinitely. Can also be used to create values ran-
, domly or by schedule. Can initialize newly created items with properties, such as attributes
or priorities.

ow

-
b,
>

o8
L
=1
[
P
9

<t

a

Exit (Item > Routing)
Passes items out of the simulation. Reports the total number exited and the number that
were taken from each input.

E=)s

Item properties

Get (Item > Properties)
Displays the value of user-assigned and system level item properties: attributes, priorities,
quantity, and item index.

Set (Item > Properties)
Attaches user-assigned properties (attribute, priority, and quantity) to items passing

through.

Equation(l) (Item > Properties)
Ely=tciE Can be used to set, modify, or check attributes on existing items. Calculates the equation
when the item arrives.

Executive

Its Attributes tab is used for attribute management, such as renaming or deleting attributes
or locating where they are used in a model. It is also where string/value equivalents are
declared for string attributes.

i

Items, Properties, and Values | 111
Item generation

Property-aware blocks

Item properties include attributes, priorities, and quantities. In addition to the blocks listed above,
the following blocks in the Item library provide an interface for viewing, selecting, or modifying
existing item properties or for adding new ones:

Activity Read(I)

Batch Resource Item
Cost By Item Select Item Out
History Shutdown
Information Throw

Queue Unbatch
Queue Equation Workstation
Queue Matching Write(T)

Item generation

Items for a model are usually generated using the Create block. While it can also generate values,
the Create block can create items:

=)
=
e}
o}
I
-
o
3!
<
I}
=
-

* Randomly. A random distribution causes items to be generated with a random or constant
interarrival time. The distribution determines the time befween item arrivals; a smaller interar-
rival time indicates that items will arrive more frequently. See the examples below.

* By schedule. Creating items by schedule causes an item to be generated at a specific arrival
time. The schedule defines when the item will arrive and the time between arrivals is fixed. See
the examples in “Generating items according to a schedule” on page 114.

* Infinitely. This provides an infinite supply of items that are available 072 demand. For instance,
connecting a Create block with this behavior to a Gate block would provide an item to the Gate
block each time it opens.

& A Create block is set to Create items infinitely should never be connected to an infinite capac-
ity queue, since generating an infinite supply of items would overwhelm the system.
0= Tn a model, each item can represent an individual entity or a collection of individual entities. For

instance, 50 items coming into a model could represent 50 people or it could represent 50 bus
loads of people. How you characterize items is completely up to you.

Generating items at random intervals

The Create block can generate items that arrive to the model at random times. When set to “Cre-
ate items randomly”, the Create block outputs items at random intervals; the arguments of the dis-
tribution define the interarrival time.

Example model
As you saw in the Discrete Event Tutorial on page 100, the Car Wash model is an example of using
the Create block to generate items at random intervals.

I=" The Car Wash model is located in the \Examples\Tutorial\Discrete Event folder.

112 | Items, Properties, and Values
Item generation

Choosing a distribution in the Create block

The dialgg c?f th; Creatc? blo'ck.contains LE®
several dlstrlbutlon ChOICCS 1n 1ts “SPCC' Create | Options | ltem Animation | Block Animation | Comments

ify a distribution” popup menu, as Well | . sams and votwes randemsy or by scredie E
as a table for entering data when an =

"Se\emhlnck behavior

empirical distribution is selected. Each Time units: generic®

distribution is described in the Create

N | Specify a distribution for time between arrivals (TBA) Itern information
block’s Help; they are also discussed Pt Samgls Hom cwartiy @
. e e T
briefly in “Probability distributions” on mean Tolalereated [0
606 lacation l:l Total guantity: o
page . Total cost
Choosing a distribution in the dialog of
the Create block defines both the inter- | 2%t Souree modsldsiou
val between item arrivals (the interar- [Help | Lettoriont_) 4] | rl

rival time) and the characteristics of the Exponential distribution selected; mean is 4
rate of arrival.

In the Car Wash model, for example, select-

[FIGIL[R[Q[A] 2]
v v

= ing an exponential distribution with a mean | percene rems o’ Dicriousion

4 of 4 will cause one car to arrive approxi- T

= matel 4 mi for the durati f |

° y every 4 minutes for the duration o [

8 the simulation. This results in an interarrival Bosr

§ time of 4. However, the shape of the expo- 028y

a nential distribution dictates that it is more 0002532636 0312787 1862304 279333 37 24355
. . . . e oz04
likely that the time between arrivals will be — % hems el Time

1

between 0 and 4 than between 4 and 8.
Distribution of outputs when mean is 4

Random intervals with dynamic

parameters

You may want the parameters in a random distribution to change as a function of time or model

status during the simulation run. The arguments for a given distribution can be controlled dynam-

ically through the Create block's value input connectors.

Random Intervals model

In the Random Intervals model, time dependent arrival rates are modeled by connecting the
Lookup Table block (Value library) to the Create block’s value input connectors. A table in the
Lookup Table block provides the mean values for an exponential distribution that has been set in
the Create block. This causes the timing of item arrivals to be based on the time of day.

mean: f__ |
o196
Jlp=—_f— o~
Q Q v ow wF Exit
heanw Queue FIFO Potivity
Create
Time

Lookup Table

Random Intervals model

Items, Properties, and Values
Item generation

Specifying the dynamic parameters

As seen in the dialog of the Create block, items arrive exponentially. Notice that the exponential
distribution has a “Mean” parameter. Connecting the output of the Lookup Table block to the
Mean input connector of the Create block causes the mean of the distribution to come from the
Lookup Table during the simulation run, overriding any entry in the dialog. This dynamically
changes the average interarrival time.

The distribution determines the interarrival time. A
smaller mean value indicates that there is less time
between arrivals and items arrive more frequently.

ZI[11] Lookup Table <Value> (=3

Table | options | Comments

Looks at the time or input value, then b

In the Lookup Table’s dialog, the mean is smallest outputs the corresponding table value Cancel
from hour 10 until hour 12, causing items to arrive r Specify behavior
more frequently during that period. Lookup the: [fme 2
Output is:
Choosing time units for the columns Time units: [Roars®

When the block is set to “Lookup the: time”, the

. . rEntervalues in the tabl
Lookup Table block looks at the current simulation ervaugs nfne fawe

time and outputs a corresponding value. Its table is 7 R e 1

used to determine the value that is output (by default ! 2 g

the Output column; in this model, the Mean col- 9 n 00

umn) at a given simulation time (by default the Time : s :

column; in this model the Hour column). Its time

units popup menu (in this model “hours”) represents _

the unit of time for the values in the Time/Hour col- %‘—I Plot %

umn. However, that does not control what the out-

put of the Output/Mean column represents. [Repeattable every.
The time unit for the Lookup Table block’s output _ modsl defukt
column is determined by the block that receives its acl LT 2 .
output values. Scheduling interarrival time

When a value passed to a block’s input connector is

used to set a time parameter (as in this case), the value sent must be defined in the time unit that
the receiving block expects. In this model, the values from the Mean column are sent to the Create
block and are used to calculate the average time between arrivals. Since the Create block is using
minutes as its local time unit, the values in the Mean column of the Lookup Table block also rep-
resent minutes. For instance, the value of 6 in the Mean column represents an average of 6 minutes
between arrivals, even though the event time in the Hour column is in hours.

Do not set the mean of a distribution to 0. The Create block will warn you if you make this mod-
eling error.

Making sure the arrival occurs when expected

To avoid unexpected results, it is important to understand what happens in the Create block when
you vary the mean of the arrival intervals over time. The blocK’s default behavior is to generate an
arrival time, called “nextTime”, for the next item based on the current input parameters. When
simulation time reaches nextTime, the Create block releases an item and generates a new nextTime
based on the current values of the input parameters. For the period of time between releasing
items, the Create block will not react to changes in the input parameters. If the inputs change dras-
tically, this can cause unexpected results as discussed in “Cycle timing” on page 254.

113

=)
=
o]
=
[}
-
o
o3|
<
o
=
-

114 | Items, Properties, and Values
Item generation

Generating items according to a schedule

Scheduling item arrivals can provide more flexibility and precision than having them generated
randomly. Setting the behavior of the Create block to “Create items by schedule” allows item arriv-
als to occur at fixed intervals that are specified in a table.

Scheduled Intervals model

Assume you want five items generated, one per minute, but that the simulation takes ten minutes
to run. Setting the Create block to “Create items randomly” and selecting a Constant distribution
would generate one item per minute, but there will be ten items. Generating items by schedule
allows you to customize when items will be created and how many items the model will have.

Create Time ftem OQuanitity J
1

ok
ok

Link | 4 Ll b4
1 7 %]
J - /E=E| @ IE=E| @ = |“
start Q v ow wF Exit
Create Queue FIFD Potivity

Scheduled Intervals model

In the example model, the dialog of the Create block is set to “Create items by schedule.” The
schedule of arrival times, which is cloned onto the model worksheet, indicates that one item will
be generated at Create Time 1, another item at Create Time 2, and so forth up to time 5. With this
schedule, the model has five arrival events.

-
b,
>

o8
L
=1
[
P
9

<t

a

The items proceed to a Queue to wait for processing by the Activity, which takes three minutes to
process each item. Since the simulation runs for ten minutes, only three items exit; one item is left
in the Queue and one item is still being processed in the Activity.

This method is especially useful when the time between item arrivals is known but not regular. For
instance, the first item could be generated at Create Time 1, the second item at Create Time 3, and
the third item at Create Time 3.5.

Notice that the Item Quantity column has a default value of 1 for each item generated. This means
that each item generated represents 1 item. Item quantities are described fully in “Quantities” on
page 124.

15 An alternative method would be to use a Create block set to Create items randomly, and select
a Constant distribution with a value of 7 in its dialog. Then in the block’s Options tab, select
Maximum items generated.' 5. This method is less flexible than the earlier method, since each
item would have to have the same interval between arrivals.

The Start connector

When the Create block is set to Create items by schedule it has a start value input connector that
can be used to control when the schedule is executed. The timing in the Create block depends on
whether or not the start input is connected:

o If the start connector 7s 70t connected, the schedule's item creation times are synchronized with
the simulation run's absolute time. For example, if the schedule's first create time is at time 2
and the simulation's start time begins at time 0, an item would be created when simulation time

Items, Properties, and Values | 115
Item properties

reaches 2. However, if the starting time entered in the Simulation Setup dialog is 4, the item
scheduled at time 2 is never created.

e If the start connector s connected, such as to a Decision block (Value library), the schedule's
item creation times are relative to when the connector is activated. For instance, assume simula-
tion starting time is 0 and the first item is scheduled for creation at time 11. If the start connec-
tor gets activated at simulation time 5, then the first item will be created at time 16 (5 plus 11).

05" Starts are activated whenever the connector receives a message with a True value (defined as greater
than or equal to 0.5).

The Create block’s Options tab provides choices for how the start connector should behave, as dis-
cussed below:

o Follows schedule. This is the default option and should be used for most situations. Once the
start connector is activated, the entire schedule will be executed. Any new activation signals
arriving before the current schedule has completed are ignored.

o Generates one item per message. This is an advanced choice for special situations. It is most
often used when a custom-created block is connected to the start connector and you want an
item to be instantaneously generated for every message. With this choice, the schedule is
restricted to one row. Each time the start connector is activated, the row is executed.

o Generates one item per event. This is an advanced option for special situations. With this
choice, the schedule is restricted to one row. Each time the start connector is activated, a zero-

=)
=
e}
=
[
-
o
1
<
a
=
-

time event is scheduled. Once the Create block gets the zero-time event message, it will execute

the schedule.

Item properties

A property is a quality or characteristic that stays with an item as it moves through the model.
Some properties can be assigned to items by the model builder; others are automatically assigned
by the system.

An item’s properties include:

¢ User-assigned attributes. These are discussed in the next section.
* Priority. See page 122.

* Quantity. See page 124.

¢ System-assigned attributes. See page 126.

Attributes

Because they allow items to be distinguished from each other, attributes play a very important role
in a discrete event simulation. They are especially useful for telling an activity-type block how long
the item should be processed, or for determining where the item should be routed before or after
processing. The following sections describe how to create, use, and manage attributes.

Attribute names and values
Each attribute is composed of a name and a numeric value:

* An attribute’s #ame identifies some general characteristic of the item such as “size”, “route”,

“CarType” or “tank capacity”.

116 | Items, Properties, and Values
Item properties

* An attribute’s value indicates one dimension of the named characteristic. For instance, an item’ s
“size” attribute could have a value of “8” or a value of “12”, while an attribute named “CarType”
could have a value of “1” (for Ford), “2” (for Toyota), or “3” (for Volvo). An attribute value is
not just a number; it can also be the address of data in a database.

Attributes are meant to be unique; if you attempt to add a new attribute with exactly the same

name as an existing one, ExtendSim warns you that the name already exists. While attribute names
are not case sensitive (“Type” is equal to “type”), spaces are significant and should be avoided.

Attribute names and values are stored in a pair of dynamic, global arrays, described in “Attribute
arrays” on page 121.

I=" The Car Wash model for the tutorial on page 106 used string atcributes. Models with string
attributes use text to represent the corresponding attribute value. However, the underlying archi-
tecture is that attribute values are still numbers. For more information, see “Attribute types”.

Number of attributes in a model

In a model, each item can contain up to 500 attributes that uniquely describe the item. Every
item contains the full set of attributes that have been defined in the model. The Executive block’s
Attributes tab displays all of the model’s attributes.

Each attribute contain a value that can represent either:

* A number that can be used for routing, timing, and so forth.

-
b,
>

o8
L
=1
[
P
9

<t

a

* The address of data in a database or global array. The data pointed to can contain a single num-
ber or an unlimited amount of additional data that describes the item, its route, its properties,
and so forth.

I If you use attributes efficiently, there is almost no limit to what can be represented. If you do
approach the 500 attribute limit, consider using DB address attributes (discussed below) to refer-
ence information in the ExtendSim database.

Attribute types
ExtendSim supports three types of attributes:

o A value attribute holds a real number as its attribute value.

* The value of a string attribute is still a number, but it is represented in the model by a string.
With string attributes you enter a descriptive text label (string) for each potential attribute value
in a lookup table in the Executive block’s Attributes tab. The string can then be used in the
model in place of the corresponding number. For example, a string attribute named “CarType”
might have three possible values: 1, 2, and 3. Once the lookup table for this attribute has been
properly configured, the blocks referencing the CarType attribute will display the strings “Ford”,
“Toyota”, or “Volvo” instead of the numbers 1, 2, and 3.

* The value of a DB addyess attribute contains a single value that represents a location or address
in a database. This address is composed of four separate numbers, where each number is an
index for an ExtendSim database, table, field, and record. Taken together, the numbers target a
specific location in the database. (Incomplete DB addresses are allowed. For example, an item
may have a DB address attribute with only the database and table indexes defined.)

Items, Properties, and Values | 117

Item properties

I=" The value of a DB address attribute cannot be used directly. It must be “decoded” using a Get.
Read(I), or Write(I) block or by accessing DB attribute functions in one of the equation-based

blocks.

Using attributes

The following table lists some common attribute-based modeling activities and the blocks that are
usually used to facilitate them. All blocks are from the Item library.

To Do This:

Use Block(s)

Initialize newly created items with attributes

Create (when “Create items by schedule” is
the selected behavior)

Define default attributes for item resources

Resource Item

Set or modify values for existing attributes

Set, Equation(I), Queue Equation

Check attributes on existing items

Any property-aware block; see the table on
page 111.

Route items based on attributes

Select Item Out (when “Select output based
on attribute” is chosen)

Sort and release items from queues based on attributes

Queue (when it sorts by attribute value),
Queue Matching

=)
=
e}
o}
I
-
o
3!
<
I}
=
-

Sort items based on attribute values and conditionally
release them based on an equation

Queue Equation

Pull in items and batch them based on attribute values

Batch (when “Match items into a single
ol X
item” is the selected behavior)

Use attribute values to specify a delay or processing
time

Activity (when “Delay is: an item’s attribute
value)

Define the value/string correspondence for string
attributes

Executive (Attributes tab in “Declare string
attribute values” mode)

Find which block uses an attribute

Executive (Attributes tab in “Manage all
attributes” mode)

Managing attributes and their names, such as renam-
ing or deleting an attribute

Executive (Attributes tab in “Manage all
attributes” mode)

Calculate an item’s cycle time

Set an attribute to the current time in a Set
block or use the T7ming attribute feature in
the Create block’s Options tab. Then use the
Timing attribute feature in the Information
block so that it calculates the difference from
start to end time. See “Cycle timing” on
page 254.

Adding attributes to a model

The Item library blocks that deal with attributes are listed in “Property-aware blocks” on page 111.
These blocks provide a popup menu interface for selecting existing item properties or for adding

new ones.

118 | Items, Properties, and Values
Item properties

I=" Depending on the block, the popup menu may offer different choices of attribute types to set. For
example, the Set block allows creating value, string, or DB address attributes.

Creating a new attribute causes it to appear in the list of properties in the block’s dialog and makes
the attribute accessible by every property-aware block in the model.

The following information describes how to create different types of attributes in the Property
Name column of the table in the Set block’s dialog:

* To create a new value attribute, click the Property Name popup menu, choose New Value
Attribute, type the name of the new attribute in the dialog that appears, and click OK. For
example, a value attribute might be named “size”.

* To define a new string attribute, select New String Attribute from the popup menu in the Prop-
erty Name column, enter a name, and click OK. This automatically opens the Executive block’s
Attributes tab. The table in this tab is where the attribute values (and the corresponding strings)
for string attributes are declared. An example of this is shown in “Creating a string attribute” on
page 106. An example of a string attribute could be “CarType” and the corresponding string/
value combinations might be Ford/1, Toyota/2, and Volvo/3.

* Creating a new DB address attribute requires an existing ExtendSim database. In the Set dialog,
select an ExtendSim database from the popup list that appears. To create the DB address
attribute, click the popup menu in the Property Name column, choose New DB Address
Attribute, type the name of the new attribute in the dialog that appears, and click OK. For
example, a DB address attribute could be named “ProcessTime”.

-
b,
>

o8
L
=1
[
P
9

<t

a

With the three different types of attributes, the Set dialog could look like:

r Selectwhich properties to assign to the item

Datahase: [Database 1 |
Property Hame “wilug Table Field Recard J
1 Size - NiA Wi HiA
z CarType Ford - MNiA NiA MEA
3 ProcessTime - IR E Table 1 Field 1 - Con 2 -

L« 7
v Show property name on input connector
[Show property value on input connector

After attributes have been created, they must be attached to items in the model and they must have
unique values assigned to them.

Selecting attributes and attaching them to items
To allow an attribute to be used, define the attribute and assign a value to it. This is done using
one of the attribute-handling blocks, such as Set or Create.

The most common method for assigning attributes to an item is to select an attribute in the dialog
of a Set block, then pass the items through the block. The value of the attribute can be defined in
the Set’s dialog or through its value input connectors.

Another commonly used block is the Create block when it is in “Create items by schedule” mode.
This is a convenient way to initialize new items with a set of attributes as they are introduced into

Items, Properties, and Values | 119
Item properties

the model. In the Create’s schedule table, you can select an attribute from a popup menu in one of
the columns, then enter a value for that attribute for each Create Time row in the table. An item
generated at the specified times will have the attribute name and value indicated in the table.
Other blocks, like the Resource Item block, can also be used to attach attributes to items.

The information that follows assumes that you are using the Set block to assign an attribute to an
item and that you have already created the attribute using a method described on page 117.

Value attribute

To set a7value attribute, sele.ct. an attribute in the Property Name | Eapein lfoae Er—
column’s popup menu. (Existing value attributes are listed below [- 14

the New Value Attribute divider.) Then enter a number in the

Value column. In the screenshot at right, the Size attribute has 1 »

been selected and 14 has been entered as the value.

String attribute
To set a string attribute, select an existing attribute (listed |

. A L. Property Hame “wilue |
below the New String Attribute divider) from the popup 1 | Carlype « Ford

menu in the Property Name column. Then click the cell
in the Value column to bring up a popup menu contain- 1
ing all the string values that have been defined for the

attribute. In the example at right, the selected string

attribute is CarType and the Value popup menu contains the strings Ford, Toyota, and Volvo. If
Toyota is selected, the corresponding value that gets stored on the item for the CarType attribute
will be the number 2.

=)
=
e}
o}
I
-
o
3!
<
I}
=
-

Connecting a Random Number block (Value library) that uses an Empirical table to a Set block
that accesses a string attribute will cause the strings for that attribute to appear as a popup list in
the empirical table’s Value column. This is shown in “Checking the attribute” on page 107.

DB address attribute
Each Set block only points to one ExtendSim database, which becomes one element of the DB
address. To set a DB address attribute in a Set dialog:

» Choose a database from the popup menu.

» In the Property Name column of the Set blocK’s table, select a DB address attribute from the
popup menu or create a new one; existing attributes are listed below the New DB Address
Attribute divider.

Once the DB address attribute has been selected, the Set dialog’s table enlarges to display the other
elements of the address (Table, Field, and Record). The value for the DB address attribute is
defined by clicking the appropriate popup menus in the table, selecting whether that element’s
information should be selected from a list, entered as an index, or accessed from a connector. The
screenshot below is an example of the ProcessTime DB address attribute, which gets its value from
a record in the Times field of the Processing Time table in the Process database.

120 [Items, Properties, and Values
Item properties

I You don’t need to select every element for a DB address attribute. For example, you may only want
to specify the database, table and field indexes and ignore the record index.

Database: [Process |
| Property Mame e Table Field Record
1 | ProcessTime » LHH Process time » Times « 2:504

| +63

For a DB address attribute, the Value column displays the database address, as determined by the

indexes of the settings in the Table, Field, and Record columns. In the screenshot above, the Value
notation is 2:1:1:2, where 2 is the index of the Process database, 1 is the table index for Processing
Time, 1 is the field index for Times, and 2 is the index for the selected record, which has a value of

5.04.

Once the attribute has been set, the attribute information indicated in the Set block’s dialog will be
assigned to each item as it arrives to the block. Attribute values may also be defined dynamically
using the Set block’s value input connectors to override values set in the dialog.

Every model has an internal list of all the attribute names that have been created for use by items in
that model. However, not all items in the model will make use of every attribute name. For an item
to use an attribute name, the value of the attribute must be explicitly set using an attribute modify-

ing block (such as a Set block).

-
b,
>

o8
L
=1
[
P
9

<t

a

Getting attribute values and reporting changes

In order to manipulate an item based on the attribute, usually to route it or process it, you need to
get the item's attribute value. The most common method for getting attributes is to select the
attribute by name from the list in the attribute popup menu in an attribute-reading block, such as

the Activity or Get block.

Activity or Workstation blocks
In the dialog of an Activity or Workstation block, you can specify that an item's attribute value be
used as its processing time, as shown below.

Specify processing time (delay)

Delayis: [anitem's affribute value] Delay (01 |1 tirme units
Attribute: [Checklime]

Get block

When items pass through the Get block, it accesses information about the attributes that have
been specified in the table in its dialog. It then reports the information in the table and on its value
output connectors. What the Get block reports and where, depends on the type of attribute:

o Value attributes. The value for the attribute is posted in the Value column of the attribute table

and on the value output connector that corresponds to the attribute.

o String attributes. The string text is displayed in the Value column of the attribute table and the
number that corresponds to the string is posted on the appropriate value output connector.

Items, Properties, and Values | 121
Item properties

15" Connecting a Lookup Table block (Value library) that is set to Lookup the: input value to a Get
block that accesses a string attribute will cause the strings for that attribute to appear as a popup
list in the Lookup Table block’s leftmost column.

* DB Address attributes. You can get either an individual element of a database address or its
entire address. To do this, from the popup menu in the table’s “DB attrib reports” column, select
which of the 5 components will be retrieved (db index, table index, field index, record index, or
db address). The first 4 choices provide individual elements of the address; the “db address”
choice provides the entire address. The information will be reported in the Value column and on
the value output connector for that attribuce.

=" To access all five elements of a DB address attribute, add five rows to the table. Each row should
have the same DB address attribute listed in the Property Name column, but different selections
for the “DB attrib reports” column. This comes in handy when the Get block is working in con-
junction with the Read or Write blocks (Value library). It allows the read or write location to vary
based on what information is traveling on the item.

In addition to value outputs for reporting an attribute’s value, the Get block has a A (delta) con-
nector for reporting when an attribute’s value changes. The A connector outputs a 1 when an
item's attribute value (for the first attribute specified in the dialog) differs from the previous item's
attribute value. Otherwise it outputs 0. This is useful for determining when there is a new type of
item or when an attribute value used for processing time has changed. For example, you can have
an attribute called “Type” with values that specify the type of item. When the value of Type
changes, indicating a new type of item, the A connector outputs 1. This is shown in “Adding setup
time” on page 172.

=)
=
e}
Q
I
-
o
3!
<
I}
=
-

Modifying attribute values

The most flexible way to modify the value of an item’s attribute or other property is with the Equa-
tion(I) block (Item library). This block can look up property information and modify it by apply-
ing some mathematical formula, then use the result as the new attribute value for the item. For
example, if an item arrives with a value of 5 for the attribute “nextRecord”, you could add a 1 to
the 5 and create a new attribute value of 6 for that item’s nextRecord attribute. The Air Freight
model discussed on page 213 is an example of this.

Another way to modify properties is to connect from a Get block’s value output to a Math or
Equation block (both from the Value library). Then have that block apply some mathematical for-
mula and output the results to a value input on a Set block. The property must be selected in the
dialogs of the Get and Set blocks, and the value connectors must be for that property.

Attribute arrays
Attribute names and values are stored in a pair of dynamic global arrays:

* The one-dimensional Names array stores the name of each attribute currently used in the
model. Attribute names can be up to 15 characters long. You will receive an error message if you
attempt to give an attribute a name greater than 15 characters. Attribute names are not case-sen-
sitive.

¢ The two-dimensional Vz/ues array stores the value of each attribute for each item in the form of
real numbers.

122 [Items, Properties, and Values
Item properties

The following picture represents the attribute arrays:

number of attributes

atttibutex’ attibuteY attibuteZ in model (max of 500)

Names array [type | size | color [
¥alues array jtem & 2 5 1 |"
item B 2.3 5.01 ‘\
item C 5 7)

number of items in
tnadel [unlirit ed)

As new attribute names are added to the model, new cells (array elements) are appended to the
Names array and new columns are appended to the Values arrays, up to a maximum of 500.

As new items are created during the simulation run, new rows are added to the Values array. The

number of rows in the Values array is unlimited and will be the same as the number of items in the
model. As shown in the above picture, item A has an attribute named “type” that has an attribute
value of 2 and item B has an attribute named “size” with a value of 6.01.

Note that each attribute named in the model causes a cell to be reserved in the Values array for
every item. However, not every item uses every attribute. To allow an item to use an attribute, you
must assign a value to the attribute using one of the attribute-handling blocks (such as the Set
block). If there is no value assigned, the attribute is not used by that item. This is shown in the fig-
ure above, where item B has no assigned value for the attribute name “color” and item C does not
have a value for the attribute “size”.

-
b,
>

o8
L
=1
[
P
9

<t

a

Priority
Like attributes, a priority is a
type of item property that

Z[1] Set <ltem>

can be assigned to an item. Set Properties | tern Animation | Block Animation | Comments

Priorities Signify the impor- Assigns properties to items passing through ol
tance Of %te{ns. USing the rSelectwhich properies to assign to the item —

_Item priority property, you Database: [Selert a dalabase N

can asslgl} priorities to items T e — = oot - |

and manipulate them based T _hem prorty -1 NIk NIk NIk

on their priorities.

Priorities are particularly

useful when you want to L s -
examine a population of ™ Show property name an input connector

waiting items and deter— [Show property value on input connectar

mine their processing order. Block pe: Passing

For example, you mighthave | |, ———tertovign <14/ | "z

a step in a manufacturing
process where a worker examines the pending job orders and chooses the one that is the most
urgent.

I Jtems can only have one priority. If you need multiple levels of priorities, use attribute values
instead.

Items, Properties, and Values | 123
Item properties

When a new priority is added to an item that already has a priority, the new priority prevails.
When items are batched, the highest priority of the items prevails in the resulting batched item.

I=5" The lowest value (including negative values) represents the top priority.
Setting, getting, and using priorities

The following table lists some common priority-based modeling activities and the blocks that are
usually used to facilitate them. All blocks are from the Item library.

To Do This: Use Block(s)

Initialize newly created items with priorities Create (when “Create items by schedule” is
the selected behavior)

Define default priorities for resource items Resource Item

Set, modify, or check priorities on existing items Set, Get, Equation(I)

Select incoming items based on priorities Select Item In (when “Select input based on

item priority” is chosen)

Sort and release items based on priorities Queue (when it sorts by priority)

Sort items based on priority and conditionally release ~ Queue Equation
them based on an equation

=)
=
e}
o}
I
-
o
3!
<
I}
=
-

View an item’s priority Get, History

Allocate resource pool units to the highest ranked item Resource Pool
first

05" The Select Item Out block does not assign or use items’ priorities. Instead its output connectors
can be prioritized so that an item will be routed to the first available connector that has the highest
priority. As shown in “Explicit ordering” on page 155, the Select Item Out block prioritizes the
path an item will take rather than the item itself.

Priorities model

In the example, a Random Number block (Value library) outputs values to a Set block, as follows:
* 10% of the time it outputs a 1

* 40% it outputs a 2

* For the remaining 50% it outputs a 3.

aio
J Y 1O 3
v hd [Exit
Create Priorty Queus Activity
Rand e
)
=] =
D=1
40°%=1

50%=3

Priorities model

124 [Items, Properties, and Values
Item properties

The table in the dialog of the Set block indicates it will assign priorities to incoming items. Con-
necting from the Random Number blocK’s output to the Set block’s ItemPriority value input con-
nector causes the priorities to be set according to the values from the Random Number block.
Since the lowest number is the highest priority, 10% of the time items will be assigned the highest

priority.

The Queue block is set to sort by priority. This means that the highest priority items held in the
block will be made available to the Activity block before other items. A History block, added to the
model by right-clicking on the Queue’s output connector, shows that only top priority items are
processed; the Activity cannot keep up with the demand.

The section “Interrupting processing” on page 177 shows how priority values are used to deter-
mine if one item should preempt another.

05" For an item to be ranked by priority, there must be other items in the group at the same time. For
example, items will only be sorted by priority in a Queue block if they have to wait there with
other items.

Quantities

Quantity is another type of property that can be assigned to items. Each item can be a single entity
or a group of duplicates. As is true for priority, an item can only have one quantity assigned to it at
a time; the default quantity is 1. If the quantity property for an item is 1, it represents one item. If
the quantity is other than 1, it represents a group. Item quantities are typically set in the Create

and Set blocks.

An item’s quantity can be any number, including a negative number. An item with a quantity of 0
or less disappears when it reaches a queue.

-
b,
>

o8
L
=1
[
P
9

<t

a

For most purposes you would not want to change the quantity of an item from its default value of
1. However, to model a change of shift consisting of five workers going off duty at the same time,
to simulate the delivery of a box of 300 pieces of mail to a mail room, or for similar situations, set
the quantity of the item to be other than 1.

How blocks treat items with quantities other than 1

Items with quantities other then 1 are treated differently depending on the nature of the block pro-
cessing them. They will travel together as a unit, being processed essentially as one item, undil they
reach an Exit, a Queue, a Batch, or a Resource Item block, or are sent into a universal connector
(such as Change, Demand, Select, or Start.)

* When an item with a quantity other then 1 reaches an Exit, Queue, Batch, or Resource Item
block, it is decomposed into separate identical items. For example, when it enters a Queue, an
item with a quantity of 10 will become 10 distinct items, each with a quantity of 1 and each
with the same properties (attributes, priority, and so on) of the original item. An item with a
quantity of 0 will disappear when it reaches a Queue.

* When items with quantities other than 1 are sent into a universal connector (such as demand or
select), they are treated as one item, but the quantity of the item may be used by the block as
control information. See below for more information on how universal connectors deal with the
incoming items that have quantities other than 1.

All the other blocks deal with items that have quantities other than 1 as a single item, ignoring the
quantity associated with it.

Items, Properties, and Values | 125
Item properties

I The Activity block accepts an item with a quantity greater than 1 as a single item and process it as
one unit. To have the items be processed separately, precede the Activity block with a queue, since
queues decompose items with quantities greater than 1.

Setting an item’s quantity
A quantity can be assigned to an item in the Create, Set, or Equation(I) blocks.

Set block

In the table in the Set block’s dialog, select _Item quantity in the Property Name column and
enter the quantity in the Property Value column or input a value to the Block’s _Item Quantity
value input connector. Each item that passes through the Set block will be assigned that quantity.

Create block

The default setting in the Create block is that one item is input to the model at each arrival event;
this is the most common case when building models. How you specify that a multiple number of
items be released at each event depends on which behavior is selected for the Create block:

* Create block is set to “Create items randomly”. Change Item quantity (Q) in the Options to an
integer number other than 1. Or input a value to the Create block’s [temQuantity (Q) value
input connector.

¢ Create block is set to “Create items by schedule”. Enter values in the table’s Item Quantity col-
umn for each Create Time field that has arrival times.

=)
=
e}
o}
I
-
o
3!
<
I}
=
-

For example, assume you want to show that one item arrives randomly approximately every 4 min-
utes. To do this, use the same settings as in the Car Wash model from the discrete event tutorial: in
the Create block select the Exponential distribution and enter Mean: 4; in its Options tab leave
Item quantity (Q): 1. To show that 2 car/items arrive every 4 minutes, keep the settings at Expo-
nential with a mean of 4, but enter Item quantity (Q): 2. The block will now output one item
with a quantity of 2 approximately every 4 minutes.

As discussed in “How blocks treat items with quantities other than 1” on page 124, the blocks that
follow the Create block determine how an item with a quantity greater than 1 is treated. For
instance, if an item with a quantity of 2 goes directly into a Queue or Resource Item block, it will
be split into two items each with a quantity of 1. However, if the item goes directly into an Activity
block, it will be treated as a single item with a quantity of 2. In most cases, you will want to follow
the Create block with a Queue, which will decompose the item into two separate items.

I Tn most cases, you probably will not want to generate more than one item at each event. For exam-
ple, rather than inputting 2 items every 4 minutes as discussed above, you would probably want to
generate 1 item every 2 minutes. This is because, unless they are inside a container of some sort, it
is not common to see two items arrive at exactly the same time; items are more likely to arrive at
slightly different times.

Quantities model

For example, assume you will receive 500 items a week, but that almost all of them are received on
Wednesday. In this case, there are five arrival events (one event each on days 1 through 5), each
with an item quantity of either 50 or 300.

This Quantities model is similar to the Scheduled Intervals model from page 114, except each
item the Create block generates has a quantity greater than 1 and the Activity processes 5 items at
a time.

126 | Items, Properties, and Values
Item properties

The dialog of the Create block is set to Create items by schedule. The arrival times (Create
Time) and the number of items arriving at the scheduled time (Item Quantity) are entered in the
table, which has been cloned onto the model worksheet.

The table indicates that on the third day (Wednesday) 300 items arrive but that 50 items arrive on
each of the other days.

Create Time ftem OQuanitity J
50

&0
300
&0

ok
ok

A0
| Link | «| | D
450
J - /E=E| IE=E| @)p—, |“
tart Q v ow wF Exit
Create Queue FIFO Potivity

Quantities model

The Create block outputs an item with a quantity greater than 1 as if it were a group of items all
arriving at the same time. When the item goes to a Queue block, it becomes multiple copies of
itself. In this example, as each item is sent from the Create block to the Queue block, it will
become either 50 or 300 units, depending on its quantity.

Running the model shows that the Create block creates 5 items, but that 500 items have arrived to
the Queue.

-
b,
>

o8
L

=1
[
P
9
<t
a

Other item properties

In addition to the item properties discussed above, such as the item quantity or user-defined
attributes, ExtendSim can assign properties to items. As shown in the property popup menu below,

these system properties are preceded by the “_” character and include:

 _Item index. This property is available in the Get, Equation(I), and “Jrom index
History blocks and points to where the item is located in the item _Item quantity
arrays stored in the Executive block. It is used by block developers _tem priority
for debugging. 3D abject I

* _3D object ID. When you select a 3D animation object to repre- lew Value Attribute
sent an item, this property stores the index of the object. ::z:;

¢ _Cost or _Rate. If there is an entry for cost somewhere in the Mew String Attribute
model, ExtendSim will add the _Cost and _Rate attributes to lew DB Address Attribute
property popup menus. For more information, see “Working with More

cost data” on page 231 and “Combining multiple cost accumula-

History block Properties menu
tors” on page 236.

Discrete Event Modeling

Queueing

Storing items in buffers or waiting lines

128 [Queueing
Blocks of interest

A queue provides a buffer or waiting line to store items awaiting further processing. Queues can
have simple behavior, such as holding items in first in. first out (FIFO) order, or more complex
behavior, such that items are held and released in groups based on their attributes. You can also set
an option in the Queue block’s dialog to specify how long an item will wait until it reneges, or pre-
maturely leaves.

This chapter covers:
* Queueing disciplines: LIFO, FIFO, Priority, Attribute, and User-Defined
* Queue/server systems
* Blocking, balking, and reneging
* Sorting items using the Queue Equation block
¢ Least dynamic slack, minimizing setup, and maximizing service levels
* Using the Queue Matching block to match items into groups based on their attributes
* Viewing and initalizing queues with the Queue Tools block
* Displaying queue contents through animating
05" This chapter’s examples are located in the folder Examples/Discrete Event/Queueing.

Blocks of interest

The following blocks are the main focus of this chapter. Each blocks library and category appears
in parentheses after its name.

-
b,
>

o8
L
=1
[
P
9

<t

a

Queue (Item > Queues)
IE!‘ F Stores items until there is downstream capacity. As a sorted queue, holds items in FIFO or
LIFO order, or sorted by their priority or attribute value. As a resource pool queue, holds
items in FIFO order.

Queue Equation (Item > Queues)
al v=f(x)E Stores items. Calculates an equation when it receives an item or when it is triggered by a
b

value connection. When there is downstream capacity, releases items based on the results of
the equation.

Queue Matching (Item > Queues)

@‘ & & F Has a specified number of internal queues for holding items in separate groups. Releases a
g group when there is downstream capacity and the group requirements have been met. This
block is useful for matching one type of item with another.

Queue Tools (Utilities > Discrete Event Tools)
a _ﬁ When connected to the L (length) output of a queue, views and initializes the queue’s con-
e tents. Displays information about item properties in a table. Can add an initial number of
items, with specified properties, to a queue.

I=" In this chapter the focus is on using a Queue block to represent a sorted queue. For information
about using the Queue block as a resource pool queue see “Resource pool blocks” on page 208.
Queueing disciplines
ExtendSim supports several scheduling algorithms, also known as queneing disciplines, through the
queue blocks.

Queueing | 129
Queue/server systems

* FIFO. When set to be a sorted queue, the Queue block can represent a first in, first out (FIFO)
queue, also known as a first come, first served queue. When set as a resource pool queue, the
Queue block represents a FIFO queue for resource pool units. The “MM1 model” on page 130
is an example of a FIFO queue and most of the models in the Discrete Event module use a
Queue block in FIFO mode. For more information about resource pools and how the Queue is
used as a resource pool queue, see “Resource pool blocks” on page 208.

o LIFO. When set to be a sorted queue, the Queue block can represent a last in, first out queue.
As is true when the Queue is set to FIFO mode, the Queue block automatically takes care of
LIFO sorting.

* Priority. As a sorted queue, the Queue block can read priorities and pass items with the highest
priority (lowest number) out first. For this to happen, the arriving items must have a priority.
Items that have not been assigned a priority in the model have a default priority with a Blank
value; they get relegated to the end of the waiting line. To see a Queue sorting items based on
priorities, see “Priority queues” on page 130 or “Animating queue contents” on page 140.

o Attribute. As a sorted queue, the Queue block can use attribute values to sort items in the
queue. In addition, the Queue Matching block allows you to define custom scheduling algo-
rithms based on item attributes. It groups items based on certain attributes and releases them as
a group once requirements are met. For this sorting rule, items must have attributes assigned to
them before entering the Queue. Items that have not been assigned an attribute in the model
have a default attribute with a Blank value; they get routed to the end of the waiting line. The
process for having a Queue sort items based on attributes is similar to the process for sorting
using priorities.

=)
=
e}
o}
I
-
o
3!
<
I}
=
-

e User-Defined. The Queue Equation block allows a user-defined equation to decide the sorting
order for items it holds. This can be used to specify any user-defined criteria for sorting, includ-
ing Least Dynamic Slack, Minimize Setup, Maximize Service Level, and any other combination
of sorting rules. A discussion of these ranking rules and example models start on page 133.

I [t is important to remember that, except for a FIFO queue, there must be other items in a queue at
the same time to allow the queucing disciplines to work appropriately and affect the order of the
items. For example, if you set a Queue block to sort by priority, and there is never more than one
item in the block at a time, the effect of queueing based on priority is negated.

Queue/server systems

Queue/server systems involve the creation of items which then wait in a queue until they can be
processed by one or more servers. The following blocks in the Item library are used to represent
queue/server systems:

* The Create block is used to provide items at exponential interarrival times (and many other
interarrival times as well).

* A Queue block, set to sort in FIFO, LIFO, or some other order, holds the items and releases
them in the designated order. It can have a maximum queue length specified in its dialog.

* The Activity block represents servers: you can specify an exponential or other distributional ser-
vice time within its dialog or by connecting a Random Number block (Value library) to its D
(delay) connector.

130 [Queueing
Queue/server systems

M/M/1 queues

A standard notation often seen in queueing theory is M/M/1. This is a basic construct, represent-
ing a single server queue. The notation translates to: exponential interarrival times/ exponential ser-
vice times/ single server. It is also common to see the designation M/M/1/x, where the x translates to
unlimited queue length, or the designation

M/M/1: x/x/FIFO, which translates to exponential interarrival times/ exponential service times/ sin-
gle server: unlimited queue lengthl infinite population/ first in, first out service.

MM1 model
A typical M/M/1 system expressed using ExtendSim blocks, with the addition of a plotter and an
Exit block, would look like the screenshot below.

-1

ow o b ow wF
Create FIFD Queu Fotivity

Ik

.

Plotter

MM1 model

-
b,
>

o8
L
=1
[
P
9

<t

a

Priority queues

As is true when any other sorting rule is used, a Queue block that sorts by priority will hold items
until there is downstream capacity. Once the downstream block can accept an item, the Queue
searches through the contents of the queue and releases the item with the highest priority. For the
Queue to work properly in this mode, items that enter should already have their priority set; items
without a priority are assigned a default Blank priority and get sent to the end of the waiting line.

Priority model

In the Priority exam- 7o

ple, items enter the L

model and im'medi— . iﬂnﬂom -

ately have their priority S pricrityto 2 K
set to 2. They then pos QQ _EI@ /

[=
enter a Queue block set QJ |:Z —n—ﬁfﬁL = :'
to Sort by: priority. G }é=

After the machining
processes, each item is
inspected for flaws. If < refurn ftams to be remachined

the item does not pass Priority model

inspection, its priority

is re-set to 1 and it is sent back to the Queue block where it waits to be re-machined. When the
machine can accept a new item, the Queue block will release the item with the highest priority. In
this case, any item waiting to be re-machined will be released first.

Set priority to 1

Run the model with animation turned on to watch the items with a priority of 1 (red circles)
bypass items with a priority of 2 (green circles) while waiting in the Queue.

Queueing | 131
Queueing considerations

Queueing considerations
Once items are generated for the model, it is common that they will be held in a queue, typically a
Queue block. In addition to the queueing disciplines discussed above, queues and the items in
them can exhibit other behaviors.

Blocking

Blocking occurs when an item is prevented from leaving a block because there is a downstream
capacity constraint. Blocking is common in serial operations where there are several activities in a
row without queues in between; each activity has the potential for blocking arriving items. It also
occurs when activities are preceded by queues with finite capacity, causing backups in the preced-
ing activity. Blocking increases the waiting time for items in queues and is added to the calculation
of their utilization.

. . « . . . » « . . »
The examples in the sections “Processing in series” on page 165, “Sequential ordering” on
page 154, and “Machines that can only process certain types of items” on page 161 illustrate
potential blocking situations.

Balking

Sometimes customers enter a facility, look at the long line, and immediately leave. This is an exam-
ple of balking. Balking is typically represented by having a Decision block (Value library) look at a
queuce’s length or wait time. If the line meets certain conditions (is too long, takes too long to
move, etc.), a Select Item Out block routes the item out of the model before it enters the queue.

=)
=
e}
=
[
-
o
1
<
a
=
-

Queue length _Lg
o5 Number balked —E| " nem
-y =v=)
j:/ F*Number balked O_—_smms
J |__ /g:@
ow

Q
1
enter line? f_\

Queue length
™

B
OA:=10 ?—emer line?
ng
Balking model

In the Balking model, the Decision block (Value library) monitors the length of a Queue. If the
queue length is less than or equal to the threshold defined in the dialog of the Decision block (10
items), its Y connector will output a 1. This instructs the Select Item Out block to route the item
through its bottom output connector. If the queue length is greater than the threshold, the Deci-
sion block’s N connector will output a 0 and the Select Item Out block will route the item out its
top connector to the Exit block.

Reneging

Reneging occurs when an item, having entered a queue, leaves before it reaches the output. An
example of this is telephone callers who, after being put on hold, will hang up without getting help
if they feel they have waited too long for assistance.

To simulate reneging, select an option in a Queue block’s Options tab. The choices are:

132 [Queueing
Queueing considerations

* Renege items after a specified number of time units. The number of time units can be set in the
blocK’s dialog or through its R (renege) connector.

* Renege items immediately when the R (renege) connector gets a true value (0.5 or greater).

When either of these choices is checked, an alternate item output appears on the right of the
Queue block. Ttems that renege leave through that Renege output. They can be routed back to the
original line (as in the example below), routed elsewhere in the model, or they can exit the model.

Reneging model

In the Reneging model, parts wait in the first buffering queue until they can be heated by a fur-
nace, then wait for processing in a second buffer. If too much time passes before a part is processed
(such that it cools down), the part is sent back to the first buffer to wait for reheating.

W Renege items
[[mintes®)
° 3 1 ais
J _—/@=§T__F=@_Ja=an@j=a Eﬁ_—/ k
b v 0w wF 0¥ wF
Farts Amive Buffer 1 Fumace Buffer 2 Processing

Reneges: 4

Reneging model

-
b,
>

o8
L
=1
[
P
9

<t

a

The Options tab of the Queue that represents Buffer 2 specifies that a part will wait 5 minutes
before it must be returned for reheating. The relevant information has been cloned onto the model
worksheet. As seen in its Results tab, the Queue block automatically counts and reports how many
items have reneged.

Jockeying

Jockeying is when items move from one waiting line to another in an attempt to gain some advan-
tage. To see a good example of jockeying, go to any supermarket and watch as people leave the end
of a slow moving cashier’s line to try and get onto a faster line.

The reneging feature on the Options tab of a Queue block is useful for building a model of this
type of behavior. Normally, items renege if they have spent too much time in a queue. But the
Queue block has a connector that can force reneging of the last item in the line. The Jockey.mox
model is a good example of this.

Queueing | 133
Sorting items using the Queue Equation block

Jockey model

In this model customers arrive from the Create block and are routed through the Select Item Out
block to the shortest of three possible queues.

& Jip= p— a -
:
Jockey item 1 ——&]___

0 Jeckeyem2 — 3 fockay! — =81
Jookey item 3 =] '1[
jockey item 1
Length 1 ——1 y=fox)
Length 2 —8 B——jockey1
Length 3 —=&1 B—ockey? Length 2 o
B—jookey3 N
- T IGILEL|GA]]2) BE—3
Ve FPlotter, Discrete Evert iockey? ——£ @
lockey item 2
0.7
05 J—Lenglh 3
I
0.25 L
jockey3 —EE)
e “f:e e * lockey item 3
]~ Length 1 — Lengihz — Lengih 3 — Black
i

Length 1

Length 2 -
B—2E88

Length o_amas

Jockey model

As customers wait in the queues it is possible for the lines to move at different speeds. The last cus-
tomer in each queue has the option to move to another queue if a shorter line opens up.

Sorting items using the Queue Equation block

The Queue Equation block uses its equation to determine each item's position in the queue. So
that item positioning can be properly determined, every time there is a potential change in the
ordering the equation gets evaluated once for each item currently in the queue. Consequently, this
calculation takes place every time an item enters or leaves the queue, or when one of the block's
value input connectors get a new value.

=)
=
e}
=
[
-
o
1
<
a
=
-

The equation in this block has several different types of output variables; they are listed in the table
on page 134. One of the output variables, “Queue rank”, is used to assign a position to each item
in the queue.

I At least one Queue rank output variable must be defined for this block to function properly.

Once each item has been assigned a ranking, the items are sorted in the queue according to the
“ranking rule” that has been selected in the block’s Options tab; the ranking rules are listed on
page 135. The block’s internal data structure keeps track of the ranking assigned to each item and
items with the “best” rank are placed towards the front of the queue.

I=° fan item has been given a Blank ranking, the item is never allowed to leave the queue.

While only one Queue rank output variable is required to be defined, you may also define addi-
tional (“secondary”) Queue rank variables. They are useful if you are concerned with tie breaking
for two or more items that have the same rank. What constitutes a tie can also be defined on the
Options tab with the +/- parameter. For an example of how a secondary Queue ranking variable is
used, see “Combined rules” on page 137.

As shown in the example models later in this section, the Queue Equation block is useful for calcu-
lating sorting rules for least dynamic slack, setup minimization, service level maximization, and
other complex queueing situations.

134

-
b,
>

o8
L
=1
[
P
9

<t

a

Queueing

Sorting items using the Queue Equation block

Variables and rules

The Queue Equation block has several types of input and output variables as well as some prede-
termined ranking rules.

Input variables

As seen in the popup menu of the block’s input variables table, a number of input variables can be
used to determine the ordering.

Input Variable

Uses

Attribute

An attribute on the item currently being evaluated

Last item to exit

Provides the chosen attribute value on the last item to exit the block

Item quantity

The quantity of the item currently being evaluated

Item priority

The priority of the item evaluated

Item index The current item’s index value

3D object ID The ID of the object used to represent the item in the 3D window
DB value Access a value from an ExtendSim database table

DB address The address of a specific location in an ExtendSim database

DB index The index of an ExtendSim database, table, field, or record

Static variables

Variables that maintain their value from one equation calculation to
the next

Arrival time

The time that the item arrived to the queue

Best result

The best (highest or lowest) equation result (ranking) so far

Connector

A variable number of input value connectors are available

Output variables

Once the block has determined which item will be the next one to be released, a number of output
variables can be calculated for that item. They are shown in a popup menu in the Queue Equation
block’s output variables table and described below.

Output Variable

Uses

Attribute

Store attribute information on the released item

Item priority

Change the priority of the released item

3D object ID

Change the released item’s 3D ID

DB Value

Write information to the ExtendSim database

Queue rank

Defines each item’s rank (position) in the queue. At least one of the
output variables must be of this type.

Connector

A variable number of output value connectors are available

Queueing | 135
Sorting items using the Queue Equation block

Output Variable Uses

Select con Designed to be connected to the Select connector on the Select Item
Out block, this connector is used to route the released item

As mentioned earlier, you can select one or more output variables but at least one of the output
variables has to be of the type “Queue rank”. You can also have more than one ranking variable;
the secondary ranking variable will be used to arbitrate in the case of tied ranking.

I These variables are only available for the item that is currently being released.

Ranking rules

The Queue Equation block’s Options tab provides the following selections to determine which
items should be released first:

* Items with the highest rank value

e Items with the lowest rank value

¢ Jtems with the first TRUE rank value

Each item’s rank value is calculated by the equation using the input variables. The items with the
best rank will be released first.

Least dynamic slack

Least dynamic slack is a ranking rule for queues that tends to reduce the “lateness” of a sequence of
orders. Slack is defined as the due date minus the remaining processing time. In essence, it is the
“float” that is available before the item is due to be completed. When using slack to sort items, pri-
ority is given to those items that are closest to being late. In a model that represents orders for ser-
vices or goods, choosing the order with the least dynamic slack tends to minimize the number of
late orders.

=)
=
e}
=
[
-
o
1
<
a
=
-

Least Dynamic Slack model

The example model Least Dynamic Slack illustrates the improvement in on-time performance that
can be achieved by sequencing orders by least dynamic slack instead of first in, first out ordering.

e

%

Sort orders by least Sort orders by least
dynamic slack dynamic slack

43
=) Neohine 1 [E———] y=1(x) Weohine 2 [E———15| Orders
¥ ¥ omplete
%
Least dynamic slack on-time performance; 57 0.
amive —_—

Orders
o =l
S =i—r
FIFQ on-time performance: 72228 %
LNF:E Wiachine 1 D:EL“‘F:E Maohine 2 [E————a] Orders
£ £

complete

This model duplicates the model abhove but uses firstin, first out (FIFO) gueueing. The on-time
perfarmances for each model illustrate the improvement when least dynamic slackis used.

alue

Flotter, Dizerate Evert

100,

0 240 ae0 730 060 1200 1440
Time

ﬂ — Dyn. Slack — FIFD — Green — Black

{

Least Dynamic Slack model

136 | Queueing
Sorting items using the Queue Equation block

The two models are identical, except the top model uses Queue Equation blocks with least
dynamic slack calculations and the bottom model uses Queue blocks and typical FIFO ordering.
In the model, the equations in the Queue Equation blocks calculate the dynamic slack for each
item. The item with the smallest dynamic slack (least amount of time before being late) will be
selected first. As seen on the plot which has been cloned onto the model worksheet, on-time per-
formance is higher using least dynamic slack (top line) compared to FIFO (bottom line).

Minimizing setup

In some systems, setup time (the changeover from one product to another) can add significant
delay to the processing of items. If this is the case, it may be useful to process the same item type
until there is no longer any of that item type in the queue. Only when a particular type of item has
been exhausted will another type of item be processed. Giving priority ranking in a queue to the
same type of product that has just exited the queue reduces the number of setups or changeovers
between products. Like least dynamic slack, minimizing setup time is another type of queue rank-
ing rule.

Minimize Setup model

The model Minimize Setup compares the Product attribute for each item in the Queue Equation
block to the Product attribute on the last item to leave the queue. The first item with its Product
attribute value equal to the item that has just exited is released first. If no item in the queue can be
found with an attribute value that matches the last exited item, the first item in the queue is
selected. The plot shows the effects of this rule: the queue builds up initially until it can combine
enough batches together to gain an efficiency from minimizing the setup time. (The example
includes a second model, with a FIFO queue instead of a Queue Equation block, for comparison
purposes.)

-
b,
>

o8
L
=1
[
P
9

<t

a

o325
J = g Eauitd Machine = g F
Exit
Create Queue Equation
—amm
(=) —T=T=)
O o=
—_amm
[T EILERIAL2]2]
w w
value Flotter, Discrete Evert
el o
201
10
IJD 120 60 540 TI0
Time
Q — Status — Red — Green = Black
1

Minimize Setup model

Maximizing service levels

In a service system, the service level can be defined as the number of customers served within a cer-
tain time period. For instance, technicians might be rated on the percentage of customer requests
fulfilled within a certain time period. To maximize this, a queue that applies the maximize service
level rule gives priority to those customers who waited less than the service level time, leading to
dramatic improvement in the service level. However, this type of system might not be popular with

Queueing | 137
Sorting items using the Queue Equation block

real-life customers since some of them may have to wait a very long time while other customers
who arrived later would wait a much shorter time.

Maximize Service Level model

The top section of the Maximize Service Level model uses a Queue Equation block to sort the
queue into two priority levels:

* The service priority is the customer who has spent the longest time (but less than 10 minutes) in
the queue

¢ Customers who have waited longer than 10 minutes are placed at the back of the line

The lower section of the model is exactly the same as the top, except it uses a Queue block in FIFO
sorted queue mode. As the model is run, two plotters show the effect on service level and wait
time. Comparing the service level of the upper model to the bottom model, it is obvious that there
is a dramatic improvement if the sorting rule is used. However, the second plotter makes it equally
as obvious that some customers have a much longer wait when the service level is maximized.

("
f(_ Equation servioe level — grmmra About This Model
Q

N FIFO service level — 5
=

::_EJE:EIE jm]F LU QA #]2
. n—u}:@_/ " - GILER[/[A] 22

3

|

8

a B—ex wait i o8 B e 0 % Snswered within 10 min 3

£
Bhold -
Mex wait Equation wait o
— b “ s
=1(x) B—Equation service level

sustomers Bquation wait ———&1 50 <
A — Wax wait ——a g
Maximize serice level 5 -

o 1800 3600

Time
ﬂ — Equation serview FIFO service kam Green — Black
i

g B A Do —

=rr
= b ey FIFo wa — B8
. H =
FIF O Wait b—l—;I
v=1(x) B—FIF 0 service level alue

FIFO Wait o Tirne customers waited
hex wait ————=&1
First-in-first-out 150|
100,
40
o
[1800 3600
Time
ﬂ — Equation wait — FIFOWat —— Green — Black
1

Maximize Service Level model

Combined rules

Because of its tie-breaking capabilities, the Queue Equation block can be used to model situations
where two items are considered equal using the primary sorting rule but a secondary rule is used to
determine the item with the higher priority.

138 [Queueing
Matching items using the Queue Matching block

Combined Rule model
The Combined Rule model uses the least dynamic slack as the primary rule. However, if the least
dynamic slack is within 2 time units, the rank (order of the items in the queue) is used.

This model uses the least dynamic =lack rule. However, if the dynamic slack
is within 2 time units, it will sort by rank using the secondary ranking rule.

Orders

amive E =

1
w0 Machine 2 [E——5] Orders o
t complete

]
=) hachine 1 [E——H]
t

Combined Rule model

Matching items using the Queue Matching block

The Queue Matching block has a variable number of item connectors where each connector repre-
sents a separate internal queue. Within each queue, the block sorts items into different groups
based on each item's match attribute value. Items are released from a group only when the required
number of items are present in each group in each queue.

This block is especially useful for making sure that items have a particular characteristic at a spe-
cific time. For instance, you would use this queue to reassemble parts in the correct order or to
insure that subassemblies are correctly matched with each other.

-
b,
>

o8
L

=1
[
P
9
<t
a

Queue Matching model

In the following example, electronic systems arrive from the field, are separated into their individ-
ual components for refurbishing, and are reassembled. In this operation, all of the components but
only 40% of the housings need to be reworked. In addition, it is important that the housings for
each system be reassembled with their original (refurbished) component set.

San 30 1989
'S)
L Separste the Rasssambls parts ith
2t companents ratehing serisl numbers
fram housing

o Aoa a5
J |__/§=§‘;_EJE=§F oo et L:M;Eg B—a,
o o 4 SerfpINumber (2] QI@ ’
s

g Ratot housings (B oy 3 I,

F

Property Name Setvalue - |
SerialNumber 14

14]

Queue Matching model

The Information block counts each electronic system as it arrives and outputs the total number
that have passed through the block. The Set block uses this value to set a Serial Number attribute
for each electronic system. After refurbishment, the system is reassembled using its original parts.

Other models that use the Queue Matching block

The folder Examples\Discrete Event\Queue Matching contains additional models that use the
Queue Matching block. Those models explore more advanced topics such as modeling fixed and
variable requirements for specific items.

Queueing | 139
Advanced queue topics

Advanced queue topics

This section discusses viewing, initializing, and animating the contents of a queue. These tech-
niques are useful in creating a more exact model as well as for debugging and/or validating a
model.

Viewing and manipulating queue contents

A powerful ExtendSim feature is the ability to manipulate the contents of a queue. The Queue
Tools block (Ustilities library) allows you to view items in a queue, manually manipulate the order-
ing of those items, and initialize the queue’s contents. To use this block, connect from the L
(length) output of a Queue or Queue Equation block to the value input connector of a Queue
Tools block. The block has two tabs, View and Options, as discussed in the following sections.

View tab of Queue Tools block

The Queue Tools block’s View tab is used to manipulate items in a Queue or Queue Equation
block and display information about the items. When the model is run, every item in the attached
queue will have an entry in the table.

Popup menus at the top of the columns are — ;
f P 113 . hich of F;l . , . ftem prionty - Amival - Type -)
or s¢ ectlng which of the items propertles 1 4 1 4E7EATTROS 4 =
(attribute, quantity, priority, and so forth) 2 1 1] 1 %
to view. There are also buttons (Up, Down, g 1] 11243067155 1 g
Destroy) on the View tab that can change 4 2 o 2 &
Y ¢) 8 § 7 619833014399 2 p

the rank of an item in the queue or delete B 3 751626158604 2 2
an item from the queue. For instance, in 7 3 0 3
the screenshot to the right an item with a 8 3 1.52333030755 3

.. . a 3 3.TROGE4G3R4E o) st
priority of 4 has been moved in front of Link | 4 S

other items with priorities of 1.

. . . Manipulating a queue
To manipulate the items in a queue, run

the model, pause the simulation at the desired point, select an item, and use the buttons in the dia-
log to move or destroy it. (To pause a simulation run, click on any cell in the Queue Tools table or
use the Pause button in the ExtendSim toolbar or the Pause menu command.) Leaving this block
open (or having a clone on the model worksheet) while the simulation is running will slow the
model down; it is best to close it when not needed.

The View tab of a Queue Tools block is cloned onto the worksheet of the Initializing and Viewing
model, discussed in the next topic.

Initializing a queue
Sometimes it is useful to introduce items into the model at the start of the simulation run. The

Options tab in a Queue Tools block (Utilities library) can be used to preload a queue with items at
start time. Situations where queues might be initialized with items include:

* Reducing start-up bias. By placing items in queues at the start of a simulation, the model begins
in a state that is closer to steady-state.

* Importing current system status in a scheduling model. When using simulation to model a
detailed schedule, it is necessary to start the simulated system with the same work-in-progress as
the real system.

To use this block, connect from the L (length) output on a queue to the value input connector on

a Queue Tools block. The block’s Options tab has three choices:

140

-
b,
>

o8
L
=1
[
P
9

<t

a

Queueing
Animating queue contents

* No queue initialization: Items are not added to the queue at the start of the simulation.

* Initialize queue: The queue is initialized with the number of items entered in the number field
and property values as specified in the Properties table.

* Initialize from global array: The number of items and property values are read in from a spec-
ified global array. Because global arrays can themselves be initialized from a number of sources
including Excel, a database, or the Internet, this is a very useful way to import the contents of a
queue from an external source.

Initializing and Viewing model

The Initializing and Viewing example uses the Options tab of a Queue Tools block to introduce
items into a Queue block at the start of the simulation. A clone of the block’s View tab has been
placed on the model worksheet.

L 1 i -] Run simulation
4R @ S3) _Runsimuiton |
1 | L About this model
Priority 1 fd ow wF

ftem priort Aiual Tupe i|
0
0.77833116780
o

140631168167

272814821468
70437641723
[

Prioriry

428810010331

Priity 3 £.27840808836

PAITPRPIFRA NN

APPSR

[
250563518734

Link | 4

Priority 4

Current gueue contents

Initializing and Viewing model

In this model, ten items are added to the queue at time 0. As seen in the Properties table in the
Queue Tools’s Options tab, these initial items have their item priority set to 1, their item quantity
set to 1, their Type attribute set to 1, and their Arrival attribute set to 0. The tab also indicates that
those items are represented by a cyan circle for animation. After the initial 10 items, items from the
four processes are animated as circles with the same color as the arrows.

Animating queue contents
By default, the number of items in a Queue block are displayed on its icon. However, a more
detailed animation showing an animation picture for each item can be obtained by putting the
Queue inside a hierarchical block and animating the hierarchical block's icon. To add this type of
animation to a model:

» Encapsulate a Queue inside a hierarchical block (right-click the Queue block and select Make
Hierarchical.)

» Open the hierarchical block's structure (right-click the hierarchical block and select Open
Structure) and add a number of identically sized animation objects from the icon tools in the
toolbar.

» On the Item Animation tab of the Queue block, enter the first and last animation object num-
bers in the Animate H-block objects fields.

Queueing | 141
Animating queue contents

Animating Queue Contents model

This example model animates a priority queue. There are four possible priorities, as indicated by
the colored arrows on the left. Green circles represent items with a priority of 1, yellow circles indi-
cate an item has a priority of 2, and so forth.

Run simulation
Animating the contents of a queue
Ahout this model

Bart 1 - Priority 1

—) Time in sy=stem 0.77 | 1.1
Fart 2 - Priority 2 [B & Thoughput []
Y = - -
Queue Activity Exit

Part 3 - Priority 3

- —

Part 4 Priorty 4

Animating Queue Contents model

Items with a lower number for their priority (a higher priority) will move to the front of the queue.
The animation shows this happening as new items with lower priorities will pass other items.

In this model, there are four rows and six animation objects per row on the icon of the hierarchical
block to the right of the arrows. The Item Animation tab of the Queue block inside that hierarchi-
cal block is set to Animate H-block objects: 1 to 24. This causes all 24 objects on the hierarchical
blocK’s icon to be animated, based on what is happening in the Queue.

=)
=
e}
=
[
-
o
1
<
a
=
-

For more detailed information about animating hierarchical blocks, see “Animating a hierarchical
block’s icon” on page 554.

142 [Queueing
Animating queue contents

-
b,
>

o8
(2]

=1
[
S
9
2
a

Discrete Event Modeling

Routing

Handling items from several sources;
sending items to multiple destinations

144 | Routing
Commonly used blocks

When building models, you will frequently encounter situations where you want to manipulate
items coming from several sources or send items to several possible destinations. Depending on the
purpose, there are several methods for accomplishing this. This chapter will cover:

* Items arriving from multiple sources

* Merging items from several streams into one stream

* Balancing waiting line lengths

* Using the Throw Item and Catch Item blocks

* Items going to several destinations

* Simple routing to one of several streams
* Scrap generation
* Successive, explicit, and conditional ordering of routes

* Routing based on item properties

0" The models illustrated in this chapter are located in the folder \Examples\Discrete Event\Routing.

-
b,
>

o8
L
=1
[
P
9

<t

a

Commonly used blocks
The following blocks will be the main focus of this chapter. The block’s library and category
appear in parentheses after the block name.

Blocks that route items

Catch Item (Item > Routing)
Receives items sent remotely by a Throw Item block.

Select Item In (Item > Routing)
Selects an input and outputs its item.

Select Item Out (Item > Routing)
Sends each item it gets to a selected output.

Throw Item (Item > Routing)

o= Sends items remotely to a Catch Item block

Blocks that affect the flow of items

Decision (Value > Math)
Can be used with Item library blocks to control the flow of items in a portion of the model.

Gate (Item > Routing)
Controls the flow of items in a portion of the model (area gating) or based on model condi-
tions (conditional gating).

Routing | 145
Items from several sources

Math (Value > Math)
b Performs a mathematical operation, such as addition or subtraction, that can be used with
Item library blocks to control the flow of items in a portion of the model.

40O
b

Max & Min (Value > Math)
max b Outputs the minimum or maximum value found among its input connectors. Can be used
=P with Item library blocks to control the flow of items in a portion of the model.

Items from several sources

Depending on your modeling needs, you may want to merge different streams of items into one
stream of individual items, select one item from several for routing or processing, or join separate
items into a single item.

40 O

* To merge streams of items from several sources into one stream, where each item remains sepa-
rate and retains its unique identity, use the Select Item In or Throw Item and Catch Item blocks.
You then typically direct the single stream into a queue. For example, you can use this to repre-
sent traffic merging into one lane or people accessing one hallway from several offices. A Select
Item In block is used to:

* Merge streams of items in the “Merging Inputs model” on page 147.

* Direct items requiring more processing in “Cumulative processing time: time sharing” on

page 171.

=)
=
e}
o}
I
-
o
3!
<
I}
=
-

¢ Reroute preempted items in “Preemption” on page 178.
g

Those models use the Select Item In block to route items. The section “Throw Item and Catch
Item blocks for merging item streams” on page 148 illustrates using a Catch Item block to merge
multiple streams of parts into one stream.

* To select an item for processing from several sources based on some decision, use the Select Item
In block. The decision can be a logical decision (choose every other item to route to the top
waiting line) or it can be based on some characteristic of the item (get the item with the highest
priority). The specifications for the decision are determined by the entries you make in the dia-
log of the Select Item In block and are modified by blocks connected to its “select” input con-
nectors. Using the Select Item In block to choose specific items is shown in “Balancing multiple
input lines” on page 147.

* To join items from various sources and process them as one unit, use a Batch block, as described
in “Batching” on page 194. This is most common when modeling manufacturing processes or
packaging operations where subassemblies are joined together. It is also used when two or more
items need to be temporarily associated with each other for processing or routing, such as a clerk
processing an order. Note that batching differs from using the Select Item In and Select Value In
blocks, which only merge streams of items so that items remain separate and are processed sepa-
rately.

I=" To merge streams of items from one hierarchical layer into one stream at a different hierarchical
layer, you can add connectors to the hierarchical block or use the Throw Item and Catch Item
blocks, at shown on page 148.

146 | Routing
Items from several sources

Select Item In dialog

The Select Item In block chooses an item from one of its input connectors and sends that item to
its output connector. The selection is based on settings and options in the block’s dialog.

Selection options
The Select Item In block has several rules for selecting an item from its input connectors:

* [tem priority. Selects the input connector that has an available item with the highest priority
(the lowest numerical value for its priority.) For example, you could use this option to select
from a group of queues to a single activity. The queue with the item that has the highest priority
will be selected. This option always starts and restarts its selection search at the top input.

* Random. The inputs are selected randomly based on probabilities entered in the block’s selec-
tion table. Enter probabilities in decimal format. For example, enter 0.75 for 75%. If the
entered numbers do not equal 1.00, the actual sum will appear in red in the bar below the Prob-
ability column. If Select from: all inputs is chosen, an input will be randomly selected whether
or not an item is available at that input. This situation can potentially cause starving, as dis-
cussed below. If Selé’ctﬁ’om: on/y inputs with available items is chosen, the block will only
select from inputs with available items.

o Select connector. The value received at the select connector determines which input is chosen.
The block’s dialog has an option for setting which value chooses the top input; the default is 0.
The lower connectors will be numbered sequentially after the top connector. That is, if the top
input is chosen by a select value of 1, the second input will be numbered 2, the next lower input
would be numbered 3, and so forth. In that case, a value of 3 at seect would cause the item from
the third connector from the top to be selected. Note that, even if items are available at the other
inputs, the block will wait for an item at input 3, potentially causing starving as discussed below.

-
b,
>

o8
L
=1
[
P
9

<t

a

I See “Item library blocks” on page 255 for some precautions when using this option with a Get

block.

* Sequential. Selects the inputs in strict sequential order starting at the top; this is also known as a
“round robin” selection. This option could cause starving (discussed below), since the block will
wait for an item to become available at each selected input.

* Merge. Items are taken as they become available through any input. Generally, this option is
used to combine the flows of items where there is no blocking of items arriving at the Select
Item In block. Inputs are selected in a “round robin” fashion starting from the top; once a selec-
tion has been made the selection search will resume at the next lower input.

Starving conditions
If an item is not available from the selected input of a Select Item In block, the following options
will cause a starving condition:

* Random (if Select from: all inputs is chosen)
e Select

* Sequential

Merging several item flows into one stream
The Select Item In block can combine the inputs from any number of sources into one stream of
output items.

Routing | 147
Items from several sources

Merging Inputs model

In the Merging Inputs example model, the Select Item In block will accept items from any of the
three inputs. Its dialog is set to Select input based on: merge. If the Select Item In’s output is
blocked, the block will force items to wait in the Queues (labeled Buffers 1-3). When the Select
Item In becomes unblocked, it will check each input in turn to try to pull an item through for pro-
cessing by the Activity. As you can see in the table that has been cloned from the Select Item In
block, when it is ready to process items, the Activity gets whichever item is available. This can
cause some queues to have longer waiting lines than others, as you can tell from their Results tabs.

|'."_ 0
[P
o =
g d o [19s
Create 1 FIFO Queue 1 Mach,ne 1 Buffer1 —/

Dv >F
Select ftem In Fetivity
,@:@_Jil:ua n_j=ﬁ| - |
ow wF 1
Cneate 2 FIFO Queue 2 hachine 2 Buffer 2 2
Link
| ki

ow wF v
Cneate 3 FIFD Dueue 3 Wachine 3 Buffer 3

Merging Inputs model

=)
=
e}
=
[
-
o
1
<
a
=
-

Balancing multiple input lines

To even out the queue lengths of multiple input lines, use a Select Item In block controlled by a
Max & Min block (Value library), which checks the length of each queue. An example of this
would be three loading docks that fill up as trucks unload, and you want items to come first from
the dock that is most full.

Input Line Balancing model

The Input Line Balancing model is the same as the Merging Inputs model, except a Max & Min

block looks at the length for each of the queues and sends that information to the Select Item In
block.

J/‘r'-'»_
._,\. - o " 22 : -
- - /g:@ 2
b v - E
[q +
Create 1 FIFO Cueue 1 Machine 1 T Buffer 1 [Link | |
1 ® [19s
nﬁ——/
ow wF Exit
0w wF Select tem In Fetivity
Cneate 2 FIFD Dueue 2 Wachine 2 Buffer 2
o 5 22
J - /E=E| £j=ﬁ|
v v 0¥y wF 3 Lt —a) max B
Create 3 FIFO Queue 3 Wachine 3 Buffer 2 L2 —a
Lz —8
v
e & hiin

Input Line Balancing model

On the Max & Min block, the con output connector tells which of the inputs has the largest value,
in this case it indicates the longest queue. This tells the Select Item In block which queue to

148 | Routing
Items from several sources

retrieve the next item from. In the dialog of the Select Item In block, Select input based on: select
connector and Top input is chosen by Select value: 1 have been selected. As you can see from the
cloned Throughput table, items are drawn in a balanced manner from each line, and the queue
lengths are almost equal, as opposed to what happened in the Merging Inputs model, earlier.

Throw Item and Catch Item blocks for merging item streams

The previous examples discussed routing items using connections to blocks that are nearby and at
the same level of hierarchy. Sometimes, especially in large models, it is necessary to send an item to
a different hierarchical layer. The Throw Item and Catch Item blocks are especially useful when
there are items from various locations in a model (even from various hierarchical levels) that need
to be sent to one place. Note that these blocks are used as an adjunct to routing, not a replacement
for the methods described previously.

Throw Item and Catch Item blocks pass items without connections and can even be used deep
within nested hierarchical blocks to send items to other hierarchical blocks. For that reason, they
are sometimes used instead of the Select Item In and Select Item Out blocks.

I=" Throw and Catch blocks should only be used when named connections will not be sufficient. For
instance, to pass items through different levels of hierarchy or to use the routing features on the

Throw and Catch blocks.

Throw & Catch model

The Throw Item and Catch Item blocks can also be used to merge several item flows into one
stream. In the following example, three Throw Item blocks route items to Shipping, which is a
hierarchical block containing two blocks, a Catch Item and an Exit. The Catch Item block is
labeled 7o Sbl])ping and is designated as belonging to Catch group 1.

-
b,
>

o8
L
=1
[
P
9

<t

a

To Shipping

v wF To Shipping

hachine 1
o P4
J |_—/E=E| FE=E| _I_—I SHIPPING
Throw 2
v h

0w ¥ o Hierarchical Block
Machine 2 Ta Shipping

——a® e

Ow wF
Wachine 3

!

Block Label Block Mumber Connection Type Courit J
1} 1z 1z 1 et
1 12 12 1 50
2

14 14 1 14
Link |

Throw & Catch model

A popup menu in the Throw Item : —
block’s dialog displays the labels of Specify Cateh Item by: [Label .} [To Shipping |
the possible Catch Item blocks. You
have the option of routing all items
to the Catch Item block specified in
the popup menu (as shown to the right) or routing items to different Catch Item blocks depending

Selecting Catch Item block labeled “To Shipping”

Routing | 149
Items going to several paths

on the value of a specified attribute or priority (see “Throw and Catch Attributes model” on

page 150).

I=" You must enter text in the label field at the lower left corner of each Catch Item block’s dialog.
Only labeled Catch Item blocks will appear in a Throw Item block’s popup menu.

Catch Item groups

If you are working with a large number
of Catch Item blocks, you may want to | “atch ltermn aroup: [|
organize them into groups. To do this,
select or create a group name using the
Catch Item group popup menu in the
Catch Item block, shown at right. Then use the Cazch Item group popup menu in a Throw Item
block to select the desired group. Once a group is selected in the Throw Item block, the block’s
Specify Catch Item by: Label popup menu will only contain the labels for the Catch Item blocks

in the selected group.

Catch ltem group popup menu

I Groups can only be defined in a Catch Item block.
Items going to several paths

In many cases, you will need to route items from one stream to one of many different streams:

* Taking a stream of items and routing them to different activities or operations is called parallel
processing. In parallel processing, each item is handed off to one of several activities, such as an
Activity block. The logic that determines which operation the item is routed to can be simple
(the part is machined at the first available station) or it can be complex (bottle type A is filled at
Machine 3). Different methods of routing items to parallel processes are described in detail
throughout this chapter. See also “Processing in parallel” on page 166.

=)
=
e}
=
[
-
o
1
<
a
=
-

* For situations where one item is unbatched or separated into its component items, use the
Unbatch blocks. For example, you might receive a shipment of furniture consisting of 8 desks,
20 chairs, and 7 typewriter returns, or a mail cart with 1000 pieces of mail. You use an Unbatch
block to disassemble that item into its individual components, then route the items to appropri-
ate destinations, as described in “Unbatching” on page 201.

e To select the path an item should go on, use the Select Item Out or Throw Item blocks. The
Select Item Out block is useful for routing a stream of items to several paths based on some deci-
sion. For instance, you can send all the parts that need rework to a rework station, and ship the
remaining parts. Or direct patients requiring immunizations to the Injection Clinic. The use of
these blocks is described in “Sequential ordering” on page 154, “Explicit ordering” on page 155,
“Routing decisions based on properties” on page 155, and “Select Item Out dialog” below.

Select Item Out dialog

The Select Item Out block is appropriate for routing items onto one path or another. Its dialog
contains several options for determining which route an item should take.

Selection options
The logic in the dialog of the Select Item Out block chooses which output connector an input
item should be routed to. The selection options are:

150 | Routing
Items going to several paths

* Property. The appropriate output is determined using the item’s property—its attribute or prior-
ity. Values to represent the outputs are entered in the table’s Select Output column; the default is
that 0 selects the top output. For each item, the block finds the value of the specified property in
the table’s second column (which is named for that property), and determines the corresponding
output connector for that value in the Select Output column. Since the block will hold the item
until there is downstream capacity, this option can cause blocking.

 Connector priority. An attempt is made to send the item out each connector, in the order of the
connectors priority, until the item is accepted by a connected block. The priority for each con-
nector is entered in a table in the block’s dialog. The top priority is the lowest number, such that
an output with a priority value of 1 has a higher priority than an output with a priority value of

3.
I Note that this is different from assigning a priority to an item and selecting the output based on the
item’s priority, as can be done with the block’s Property option. With the Connector priority
option, the Select Item Out block essentially prioritizes the output path, not the item.

* Random. Outputs are selected randomly based on settings in the block’s probability table. Enter
probabilities in decimal format. For example, enter 0.75 for 75%. If the entered numbers do not
equal 1.00, the actual sum will appear in red in the bar below the Probability column. When the
option If output is blocked.: item will try unblocked outputs is chosen, the block will randomly
try to find an output that can accept the item. When If output is blocked: item will wait for
blocked output is used, the block will select an output and the item will wait until that output is
able to accept the item; this can cause blocking.

-
b,
>

o8
L

=1
[
P
9
<t
a

o Select connector. The value received at the select connector determines which output is chosen.
The block’s dialog has an option for setting which value chooses the top output; the default is 0.
The lower connectors will be numbered sequentially after the top connector. That is, if the top
output is chosen by a select value of 1, the second output will be numbered 2, the next lower
one would be numbered 3, and so forth. In that case, a value of 3 at select would cause the item
to go to the third connector from the top. Since the block will hold the item until there is capac-
ity downstream from connector 3, this option can cause blocking.

I See “Item library blocks” on page 255 for some precautions when using this option with a Get

block.

* Sequential. Outputs are selected one after the other in sequential order starting from the top;
this is also known as a “round robin” selection. When the option If output is blocked: item will
try unblocked outputs is chosen, the block will try the next connectors sequentially. When /f°
output is blocked: item will wait for blocked output is used, the block will select an output and
the item will wait until that output is able to accept the item; this can cause blocking.

I=" The Select Item Out block expects integer values for comparison and will truncate non-integer val-
ues. For example, if select connector is chosen as the selection condition, the numbers 0.001 and
0.999 received at the Selectln input would both be truncated to a 0.

Blocking conditions

The Select Item Out block is a decision-type of block; its default is to pull in the item and then
determine the path that the item will take. In some situations, the selected output path may be
blocked and the selected item will have to wait to leave. Some selection conditions can cause the
items behind a selected item to be blocked:

Routing | 151
Items going to several paths

* Property

* Random (when If output is blocked: item will wait for unblocked output is chosen)

¢ Select

* Sequential (when If output is blocked: item will wait for unblocked output is chosen)

For the 7andom and sequential selection conditions, the ability to choose what happens if the out-
put is blocked is useful for certain modeling problems. For instance, in the Simple Routing model
shown below, if the top Queue block is designated to get the item, but it is blocked, the Select Item
Out block will route the item to an unblocked Queue.

Predicting the path of the item before it enters the block

As mentioned above, an item can be pulled into a Select Item Out block but not be able to proceed
because the downstream path is blocked. An alternative to this situation is to cause the item to wait
in an upstream queue, rather than in the Select Item Out block. This is accomplished by checking
Predict the path of the item before it enters this block. When this is enabled, the Select Item Out
block will query upstream to determine the properties of the next item to arrive. It then checks to
see if the appropriate downstream path is clear. Only if the item can be sent out the desired output

will the item be pulled in. This guarantees that the item will not get “stuck” in the Select Item Out
block.

I This setting requires that any properties used to make the selection have to be set before the item
begins to move into the Select Item Out block. For example, a Queue is necessary between a Set
block and a Select Item Out block.

=)
=
e}
o}
I
-
o
3!
<
I}
=
-

Implicit routing

The simplest, but not necessarily the best, way to route items is by creating connections between
the output of the collection point and the inputs of each activity-type block. This causes
ExtendSim to pass items to the first available activity.

However, if more than one activity-type block is free when an item is ready, it is not obvious which
block will get the item. For instance, a Queue that holds items for three Activity blocks would look
like the model below.

o4
—=5lk
8 a' @ a
;=] =@ o
- b 0w wF Exit
Customers ‘Wiziting Line Clerk 2
1
L
Oow wF

Simple Connections model

If two or more machines are free when an item comes out of the queue, the machine that was firsz
connected will get the item. With these types of simple parallel connections, even just disconnect-
ing and then reconnecting a connection line could change the order of activities getting items.
This implied routing may not be reflective of the actual system and is usually not want you would
want.

152 | Routing
Items going to several paths

A Unless it is completely unimportant in the model, you should always use the Select Item In and
Select Item Out blocks to explicitly state how items should be routed.Otherwise, the order in
which their connections were made will dictate the routing.

Simple routing

It is most common to route a random number of items to one section of the model, while the rest
are routed to another. An example of this is an intersection where a number of cars will turn to the
left, some will go straight, and some will turn right.

Simple Routing model

In this model, items are routed randomly to one of three machines, as indicated by the setting
Select output based on: random. The probability table in the dialog of the Select Item Out block
indicates that 0.50 (50%) of the items will go to the top Queue while the remainder will be dis-
tributed equally between the remaining two Queues.

J = Buffer'1 Dl\'a\achi:eFI =
JL_m]gﬁn@jf e

Probability Throughput 0¥ wF
7 05 J Buffer 2 Wachine 2

2 0.25
3 0.25 F]
Link Buffer 3 hachine 3

Simple Routing model

E

-
b,
>

o8
L
=1
[
P
9

<t

a

Notice that there are queues in front of the machines. If you omitted the queues, there is a possibil-
ity that items arriving from the Create block could be blocked. For example, if the second item
were destined for the top machine, but that machine was still processing the first item, the other
machines would have to wait for items until the top machine finished processing and pulled in its
item.

=" The previous model routed items based on probabilities. To distribute an input item to @y avail-
able output, in the Select Item Out dialog choose Select output based on: sequential and If
output is blocked: item will try unblocked outputs.

Simple Routing One Queue model

A model similar to Simple Routing would be if there were only one queue and it was placed before
the Select Item Out block. As mentioned above, however, if two sequential items are destined for
the same activity they will block items that arrive behind them. The option [f output is blocked:

Routing | 153
Items going to several paths

item will try unblocked outputs allows the Select Item Out block to try other outputs if the first
choice is unable to accept the item.

EJL

|

e

Create

Probability Throughput J
1 05
2 0325 Wachine 3
3 0325

Link |]

Simple Routing One Queue model

As seen in the model, even though 50% of the items should be going to the top machine, item dis-
tribution is almost even. Because all the machines process items for the same amount of time, the
top machine is often busy and, rather than cause the system to be blocked, its intended item is
routed to a different machine.

Scrap generation

An important aspect of some systems is modeling the generation of scrap or simulating a yield rate.
For instance, many manufacturing processes create an expected but irregular quantity of waste or
bad items. This can be accomplished in ExtendSim by randomly routing some items out of the
normal processing stream.

=)
=
e}
=
[
-
o
1
<
a
=
-

Scrap Generation model

This example is similar to the model that is described in “Simple unbatching” on page 202, except
it has a Select Item Out block that determines whether items coming from the Unbatch block
should continue for processing or be discarded, and the Activity block processes two items at a
time. The Select Item Out block is set to Select output based on: random. By setting a probability

154 | Routing
Items going to several paths

that 0.90 of the items will exit through the top connector and 0. 10 through the bottom (scrap)
connector, the Select Item Out block causes one out of every ten items to become scrap.

To Block Probability Throughput J
Wotkers Return 1 Pasz=[28] 0.9 223

(i i Exit[24] 0.1 7
L3 ﬁ; Link %
TR Il

Labor

X - Tl Y == S (O

:

TR WU Batch Packaging Unbatch h bow wF
Open Box Paszs
0
J __/E=E Scrap
- b
Create Bottles Bottle Storage

Scrap Generation model

As an alternative, you can also set and check attributes to represent items that need to be scrapped.
This will be shown later in this chapter.

Sequential ordering

To hand items to operations in successive order regardless of whether another operation is free, use
the Select Item Out block set to Select outpur based on: sequential.

-
b,
>

o8
L

=1
[
P
9
<t
a

Sequential Ordering model
With the sequential setting, the Select Item Out block will choose outputs in successive order start-

ing from the top output. The block’s dialog is set to If output is blocked: item will wait for
blocked outpur.

Ow wF
Potivity 1

gl o

D E
v -
Ow wF
Potivity 2

Ow wF
Potivity 3

Sequential Ordering model

The first two activities are set to process for 1 time unit while the third activity takes only 0.5 time
units. For this model, even if the third activity is the first one ready to accept an item, it will only
get an item after the first and second activities have pulled in an item. Also note that an item is
only pulled from the Queue block when an activity has finished processing, potentially causing
blocking in the system. The example “Balancing multiple output lines” on page 158 shows a solu-
tion for this.

I=" To distribute an input item to any available output, choose Select output based on: sequential
and set the block to If output is blocked: item will try unblocked outputs.

Routing | 155
Items going to several paths

Explicit ordering

If there are several operations, and you prefer certain ones to be active more than others, you can
explicitly state which operations have a higher priority for items. This is common when you want
to avoid using an operation because it is not as efficient (such as an older piece of equipment) or
because it is an uneconomical use of a resource (having a supervisor wait on customers.)

Choosing the selection condition connector priority in its dialog allows the Select Item Out block
to be used to specify the priority of each output.

05" Note that this is different from assigning a priority to an item, since the Select Item Out block
essentially prioritizes the output path, not the item.

Explicit Ordering model
For example, assume you want Machines 1 and 3 to get most of the items for processing, and
Machine 2 to only get items if Machine 1 and 3 are busy. The model is:

(<

— 5| @
i o
=
= 8
B &
¢ g — 8
Create FIFO Queus Select ftem [Dut l
Potivity 2 m
Prorty __ Throughput _ - | a
T 1 0
3 3 L= @ A
a 1
Link_| b oy wF

Potivity 3

Explicit Ordering model

The dialog of the Select Item Out block is set to Select output based on: connector priority. In the
table, the highest priorities (which are the lowest numbers) are assigned to the top and bottom out-
puts, and the next lowest priority is assigned to the middle output. In this case, Activity 1 has first
priority on items. If Activity 1 is busy, Activity 3 will get the item. Only if Activity 1 and 3 are busy
will Activity 2 get the item.

I Ag seen in this model, multiple outputs can have the same priority. However, the item will go to
the topmost output that has the highest priority and is free. If that output is not free, the next
lower output with the same priority will be checked to see if it is free, and so forth. If this is not
what you want, set the priority values explicitly. For instance, you could set the output priorities to
1, 2, and 3 rather than to 1, 2, and 1 as was done in the example model.

Routing decisions based on properties

You may want to route items based on some characteristic of the item, such as its priority, size,
quality, age, or state. To do this, assign an attribute or priority to the item and read that property
value to route the item.

156 | Routing
Items going to several paths

Attributes for Routing model

To specify whether or not an item must have a process performed on it, set an item’s attribute to a
yes-or-no value using the Random Number block (Value library) as shown in the Attributes for
Routing model, below:

el o Cheding
18
= o Checkhte g R F
_—/)E=E,é =9
. - L 4 @ Selpat ftem In Exit
Sgt Aribute FIFO Queus Select fem Out
Rand ow %
Checking
= Checkhem __ Select Owpt ___ Throughpur __ -~ |
0
1 1
Link |

Attributes for Routing model

The Empirical distribution in the Random Number block specifies that 75% of the items do not
require checking (0 value for the Checkltem attribute) and 25% do (1 for attribute value). The
Select Item Out block, set to Select output based on: property, reads the attribute value to deter-
mine which of two routes the item will take, one through the checking line (value = 1) and the
other around it (value = 0). The Select Item In block is used to combine both lines into one
stream, exiting the simulation.

-
b,
>

o8
L
=1
[
P
9

<t

a

This method is especially useful if the checking process takes more than one step. For instance, you
may need to transport the item to the checking station using transportation blocks, but only if
checking is needed. All those steps would be between the Select Item Out block and the Select
Item In block.

With this model, an item that needs to be checked can be pulled into the Select Item Out block
but not be able to advance because there is already an item in the Activity. To prevent this, you can
cause the block to predict the path of an item before it enters, as discussed page 151.

I=" An item that requires checking that is blocked in the Select Item Out block will also block other
items that arrive after it, even if they do not need to be checked. If this is not how your process
works, insert a Queue before the Activity to hold items that need checking.

The example “Machines that can only process certain types of items” on page 161 is another
instance of using attributes to route items. For a very different approach, the DB Job Shop model
located in the folder Examples\Discrete Event\Routing uses information from the ExtendSim
database to route items.

Throw and Catch Attributes model

As described in “Throw Item and Catch Item blocks for merging item streams” on page 148, the

Throw Item block can be used to route items to a specific Catch Item block that is identified by its
label. Throw Item blocks can also be used to route items to different Catch Item blocks depending
on the value of an item’s attribute or priority. A modification of the Attributes for Routing exam-

Routing
Items going to several paths

ple, built using Throw Item and Catch Item blocks rather than the Select Item Out block, is
shown below.

a0/
v
Mchine Type] Type 1 Dw wF
’ o hachine 1 a1
—n'.r| —m-_/ﬁ =
id - o
Create Queue Type 2 0w wF Exit
— Wachine 2
Rand Atribute Yalue [Catch Block] Departures J
1 Type 1 |I]
2 Type 2
g 3 Typed W_/H @
i -
Link | Type 3 [

hachine 3

Throw & Catch Attributes model

In this example, The Throw Item block is set to Specify Catch block by: Property: Machine Tjpe,
where Machine Type is a value attribute. The Throw Item block reads the Machine Type attribute
and routes the items to the appropriate Catch Item block according to the table in the throwing
block’s dialog, which is cloned onto the model worksheet.

To cause an attribute or priority value to be associated with a specific Catch Item block, type the
value into the “Property Value” column and select the appropriate Catch Item block using the
popup menu in the “[Catch Block]” column.

State Action model

Another routing example is the State Action model where items are routed to operations depend-
ing on their state. For complete information, see “State/Action models” on page 49.

Conditional routing

Sometimes you will want to route items based on the current conditions of the model. For exam-
ple, monitoring queue lengths to determine whether or not an activity will be brought on-line or
balancing the use of parallel waiting lines.

Bringing a system on-line

Most of the examples in this manual show items being passed to operations where all the opera-
tions are on-line and running. In many situations, particular operations are only started when they
are needed. You can bring another system on-line based on the time of day (such as in “Scheduling
activities” on page 173) or based on some other factor such as the backlog of work.

157

=)
=
e}
o}
I
-
o
3!
<
I}
=
-

158 [Routing
Items going to several paths

Conditional Routing model

For example, you might have a
factory where most of the pro- i - Humber E‘"eﬁgJ
cessing is done by two machines =§’6) o I
but excess work is handled by a v L <>
third machine. ExtendSim can . 1 N E
simulate this easily using the J o /E=E| =En@j=ﬁ|_7 =
Decision block (Value library) A\ . ¥ 2 .

and the Activity block (Item

hbrary). A ——Eldemand ;
B
. — 8 @
The L output of a queue that is Y _fia
. . AD
feeding one or more machines Gpen gate if Gate RV
outputs the number of items aueve endth > 9
waiting to be processed. If this Conditional Routing model

value is greater than a certain
threshold, you can route some of the items to another machine or activate another process.

In the model, the dialog of the Decision block specifies that the Y connector outputs a true value
(1) when the value at the A input is greater than 5. This activates the Gate block’s demand connec-
tor so that it lets items through to the third machine (until then, it will not accept items). When
the Queue holds 5 or fewer items, the Gate closes.

You can also model this situation in the opposite manner, by having all the operation blocks pro-
cess items and then shut one or more of them down under certain conditions. If you do this, items
may be trapped in the shutdown operation until processing resumes.

-
b,
>

o8
L
=1
[
P
9

<t

a

When you bring a system on line, it may cycle on and off too frequently. See “Bringing an activity
on-line” on page 173 for some methods for avoiding this.

Balancing multiple output lines

Operations are often preceded by queues before each operation, such as a staging area for each
machine (as compared to the single staging area for all machines as in the “Explicit Ordering
model” on page 155.) The location and ordering of placement of queues in a model can affect how
the model performs.

Routing | 159
Items going to several paths

Buffering Operations model
A model with queues before each operation could look like:

75 7
B e
v 0w wF
Buffer higchine 1
as7?
i 1 — E_— E
) ‘ < v/
=@ o
- hd Ow wF Exit
Create Buffer hachine 2 Mumber Exted - |
1 A0
o 3 g I
L : g
UE:.}; I Y I B
v 0w wF

Buffer Machine 3

Buffering Operations model: Parallel processing with buffering

In the model, the queues have a maximum queue length of 30 each. The first queue that was con-
nected will receive all the items until that queue reaches its maximum, then the next queue will
start to fill (unless the first machine kept up with the flow of items, in which case the next queue
will never receive any items). In the Buffering Operations model, for example, most of the items
go to the top queue and get processed by Machine 1 and none of the items go to the bottom queue
to be processed by Machine 3. This is rarely what you want.

=)
=
e}
o}
I
-
o
3!
<
I}
=
-

To even out the use of the machines, use a Select Item Out block set to select machines sequen-
tially, as shown in the “Sequential Ordering model” on page 154, and place a queue before each
machine. Note however, that if the machines work at different speeds, this will cause the queue of
the slowest machine to fill more rapidly than the other queues.

IS A green bar across its top indicates that a Queue is set to something other than infinite capacity.
For instance, the Queues in this model are set to hold a maximum of 30 items and therefore have
green bars across their tops.

Output Line Balancing model
A better method than the Buffering Operations example would be to check the length of the wait-
ing line in each queue and give the next item to the queue that is shortest, causing the queue lines

160 | Routing
Items going to several paths

to be balanced. The Max & Min block (Value library) connected to a Select Item Out block is
excellent for this.

2 Utilization: |1
1
L1 0¥ w¥F
Queue 1 Machine 1
Q34
=5 =) : 1 a7 |
,J 4 _E=E|‘ P @ 4
v I L= =@ o
Create Selact ftem|Dut 1z 0¥ wF Bt
Queue 2 Mchine 2 .
Mumber Exited J
in B 1 13
L —a o 2 12
3

L2 —a ¥ 7 a
P O =t
hax & hin
v—L pv W

F
Queue 3 Machine 3 Utilization: 072504832

Output Line Balancing model: Choosing the shortest queue

In the model, the Max & Min block tells the Select Item Out block which queue line is shortest
and thus which queue to hand the next item to. The Min & Max block is set to Output the: min-
imum value and Top input connector # is: 1. With these settings the block’s top input (L1) is
number 1 and the con output reports which of the inputs (L1, L2, or L3) has the lowest value,
indicating the shortest queue. The dialog of the Select Item Out block is set to Select outpur based
on: select connector and Top output is selected by select value: 1.

-
b,
>

o8
L
=1
[
P
9

<t

a

Compared to the Buffering Operations model shown earlier, in this model the number of items in
the queues tend to be more balanced. However, the system is not as efficient as it could be since an
item often goes to the queue for Machine 1 even though Machine 3 is idle. This happens because
if all the queue lengths are equal, the Max & Min block will report the first connector as having
the shortest queue length. In this case, Queue 1 has first priority for items and the Max & Min
block is just looking at the queue lengths and is not considering whether or not the Activity is
occupied.

Line Balance with Activities model

The previous model showed how to balance the queues. A more useful model would be to include
information about the items being processed when selecting the shortest queue. You can do this by
adding the value of an Activity’s F (full) connector to the queue length. The full connector is 1
when the activity is at capacity and 0 otherwise. The resulting model, Line Balance with Activities,

Routing | 161
Items going to several paths

prevents items from going to a queue followed by an occupied activity when other activities are

idle.

Queue 3 Machine 3

’71 Utilization: |1
[} -F
Machine 1 p—t1
4
a6
=k
@ o
ow wF Bz Exit
2 4 Humber Exited J
1 k]
L1 —g | min B 7 2 az
- @ 3 Y
g I 2 7%
M & hin v W B—L3
4
b

Utilization: 09542317

Line Balance with Activities model

As in the previous model, the queue lines tend to be more balanced than the Buffering Operations
model; but this method makes more efficient use of the Machines.

I Yet another option would be to use a Workstation block to replace the Queue and Activity blocks.
The Workstation can report all of the items in its internal queue and activity through its Length
connector.

=)
=
e}
=
[
-
o
1
<
a
=
-

Machines that can only process certain types of items

A typical assembly line can handle more than one type of item at a time. For example, you may
have three stereo models being assembled on a single line. Most of the assembly is identical, but a
few different parts are used at different points. Unfortunately, some machines in such a heteroge-
neous assembly line cannot work on particular models being assembled. The method for accom-
plishing this is a combination of splitting items into different paths to establish the different
“types” of items, then recombining the paths appropriately for the different machines. The Select
Item Out block and the Select Item In block are handy in such situations.

Processing by Type model

Assume there is an assembly line where each item has an attribute called lepe that is either 1, 2, or
3, depending on the type of item it will be. At one step of the assembly process, there are four
machines. Two of the machines can work on all three types, but one of the machines is old and can

162 | Routing
Items going to several paths

only work on types 1 and 2, and the other machine can only work on type 3. The model is shown
below:

o Type Machined TPt Mashin — g o @
— Typel Machine2 Type2 Machine ——1=
Type! Machined Types Machine! —IF 0w W
M Machine 1

Butfer |

o T o
= 1.}] 0 Type? Machingt |WPE! Machine? — g™ @ o
- B Type2 Machine? Type2 MachineZ ——Sl== -
g 2§ = ype? Mashines Typed Machine2 ov wF /
Create set Queue v

Rand

el

s

biachine 2
Select hem]
Buffer 2 — o
Types Machined 1
o Typet Machines
ypet Machine:
L5 Types Machine2 —H @
Type2 Machines
Types Machined

Type Select Outpat__ Throughpat J T o¥ wF
Butfer3

5

g
1 2 2 Typed Machined
z 3 3 =

Link | u_@ﬂf:

[
hachine &

Machine 3

Processing by Type model

A Set block assigns a Type attribute to each item. The empirical table in the Random Number

& block (Value library) indicates that there is a 50% probability that the item will be Type 2, and
L:-l; 25% probability that it will be either Type 1 or 3.

g The Select Item Out block is set to Select e oo e T 4|
5 output based on: property. It looks up 0 T

2 the value of the Type attribute (1, 2, or 3)) L 2

=) and selects the appropriate output (1, 2, Link | j

or 3) based on entries in the block’s

g . Options table in Select Item Out block
options table, shown at right.

Notice the use of the queues as buffers in the above model. They are used to store the items by
type, with the top queue for Type 1, etc. Without the queues, the whole line could be blocked,
depending on the order in which items arrive. For example, if the first three machines are all pro-
cessing a Type 1 item, and a Type 1 item is the next to exit the Select Item Out block, blocking
occurs until one of the machines is finished with its item. The fourth machine will not be able to
pull in an item until one of the other machines finishes processing and pulls in the new Type 1
item. Even then, it will have to wait until a Type 3 item is output before it can process anything.

I=" Named connections are used to simplify the look of this model. Without these, there would be a
spaghetti of connection lines connecting the Queue blocks to the Select Item In blocks. Another
option for organizing the model would be to use Throw Item and Catch Item blocks to route the
items to the appropriate machines.

Discrete Event Modeling

Processing

Using activity-type blocks to cause and control processing

164 | Processing
Commonly used blocks

This chapter will discuss different ways to use activity-type blocks and how to control processing
time and the availability of items and resources. It will cover:

* Processing in series and in parallel

* Setting the processing time

* Bringing an activity on-line

* Interrupting processes: preemption and shutdowns
* Multitasking

* Kanban systems

* Material handling and transportation blocks

I=" The models discussed in this chapter can be found in the folder Examples\ Discrete Event\Process-
ing. That folder also contains some subfolders, as indicated in the relevant sections of this chapter.

Commonly used blocks

The following blocks will be the main focus of this chapter. The block’s library and category
appear in parentheses after the block name.

Activity (Item > Activities)
@ @ Processes one or more items simultaneously; outputs each item as soon as it is finished. Can
D

also be used for multitasking.
b wF

-
b,
>

o8
L
=1
[
P
9

<t

a

Convey Item (Item > Activities)
Sge—g® Moves items on a conveyor from one block to another. Has dialog settings to define
7 whether the conveyor is accumulating or not, what the length of the item is, and how far
and how fast the item moves.

Create (Item > Routing)
J |_— #8 Creates items or values randomly or by scheduled. Can be used to control shutdowns for

o the Activity block.

Shutdown (Item > Resources)
_%_I: Used to control shutdowns for an Activity (Item library) or Valve (Rate library). Useful for
Fw

setting random or constant time-between-failures (TBF) and/or time-to-repair (TTR).

Transport (Item > Activities)

Moves items from one block to another. Has dialog settings for defining how fast and how
far the item moves.

Workstation (Item > Activities)

Acts as a FIFO queue combined with an Activity block, holding and processing items.
Takes in one or more items at a time, holds them in FIFO order, processes them simulta-
neously, then outputs each item as soon as it is finished.

-

Systems and processes

Systems encompass one or more processes, which are a series of activities that achieve an outcome
based on the inputs. Some examples of processes, the events that might drive them, and the items
that flow through or are consumed by the process are:

Processing | 165

Processing in series

Process Event Item(s) Activity

Planning strategic direc- Plan implementation Decisions Planning meetings
tions

Developing a new prod- Employee has a new A prototype Document the specifi-

uct

product idea

cations

Manufacturing a prod-
uct

Receipt of raw materials

Parts, labor

Assemble the parts

Sales fulfillment

Customer orders goods

An order, or the goods
themselves

Process the order, ship
the goods

Call center support Customer calls on tele- Telephone call Route call to technical
phone support
Processing an insurance Claim is received (or Claim Review the claim

claim

accident occurs)

Emergency room Accident Patients, medical per- Assess incoming g

admitting sonnel patients (triage) 2

Regulating traffic Traffic light changes Cars, pedestrians Cross the street il
<

Computer network Packet is transmitted ~ Packet of data Communication g

Material handling Arrival of AGV Parts, AGVs Load part onto AGV

Hiring employees Company wins contract Employees Interview potential can-

didates

Completing an expense Employee finishes trip ~ Report Prepare and file report

report

Writing a contract pro- Request for proposal is Proposal Research the require-

posal issue ments

Approving a loan Customer submits Application Review credit history

application

I=" The following discussions most often refer to the Activity block for processing. However, the
Workstation block can often be used instead of a Queue and an Activity, and the Convey Item and
Transport blocks are also useful for simulating processing.

Processing in series
Serial processing occurs when items flow from one activity to another, where each activity per-
forms one required task on the item, out of a series of required tasks. This is most common in
manufacturing activities, order entry, or service-intensive situations. A simple example of serial

166 | Processing
Processing in parallel

processing is an assembly line, where several processes are performed on one part prior to ship-
ment.

Sof eyl y-of @)l

TR U Ow wF Ow wF Ow wF

tack Cutting Machining Pulishing

Serial Processing model

Since there are many machines in series without buffering queues between them, it is possible that
items will be not be able to leave one machine because the next machine will still be busy; this is
known as blocking (as discussed in “Blocking” on page 131. Serial processes can cause the entire
operation to be slowed to the speed of the slowest activity. This will cause utilization to increase by
the amount of time that the item is blocked. If this doesnt accurately represent your process, put a
queue in front of each machine to represent a holding area, as shown in “Select Item Out dialog”
on page 149.

Processing in parallel

It is common in industrial and commercial systems for there to be multiple activities working in
parallel, each representing the same task being performed. For example, you might have five
machines that can each process parts arriving from the stockroom. Or three bank tellers who are
available to wait on customers. With the blocks in the Item library, there are many ways to route
items to parallel activities.

-
b,
>

o8
L
=1
[
P
9

<t

a

Remember that, unless items are purposefully duplicated in the model, they can only follow one
path at a time.

Parallel processing using one block

When you do not need to show each activity as a separate block, you can choose that the Activity
block represent several operations that occur in parallel. This is accomplished by entering a num-
ber greater than one for the Maximum items in activity field in the block’s Process tab.

The Activity block can take in items (up to the specified maximum) and process them for a speci-
fied time starting from when they arrive. The item with the shortest time in the block (based on
the item’s arrival time and how long it takes to process) is passed out first. For example, you could
use the Activity block to represent a supermarket where customers arrive at different times and take
varying amounts of time to shop. Customers who arrive early or who only shop a little will leave
first; customers who arrive later or shop a long time will leave later.

Simple parallel connections

You can also use multiple Activity blocks in a model, each of which represents a process that can
accept items in parallel with the other Activity blocks. The simplest way to hand out items to sep-
arate parallel activities is by creating connections between the output of the collection point and
the inputs of each Activity. This causes ExtendSim to pass items to the first available Activity
block. However, if more than one block is free when an item is ready, it is not obvious which block

Processing | 167
Setting the processing time

will get the item. For instance, a Queue that holds items for three Activity blocks would look like
the model below.

o4
— ;
=@ a
Customers raiting Line Clerk 2 B
—| ¢
Dw wF

Simple Connections model

=" [f two machines are free when an item comes out of the queue, the machine that was first con-
nected will get the item. With simple parallel connections, even just disconnecting and then recon-
necting a connection could change the order of activities getting items.

& Unless it is completely unimportant in the model, you should always explicitly state the ordering
for parallel activities using the Select Item In and Select Item Out blocks. See “Items going to sev-
eral paths” on page 149 for examples of how to control the flow of items to parallel processes.

=)
=
e}
Q
I
-
o
3!
<
I}
=
-

Setting the processing time
Activities involve a processing time or delay that is the amount of time it takes to perform a task.
Processing time can be static or can vary dynamically depending on model conditions. It can be
random, scheduled based on the time of day, customized depending on the item that is being pro-
cessed, or any combination of these.

You model the processing or delay time explicitly using the Activity or Workstation blocks or
implicitly by specifying the length and speed in the Transport or Convey Item blocks. The Activity
block is most frequently used to represent a process or operation, and is illustrated in most of the
examples for this module

15" The models discussed in this section can be found in the Examples\Discrete Event\Process-

ing\Time folder.

Processing time for an Activity
In the Process tab of the Activity block you can select that the delay is:

* A constant. This uses whichever number is entered in the Delay (D) field. See also the discus-
sion of “Fixed processing time” on page 168.

o From the D connector. The processing time is the value at the D input, overriding any value ini-
tially entered in the Delay (D) field. For example, see “Fixed processing time” on page 168 and
“Scheduled processing time” on page 168.

o An item’s attribute value. With this option, you can select an attribute to control the processing
time. This is illustrated in “Custom processing time” on page 170.

o Specified by a distribution. This choice provides a random processing time, based on the distri-
bution and its arguments selected in the dialog. An example of this is shown in “Random pro-
cessing time” on page 169.

168 | Processing
Setting the processing time

* From a lookup table. This choice allows you to use an attribute value to specify the parameters
of a random distribution. With this option, two popup menus and a table appear. The first
popup is for choosing a distribution; the second is for selecting an attribute. The table is where
the processing time for each type of item is characterized. with each row containing a different
set of arguments for the selected distribution. As each item enters the block, its attribute value
identifies which row in the table the item is associated with, and thus what its processing time is
based on. This option is illustrated in the “Simulate Multitasking Activity model” on page 184.

Processing time for other activity blocks

The Workstation block works much like a Queue combined with an Activity block. It has most of
the same options (shown above) for setting the processing time as the Activity. (Because of its
internal queue, the Workstation does not have a D input connector.) The Convey Item and Trans-
port blocks calculate an implicit processing time based on the settings for speed and length entered
in their dialogs. They are discussed in “Transportation and material handling” on page 185.

Fixed processing time

Set the delay in the Activity dialog if the delay doesn’t change and you know how long it is. For
example, if Machine A always takes 5 minutes to process parts, enter the value 5 as the processing
time in the Activity’s dialog. This is most common in the early stages of model building when you
use constant parameters to get repeatable results.

Another method for having a fixed or constant processing time is to con-
nect to the D input of the Activity block. For instance, you can connect
from a Constant block (Value library) or a Slider control, as shown at
right. If you use the Slider, you can manipulate it with each simulation
run, or within a simulation run, to see the effect of various processing
times.

-
b,
>

o8
L
=1
[
P
9

<t

a

Connecting to the Activity’s D connector overrides any manual entry in

the Delay (D) field. Slider control used to
. . set Activity’s processing
Scheduled processing time time

If a process takes a specific amount of time under most conditions, but
takes another amount of time if the conditions are different, you can schedule the processing time.
This is common when simulating worker performance, where output could be a factor of time.

Processing | 169
Setting the processing time

Scheduled Time model

For example, assume that a worker normally takes 5 minutes to perform a task, but takes 5.25
minutes to do the task after doing it for 6 hours. To do this, connect a Lookup Table block (Value
library) to the D input of the Activity block as shown in the following model.

Create FIFO Queue

Time

Scheduled Time model

The Lookup Table block is set to Lookup the: time. Data that represents the worker’s day is
entered in the Hours column; the time to perform the task is entered in the Zask Time column. As
indicated in the Lookup Table’s dialog, a portion of which is cloned onto the model worksheet, the
time to perform the task changes at hour 6.

Lookup Table block’s time units

Notice that the time unit for the Hours column in the Lookup Table’s dialog is hours and that the
time the worker takes to perform the task (Task Time column) is in minutes. The time units for
the model are hours, so the first column must be in hours. However, since the output of the
Lookup Table block is connected to the D connector of the Activity block, the Task Time column
should be defined in the same time units (minutes) that are used for the Activity’s Delay parameter.
For this model, at a particular hour of the day (Hour column) an activity will take a specified num-
ber of minutes to perform the task (Task Time column). Time unit consistency is discussed in
“Choosing time units for the columns” on page 113.

=)
=
e}
o}
I
-
o
3!
<
I}
=
-

Random processing time

A common requirement for activities is to set a random processing or delay time. This is easily
accomplished by selecting a distribution in an Activity block.

Random Activity model

In the dialog of the Activity block, select the appropriate distribution, for example Normal, and
specify the value of the parameters, such as a mean of 2 and a standard deviation of 0.2. The pro-

170 | Processing
Setting the processing time

cessing time will then be normally distributed and the Activity block will process each item for
approximately 2 time units.

Delayis: [specified by a distribution]
Delay (D) 2115833101

- k3

flp=—L s

hd D% wF Exit
Create FIFD Queue Potivity

F

Random Activity model
For more information, see “Constant values and random variables” on page 57, “Random num-
bers” on page 604, and “Probability distributions” on page 606.

Custom processing time
Attributes can be used to specify how long a specific item will be processed. This is a very powerful

i feature since the Activity block can recognize each item’s processing time and behave accordingly.
)
[.
) Custom Time model
L . . 5
2 In the simplest case, set an item’s attribute value to the desired amount of processing time, then use
3 L
g the Activity block to read the attribute value and process the item for that period of time.
o v .
Q Delayis: [anitern's aftribute value]
Aftribute: [CheckTime |
12] Q7
(] F £j=@__ y2 |n
hd ow wF Exit
FIFO Queus Potivity
s
Custom Time model
The Custom Time model uses the Set block to set [~gpecify a distibution
the value of an attribute called CheckTime to the TN
amount of time it takes to check the item. Items Valugs intable are: [JEeee] Flot Sample
that need a final check have a CheckTime attribute e oy | _PlotTable
value of 5, for instance, and items that ship 0 v v
unchecked have an attribute value of 0. That value .
. . esult
(0 or 5) is provided by the Random Number block L -
. 11 |
(Value library) using an Empirical distribution

where 25% of the items have a value of 0 and 75%

Custom processing time
have a value of 5.

All items then go through the checking step, easily represented by an Activity block. In its dialog,
this block indicates that the Delay is: an item’s attribute value and the attribute is CheckTime.

1= Although items with a CheckTime value of 0 will not be processed by the Activity block, they may
be delayed in the Queue (which is set to FIFO order) while a preceding item undergoes checking.

Processing | 171
Setting the processing time

Implied processing time

Some ExtendSim blocks allow you to specify distance, speed, or other factors that indirectly result
in a processing time. For example, the Convey Item block allows you to enter an item length and
the length (in feet or meters) and speed (in feet or meters per time unit) for an accumulating or
non-accumulating conveyor.

These settings in Convey Item and Transport blocks result in delay times for items. For example, if
you set the Transport to be 10 feet long with a speed of 1 foot per time unit, it will take 10 time
units for an item to travel to the next block.

For more information about using the Convey Item and Transport blocks, see “Transportation and
material handling” on page 185.

I 1f the Metric distance units preference is selected in the Edit > Options dialog, length units in
these blocks are set by default to meters. Otherwise, their length units are in feet.

Cumulative processing time: time sharing

The prior section discussed setting an item’s attribute to the time required by a specific activity.
You can also set its attribute value to the total processing time required, then route the item to a
series of activities, each of which performs one part of the processing, until the attribute value is
reduced to zero and the item is fully processed. This is common when there are several stations
with different processing times, any of which can process the item. Or when there is one machine
that processes each item for a specified time, then passes the item to another section for further
processing, and the item must be returned to the original machine for finishing.

=)
=
e}
=
[
-
o
1
<
a
=
-

You can do this using an activity block, building the model such that the attribute value is
decreased by the amount of processing time. In this situation, each activity subtracts its processing
time from the attribute value, so that the value represents the remaining processing time. Use a Get
block after each activity to determine if the item was fully processed or not, and therefore whether
it should proceed to the next activity or be routed out of the line.

Time sharing occurs when an activity processes an item, sends it back to a queue for a short period,
then processes it again until the required processing time is completed. This is common for com-
puter networks and telephone communication systems. In these systems, time is specified in small
fractions of a second, there are a lot of jobs that must be processed at the same time, and there are
only a limited number of processors to do the work. In time sharing, instead of each job being pro-
cessed sequentially, all jobs are processed at what appears to be the same time. However, each job is
processed a small bit at a time, and a given job may have periods in between where nothing is hap-
pening to it. Since the time units are so small, the periods when there is no processing of a specific
job are typically not noticed, and each job appears to be processed continuously.

172 | Processing
Setting the processing time

Cumulative Time model

A simple time-sharing model has one activity that processes each job for a short period of time,
then sends the job back to the queue so it can be processed again, until the total required process-
ing time for that job has elapsed.

£

Finished processing?

Remainin a3

31k

I Select Output___Throughput J
0

o o
1 1 1

Sellect Job In o v

Cremts Jobs 54t Processing Time FIFO Dueue

Rand

Chnimum
~

<<Mare processing required<< Link |

Cumulative Time model

In the model, items (jobs) are generated randomly and the Set block attaches a RemainingTime
attribute to each job generated. The Random Number block determines the initial value of that
attribute, 1, 2 or 3 milliseconds, which represents the total processing time required for each job.

-
q:) The Activity block processes the job for a fixed time (1 millisecond). An Equation(I) block then
23 subtracts the amount of time spent processing (Process Time, or PT) from the RemainingTime
% attribute.
S
2 Once the remaining processing time has been =
y e . FemainingTime _ Select Output Throughput J
a calculated, the decision to route the item back to]]]
.. . 1 1 1
the Queue or to the Exit is made in the Select Link | j

Item Out block. Jobs with a RemainingTime of
0 are routed through the top output and exit the
simulation; items that have 1 or more millisec-
ond of processing time left are routed back to the Queue for further processing. Notice that the
table in the Select Item Out block (shown above) only indicates explicitly what happens if the
remaining time is 0 or 1. However, the block’s dialog is set to Invalid Select value: chooses bottom
output. With these settings, an item with a RemainingTime value of 0 will exit the top output. If
the value is 1 the item will exit the bottom output. And any value other than 0 or 1 will also exit
from the bottom output.

Table in Select Item Out block

05" The time units for this model are integers representing milliseconds, because the Select blocks
expect integer values for comparison and will truncate non-integer values. (For example, the value
0.003 would be truncated to a zero.) When using non-integer values for the processing time, con-
vert the attribute values to integers before they go to the Select Item Out block. You can do this
with a Lookup Table block (Value library).

Adding setup time

Every process is not 100% efficient. For instance, it is common in manufacturing for a machine to
be reconfigured when the type of item it is processing changes. This reconfiguration usually takes
additional time beyond the normal processing time. In the example below, the processing time
(and the part type) is determined by the attribute values, similar to what was shown in “Custom
processing time” on page 170. However, this model requires an additional setup time whenever
the type of item changes.

I Setup time can add significant delay to the processing of items. For an example showing how to
minimize setup time, see “Minimizing setup” on page 136.

Processing | 173
Bringing an activity on-line

Setup Time 1 model

In the Setup Time 1 model, a Process attribute is assigned to each item. The attribute value repre-
sents how long items should be processed for — either 1, 3, or 5 minutes, depending on probabili-
ties entered in the Random Number block (Value library). The A (delta) output connector on the
right of the Get block signals when the value of the Process attribute has changed, indicating that
the current item is of a different type than the previous item. This information is used to add a
setup time to that item’s processing time, resulting in a longer total delay time for the first item of
a new type, each time the type changes.

Processzing Time 3

Set Atibite FIFQ ueue Get Atribute

Setup Time 1 model

=)
=
e}
o}
I
-
o
3!
<
I}
=
-

The A (delta) connector outputs 0 (for False) as long as the value of the Process attribute stays the
same and outputs 1 (for True) when the attribute value changes, indicating the arrival of a new
type of item. The Constant block (Value library) specifies a setup time of 3 minutes. As long as the
attribute value does not change, the Constant block is multiplied by 0, adding nothing to the nor-
mal processing time. When the attribute value changes, the Constant value is multiplied by 1, and
the 3 minute setup time is added to the value of the Process attribute to determine the processing
time for that new item. You can see this if you run the simulation — the processing time is cloned
onto the worksheet and will be 1, 3, or 5 minutes for most items but 4, 6, or 8 minutes for the first
item that is of a new type.

Notice that each item still has its original attribute value. You do not change the attribute value in
this model, it is only used to determine whether the item type has changed and thus whether the
item requires a setup time. The processing time (whether equal to the attribute value or equal to
the attribute value plus the setup time) is input at the D connector. The Activity block processes
based on the value at the D connector, not directly based on the attribute value.

I=" While the model above shows the mathematics explicitly, the Equation block (Value library) can
also be used to specify the setup time. This is illustrated in the model Setup Time 2.

Bringing an activity on-line
As discussed in the following sections, many systems, activities, or operations can be brought on
and off-line based on a schedule or on the current conditions of the system.

I=" The models discussed in this section can be found in the Examples\Discrete Event\Process-
ing\Bring On-Line folder. The Shift block is discussed starting on page 218 and models using the
Shift block are located in the folder Examples\Discrete Event\Resources.

Scheduling activities
Activities don't always occur randomly; they can be scheduled. This is common when you bring an
activity on-line based on the time of day. This could be represented by a schedule in the Create

174 | Processing
Bringing an activity on-line

(Item library) or Lookup Table (Value library) block connected to and controlling a Gate block
(Item library), by using a Create block to schedule the capacity of an Activity, or by using a Shift
block to control an Activity. As seen below, the Scheduling Activities 1 model uses a Gate block
and the Scheduling Activities 2 model schedules an Activity’s capacity. Shift blocks are discussed in
“The Shift block” on page 218.

I So that you can compare both the Scheduling Activities 1 and Scheduling Activities 2 models, they
have the same random seed, as seen in their Run > Simulation Setup > Random Number tabs.

Scheduling Activities 1 model

The following example shows how to schedule the availability of a portion of an operation using a
Gate block. The Scheduling Activities 1 model represents a diner that opens at 10 AM and closes
eight hours later. Customers arrive exponentially throughout the day, with most customers arriving
during the lunch period, which is from 11 AM until 2 PM (from hour 1 to hour 4). There is 1
dining section that can service 5 people at a time throughout the day. A second dining section that
can also service 5 people at a time is available only for the lunch shift.

2
= &
g o F
v -1
L: |__/ o Section 1 __/ E
2 =y
Tirme Q o b4
2 ¥ mean¥ iiting Line prart
% Aivals demand
5 0
Create Time “walue
1 o DJ
2 1 1 Gate BookD D¥ WF
3 4 o Section 2
Link

Scheduling Activities 1 model

The scheduling of random customer arrivals is accomplished by

entering values in a Lookup Table block (Value library), set to 0 S — n.1J
Lookup the: time. The output of the Lookup Table block is]] o
connected to the mean input of a Create block, which generates 3 3 0.0
customers exponentially. As seen in the table to the right, the : = o
Lookup Table outputs a smaller value from time 1 to time 4. Link | j

The output represents the average time between arrivals, so

R . X N Customer arrivals
arrivals will occur more frequently from time 1 to time 4.

Opening the second dining section is accomplished by connecting a Create block to a Gate block,
allowing customers access only during certain hours.

The Gate block is set to set to Mode: conditional gating with values, so that it only allows items
through when its demand connector is activated by a value. This is accomplished by connecting a
value connector, such as the one on the Create block when it is in Create values b)/ schedule mode,
to the demand connector. As long as the value connector is true (outputs 1), the Gate stays open;
when the value is 0, for false, it closes. Running the model with animation on shows that, even
though the queue length is increasing, the Gate shuts down after three hours.

Processing | 175
Controlling the flow of items to an activity

Scheduling Activities 2 model
As an alternative to the preceding example, you could have used the C connector on the Activity
block to control its capacity, simulating the opening of the second dining section.

naG

Jo—L e)—=

F

B— o
(] mean¥ raiting Line
Aivals Sections
Create Time “value
1 [5J J |——/
2 1 10
3 4 5 | =an
Link |

Scheduling Activities 2 model

Each dining section has the capacity to serve five customers at once. By doubling the capacity of
one Activity block during the period between 11 AM and 2 PM you can model both dining sec-
tions being open. This is accomplished by connecting the value output of a Create block, set to
Create values by schedule, to the C input on the Activity. In the model, the portion of the Create
block that controls the capacity of the Activity is cloned onto the model worksheet.

Shift block used to schedule

Yet another approach to scheduling an Activity would be to use a Shift block to control it. For
instance, the Shift block could contain the same information as the Create block that is connected
to the C input on the Activity in the Scheduling Activities 2 model, above.

=)
=
e}
o}
I
-
o
3!
<
I}
=
-

For more information, see the section titled “The Shift block” on page 218.

Controlling the flow of items to an activity
As discussed in “Scheduling activities” on page 173 you can have an activity start based on the time
of day. Some methods of adding an additional activity to a model can cause the new activity to
cycle on and off frequently. You may not want this to occur, as it can result in higher start up costs,
increased machine wear and scrap production, and excess energy consumption. Instead, you can
add some Aysteresis and have the activity stay on to process a number of items, or stay on for a
period of time.

When bringing a system on-line, there are two main ways to control the flow of items to an activ-
ity:
* Specify the number of items that will be processed

* Specify the amount of time the activity will be on-line

Fixed number of items

Instead of having a system cycle on and off, you may want to keep the optional activity running.
For instance, you can keep a machine on to process a particular number of items, even if the wait-
ing line for the other machines is below the threshold that originally activated it. This reduces the
number of times the machine turns on and off.

Fixed Items model
To keep an activity running until it has processed a fixed number of items, add a Create block
between the Decision and Gate blocks to the model discussed in “Conditional routing” on

176 | Processing
Controlling the flow of items to an activity

page 157. (The Conditional Routing model is located in the Examples\Discrete Event\Routing
folder.) The resulting model is named Fixed Items, and is shown here.

1
—
Ow wF
Wachine 1 m4a

o5t

|

e

nected to the start connector of a Create block, which
is set to Create items by schedule; the schedule is
shown at right. The Decision block outputs a true
value (1) at Y if the queue length is 5. When that hap-
pens, the Create block (Control the Gate) starts its
schedule and puts out a single item with a quantity of |_Link | <] bt
10 to the demand input on the Gate block. This causes
the Gate to stay open until 10 items pass through the

block [~ Repeatthe schedule every

There are two items of special note in this model: how Activating “demand” with an item
the start and demand connectors are activated.

o] F i
Create FIFO Qugue l\'dachi:e 2 B
Start Schedule if
queue length =5 —Eldemand 1
. =§|_FE| nguf:
o s
AD
Gat ow b4
N) Wachine 3
| = g Keep Gate open for at least 10 items,
ther cloge for 5 time units before
start o re-opening.
Fixed Items model
-
§ In this model, the optlonal machine will be brought rEnter a schedule of arrival times
<3 online if/when the queue exceeds five items. The Y .
L . . Create Time ltem Quantity J
2 output of the Decision block (Value library) is con- i 0 10
L 2 5 i
9
@
5

¢ Since the Create block’s start connector is connected, and since the block is in Create items by
schedule mode, the block’s schedule runs in relative simulation time (begins its schedule relative
to when start is activated), as explained in the section “The Start connector” on page 114. Once
start is activated (gets an value > 0.5) it causes the entire schedule to happen; messages from the
Decision block to the start connector are ignored until the schedule is complete. The second line
of the schedule means that the Create block will also ignore any start messages for 5 time units
after the schedule has been completed. This provides hysteresis and allows the machine to pro-
cess items (and hopefully reduce the buffer length) before the sequence is activated again. If the
schedule did not include this pause, the Activity block could be activated constantly.

* The demand connector is activated when it gets an item, causing the Gate to open and allow
items through. The number of items allowed through before the Gate closes is determined by
the quantity of the item at demand. For instance, each item with a quantity of 10 creates a
demand for 10 items before the Gate will close.

Processing | 177
Interrupting processing

Fixed period of time

You may want to keep the optional machine on for a particular length of time instead of for a cer-
tain number of items.

Fixed Time model

To do this, use the Create block, set to Create values by schedule, to output values to the demand
connector on the Gate block.

Wachine 1 g5

D

|

oy ¥ Exit
Create FIFD Qusue Wachine 2
Start Schedule if
queue length =35 ——Edemand :
8 =§_f=§ UE;};
O Axd
A0
0w wF
N!‘ Gate

Wachine 3

e

| =], Keep Gate open for 3time periods

start

Fixed Time model

=)
=
e}
=
[
-
o
go]
<
a
=
-

In the table in the Create block’s dialog, the first line
has 0 for the output time and a value of 1. The second
line has the time you want to turn off the optional e T e 1J
machine, and a 0 for the value. For example, to keep 2 5 0
the optional machine on for five minutes, you enter

the values as shown at right.

rEnter a schedule of arrival times

Once start is activated, the demand connector will

receive a value of 1 (True). After 5 time units have
. i +

passed, the value at demand will change to 0 (False). [Link | <] pd

Because you are connecting a value output to demand,

the Gate block will stay activated as long as the value

Lo [Repeatthe schedule every [i0
the demand connector receives is greater than or equal

to 0.5, which in this example is for 5 time units.

Interrupting processing

In discrete processes, it is common for interruptions to occur. This could happen for any number
of reasons, such as the arrival of an item that has a higher priority for processing, random machine
failures, planned shutdowns, the occurrence of a higher priority event, and so forth. Interruptions
are of two kinds, preemption and shutdown.

Activating “demand” with a value

* Preemption occurs when an Activity block is told to prematurely end one or more items’ pro-
cessing. When this occurs, the Activity immediately sends the preempted items out of the block
through an alternate item output connector.

o Shutdown occurs when processing is suspended for one or more items currently in an Activity
block. Items that have been shut down may or may not have their processing completed when
the shutdown ends. In any case, they are either discarded or leave through the normal item out-
put connector.

178

-
b,
>

o8
L
=1
[
P
9

<t

a

Processing
Interrupting processing

The Activity block has a Preempt tab for specifying what to do when there is preemption and a
Shutdown tab for controlling what happens when the block gets a message to shutdown. The
Convey Item block can be shutdown by reducing its speed to zero. The Shutdown block is most
commonly used for shutting down an activity.

I Preemption and shutdown are discussed in the following two sections. The models for those sec-
tions are located in Examples\Discrete Event\Processing\Preemption and Shutdown folder.

Preemption
Preemption occurs when a signal is received at an Activity block's PE (preempt) input, prematurely
ending an item's processing by forcing it to leave through an alternate output.

In the Preempt tab you can specify that preemption occurs only if the block is already processing
its maximum number of items and that the preempted item's remaining processing time be stored
as an attribute for subsequent processing. Once preempted, the item’s processing can be finished
by another Activity, finished later by the original block, or never finished at all, depending on how
the item is routed in the model.

PE input connector

Once preemption is enabled in the Preempt tab, the PE (preempt) universal input connector and
an alternate item output connector appear on the Activity’s icon. The connection to the PE con-
nector can either be a value input or an item input, depending on what is selected in the Preempt
tab. The type of connection to the PE input determines how preemption is controlled:

* Value connection. Based on which of the first four preemption options (discussed below) is cho-
sen, the selected item or items will be preempted whenever a true (0.5 or greater) value is
received at the PE input.

* Item connection. When a “preemption item” arrives at the PE connector, the Activity looks up
the specified attribute value on the preemption item. The Activity then searches all items cur-
rently in processing, and any of those items with an attribute value equal to the one on the pre-
emption item will be required to leave the block.

Preemption options

As discussed above, preemption occurs when a signal is received at an Activity block’s PE (pre-
empt) input. Settings in the block’s Preempt tab determine which item or items must leave.
Depending on whether the preempt signal is sent by a value or an item connector, the preemption
options are:

* The item that is closest to finishing

* The item that is furthest from finishing

* The item with the lowest priority

* All items currently being processed

* Only items with a particular attribute value

The first four options are only available when a value connection is made to PE; the last option is
only available, and is the only choice, if an item output is connected to PE.

Preempting model

For instance, an Activity and Queue (set to Sort by: priority) can be used in conjunction with a
Decision block (Value library) in such a way that lower priority items being processed 7y be pre-
empted to make room for higher priority items as they arrive at the Queue. Note that it is not

Processing
Interrupting processing

guaranteed that a lower priority item will be preempted. If “Preempt only if block is full” is
checked, items will be preempted only if the Activity block is full.

In the Preempting model, the Queue reports the priority of the item that is about to leave and the
Activity reports its lowest priority item; this information is sent to the Decision block. If it is deter-
mined that there is a higher priority item in the Queue than is being processed by the Activity, a
True signal (a value greater than 0.5) is sent to the Activity’s PE input. Notice that the Activity’s
dialog is set to When signal is received at PE input, preempt... the item with the lowest priority
and to Preempt only if block is full.

When signal is received at PE input, preempt...

[the itern with the Towe st priority .]
. PEll
Q37
) - *
- 1] F Exit
e
o U
L
Rand P' &A——eP
EMnimum B g
W84
<=Freempted ltem

Preempting model

Unless they are preempted, items arriving to the Activity block are processed for the time indicated
in the block’s dialog. In block’s Preempt tab, Store remaining time in attribute: remainingTime
is selected. If an item is preempted, the Activity attaches the remaining processing time to the item
as an attribute named remainingTime. Since the Activity also has Use this attribute as delay
checked, when the preempted item returns to the Activity block it will process only for the time
indicated by the remainingTime attribuce.

Shutting down

Employee breaks, equipment maintenance, inventory-taking closings, and tool failures all involve
interruptions in activities for a period of time called downtime. If interruptions are significant,
models should include provisions for shutting down activities to avoid overly optimistic predic-
tions.

Shutdowns involve a temporary or permanent halting to the processing of items currently in the
Activity block. The block’s Shutdown tab has settings to determine which items should have their
processing shut down, how long to interrupt the processing, and what to do with the items in an
Activity when the shutdown occurs.

You can shut down activities at a scheduled time, such as for vacations or machine maintenance, or
it can be a random occurrence, such as for equipment failures or emergency leaves. Activities can
also be shut down based on some factor in the model, for instance when a downstream Queue is
full. Like shutdown occurrences, the duration of the downtime can be a constant value or a ran-
dom number. A shutdown can also be used to block the entry of additional items while the shut-
down is in effect.

SD input connector

Once shutdown is enabled in the Shutdown tab, the SD universal input connector appears on the
Activity’s icon. It is common to connect from a Create or Shutdown block to the SD input but
connections can be made from other blocks as well. The input to the SD connector can either be a

179

=)
=
e}
=
[
-
o
1
<
a
=
-

180 [Processing
Interrupting processing

value connection or an item connection, depending on what is selected in the Shutdown tab. The
type of connection to the SD input determines both which items are shut down and for how long:

* Value connection. This acts like an on/off signal. The entire block will be shutdown whenever a
true (0.5 or greater) value is received at the SD input. This suspends the processing of all items
in the block and stops new items from entering it. The Activity will stay shut down until the SD
input gets a false (less than 0.5) value.

¢ Item connection. When a “shutdown item” arrives at the SD connector, the Activity will shut
down the item or items currently being processed, as specified by the shutdown options dis-
cussed below. The duration of the shutdown is determined by an item’s attribute or quantity as
specified in the Shutdown tab; the value of that property on the shutdown item determines how
long the shutdown will be in effect.

The Create block is used to schedule the shutdown for the “Scheduled Shutdown model” on
page 181; the Shutdown block provides random shutdowns for random durations for the “Ran-
dom Shutdown model” on page 182.

Shutdown options

As discussed above, shutdown occurs when a signal is received at an Activity block’s SD (shut-
down) input. Settings in the block’s Shutdown tab determine which items currently in processing
will be shut down. Depending on whether the shutdown signal is sent by a value or an item con-
nector, the shutdown options are:

-
b,
>

o8
L

=1
[
P
9
<t
a

¢ All items currently in processing

* A randomly chosen item

¢ Items whose attribute matches the attribute at SD
* Entire block

The first three choices are only available if an item connector is connected to SD; “Entire block” is
only available, and is the only option, if a value output is connected to SD. If “Items whose
attribute matches the attribute at SD” is selected, the Activity looks up the specified attribute value
on the shutdown item. The Activity then searches all items currently in processing, and any of
those items with an attribute value equal to the one on the shutdown item will be shutdown.

Item options
Once a shutdown is in affect, the shutdown items are handled in one of four ways, as specified in
the Shutdown tab of the Activity’s dialog:

* The item can be discarded, such as when food is spoiled by the machine going down.
* The Activity can resume processing the item after the shutdown ends.
* An Activity can restart processing the item after the shutdown ends.

¢ The Activity can finish processing the item prior to shutting down, such as when the shutdown
is part of scheduled maintenance and can wait until the item is finished.

Items that are not discarded leave through the Activity’s normal item output.

SD output connector

The Activity blocKs variable output connection contains an SD connector that can be used to relay
shutdown status. Depending on how the Activity has been configured, this connector either out-
puts a 1 (one) while the Activity is down and a 0 (zero) when it is up, or it outputs the number of

Processing | 181
Interrupting processing

items that are currently shutdown. If a value connection has been made to the SD input, the SD
output connector is set to 1 or 0; if an item connection has been made to the SD input, the SD
output connector reports the number of items currently shutdown.

Scheduled Shutdown model

The Create block is often used to schedule an Activity to shut down. For example, the Scheduled
Shutdown model schedules downtime for a machine by connecting a Create block’s item output to
the SD input on an Activity.

Creagte Time fterm quantity . ftem Priority » downTime o J
1 2 1 1 14
=y i 7 1 1 1
Link | 4 b
Shutdown Schedyl
F
Cneate tems= uU Shutdown
o
L
o
P
g

wil
I’_l—S hutdown

Scheduled Shutdown model

The “Shutdown Schedule” from the Cre-

=)
=
e}
=
[
-
o
1
<
a
=
-

. Create Time ftem quantity. _ftem Priorty » downTime -
ate block’s Shutdown tab is cloned onto 1 7 1 1 2.5J
the model worksheet and shown at right. 2R 7 ! ! L

C . . Link | 4 »
It indicates that two items will be created,
one at time 2 and one at time 7. Each Schedule in Create block

item has a downTime attribute as seen at

the top of the fourth column; the attribute’s value is 2.5 for the first item and 1 for the second
item. In the Create block’s dialog, this maintenance schedule has been set to repeat every 10 time
units.

The Activity block is set to

process one item at a time. Its
Shutdown tab, shown at SO ishutdown) inputis from: |item connection
right, indicates that a/l items
currently in processing will be

v Enable shutdown

When signal is received at SD input, shutdown. .

- [allterns currently in processing |
shutdown when a “shutdown :
item” is received at SD, Shutdown duration specified by: [downTime -]
down Time is the name of the yhen activity shuts down: [Keepitems, resume process after shutdown]
attribute that determines the
duration of the shutdown Settings in Activity block

event, and the block will eep
items, resume process after
shutdown.

I With this information and the settings in the Activity’s Shutdown tab, processing will shut down
for any item that is already in the Activity at time 2 and that item will not resume processing until
time 4.5. Likewise, any item in the Activity at time 7 will be shut down and not resume processing
until time 8, and so forth.

& When shutdown is triggered by an item connection to SD, the selected items being processed by
the Activity block will be shut down at the time and for the duration specified. However, because

182 [Processing
Interrupting processing

the block supports parallel processing, if items arrive to the block after the shutdown has been trig-
gered, those items will be processed normally. For complete shutdown of the block, use a value
connection instead of an item connection.

When the model is run, the plotter will show both the number of items processed (obtained from
the Exit block) and the timing and duration of the shutdowns (obtained from the SD output on
the Activity.) The SD output gives a value of 1 while an item is shutdown and a value of 0 while it
is not.

The Shutdown block
Time between failures (TBF) and time to repair (I'TR) are common ways of determining how fre-
quently shutdowns occur and how long they last, respectively. You can use the Shutdown block to

specify a fixed or random TBF and/or a fixed or random TTR.

The Shutdown block has been specifically designed to work with the SD input on the Activity
block and it is capable of generating value or item-based shutdowns according to TBF and TTR
distributions you select.

* When set to Send a value to signal shutdown, the Shutdown block generates values that repre-
sent a down or up (off or on) state.

e When set to Send an item to sz'gnﬂ[shutdown, the Shutdown block randomly generates one
item for every shutdown event. The item contains attributes that indicate to the Activity both
which items will be shut down and for how long that will happen.

Random Shutdown model

While the Scheduled Shutdown model on page 181 used a Create block to schedule when an
Activity would be down, the Random Shutdown model uses the Shutdown block to halt process-
ing on a random basis for a random amount of time. It does this by connecting the Shutdown
block to an Activity block’s SD input.

-
b,
>

o8
L
=1
[
P
9

<t

a

) [5end a value to signal shutdown)
TBFY Do walug: |1
Upvalue: 0

Random Shutdown model

In this model the dialog of the Shutdown block is set to:
* Send a value to signal shutdown
* Output a Down value: 1 and an Up value: 0

¢ Use an Exponential distribution with a Mean: 9 for the Set time between failures (TBF)
parameter

¢ Use a Triangular distribution with the settings Minimum: 1, Maximum: 3, and Mostly likely:
2 for the Set time to repair (TTR) parameter.

Processing | 183
Multitasking

With these settings both the TBF and TTR are random. A true signal (a value of 1) from the Shut-
down block will cause the Activity block to shut down the entire block, halting all items currently
in processing and blocking any new items from entering. It is only when the signal switches from
true to false (a value of 0) that the block will resume processing. In this case, the Activity will
remain down for approximately 2 hours before coming back online.

Model-related shutdown

The Scheduled Shutdown and Random Shutdown examples presented earlier showed how to shut
down a process in isolation from other events in the model. You can also shut down activities based
on model factors such as the length of a waiting line or whether another activity is in process.

Explicit Shutdown model

The Explicit Shutdown model represents a buffer downstream from a machine that reaches a limit.
So that the queue length will control shutdown events, the F connector from the Queue block is
connected to the SD input connector on the Activity block.

BufferFull?
JSD

-t O F a Day o =

v F ow ¥ Exit ShutDown
Create Butter 1 a Buffer 2 Potivity 2 Fotivity 3

g
o Fn—l
F8 lpufferFull?

a
Buffer 3

|

-]
o c

=)
=
e}
o}
I
-
o
3!
<
I}
=
-

H&S hutDown
wi0
Potivity 1

Explicit Shutdown model

For this model the Queue’s limit is specified in its dialog; whenever the Queue is full, the F con-
nector outputs 1. The Activity’s Shutdown tab indicates that the SD (shutdown) is: value input
connection and that therefore the Activity stays down until SD value < 0.5. This causes the
Activity to stay shut down for as long as the Queue is full.

This is an example of how to have downstream factors affect upstream activities. If you examine
the model closely, you see that the last machine is processing so slowly that Queue 3 quickly
reaches its limit of 5 items. Since a Queue cannot take in any more items while it is full, the middle
Activity is blocked (cannot process a new item until an item is removed from Queue 3). However,
the first Activity continues to process items, filling Queue 2. By explicitly shutting down the first
Activity, you affect where items are stockpiled and which Activities are shut down when one of

them is blocked.

I Please also see “The Shift block” on page 218 for examples of activity and resource allocation that
are tied together and scheduled as “Shifts.”

Multitasking

The Activity block has a checkbox in its Process tab that
allows the block to simulate multitasking. Choosing
this option means that the block’s available time to pro-
cess items (its Delay time) must be divided between
each of the items in the block. This causes each item to
take longer to finish processing and leave. Examples of
multitasking include computer processors or a person
who is working on multiple tasks at the same time.

Define other processing behavior

¥ Simulate multitasking activity

Choosing multitasking in an Activity

184 | Processing
Multitasking

With multitasking, if only one item is in the block the actual processing time will be exactly the
same as the original delay time specified by the block. If two items are in the block, each item will
take twice as long as the original specified processing time. If three items are in the block, their
processing times will be multiplied by three, and so forth. This is equivalent to situations where a
single server or operator has to divide their available time between multiple customers or tasks.

The changes to the processing time occur dynamically as items enter and leave the block. When
new items enter the Activity, the remaining delay times for all of the items in the block will become
progressively longer. As processed items leave the block, the delays for the remaining items will
become shorter.

Simulate Multitasking Activity model

In this example model, there are three kinds of jobs that are being processed on a computer. The
computer must share its time between all the jobs it is simultaneously working on.

J) poe ‘ 155 F
=] =y
[ow o
> Create jobs hd ov oF Completed jobs
[=3] Rand iait for processor u
2 a.
e v “:B =T
‘C) Random job size B [
y 2 uSH
a 7 —
Process jobs 4
k3
ORE M
-

howing awerage

T LI]
w

value 12 Flotter, Discrete Evert 2
a 250
[} 100
3 -50
o -200
o 2500 5000 500 10000

Time
Q = Length — 2 M. farg. P Time
1

Simulate Multitasking Activity model

The Simulating Multitasking Activity creates a random number of each type of job (small medium
and large), as determined by probabilities entered in the Random Number block (Value library).
Each job has a Job Size attribute with the string value small, medium, or large. The job’s processing
time is defined by a distribution and entries in a table in the dialog of the Activity block, which is
set to Delay is: from a lookup table. (For a description of this setting, see “Processing time for an
Activity” on page 167.)

Running the model shows that the moving average processing time increases as the number of
items in the Activity increases.

I=" Changing the capacity of the Activity changes the number of items allowed in the block, but it
does not change the calculation for the delay time. Thus, if “Simulate multitasking activity” is

Processing | 185
Kanban system

enabled, increasing the capacity will not necessarily increase the throughput rate of the Activity

block.

Kanban system

A kanban just-in-time (JIT) inventory system limits the amount of inventory between processing
stations with a controlling “kanban” card. In this type of system, a station is only authorized for
processing if a kanban for that part is available. When processing is complete, the kanban moves
with the part to the next station. As the next station consumes parts, it returns the kanbans to the
previous station to authorize additional processing.

Kanban model

A Kanban system is modeled in ExtendSim by monitoring the queues between machines and hav-
ing that information regulate processing. To do this, set the Queue block capacity to the number
of kanbans and connect the F (full) output from the block back to the preceding Activity’s SD
(shutdown) output connector. When the queue has remaining capacity, its £ connector will output
0 (zero) and the preceding Activity block will be authorized to produce parts. If the Queue block is
full, its F connector will output 1 and the preceding machine will be shut down until the queue
length is reduced.

=)
&8 g
N a
=
(¢}
T Iz 7 [l szl
ey BE, =S Ny O :
= 1. E
TR -l Ow wF Wim ow wF Wi -1k} F
Part= Bin =
L rg L rg Batch =

- -
Buffer 1 Buffer 2 Exit

L}

Create Orders Orders Queue

Kanban model

If you run this model with animation on, the Activity blocks will be struck through in red while
they are shut down.

Transportation and material handling
The following Item library blocks are used to represent transportation and material handling;
e Transport
* Convey Item
* Resource Item

The Convey Item and Transport blocks represent ovens, conveyors, and so forth to provide fixed-
path routes with a specified travel time for items. The Resource Item and Transport blocks are used
with the Batch and Unbatch blocks to simulate AGVs and other independently moving vehicles.

I=" The models discussed in this section can be found in the Examples\Discrete Event\Process-
ing\Material Handling and Transportation folder.

Travel time

In a discrete event model, items move from block to block as dictated by the connections. These
connections indicate the direction of movement, but they don’t provide any delay for the items. If
travel time is significant, it is common to either:

186 | Processing
Transportation and material handling

* Increase the delay time of destination blocks to compensate for the travel time.
* Specify a minimum wait time in a Queue block’s Options tab to simulate travel time.

¢ Set an explicit travel time in a Convey Item or Transport block, as shown below.

Transport blocks
Transport blocks (Item library) move items from the |- Define how fast and how far the tems move ——
start of a path to the end based on distance and
speed information. When the model is animated,
they can display multiple items travelling a certain
distance simultaneously.

Travel time: [speed and distance]
Move time: [1.2307692 time units

Drstance
lterm speed: feetrtime unit
I While you can choose either feet or meters as the dis-

tance unit in the block’s dialog, the default is feet. It fransport block: Behavior tab
Metric distance units has been selected in the
Edit > Options command, the default will be meters.

Travel time options
The block’s Behavior tab has options that specify how to calculate travel time — the time it will take
an item to travel from the starting point to the ending point. Travel time can be based on:

* Move time. Fach item will take the amount of simulation time that is entered in the Move time
field or received at the D input connector. This acts just like a delay in an Activity block; length
and speed are ignored.

-
b,
>

o8
L
=1
[
P
9

<t

a

* Speed and distance. How fast the item is traveling, and how far the item must travel to reach its
destination, are entered in the fields in the Behavior tab or received at input connectors. The cal-
culated move time is displayed in the dialog. This option is most often used if the transportation
pathway is centered around the block.

* Speed and calculated distance. The item’s speed is entered in the e speed field or received at
an input connector. The distance is determined from information entered in the frame labeled
“Select From and To locations for calculated distance”, as discussed below. This travel time
option is most commonly used for 3D animation when you want the location of the transporta-
tion pathway to be independent from the block.

U= If Speed and calculated distance is selected, the starting and ending locations (which deter-
mine the distance) must be defined in the tab.

Calculated distance

Ifﬁpeedﬂnd calculated rSelect From and To locations for calculated distance
distance has been selected 2D 1D 2D D
as the travel time, a frame Fram ¥ location; [BAS 33.45 To ¥ location; &9 33.45
appears at the bottom of From™ location: 280 |14 To¥ location; 280 | 14
the dialog for entering the o . :

. < A From locationis: [previous non-passing block .]
distance information. If
theﬁom and/or to loca- Tolacation is: [nesd nar-passing block o
tions are set to anything Calculate distance; [in straight line |
other than Entered X and Distance ratio: [uge 30 distance rafio]

Y location, the relative

Frame for entering information to be used to determine the distance

Processing | 187
Transportation and material handling

positions of the blocks in the model, and their connections, determine the distance.

The factors considered in the calculation are: the “from” location, the “to” location, how the dis-
tance is calculated, and the distance ratio.

From location options
* Previous non-passing block (the default)

¢ Entered X and Y location

¢ Block location

* Enclosing hierarchical block
¢ Previous block

(See explanations following the To location options.)

10 location options
* Next non-passing block (the default)

* Entered X and Y location

¢ Block location

* Enclosing hierarchical block for next block

¢ Next block
Note: In the Item library non-passing blocks are either residence or decision types of blocks, as
described in “Types of item handling blocks” on page 96. If Entered X and Y location is
selected, the numbers can either be entered in the dialog or defined by the location of block in
the model; remember that the 3D coordinates are expressed in meters. The block location

option means the current block; this choice is especially helpful when the from location is a pre-
vious block (non-passing or not).

=)
=
e}
o}
I
-
o
3!
<
I}
=
-

If the selectedﬁ'om and/or to locations are blocks, the distance starts at theﬁom block’s output
connector and ends at the zo block’s input connector.

Calculate distance options

The popup menu provides two methods for calculating the distance from the along connections

start to the end of the path: i a straight ine

* Along the connections between the from and the o locations ExitTellerl
ExitTellerz

* In astraight line between the ﬁ’om and the 7o locations

More options are available if the E3D window is open and you
have created custom paths for 3D animation. In this case, the
paths will appear at the bottom of the popup menu as shown.
The block’s Transport Animation tab has a button, shown at
right, that will calculate the length of the currently selected custom 3D path. It then puts that
length into the distance parameter field on the block’s Behavior tab.

Get distance from 30 path lenath |

Button on Transport Animation tab

Notice that the shape of the conveyor will not visually change with these choices, but the informa-
tion is included in the calculation of the conveyor’s length. For instance, if there is a series of right-
angle connections between the from and the 0 locations, the conveyor’s length will be longer than
if the straight line option had been selected.

188 [Processing
Transportation and material handling

Distance ratio option

This popup menu is for specifying the ratio between pixels in the 2D model and meters in the
E3D window. It will control how the distances defined in the Behavior tab affect 2D or 3D anima-
tion. The choices are:

¢ Use speed and distance directly. Specifies a ratio of 1 pixel to 1 meter.

* Use 3D distance ratio. Uses the distance ratio defined in the Run > Simulation Setup > 3D tab;
the default is 20 pixels per meter.

« »

* Use distance ratio of: This is for entering the ratio directly. A value of “x” means a ratio of “x
pixels to “x” meters or feet.

I=5" These options are explained more in the comprehensive example discussed in “How the length is
calculated” on page 189.

Convey Item blocks
The Convey Item block (Item

. - r Specify canveyar hehavior and how itern length is determined
library) moves items along a

. . [Accurnulating conweyor]
- conveyor, oven, cooling unit,
§ moving walkway, or any other Travel time: [movefime N
23 type of moving path. The items hove time: time units
[P} .
2 travel along the length of the Length:
5 conveyor, from its start to its
= d. The Behavi is simi
. ior tab is similar .
a en ¢ behav Capacity: -4
to that for a Transport block, e length is: [3 ZONSTEHT i
discussed above. The differ- s =
ences are:

Convey Item block: Behavior tab
* The Convey Item block can

be:

* Accumulating. If the blocK’s ability to pass items through exceeds downstream demand,
any items delayed from exiting will begin piling up at the outflow end of the block, up to
the Capacity setting.

* Non-accumulating. If downstream demand exceeds the block’s ability to pass items
through, the conveyor will stop until the item at the end moves into the next block.

* Instead of the Transport block’s reference to the distance from one point to another, the Convey
Item block is concerned with its length.

o If Travel time: move time is selected, a length entry is also required. In combination with the
item length (discussed below), the conveyor’s length determines how quickly items can move
onto the conveyor.

* The length of the items that pass through this block must be defined. They can be defined as:
* A constant
* From an attribute

* Based on length and capacity. (For instance, if the conveyor’s capacity is 1,000 units and its
length is 50 units, the length of each item will be 50/1000, or 0.05 units.)

Processing
Transportation and material handling

Item length does not visually change the item picture or object but it is included in calculations
for accumulation, capacity, and the timing of when items are pulled onto and released from the

block.

How the length is calculated

When Travel time: speed and calculated length is selected in a Convey Item block, the relative
positions of blocks in the model, and their connections, determine the path’s length. The following
example explains how the length is determined.

The bf)ttom potion of the rSelect From and To locatians
Behavior tab for a Convey 20 2D 2D 2D
[tem block is seen at right. In | Fromxiocation: 211|085 ToXlocation: 344 |[172
this frame: From ¥ location: [165 FB.25 To ¥ location: [165 FB.25
* The 2D From x location is From location is: [previous non-passing block]

211 pixels (the position of o location is: [Fed Fon-passing Block 1

the previous non-passing : —

Calculate length; [ina straightline |
block) and the 70 x loca- _ _ _)
tion is 344 pixels (the posi- Distance ratio: [use 30 distance rafio d

tion of the next non-passing

block).

* By default, the length is calculated in a straight line between the from location and the 0 loca-
tion. (The alternative is to calculate the distance along the connections.) The shape of the
block’s object will not visually change with either choice, but the choice affects the determina-
tion of the path’s distance. For instance, if there were a series of right-angle connections between
the from and the #0 locations, and along connections was selected, the distance would be longer
than if the straight line option had been selected.

Length calculations for Convey Item block

* The Distance ratio (pixels per meter) is based on the 3D . _ :
.) :)) Distance: pixels per meter
distance ratio set in the command Run > Simulation
Setup > 3D Animation tab. The default is 20 pixels per ~ Distance conversion ratio

meter, as shown at right.

In addition, the block’s Block Animation tab is set by default
to stretch the object to the conveyor’s length. This will cause
the Conveyor object in the E3D window to automatically
resize to reflect the calculated length.

[v Stretch 30 object to corveyor's length
Setting in Block Animation tab

How the settings affect the length

The distance between the previous non-passing block (the from location) and the next non-pass-
ing block (the #0 location) is calculated in a straight line between the output connector of the from
block and the input connector of the #0 block. This is 133 pixels (344 pixels - 211 pixels).

The distance ratio of 20 pixels per meter is used to convert the 133 pixels into meters. The result is
the length of the conveyor: 6.65 meters. as can be seen in the block’s Behavior tab. (This is also
reflected in the 3D information, where the From x location is 10.55 meters and the 70 x location
is 17.2 meters, a difference of 6.65 meters.)

If theﬁom and/or te locations are blocks, the determination of the length starts at one block’s
output connector and ends at the other block’s input connector.

189

=)
=
e}
o}
I
-
o
3!
<
I}
=
-

190 [Processing
Transportation and material handling

Moving this Convey Item block along the connection line between the from and the fo blocks will
not have any affect on the conveyor length. This is because the distance between the from and #o

locations stays the same. However, moving the f7om block away from the Convey Item will change
the length of the conveyor. This is because the Next non-passing block is now further away from

the Previous non-passing block.

I For information about how these blocks are used for 3D animation, see “Adding 3D behavior to an
existing model” on page 406 and “Animating a bank line” on page 416.

Transportation models

The following models use Convey Item, Resource Item, and Transport blocks to simulate item
movement along fixed paths and material handling using AGVs.

Transportation 1 model

To model vehicles such as AGVs in ExtendSim, use a Resource Item block to provide items that

represent the vehicles, a Batch block to attach the vehicle with whatever it is transporting, one or
more Transport blocks to provide the transportation delay, and an Unbatch block to separate the
vehicle from its load at the end of the route.

Computers

—L
o
=i E—=E g-g

i [
8" eyt ¥
AGN 2

Part A Stock 1 Tranzport Azsembl
—E—s @ i ¥

1
& v
" Fesembly
E—3 g9

=
"] o : ... G
97 sPesis v
@ (@ Transport Part B (a5

TR U
Part B Stock

0 ® -1}
I E—5 - F
it uﬁ 4
0w wF
Final Assembly

-
b,
>

o8
L
=1
[
P
9

<t

a

TR Conueyor

Transportation 1 model

The Transportation 1 model shows how two parts are assembled, inserted into a computer, then
moved to a loading dock. Part A is moved by a Convey Item block to the assembly machine while
Part B is moved there by a Transport block. The two parts are joined by a Batch block for process-
ing. After assembly, they move by a Transport block to the machine that will put them into the
computer. Since the computer is heavy, it is moved to the final assembly machine by a Transport
block that represents a small crane.

To simulate movement, AGVs from a Resource Item block are batched to the parts/items and then
moved via the Transport block. If the AGV is released at the end of each route, as it is in the model
above, the part is left behind where it can then be processed before moving on to another section
of the model. To model a situation where the Resource Item transports the item to an activity, then
waits there to continue transporting the item again, don't release the Resource Item until the last
stop in the route.

Transportation 2 model

In the Transportation 1 model there is no time associ-
ated with the return of the AGVs to the Resource Item
block. To model how long the return path takes, insert
Transport blocks after the Unbatch blocks and enter a
distance and speed for the AGV return trip. This is
shown in the model segment shown at right.

Processing
Transportation and material handling

3
— g

o
speed' g 3 ..
Tranzport Part B 3 o Yo
speed e

AGY Retums Home

Adding time for AGVs to return

191

=)
=
e}
o}
I
-
o
3!
<
I}
=
-

192 [Processing
Transportation and material handling

-
b,
>

o8
(2]

=1
[
S
9
2
a

Discrete Event Modeling

Batching and Unbatching

Joining items or separating them

194 [Batching and Unbatching
Blocks of interest

In a discrete event model, items pass through the system and something is done to or with them.
The process often involves temporarily or permanently joining, or batching, resources or other
items with the original item. For instance, in a manufacturing plant, precursors of the final prod-
ucts come into the process as raw materials, subassemblies, and packaging that are joined in vari-
ous combinations. During the manufacturing process they are often batched with other precursors
and require additional resources such as pallets and workers for processing. These batched items
move through the process together.

These same concepts apply to other discrete processes. For example, in an emergency room model,
doctors are temporarily batched with their patients during medical diagnosis. In the same model, a
technician, a diagnostic machine, and a patient would be batched for the duration of x-ray treat-
ment. In a communication system, multiple packets might be batched together to create a single
message. For a retail store model, customers could be shown arriving and selecting merchandise,
then be temporarily batched with a sales person to make the purchase.

This chapter discusses:

Blocks for batching and unbatching

* How to batch and unbatch items

* Dealing with item properties when items are batched or unbatched
* Delaying the batching of items until all requirements are present

* Preserving unique item properties as items are batched and unbatched

-
b,
>

o8
L
=1
[
P
9

<t

a

I=" The models discussed in this chapter can be found in the folder \Examples\Discrete Event\Batch-
ing.
Blocks of interest

The following blocks will be the main focus of this chapter. The block’s library and category
appear in parentheses after the block name.

Batch (Item > Batching)
= B Joins multiple items into a single item for use in the model. This causes the original input
& items to be destroyed and replaced by one output item. A batched item may be unbatched
at a later point in the model, but that is not required.

Unbatch (Item > Batching)
o .@ Outputs multiple items for each input item. Depending on selections in the dialog, this
@| block can separate items that were previously batched or make duplicates of items that were
never batched.

Batching

Batching allows multiple items from different sources to be joined as one new item for simulation
purposes (processing, routing, and so on). The Batch block accumulates items from each source up
to a specified count, then releases a single item that represents the batch. In this process, the origi-
nal input items are destroyed and replaced by one new output item.

I [tems may have properties, such as attributes, before they are batched. To specify what will happen
to the properties of items that have been replaced by a new batch item, see “Properties when items
are unbatched” on page 204.

Batching and Unbatching
Batching

The number of items required for a batch is called the bazch size. In some situations you know in
advance how many of each item is required to make one item; in other situations the number of
items batched depends on model factors and changes dynamically.

Items can be permanently batched together as one new item that flows through and exits the
model, or they can be temporarily joined for some specific purpose and unbatched at a later point
in the process. For example, two manuals could be batched with three promotional pieces and one
CD to make a software package that is shipped as one product. Or a ship attempting to dock
might be temporarily batched with two tugboats resources to guide it through the docking process,
after which the tugboats and the ship are sent on separate paths.

Batch dialog
The Batch block has three tabs for determining gyme—— CER
when items should be batched, how many items T Gomments |
to include in a batch, and what to do with the Batch | optons | Propeties] e Animation | Elock Atimaton |
properties of items that are batched. The Batch Batches items irto a singie fern a
and Options tabs are discussed below; options in Select boci bshavior
the Properties tab are described on page 199. [‘
Specify the quantity needed for each balch
Batch tab = S T |
The top of the Batch block’s Batch tab has a
popup menu with two options that determine
how the block behaves. These are summarized —
below and illustrated in models later in this Foctiwe fedseme
chapter.
Help [[]/Lefttoright || [

* Batch items into a single item creates a batch
using items on a first-in, first-used basis as Batch tab in Batch block

they arrive at the item input connectors. The

quantity of items required from each input is entered in a table or (if this choice is selected on

the Options tab) determined by the value at a BatcchQuantityln connector.

* Match items into a single item creates a batch of items that have a common attribute value. For
instance this could represent a process where items were combined together based on a serial or
order number. For this choice, it doesn’t matter which input connector the items arrive from.

The table in the Batch dialog is for entering the number of items from each input that are required
to make a batched item; the size of the batch can also be set using value input connectors as dis-
cussed later in this chapter. The first column shows the block label or name the input is connected
to. The Quantity column is for specifying the number of items required from the input and the
next column reports the number of items available. Checking the fourth column determines if
Delay Kit is activated; as discussed on “Delaying kits” on page 201, this causes the specified item
or items to not be pulled into the block until certain conditions are met.

Options tab

Among other choices, this tab has options for setting the size of a batch through value input con-
nectors and determining when to start a batch.

BatchQuantityln connectors

Checking Use quantity input connectors on the Batch block’s Options tab enables the
BatchQuantityln variable connector. Each BatchQuantityln value input connector corresponds to
an item input connector and controls the batch size for that item connector. If a value input con-

195

=)
=
e}
o}
I
-
o
3!
<
I}
=
-

196 [Batching and Unbatching
Batching

nector has been connected, it will set the number of items required at its adjacent item input con-
nector. If a value input connector is not connected, the number of items for the adjacent item
connector will be set by the value in the Batch dialog.

When Use quantity input connectors is checked, there are two options that affect the batch size.
With either option, the #72itial size of the batch is the value at the BatchQuantityln connector
when the first item on its corresponding item input connector arrives to the Batch block. The
options determine what happens if the input value changes:

* Dynamically as batch is created. If the value at a BatchQuantityln connector changes before
that item connector’s batch is released, the number of items required for that batch will change
as well. This enables the size of a batch to be changed dynamically.

I=" The number of items to be batched from each input connector can never be less than the number
of items that have already arrived to the block from that input. That is, if 10 items have already
been pulled in through an item input connector, and the BatchQuantityln connector changes to 8,
the batch size for that item input connector will be set to 10, not 8.

* By first item at each connector. The size of the batch does not change after the first item for
the batch has arrived, even if the value of the BatchQuantityln connector changes. Once that
batch is released, a new batch size can be set.

The demand connector
To enable the demand connector, check the Show demand connector box in the Batch blocK’s
Options tab. Then choose one of the following options:

-
b,
>

o8
L
=1
[
P
9

<t

a

¢ Start batch when value at demand > 0.5. No items are brought into the Batch block until the
value of the demand connector equals or exceeds 0.5. For instance, while the Batch block sees a
0 at demand, no items will enter for batching. When it sees a 1 at demand, the required items
currently available will enter the Batch block to be joined together. Depending on how the
model is constructed, selecting this behavior can cause blocking of upstream items.

¢ Create batch when value at demand > 0.5. Items are allowed into the Batch block as they are
available, up to the required number. However, the batched item will not leave the block as long
as the demand connector has a value < 0.5. When the demand connector becomes > 0.5, the
batched item leaves the block. With this option, a batch can consist of fewer items than the
number in the Quantity Needed column, because the batched item will have been created by
joining whichever items were available when the demand connector got a value > 0.5.

A value output connected to the Batch block’s demand input is used as a true/false indicator, trig-
gering batching. The actual value from the value connector is ignored; what is considered is
whether or not it equals or exceeds 0.5.

Simple batching

The simplest batching method is to cause multiple items to be joined as one new item, replacing
the original items in the model. The batched item may or may not be unbatched at a later point,
depending on model requirements.

Batching and Unbatching | 197
Batching

Simple Batching model

The model shown at right joins one
“Open Box” with three “Bottles”; -

they then travel as one item to be = o

shipped. For this model, the Batch wT 5y . IE=E|’% _“j F
blocK’s behavior is set to Batch items Deen Bex by b
into a single item. The items are J c /@1@

joined by the Batch block according 4 s ity Needed Guartiy o Bk - |
to settings in the table in its dialog. Create Bottles Botte Storage i i

The Batch block will not release the L tink [« |
batched item until it has received one
item (a box) from the top input and
three items (bottles) from the bottom
input.

o 0w wF Ship
Packaging

Simple Batching model

Batching by matching items

Selecting the Match items into a single item option in the Batch dialog allows you to specify an
attribute the items must match and a different attribute that determines the batch size. With this
option, each batch will be composed of items whose matching attribute value is the same; the
batch size attribute of the first item in the batch determines how many items are in the batch.
With this option, it does not matter which input connector the items arrive at. As items arrive to
the Batch block they are segregated based on their matching attribute value until the total number
of items in that group equals the batch size attribute. When this occurs a batch is created and the
item representing the batch leaves the block.

=)
=
e}
o}
I
-
o
3!
<
I}
=
-

Matching Items model

The Matching Items model shown below simulates a refurbishment process for police cars. As the
cars arrive, they are assigned a consecutive “serial number” by the Information and Set blocks. The
Information block counts each car in order and outputs that number to the Set block, which
assigns the count number as the value of the Serial Number attribute. For instance, this causes the
Serial Number attribute for the second car to be assigned a value of 2.

The engine is then separated from the car by an Unbatch
block. (When items are unbatched, you can specify what
the block should do with their properties. This is accom- Components Batched walue .
plished by selecting an Action for item properties in the Serial number | Batched value»

Unbatch block’s Properties tab, as shown at right. Actions 4 | tem priority Batched value.
X o ; X » Link |

are discussed in “Properties when items are unbatched

on page 204.) Properties tab of Unbatch block

Property Potion
_Animation Batched walue

b —

These two components (the engine and the car) are refur-
bished individually. When both components are finished being refurbished, the engine is reassem-
bled into its original car by matching them together in a Batch block set to Match items into a

198 [Batching and Unbatching
Batching

single item, Match on attribute: Serial Number, and Get batch size from attribute: Compo-
nents.

hdil

| Refurbizh engine R F
- /JE=E| 0g . B3 g
Car amives Split enginescar
Pegign zeral number
Property Mame Set \fhlue
o Serial number
1 Components ow wF
4) Refurbizh car

Matching Items model

For a similar model that uses the Queue Matching block to match items based on an attribute
value, see “Matching items using the Queue Matching block” on page 138.

Batching a variable number of items

Sometimes the number of items required to create a batch changes during the course of the simu-
lation. For instance, outside factors could determine how many items go into each batch, or you
may want batches to be made in a time-dependent fashion. As shown in the following two models,
the Batch block’s Options tab allows you to manipulate the size of batches through quantity input
connectors or through a demand connector.

-
b,
>

o8
L
=1
[
P
9

<t

a

I For additional examples of dynamically setting batch size, see also the “Batch and Unbatch Variable
model” on page 203 and the advanced batching models “Equation(I) Controls Batch” and “Queue
Eqn Controls Batch” that are located in the folder \Examples\Discrete Event\Batching,.

Batching Variable model

This example model uses a Batch block’s quantity input connector to determine the size of a batch.
A Random Number block (Value library) sets random batch sizes of two to five items. In the Batch
block’s Options tab, Use quantity input connectors is checked to enable the BatchQuantityln
connector and Set batch size: dynamically as batch is created is selected. The output of the Ran-
dom Number block is connected to the BatchQuantityln connector on the Batch block. These set-
tings cause batches to be created that require a variable number of items. The information about
the size of the batch can be saved on an attribute specified in the block’s Options tab.

Ow wF Exit
Create Queue FIFD Potivity
Rand | Quaritity Meeded Ouantity in Block J
[5
- . e
hnimum Link | 4 3

Number in Batch

Batching Variable model

I The BatchQuantityln connectors will not be visible on the Batch blocK’s icon unless Use quan-
tity input connectors has been checked in the block’s Options tab.

Batching and Unbatching | 199
Batching

Batch on Demand model

You may want batches to be made in a time-dependent fashion, such as based on the time of day or
on a periodic basis. The Batch block’s demand connector can be used to control when items are
pulled into or sent out of the block. For example, if the model represents filling a truck with boxes,
you can signal the demand connector to stop the batching at the end of the day or when another
truck arrives at the loading dock. The batched item (the truckload of boxes) is then created and
released. In this example model:

* The top Create block sends a value that triggers the Batch block’s demand connector at sched-
uled times, every 5 seconds.

* The Options tab of the Batch block is set to Use quantity input connectors. Set batch size: by
first item at each connector and Start batch when value at demand > 0.5.

¢ The Batch block’s quantity input (BatchQuantityIn), is connected to the L (length) output on
the Queue block.

With these settings and connections, the Batch block will create a batch every 5 seconds, the size of
the batch is dependent on how many items are available to the Batch block when it creates the
batch, and items will be allowed into the block only when demand is triggered.

The information about when items arrive and the size of the batch is recorded by the History
block and displayed in its cloned table.

Batch eveny 5 seconds

=)
=
e}
=
[
-
o
1
<
a
=
-

1

Aival (zec) Hum InBatch .i‘
5

10 5
15 2

5
il 4
30 g

- A e
b
=

,_
&
il
AR

F ink | 4

batchsize -

demand — R
Exit

Batch on Demand model

By default the History block clears its information each time the model is saved. A choice on the
block’s dialog allows you to Save item /oistory with model, but that option can cause the model
to become quite large.

Properties when items are batched

As described in “Item properties” on page 110, items can have properties such as attributes and
priorities. When items are combined into a batch, their properties need to be combined as well.

200

-
b,
>

o8
L
=1
[
P
9

<t

a

Batching and Unbatching

Batching
Property options
A table in the Batch block’s Properties tab allows
you to define what happens to item attributes [5elect how to define property val Maximum i
and priorities. The table’s first column lists every Property Fetion| Minimum
. . 1] Components HForerage Average
property for the items in the model. The second 1| Serial number First at co
1 Acti : ial : h 2 _Animatian First at oo/ UM
column, Action, gives potential options that can 3 | em oty | Firct t oo
be taken for that property’s values. This allows First: at con 1
you to select how properties get transferred from Last &t con 1
the original items to the batched item. ount at con 1
First at con 2
The Properties tab for the Batch block in the Last &t con 2
Matching Items model looks like the screenshot Count at con 2
at right. It shows two user-defined attributes Link | ﬁ
(Components and Serial Number) and the item

properties _Animation and _Item Priority.]))
Action options for properties

Attributes and priorities
The options that can appear in the Action column for attributes and priorities are:

* Maximum. Sets the value of the property to the largest number found on any of the items that

formed the batch.

* Minimum. Sets the value of the property to the smallest number found on any of the items that

formed the batch.

* Average. Sets the value of the property to the average value of that property for all of the items
that are part of this batch.

* Sum. Sets the value of the property to the sum of that property’s values for all of the items that
are in this batch.

* First at con X (the default). Sets the value of the property to the value of that property of the first
item that entered on connector X. Con 1 is the topmost item connector.

e Last at con X. Sets the value of the property to the value of that property of the last item that
entered on connector X. Con 1 is the topmost item connector.

* Count at con X. Sets the value of the property to the number of items that entered on connector
X. Con 1 is the topmost item connector.

Other item properties

An Ttem's quantity property (_Item quantity) determines its count toward the batch size. For
example, if an item arrives with a quantity of 2 and two items are required at that input, then that
input is full and no further items are required for that batch from that input. In most cases, the
item quantity of the items going into the batch will be 1.

Some models have an animation attribute (_Animation) that stores the indexes of the 2D and
3Danimation pictures for the items moving through the model. Note that the animation attribute
can only be set to First at con X or Last at con X.

Batch size attribute

By creating a new attribute or selecting an existing attribute for Store number of items in batch in
attribute: in the Batch block’s Properties tab, an attribute can be set to the total number of items
in the batch as it is released.

Batching and Unbatching | 201
Unbatching

Delaying kits

You might not want to begin forming a batch until some or all of the items required for each part
of the batch are available. This is most common when you do not want a resource item from the
Resource Item block to flow into the Batch block until all the items requiring that resource are
available. A good example is a manager who does not want to wait for everyone else to arrive at a
meeting.

The Batch block’s Delay Kit feature restricts specified items from entering the block until all of the
other input connectors have the items they need. Delay Kit is enabled through checkboxes in the
fourth column of the table in the Batch dialog. Each item input for which Delay Kit is checked
will have its items wait outside until all required items for the unselected inputs are in the block.

I=" Delay Kit is only available when the Batch block’s behavior is set to “Batch items into a single

. »
tem.

When the kitting starts
If the number of items required at a Delay Kit input is one, and all the other required items have
been pulled into the block from their input connectors, the batched item will be created as soon as

the Delay Kit item is available. If the number of items required at a Delay Kit input is greater than S
one, the block will start a kit as soon as all the other required items are available and there is at least [}
o e -
one of the Delay Kit items available. This causes items with Delay Kit to be pulled into the block e
. [¢]
as they become available; the batched item will not be created until all the items with Delay Kitare [
available. §
-
Unbatching
Unbatchlpg can be used to separate items that == CEX
were PreVIOUSly batChed or to duphcate items Unbatch | Properties | Item Animation | Block Animation | Comments
that have not been batched. Spme examples of ouuts multple Kot for sach input Hom 8
when you would use unbatching are: . . Caneat |
elect block hehavior
* Returning an item resource to the Resource { (Ereete multple feme -l ‘
Item blOCk T Specify the quantity to unhatch
I Duantit Number Fresent J
. . . [1] [0
* Ungrouping items that had been temporarily ‘
grouped so that they could be processed at the
same time
* Creating items based on a single “seed” item Lok
[Presere unigueness
* Creating a logical item to trigger some action m
. . . . r i
in the model while allowing an item that rep- e nbalen sz annectare
. . Block type: Residence
resents the physical part to continue process- el [—— T] A

ng Unbatch dialog
If items were previously batched with Preserve
uniqueness enabled in the Batch block’s Options tab, the Unbatch block can be used to restore the
items that formed the batch with their original properties. This is accomplished if Preserve
uniqueness is also checked in the Unbatch block’s dialog. For information about this feature, see
“Preserving the items used to create a batch” on page 204.

A Be careful when using any property-setting blocks in the path between a Batch and an Unbatch
block. Those property modifications could be lost, depending on selections in the Unbatch block’s
Properties tab, as discussed on page 204.

202 | Batching and Unbatching
Unbatching

The top section of the Unbatch tab in the Unbatch block has two options that determine how the
block behaves when costing is involved. Each option causes the block to output a number of items,
specified in the dialog, for each item that is input. The options are:

o Create mu/tl;Dle items. This is the default choice. If the model has costing, costing attribute val-
ues are distributed to the output items as specified by settings in the table in the Unbatch blocK’s
Properties tab. The section “Simple unbatching” on page 202 shows how to use the block to
separate batched items.

* Release cost resources. Resources can have a cost associated with them. If an item is batched with
a resource, cost information is maintained with it. If the model has costing and the Release cost
resources option is selected, the block releases the resources out of the same connector that they
were originally batched and updates costing information for the items accordingly. For more
information, see“Combining resources with cost accumulators” on page 234.

I=" The Unbatch block will not behave differently when either of these two options are selected unless
the model calculates costs.

The Unbatch tab also has a table for specifying the number of items that will be sent through each
output connector. The first column displays which blocks the Batch’s output connectors are con-

nected to. The Quantity column is for entering the number of items that will be output for each

input item the Batch block gets, while the next column displays the number of items present.

A When preserving items that have been batched or when releasing cost resources, it is important to
physically match where items enter a Batch block with where they leave an Unbatch block. For
instance, items that arrived to the Batch block on the top input should be released from the top
output of an Unbatch block.

-
b,
>

o8
L
=1
[
P
9

<t

a

Simple unbatching

The Batching and Unbatching model is an extension of the example “Simple batching” on
page 196, with the addition of laborers and unbatching. Since there is no costing in this model,
the Unbatch dialog is set to Create multiple items (the default option).

-

Labor

] T T

TR WU Batch Packaging Unbatch Ship
Open Box

Wokers Return

F

Unhatch:
0 -
Quanitity Number Present J
_—/)E =l 1] 1
=4 1 1
b . =
Create Bottles Bottle Storage L

Batching and Unbatching model

In this model, the packaging process must be performed by a laborer. There are 10 laborers avail-
able and each is represented by an item in the Resource Item block. Each worker item is tempo-
rarily batched with the bottles and cartons to represent the requirements of the packaging process.

Batching and Unbatching
Unbatching

The dialog of the Batch block (shown at

Quartity Meeded Quarntity in Block Delay Kit J
[

right) indicates that one laborer is needed D 1

fo¥ e.ach package assembly. Since Delay 5 : E

Kit is checked for that row, the labor

resource will not be drawn into the Batch

block until the other items required for Link | 2
the batch (1 box and 3 bottles) have Binding a worker

arrived.

The worker is returned to the pool when the task is finished, Froperty o

while the boxed bottles exit the simulation. This is modeled D[fematon - Batohed value

by the Unbatch block, which takes a single item (the output Link SRl ue;d

from the Activity) and creates two items, as shown on the
right. One item represents the worker who is sent back to the
Resource Item block through the top output and the other
represents the assembled package that is shipped.

Unbatching 1 worker and 1 package

Variable batching and unbatching

The previous model showed how to batch and unbatch a fixed number of items from each input.
This example shows how to batch a variable number of items and unbatch that same number of
items.

To keep track of the number of items a batch is composed of, select an attribute in the Batch

block’s Properties tab to store the number of items in the batch. When the batch is created this
attribute's value will be the number of items that arrived to create the batch.

As discussed later in this chapter, if both the Batch and Unbatch blocks are set to preserve the
uniqueness of items, batch size does not need to be saved in an attribute. Instead, just check Use
preserved items to determine unbatch quantities in the Unbatch block’s dialog.

Batch and Unbatch Variable model
An example of batching a variable number of items and unbatching that same number, is shown in
the model below.

Batch Size

=11}

0
- @ [- F
J - /@ia éE=E| ..@=E| Vs
v ov wF _ Exit
Create Queue FIFD Batch Sotivity Get Atritute Unbatch

Batch Size
| Quaritity Meeded Ouantity in Block Delay kit J
5

Rand

' i
EMnimum Link | pA

Number in Batch

Batch and Unbatch Variable model

In this model, the Batch block’s Options tab indicates that the size of each batch is stored on an
attribute named batchsize, which is accessed by a Get block. Attaching the Get block’s value out-
put to the Unbatch block’s UnbatchQuantityln connector sends information about the size of the
batch to the Unbatch block, causing each batch to separate into its original number of items.

Since the Batch block is set to Sez batch size by first item at each connector:, the size of the
batch is locked when the first item for that batch arrives in the Batch block.

203

=)
=
e}
=
[
-
o
1
<
a
=
-

204 | Batching and Unbatching
Preserving the items used to create a batch

Properties when items are unbatched
As happens when items are batched, when items are unbatched you can specify what the block
should do with their properties. This is accomplished by selecting an Action for item properties in

the Unbatch block’s Properties tab.

For example, assume a Batch block combines six Froparty e

bottles that have a Weight attribute, and that the 0 _Faimation Batched value .
batchsize Batched wvalu

bottles are then filled with liquid such that the 2 | hem priorty Batohed valy Pres:r\:d \I'C‘"UB

batch weighs 12 pounds. When these bottles are Batched value
Distribute

subsequently unbatched, you can select one of the

following actions for the Weight attribute: Unbatch block property actions

* Preserved value. This option causes the bottles
to retrieve their preserved value, if preserve uniqueness is turned on. (See the following topic for
more information about preserving uniqueness.) In this case the weight of each bottle will be
what it was before batching and the 12 pounds of weight acquired after batching is discarded.

* Batched value. With this choice, the 12 pounds of weight will be copied to each of the resulting
bottles.

* Distribute. The 12 pounds of weight will be divided among each item equally, 2 pounds to each
bottle.

Preserving the items used to create a batch
Before items are batched they may have properties such as attributes attached to them. By default,
a reduced set of those properties is transferred to the new batched item, according to actions

selected in the Properties tab of the Batch block. (For more information, see “Property options” on
page 200.)

If it is important in your models to retain the attributes and priorities of the items that were
batched, select Preserve uniqueness in the Batch block and in the Unbatch block. This marks the
items in the batch as unique so that an Unbatch block can restore all of the items’ properties.

-
b,
>

o8
L
=1
[
P
9

<t

a

I For those properties that you want to retain, select the Preserved Value action in the Properties tab
of the Unbatch block, as discussed in “Properties when items are unbatched” on page 204.
& Do not select Preserve uniqueness unless the items have unique information attached to them,

the items are not just temporarily batched, and you need to restore the items and their properties
at a later point. Preserving uniqueness requires a lot more memory and slows processing time.

Both blocks choose to preserve uniqueness
The consequences of selecting, or not selecting, Preserve uniqueness in both the Batch and

Unbatch blocks are:

* If the Preserve uniqueness option #s checked, the batch is temporary. The original members of
the batch are stored when the batch is created and they can be restored when the item represent-
ing the batch is unbatched. Examples include batching a group of parts together to process them
as a group and later unbatching them to continue processing individually, or batching an item
with a resource and later returning the resource item with an Unbatch block.

o If the Preserve uniqueness option is 70t checked, the items used to make up the batch are
destroyed when the batch is created. The batch, represented by a new item, is permanent and

Batching and Unbatching | 205
Additional models

the original items cannot be restored. Examples include batching items together into a box for
final shipping, or batching an order with the required inventory.
I [fa Batch block is set to preserve uniqueness, the unique identity of the items will only be restored

upon unbatching. While batched, the attributes of the unique items will be combined into one set
of attributes, as specified by settings in the Batch block’s Properties dialog.

Either block chooses to preserve uniqueness

To restore the items with their properties intact, the option to “Preserve uniqueness” must be
selected in both the Batch and Unbatch blocks. There are special outcomes if “Preserve unique-
ness” is selected in ezther the Batch o7 the Unbatch block, but not in both blocks:

o If Preserve uniqueness is selected in the Batch block but not in the Unbatch block, the preserved
items travel with the first item that leaves the Unbatch block’s top output connector. All the
other items leaving the Unbatch block will be identical and not contain any information about
the preserved items.

¢ If Preserve uniqueness is not selected in the Batch block but is selected in the Unbatch block, it
is the same as if preserve uniqueness is not checked at all. Because the original information about
the batched items was lost when they were batched, the Unbatch block will unbatch identical
copies of the items that arrive to it.

Neither of these conditions is typically desirable.

Additional models

The folder located at \Examples\Discrete Event\Batching contains additional batching models not
discussed in this chapter:

=)
=
e}
=
[
-
o
1
<
a
=
-

* Equation(I) Controls Batch
* Queue Eqn Controls Batch

Both models show advanced concepts for dynamically changing the size of batches.

206 | Batching and Unbatching
Additional models

-
b,
>

o8
(2]

=1
[
S
9
2
a

Discrete Event Modeling

Resources and Shifts

Modeling resources and controlling them with shifts

208

-
b,
>

o8
L
=1
[
P
9

<t

a

Resources and Shifts
Blocks of interest

=

Items will sometimes require resources before they can proceed to the next step in a process. For
example, a car might need an attendant to drive it through the car wash, a vendor’s invoice could
require a receiving report before payment is made, or parts might need to be assembled by a
worker. Resources provide a service to the items in a model; their availability or lack thereof can
cause constraints on the flow of items.

One of the main reasons to model a process is to analyze resource availability and utilization and to
determine the impact of resource constraints on the system’s capacity. This tells how efficiently
current resources are being used and what happens if they will not be available or when there is a
wait for them to become available. Often the objective is to try to improve resource utilization
without causing overly long waiting lines or to determine how to reduce waiting lines without add-
ing more resources.

This chapter discusses:

* Modeling resources with the Resource Pool block

* Modeling resources using the Resource Item block

* Other methods for modeling resources

* Closed and open systems

* Ways in which resources can be scheduled

¢ Controlling resources and activities with the Shift block

The models illustrated in this chapter are located in the folder \Examples\Discrete Event\Resources

and Shifts.

Blocks of interest

The following blocks are the main focus of this chapter. Each block’s library and category appears
in parentheses after its name.

Resource pool blocks

Resource Pool (Item > Resources)

Feszource
,"',‘ Stores a count of resources for the model. The resources are taken by the Queue block (in

o

“resource pool queue” mode) and released by the Resource Pool Release block at some later

wu -
point in the model.

Queue (Item > Queues)

@‘ F When the Queue type is set to “resource pool queue”, items wait here for required resource

pool units from the Resource Pool block. Once the needed resource units are available, the
block checks for downstream capacity before releasing items.

Resource Pool Release (Item > Resources)

B8 Releases the specified number of resource pool units, making them available for re-use and
O

causing the count in the Resource Pool block to increase.

Resources and Shifts | 209
Modeling resources

Other resource blocks

Resource Item (Item > Resources)

8 Unlike the resource pool method, this block stores resources as items for use in the model.

TR

Resource items are usually batched with items that require them; they may or may not be

U . .
unbatched at some later point in the process.

Shift (Item > Resources)

% Generates a shift schedule that can be used to change the capacity or stop the activity of

other blocks in the model.

Modeling resources

Resources are the means by which process activities and operations are performed. Different parts
of a model can share the same resource, just not at the same time. While a particular resource is
being used in one place in a model, it is not available for any other part of the model. Thus the
availability or lack of availability of resources causes constraints in a model.

How to model resources

As seen in the following sections, there are many ways to model resources when building models.
Resources can be modeled explicitly using specialized resource management blocks; this has the
advantage of direct access to features like automatic costing and utilization calculations. In some
situations, however, it could be simpler or provide more control to model resources just as any
other item in the model or by limiting block capacity.

=)
=
e}
o}
I
-
o
3!
<
I}
=
-

ExtendSim’s discrete event architecture supports two explicit ways to model resources:

o Resource Pool method. As a count of the resources that are available in a pool. By keeping track
of the available resource pool units, this method controls the flow of items that require the
resources. This is accomplished using the resource pool blocks (Resource Pool, Queue [in
resource pool queue mode], and Resource Pool Release), as shown in “Resource Pool method”
on page 209.

* Resource Item method. As one or more resource items that are available to another item. This
method involves batching resource items from the Resource Item block with the items that
require them and, typically, unbatching the resource when it is no longer needed, as described in
“Resource Item method” on page 213.

Resource-type blocks should only be used in a model if their presence is required for the system. In
addition to the two explicit methods listed above, ExtendSim provides additional ways to model
resources, as discussed in “Other methods for modeling resources” on page 215.

Resource Pool method

The resource pool blocks in the Item library (Resource Pool, Queue, and Resource Pool Release)
cause restraints to be placed on the flow of items in the model based on the availability or lack of
resources. The Resource Pool block maintains a count of the number of resources that are cur-
rently available for use. When an item enters a Queue block that is in resource pool queue mode,
the Queue will query the resource pools to determine if the required number of specified resources
are available. If so, the number of resources currently available will be decremented in the appro-
priate Resource Pool block, and the item that requires the resource will be released from the

210 | Resources and Shifts
Modeling resources

Queue. If the required number of resources are not available, the item will wait in the Queue until
resources become available.

In a closed system, the resources are returned to the Resource Pool block by passing the
« » .

resourced” item through a Resource Pool Release block. In an open system, such as for a con-
sumed resource, the resource is not returned to the pool but is removed from the system when the
item exits. Closed and open systems are discussed on page 216.

05" Since resources are not returned to the originating block in an open system, statistical calculations
such as utilization cannot be accurately determined.

Advantages and disadvantages of using resource pools

Advantages

* The Resource Pool block does not require any connections to other blocks in a model. Because
of this, using resource pools to model resources (as opposed to using the resource item/batching
method that will be described later) is more flexible when the same resource can be used in many
different places or when an item can use any one of a group of resources.

* The resource pool method does not require complex routing of resource items because the
resources are not actual items but merely constraints on the flow of items through the model.

e When items wait for resource pool units, they can be ranked by priority or FIFO order. The
Resource Pool block is able to globally allocate the resource pool unit to the highest ranked item.

-
b,
>

o8
L
=1
[
P
9

<t

a

Disadvantages

¢ The resource pool method does not allow the use of attributes to track information about the
individual resources. To use attributes, you must use resource items; this is shown in “Resource
Item method” on page 213.

* It is more difficult to control the complex scheduling of competing resources across a number of
different queues using resource pools.

Simple Resource Pool model
The discrete event tutorial on page 105 showed how to use and release resources from resource

pools, as does the following example:
" -] [EE

3 o u Labor In Use
L
Wuse

Labor Pool

- i}

eIk

v wF Releaze Labor hgterial Exits

|

Create higterial Hold for Labor Process

Simple Resource Pool model

Resources and Shifts
Modeling resources

The Simple Resource Pool model represents a flow of T—— CEX

material where each piece requires one laborer for pro- i
cessing. In the dialog of the Resource Pool block (labelled |l fesowreerest [£est [Resute | Biock animatin |
Labor Pool), the pool of resources is called Laborand the | stores resources for usein the moder &
initial number of Labor units is 3, as shown at the right. Defing resource posts el
One piece of material is generated by the Create block Pooi name: [Labor |
about every two minutes. Since this model uses resource it b

. 5 . Allocate resources to the: __ﬁrst itern .
pOOl units, the Queue blOCkS type 1s set to 7’650%7'C€p00[I~ Only allocate 1o the highest ranked item
queue. This causes generated material to wait in the I St sl Tumur of lesssd rssoursss
Queue until the required Labor is available. - I
In the Activity block, processing takes 5 minutes and the | #kekbee sink

Heip -1 ¥

capacity is infinite, so any number of pieces can be
worked on at a time. Within the Queue and Resource Resource Pool dialog
Pool Release blocks, the quantity of resources required/

released is 1 and the name of the resource pool (Labor) is listed.

Running the model shows that the amount of processing that can occur is constrained by the
number of laborers available. Although the Activity has an infinite capacity, the cloned plotter
graph shows that there are not enough workers available for much of the simulation.

So that the focus is on the constraining effect of labor resources, the Activity block is set to infinite

capacity. This causes the availability of labor, but not the processing of material, to affect the flow

of items in the model.

Resources required from different pools

In the Multiple Pools example, there are three Resource Pool blocks, each with their own labor

resource. Items require e7ther Labor 1, Labor 2, or Labor 3.

© WYY

Paal 1 Paol 2 Paol 2
1 3 [l
- i |k
[Ip=- o T8 —eFT—ecp
- - D% wF Releaze Labor Matenal Exitz

Create higterial Hold for Labor Process

Multiple Pools model: One laborer per piece required from
any of the three pools

211

=)
=
o]
=
[}
-
o
o3|
<
o
=
-

212 | Resources and Shifts
Modeling resources

B it will hold items that require r r
ecause it will ho d t’e s that require resource TEE— LE®

pool units, the Queue’s type is set to resource pool T Gommens |
qufue AS shown iIl the Queue’s dlalog the three Queue [Options] Results I Itern Animation I Block Animation I
. 2
resource pools have been selected from popup tems wait ere for downs:reanm capacity -ﬁ i

menus in the table and the block is instructed to Select Queue Bshavior
take the resource from any one of those pools. { ‘

When an item enters the Queue, it will query Select resource pools an set quantiy

each of the resource pools in the order that they B e s (| (T orT ey resource poal)

are listed in the table (from top to bottom). In R i uE—
. . . [Show block numbers in popup

other words, if no resources are available in Pool Lk I Show rasnurcss on izon

1, the Queue block will try Pool 2, and then Pool
3. If a resource is still not found, the material will

be held in the Queue until the resource require- Block ype: Resience
ment is met by whichever pool first has an avail- Lttt i —— L
able resource. Queue block dialog

Note that the Queue block (Options tab) stores

the information about which pool the resource came from, and how many resources were used, in
an attribute that attaches to the items processed. In this model, the information is stored in the
attribute “Resource Name.” This attribute is used by the Resource Pool Release block to inform
the appropriate pool when a resource is no longer in use.

The Multiple Pools model is similar to the Simple Resource Pool model in that each piece of mate-
rial requires 1 laborer. However, in this model the laborer can come from one of three pools rather
than from a pool of three laborers. As in the earlier example, modeling this process using the
resource item/batching method would require complex logic to correctly route the resources.

-
b,
>

o8
L
=1
[
P
9

<t

a

Same resource used in multiple places

The Multiple Uses model has two parallel processes, each requiring laborers. Items waiting in both
Queues (set to resource pool queue) require a labor resource from the same Resource Pool block,
which has 3 laborers initially available. When an item enters one of the queues, a request is sent to
the Resource Pool block for a labor resource. The requests are satisfied in the order in which they
were received (or in order of the requesting item’s ranking as specified in the Resource Pool dialog).

,/T{ Resource pools
L Lsbor / Total pools: 3

Foolsinuse: |3

Labor Pool Available pools: 0

| Utilization: 0.7823963
'ﬂ qu Release Labor oi7
Hold for Labor Process 1 —/ E
Material Exits
Create haterial Select Route |
'ﬂ qu Release Labor

Hold for Labor Process 2

Multiple Uses model

Resources and Shifts | 213
Modeling resources

Resource Iltem method

Another method for explicitly modeling resources is by using the Resource Item block. With this
method, each resource is represented by an item whose purpose is to provide a service for other
items in the model. The number of resources that are initially available are entered in the dialog of
a Resource Item block. For an item in the model to use this type of resource, the item must be
batched with the resource (see also “Batching and Unbatching” on page 193.) While the resource
is batched with an item, it cannot be used elsewhere in the model. If a resource is not available, the
batch will not be able to be completed, and the item will have to wait until a resource becomes
available. As with the resource pool method, the movement of items in the model is restrained
based on the availability or lack of resources.

If you are modeling a closed system, the resource must be unbatched from the item when it is no
longer being used. Once it is unbatched, it should be routed back to the resource-type block so
that it may used again. In an open system, for example where the resource is a consumable prod-
uct, the resource can stay batched with the item. Closed and open systems are discussed on

page 216.

Advantages and disadvantages of using resource items

A resource item can have properties such as attributes, a priority, and a quantity like any other
item. For this reason, this method of modeling resources is preferred if you need to track informa-
tion about resources.

=)
=
e}
o}
I
-
o
3!
<
I}
=
-

See “Items, Properties, and Values” on page 109 for a complete explanation of attributes and other
item properties.

Some limitations of using resource items are:

¢ The Resource Item block must be connected in the model and the connection must be such that
the resources it outputs can be batched with the items that require them.

* The resource item cannot “see” the items waiting for it. You must use routing blocks to direct
the resource item to the correct Batch or Unbatch block.

Air Freight model

An example of using the attributes of resource items to track information is shown in the following
model of an air freight company. An airplane receives orders for flights, but regulations require that
airplanes must undergo maintenance after every 50 hours of flight time. Thus the model needs to
track the airplane’s accumulated flight time (hours). Once an airplane accumulates 50 hours of

214 | Resources and Shifts
Modeling resources

flight time, it is sent for maintenance and the accumulated hours are reset to 0. The model looks

“ariable Type ‘arable Name “ariable “alue
1 _Atribute Hours - 4. 342064205427
« >
0
J C /E=E|
b
Flight Orders Queue
eturn1
1
Return1 —=5} @] o
Retumnz .=.@ @ etumnz
TR -l
Hirplane ow wF

Decizsion
Waintenance Set Hours to 0

Air Freight model

The Create block generates orders which are batched with an airplane from a Resource Item block.

g While the airplane is batched with a flight order, it is not available for other flight orders; the order

is will wait in the Queue (set to zype: sorted queue, and Sort by: first in, first our) until the plane

8 becomes available.

3 The Resource Item block attaches an Hours attribute to the air- T —

A plane. Settings in the Batch block’s Properties tab, shown at right, D Hours First at con 2
cause the airplane’s Hours attribute (the first attribute from the O A e
item arriving at the second connector) to be attached to the Link | 4|:‘

batched item. Batch block properties

I For more information about item attributes, see “Attributes” on
page 115.

An Activity block (labelled Flight) uses a random distribution to determine how long each flight
will take, then outputs the flight time to its Process Time (PT) connector. The Equation block gets
the airplane’s flight time and adds it to the plane’s Hours attribute.

After the flight, the airplane is unbatched from the order; the airplane returns to the Resource Item
block for reuse and the order exits the simulation. The Get block reads the value of the airplane’s
Hours attribute and the Decision block determines if the accumulated flight time is greater than
50 hours. If it is, the airplane will be routed to the maintenance group for processing. After main-
tenance the Set block re-initializes the Hours attribute to zero. If accumulated time is not greater
than 50, the airplane is returned to the Resource Item block where it will wait for another flight
order.

When the simulation is run, a clone of the output from the Equation block’s dialog shows the
value of the airplane’s Hours attribute. With animation on, it is easy to see that once the airplane
has an Hours value greater than 50, it routed to the maintenance group.

For this model it is essential to be able to track information about the airplane’s flight time. There-
fore the ability to assign attributes to the airplane resource is critical.

Stripping attributes from resource items

As described in “Properties when items are unbatched” on page 204, an item returning to a
Resource Item block after batching may have many attributes that are irrelevant to the returning
item. The Resource Item block provides the option of stripping attributes or keeping them with

Resources and Shifts
Modeling resources

resources that are recycled; the default is to strip them. When tracking resource information using
attributes (as in the above model), you will not want to strip the attributes, so the block is
unchecked. However, in cases where you are not concerned with attribute values after the item has
been recycled, you may want to strip the attributes so that the item will be “clean” when it comes
out of the Resource Item block again.

The Queue Matching block (Item library) holds different types of items until the requirements for
each type have been met. This can be useful when modeling the release of resources and items into
a Batch block. For more information, see “Matching items using the Queue Matching block” on

page 138.

Other methods for modeling resources

The Resource Pool and Resource Item methods described earlier in this chapter use specialized
blocks to explicitly represent resources. The ExtendSim architecture provides many additional
methods for modeling resources. For example, it might be simpler or provide more control to
imply a lack of resources by limiting capacity in some blocks or to model resources just like any
other item in the model.

Implicit resources
A resource can be implied in a model by restricting or scheduling the capacity of residence type
blocks like the Activity and Queue. These blocks are useful for implicitly modeling resources.

For instance, the “Simple Resource Pool model” on page 210 illustrates how to model resources
using the resource pool blocks. A simpler method would be to use the Activity block to represent a
limited resource, without using explicit resource blocks. In this case, you would remove the
Resource Pool and Resource Pool Release blocks from the model, set the Queue as a FIFO sorted
queue, and set the maximum items in the Activity block to three. The Activity’s capacity limitation
would have the same constraining effect as the Resource Pool block in the original Simple
Resource Pool model.

Another advantage of modeling resources implicitly is that the Activity block can be shutdown and
brought back online using the Shutdown block, as shown in “Shutting down” on page 179. This is
common when modeling random failure.

Conceptual resources

The concept of what is a resource is not limited to the explicit (resource pool and resource item) or
implicit (capacity-constrained) methods of representing resources. Theoretically, a resource is any-
thing where its availability can restrict items flowing from point A to point B. Some examples are:

* Any item can conceptually represent a resource. For example, batching a “bus” item with “peo-
ple” items, where the bus is required before the batched bus/people item can be released from a
Queue (see “Delaying kits” on page 201). Note that the bus is created as any other item, not as a
resource item from the Resource Item block.

* Using the ExtendSim database or global arrays to track resource availability, limiting the flow of
items in a model. For example, item availability would be regulated by how data in the database
changes during the course of a run.

* Using block combinations to control item movement as model status changes over time, such as
a Queue followed by a Gate that is connected to a Read block.

Your cleverness and knowledge of ExtendSim can probably lead to even more ideas.

215

=)
=
e}
=
[
-
o
1
<
a
=
-

216 | Resources and Shifts
Closed and open systems

Closed and open systems
As discussed on page 95, blocks that provide a finite number of resources can be part of closed or
open systems. In a closed system, resources are recycled back to the originating block. In an open
system, resources are not recycled but instead exit the system. Systems can also be partially closed,
for example when some of the resources are recycled back and others are not.

The following model uses three Resource Item blocks to illustrate a closed system (Technicians), an
open system (Stock), and a partially closed system (Fixtures).

iz

Technicians

<<Womkers Return<<

Machined Parts
3
177 iy @ ° 0325
3 n og=—s]k
° @D. ov wF @ 4
R WU Batch Unbatch Exit
Qzin
—E—x)

Stock
El
J |__/E=E| 5y /2 of the fistures
led
% T, are recycle

F

Fixture <4Fixtures Recycled<<

Closed and Open Systems model

-
b,
>

o8
L

=1
[
P
9
<t
a

The model assumes that about one third of the fixtures are consumed in the process; they are
restocked at periodic intervals by the Create block.

Scheduling resources
To accurately characterize the impact of resources in a simulation model it is common to model
resource scheduling logic, both in terms of where and when a resource should be assigned. For
example, if one resource item is required in multiple places, such as an item that could be routed to
two or more Batch blocks, then scheduling logic needs to be added to the model.

There are several ways resources can be scheduled. Some methods apply to using either resource
pools or resource items and some apply only to scheduling resource items.

Scheduling resource pools and resource items

As discussed in the following sections, there are two systems available to schedule resource pools
and resource items:

e Use the 7R (total resources) connector on individual resource blocks, as described in the follow-
ing section.

¢ Use Shift blocks to control aspects of one or more resource blocks. This is discussed in
“Resources model” on page 221.

Using the TR (Total resources) connectors

Blocks that provide resources (whether as items or as resource pool constraints on items) have value
connectors labeled 7R (total resources). You use the TR input connector to change the total num-
ber of resources available. This change can be scheduled, such as when workers take breaks, or
unscheduled, such as an equipment failure.

Resources and Shifts
Scheduling resources

The value at the TR connector determines how many resources the block has and can result in an
increase or a decrease in resource availability. For example, if the initial number in a Resource Item
block is 10, and the block gets a value of 3 at its TR input connector, the block will eliminate 7
resources from its availability list. If the block doesn't have enough resources to dispose at the time
of the change, it will dispose of them as they return.

Scheduling Resources model

It is common to schedule the avail-
ability of resources based on some
factor in the model, typically time.
For example, in the model discussed

<<ioikers Returm=<

it
Sohedule

e . R N .

in “Scheduling activities” on & n@fiﬂ ...@=g__; .
page 173, you could have scheduled J|__ /@=a‘ o ey b -
workers in the diner depending on lm—“g . o

the time of day using the Resource g e i

Time between Drders

Item and Create blocks.

ELE_FEERAL [

Orders Plotter, Discrate Evert

The new model is shown at right. It
assumes there are three workers ini- b
tially available when the coffee shop " /\/\
opens at 6am. Two additional work- e 1
ers arrive after 5 hours and remain Cws —ee o — ok

. . [

just for the lunch period, from 11am '
o 2pm (1400 hours). The coffee Scheduling Resources model

shop closes after 10 hours.

The schedule for workers is entered in TETTr— LEx
the dialog Of the Create blOCk) as ShOWn Create | Options | Item Animation | Block Animation | Comments o
at right. The block is set to Create valuues | ques ems and vames randomy o by schecue =
. . C: | i
by schedule, and its value output is cetoct blosk hehasir Canee |
attached to the TR (Total resources) [Tine unis: hours* ‘
lnput Ofa Resource Item blOCk' [Enter a schedule of arrival times
This model is set to use Calendar dates. e
j— . . . z 1/25/2007 11:00 W 5
T'he Simulation Setup dialog and block ¢ | a0 E
options (such as selecting calendar for-
mat when a Create block is set to sched-
ule its outputs) facilitate the display of ——
times and dates in Calendar format. For [esenderomat__J
N (A « ‘ : 3 I~ Repeat the schedule every time units
more information, see “Calendar dates
Block type. Sowrce *model default
on page 528.
In this model the workers are part of a
partially closed system. Some are recy- - T v

cled back to the Resource Item block
through its item input connector, while
other workers are added to or removed
from the block through its TR connector.

Arrival times for workers

Scheduling resource items
There are at least four additional ways to schedule resource items in ExtendSim:

1) A Resource Item block followed by a Gate can control when resource items are released.

217

=)
=
e}
Q
I
-
o
3!
<
I}
=
-

218 | Resources and Shifts
The Shift block

2) A Resource Item followed by a Select Item Out block controls where resource items are routed.

3) A combination of the Gate and Select Item Out blocks can be used to control both where and
when items are scheduled.

4) The Queue Equation block is useful for controlling both where and when items are scheduled
for use when the scheduling logic is more complex. With this block, ModL logic statements
can intelligently control the scheduling of items based on their properties, information in the
ExtendSim database, or even the status of other sections of the model. For more information,
see “Sorting items using the Queue Equation block” on page 133.

The Shift block

The Shift block is used to schedule both the magnitude and availability of capacity in other blocks
in a model. This is useful for simulating situations where a system’s resources follow a pattern of
coming on and off line over time. For example, the Shift block could be used to model workers in
a factory following a repeated daily pattern of reporting to work in the morning, taking a break for
lunch and going home at some point in the evening.

Each Shift block represents a named shift and its schedule that can be referenced by other Item
library blocks. The Shift controls the capacity of the blocks that reference it, based on the schedule
that is defined in its dialog table. If a shift schedule is changed, all blocks using that named shift
will receive the same modified shift pattern. In addition, shifts may be repeated at regular intervals
if the Repeat schedule every checkbox is selected. This is useful for modeling repeated shift pat-
terns, e.g., an eight-hour workday each day of the week or breaks that occur every four hours.

-
b,
>

o8
L
=1
[
P
9

<t

a

It would be quite easy to define a complex shift schedule that includes all breaks, holidays, week-
ends, and so forth. However, before adding such complexity to a model, carefully consider whether
such detail adds to the validity of the model. If; for example, nothing at all happens during the
weekend, a better solution would be to simply assume one week is 5 days long (or specify that in
the Simulation Setup dialog) rather than adding a Shift block to model the weekends. Shifts
should only be used when they will make a significant difference in the results of the simulation.

Shift types and what they control

A Shift can schedule capacity in a number of Item and Rate library blocks. For example, it can turn
an Activity on or off; or specify a maximum number of items the block can process at a time. The

schedule depends on whether the selected Shift type is On/Off or Number.

* An On/Off type of shift acts like a binary switch that turns associated blocks on or off at specific
points in time. For example, an On/Off shift might be used to shut down an Activity block dur-
ing lunch and evening hours, to open or close a Gate block, or to turn a Valve (Rate library) on
and off according to a schedule.

* The Number shift type explicitly defines the size of a block’s capacity over time. For instance, it
might set the size of a Resource Pool to 3 items for the morning shift, 0 over lunch, 5 for the
afternoon shift, and 0 overnight.

Resources and Shifts
The Shift block

The following table shows which Item library blocks can be controlled by a Shift block, which
types of shifts those blocks support, and what aspect of a block, if any, the Number type of shift

controls:

Item Blocks That Shift Type: On/ Number Type Setting on Shift Controls This

Can Use Shifts Off or Number Aspect of Item Library Block

Activity Both Maximum number of items in the Activity at a
time.

Convey Items On/Off N/A

Create On/Off N/A

Gate Both In “area gating” mode, the number of items
allowed in the gated area at a time.

Resource Item Both Total number of resources available, per the TR
(Total resources) connector.

Resource Pool Both The total count of resources available, per the TR
(Total resources) connector.

Transport Both Block capacity.

Workstation Both Maximum number of items in process.

In the Rate library, the Convey Flow, Interchange, Tanker, and Valve blocks can use a Shift set to

On/Off type. See the Rate module for more information about using the Rate library.

0= Ifa Shift block is used in a model, statistics in the Queue blocks will probably not accurately reflect

utilization, etc.

Status connectors

The Shift block’s value input connector (Statusln) can be used to override the shift schedule. If the
input connector is less than 0.5, the Shift is considered off shift; this will override any value found
in the Shift block’s dialog table. If the input connector is greater than 0.5, the shift schedule from
the dialog table is used.

The Shift’s value output connector (StatusOuz) reports the current shift status (ON = 1 or OFF =

0 for On/OAf type Shifts, or the number for Number type Shifts).

Shift models

The following models show how to use the Shift block in typical modeling situations. They also
illustrate how the two types of Shift, On/Off and Number, are used in simulations.

I=" The models are located in the \Examples\Discrete Event\Resources and Shifts folder.

219

=)
=
e}
o}
I
-
o
3!
<
I}
=
-

220

-
b,
>

o8
L
=1
[
P
9

<t

a

Resources and Shifts
The Shift block

On/Off type example

In the “Shift On and Off” model at
right, an On/Off type of shift turns
the Activity block on for 4 hours in
the morning, off for 1 hour at
lunch, back on for 4 hours in the
afternoon, and off again in the
evening until the next morning. The
schedule, named “Day Shift”, is set
in the Shift block; the dialog of the
Activity block is set to Use Shift:
Dﬂ}/ Shiﬁ, which causes the Activity
to go on or off according to that

schedule.

The model contains a cloned graph
from the plotter. On the graph the
upper (blue) line reflects this 24-
hour shift cycle for seven days, a
total of 168 hours. Observe how the

Shift

17
__/E=E|

Create

|

0 Length [

Queue Aetivity

@ s oo A

4

Exit

[FIGILR[R[A]2]2]
v

v v

Humber Plotter, Discrete Evert

145
01251
-1.35)

Pl o

o
m = Shift

42 a4 126

Hours
— 2 0 Length e, GFEEN

Shift On and Off model

lower (red) line, which is plotted against the Y2 axis, reflects the queue length’s dynamics during

the various on and off shift periods.
Number type examples

Shift Capacity Change model
In the model “Day Shift
Capacity Change”, shown at
right, a Number type of shift
is used to control the maxi-
mum number of items in the J
Activity block. As deter- ¢
mined by the Shift block, the

——/@=@‘4]

Create

Maximurm items in activity:

0 g7

@ —oy
ov v Exit
0 Length sy

Shift

Queus

Shift ——E [mmm
0 Le h_rﬁ_:u:u:
nath — 5l _ S

Activity is limited to 2 items
during the morning shift, 0
during lunch, 3 items during
the afternoon shift, and 0
overnight. The schedule,
named “Day Shift”, is set in
the Shift block; the dialog of

Number

LILEQIA 23]
v

Flotter, Discrete Evert
— T

-

7.5

ALl ol dl ol ol
;E- A.-:‘h .-'J'IL.;:'-\ . fn'}ﬁfr\\ -

o
m = Shift

Hours
— ¥2 0 Length o Gireen

168
Black

the Activity block is set to Use
Shift: Day Shift. Since this
model uses a number type

shift, the Shift block’s table

Shift Capacity Change model

controls the maximum number that can be allowed in the Activity at one time. When the model is
run, the cloned Activity dialog item “Maximum items in activity” reflects the Shift table’s schedule
of allowed items. Shift behavior over the course of seven days (168 hours) is reflected in the plotted
upper line of the graph. The lower graph line reflects the queue length’s growth when activities are
limited.

Resources model

The next example also
uses a Number type of
shift. It illustrates a Shift
block controlling
Resource Pool availabil-
ity so that workers start
their shift, work 4 hours,
take a lunch break, work

4 more hours, and then

Create hiaterial

_—/E=E|

Resources and Shifts
The Shift block

Labar ON
o H
mi - Shift
[wll

D i gu .

Releaze Labor higterial Exits

Shift —E [mmm
TBl—EEE
O Length “HI—SiaE

leave for the day.

When workers are not
available, the backlog
starts building up in the

Queue.

Complex patterns

Number
1.8

01251
-1.35)
Pl o

[SILFR[A[A]2]2]
v

Flotter, Discrete Evert

30
225
15

o
m = Shift

7.5
W A_.-f""\.4 __r/‘l.. _/_/_\._..—l"‘ N
42 a4 126 168
Hour
e, GFEEN

— 2 0 Length e Black

Shift blocks may be con-
figured serially, controlled
by other blocks, or used

Resources model

in other patterns to create more complex shift patterns.

Weekly and Daily Shifts model

In the “Weekly and Daily
Shifts” model, shown at right,
a 40-hour work week with
two days off during weekends
is modeled by feeding a Week
Shift (set to On/Off) into a
Day Shift (set to Number).

The Week Shift is On for the
five weekdays and Off dur-
ing weekends. Consequently,
during weekdays, the Week
Shift block sends a value of 1
to the StatusIn connector of
the Day Shift block, allowing
it to observe its own daily
schedule. However, during
weekends, the Week Shift
block overrides the Day Shift
schedule by sending it a value

of 0. The plotted line in the cloned graph shows two work weeks (336 hours); the first and second

haximum ftems in activity

Wizek Shift Day Shift
Shift ——E|_mmm
0 o142 Q@ Length —B|—a=m
- /E=E| n_@j=@__) =it |
¥ [Exit

Create Queus

 Length Potivity

Number

N

[FEILERIAL2]2]
N . v ¥z
4 Flotter, Discrete Evert n
2 52.5
o 25
) /\f\//\r\/'\ ..Jf ”
4 "4 VA X
o a4 168 252 I3
Hour

Weekly and Daily Shifts model

weeks are separated by a weekend.

The cloned dialog item shows the same daily schedule as in the preceding model, with activity
halted during lunch and at night.

221

=)
=
e}
o}
I
-
o
3!
<
I}
=
-

222

-
b,
>

o8
L
=1
[
P
9

<t

a

Resources and Shifts
The Shift block

Controlling Shifis model
Another example of a more
complex shift structure is
the Controlling Shifts
model where a Math block
(Value library) monitors the
processing at the Activity 1
block. While Activity 1 is
processing, the shift is
turned off;, stopping any
processing in Activity 2. An
example of this would be if
a worker is required to
monitor two processes, but
can only monitor one pro-
cess at a time and must stop
the second process while the
first process is active.

Arrivals and Activity model

The Arrivals and 7N
Activity model illus- i_;()
trates how Shift blocks

can shut down por-
tions of a model with-
out connections. This
example shows the
day shift dynamically
setting the maximum
capacity of an Activ-
ity to either 1 or 5
items and the Arrival
shift turning the top-
most Create block on
and off at specified

times.

aio

Create

|

FIFO Queus Petivity 1

nas

h 0¥ wF Exit
Create FIFO Quebe Ptivity 2
Length

F

F

“walue

o
m = Shift

0.125

-1.35)

Pllivia] o

[FIGILR[R[A]2]2]
v v

Flotter, Discrete Evert

T

250 500 750 1000

Time
— 2 Length e, GFEEN e Black

Shift —E_ mmm
Length J—E R = W s
Oo_sm=

Controlling Shifts model

O 5
H H
g N

Fival Shift

Day Shift

{3

h ow ¥
FIFO Queus Aetivity

dayShift —|_EI

— =8

?ELTRRIA] 23]
v

w
Flotter, Discrete Evert

“walue

o 348 T
Time
— Green

0.8

— Black

Q — W2 day Shift —— itz
1

Arrivals and Activity model

Discrete Event Modeling

Activity-Based Costing

|ldentifying and tracking fixed and variable costs
to determine operating costs

“The cost of a thing is often more
than the sum of the cost of its parts.”

— The Rev. P.N. Wallis

224 | Activity-Based Costing
Blocks of interest

Activity-based costing (ABC) is a method of identifying and tracking the operating costs directly
associated with processing items. It is the practice of focusing on some unit of output, such as a
purchase order or an assembled automobile, and attempting to determine as precisely as possible
its total cost based on the fixed and variable costs of the inputs. ABC helps identify, quantify, and
analyze the various cost drivers (such as labor, materials, administrative overhead, rework, etc.) and
determine which ones are candidates for reduction.

Once a model has been built, the dis-

crete outputs of the system, as well as L iy e CEX
Comments

thC processes and resources that are [Prucess‘ Cost |Snumuwm] Preempt] Results] Item Animation I Block Animation I

involved in Creating thOSC Outputs, Processes one or more items simultaneously; =

have already been identiﬁed TO add outputs each item as soon as itis finished Cancel =

¥ Define cost of process

ABC to models, you enter costing
information into dialogs of blocks in
the model. Blocks that generate items
or provide resources, and blocks that
process items, have fields and Cost tabs | wap ——oeurves v | %
for specifying costing data. Enter vari-
able cost rates per time unit and fixed
costs per item or use. After the cost
information has been defined, costs will automatically be tracked as the items in the model change
state.

Costper time unit: I:l
Costper o —

Total cost:

Cost tab of Activity block

-
b,
>

o8
L

=1
[
P
9
<t
a

This chapter covers:
* Identifying cost accumulators and resources
* Defining fixed and variable costs
¢ How ExtendSim tracks costs
I= The models illustrated in this chapter are located in the folder \Examples\Discrete Event\ABC.

Blocks of interest

The following blocks are the main focus of this chapter. Each block’s library and category appears
in parentheses after its name.

Cost by Item (Item > Information)
@@ B Calculates the cost of every item in the model, as well as the average and total cost of the
HR process.

Cost Stats (Item > Information)
o Records the input costs and total cost generated in each costing-based block. Determines
total model cost based on a specified confidence interval.

In addition to the two Cost blocks, many of the Item library blocks have cost fields or a
Cost tab for entering and reporting cost information, or have cost-handling capabilities, as shown
in the table below:

Blocks with Cost tabs or fields Blocks with cost-handling capability

Activity Batch

Convey Item Get

Activity-Based Costing | 225
Modeling with activity-based costing

Blocks with Cost tabs or fields Blocks with cost-handling capability
Create Equation(I)

Queue Set

Resource Item Unbatch

Resource Pool

Transport

Workstation

The Interchange block (Rate library) can also define costing information for items in discrete rate
models.

Modeling with activity-based costing

To include activity-based costing in models, you need to know how to define cost rates, how to
propetly combine cost resources with items, and how to gather and work with cost information.

=)
Although an understanding of ABC is important, most of the work will be done by the ExtendSim [z}
architecture. e
(¢}
Item types ?
3

For purposes of costing, every item in a model can be categorized as either a cost accumulator or a
resource. Understanding the difference between cost accumulators and resources is important,
because ExtendSim treats them differently, as you will see in “Combining multiple cost accumula-
tors” on page 236.

IS Asis true of items that are resources, non-item resources from the Resource Pool block do not
accumulate their own costs.

Cost accumulators

You perform ABC to determine the costs associated with storing or processing an item. The item
being stored or processed is called the cost accumulator and will accumulate costs as it waits, gets
processed, or uses resources. Cost accumulating items can be introduced into a model using the
Create and Resource Item blocks, as you will see in “Costs for cost accumulators” on page 227.
The following example shows how costs are assigned to cost accumulating items.

226 | Activity-Based Costing
Modeling with activity-based costing

Receive Inventory model

e

|

F

__/Eiaiﬁ;. H;@ji@ .:Hgasi@__z

0w wF ¥
Crates Receiving Area Unpack Crate Get Cost
Time (hrs) Attribute Cost -
1} 0.251300643672 12.75 12.75
1 0.20574541025 12.75 12.75
2 128866143740 126120026864 136120026264
3 176462004248 152842450122 15.38424560122
4 225442446800 147672663228 147672662228
5 282140726007 186274064401 18 6274064401
[:} 348 TE 10.44520; 1044520
T 403500500376 224707421381 224707431381
El 464002061582 26.0245237051 260245237051
a 5050874212084 00304207640 220304207640 ¥
Link_|

Receive Inventory model

Assume you want to determine the cost associated with receiving crated inventory at a warehouse.
There is a one-time docking fee of $3.00 for every shipment that is received, and it costs $0.15 an
hour any time the crate waits for processing (such as in the receiving area.)

As each shipment arrives, a labor resource takes an average of 30 minutes to unpack the crate and
stock the contents on the appropriate shelves. In this case, the crate is being processed and is there-
fore the cost accumulator. The half-hour processing time and the hourly wage of the laborer is
used to automatically calculate the cost of unpacking and shelving. That cost is then added to the
accumulated cost being tracked with the crate. As the crate progresses through the steps of being
received and unpacked, ExtendSim will add the cost incurred at each step to the accumulated cost.

-
b,
>

o8
L
=1
[
P
9

<t

a

Resources

As discussed in “Modeling resources” on page 209, resources can be modeled using resource pool
blocks or by batching resources from a Resource Item block with other items. In the resource pool
method, resource units act as constraints on the flow of items throughout the model. In the batch-
ing method, resource items are required to be batched with other items before the items can pro-
ceed to the next process.

Whether resource pool units or resource items, resources provide a service for the items in a model;
they do not accumulate their own costs. Whenever a cost accumulator uses a resource, the
resource’s cost rates are used to calculate costs which are then added to the total cost of the cost
accumulator. (Cost rates are discussed on page 228.) For instance, in the Receive Inventory model
described above, the laborer is a resource item that is batched with the crate. Since the laborer is a
resource, it will not accumulate its own cost. Rather, the cost rate of the laborer (the hourly wage),
and the time it takes the laborer to unload the crate, is used to automatically calculate the cost of
unpacking the crate.

I The default is that the Resource Item block outputs resource items. However, you can select in the
block’s Cost tab to output items as cost accumulators. This is discussed at “Resource Item block”
on page 228.

Defining costs and cost rates

To include ABC in a model, simply enter information in the costing section of the dialogs of cost-
aware blocks. There are two types of cost information:

* A direct or fixed cost, which is entered as the Cost per item or Cost per use in block dialogs.

Activity-Based Costing | 227
Modeling with activity-based costing

* The variable cost rate, entered in block dialogs as the waiting cost/time unit or processing cost/
time unit.

You do not need to define all cost information in order to perform ABC. However, if even one cost
field is defined as a positive, non-zero number, ExtendSim will automatically track costs when the
simulation is run.

Cost accumulating items have their own fixed costs and variable cost rates. As they use resources,
wait for processing, and are processed, they acquire additional costs from resources, queues, and
activities.

The following information describes how and where to define costs.

Costs for cost accumulators

You specify costing information for a cost accumulator in the cost section or tab of the block that
originates the item. Fach cost accumulator can have a fixed cost per item, such as its direct materi-
als cost, and a variable waiting or processing cost rate, which causes it to accumulate costs as it is
stored or waits for processing.

Cost accumulators are usually generated by the Create block. They can also be provided by a
Resource Item block, depending on a setting in its Cost tab.

Create block
Costing information is entered differently in the Create block depending on whether the block is
set to Create items randomly or o Create items by schedule.

=)
=
e}
o}
I
-
o
3!
<
I}
=
-

* In the Receive Inventory
model described on
page 226 the Create

v Define itern costs

block eenerates crat Waiting cost. [1.15 |+ [hour 2] * model default
ocC. ge erates crates] .

randomly. The Waiting Costperiter:f__ |

cost/hour and the Cost Total cost: 102

per item for each crate
are fieﬁned in the cost Cost section of Options tab; block set to “Create items randomly”
section of the block’s

Options tab, as shown above.

* When the Create block generates items by schedule, you must explicitly set _cost and _rate sys-
tem attributes (discussed in “Working with cost data” on page 231) for each cost accumulating
item. The value of the _cost attribute should be set to the cost accumulator's fixed cost. The

228 | Activity-Based Costing
Modeling with activity-based costing

value of the _rate attribute should be set to the cost accumulator's variable cost rate (waiting cost
per time unit), as shown below.

rEnter a schedule of arrival times

Create Time ltem Quantity., cost = rate = MNong = Mone = J
1 0 5 5.25 1.5
2 10 16 3.8 0.95
3 20 o 4.75 127
4 30 4§] 175

Link 2

™ Repeatthe schedule every |1D ||haurs* .| time units

Create tab; block set to “Create items by schedule”

-l "> The _rate attribute must be defined using the same time unit as the model’s default global time
o
2 unit. In the example, the time unit is hours, so the _rate attribute is the hourly rate.
2 Resource Item block
5 Cost accumulators can
2 . [Define Activity Based Costs
A also be provided for a
model using the Frovides items that calculate costing as:
Resource Item block. Waiting cost: D i time unit

To do this, you must
Costperuse: _
choose that the block]

. . Total cost: 18
Provide items that cal-

culate costing as: cost
accumulators in the Cost tab of Resource Item block, providing cost accumulators
block’s Cost tab, a por-

tion of which is shown at right.

Costs of resources

The costs that will be assigned to items that require resources are defined in the Resource Pool and

Resource Item blocks. The Cost tab in those blocks has fields for entering the following informa-

tion:

* The cost per time unit rate, used to calculate and assign a time-based cost to the cost accumula-
tor while it uses the resource.

* The cost per use is a one-time cost assigned to the cost accumulator for the use of that resource,
such as a fixed service charge.

Activity-Based Costing | 229
Modeling with activity-based costing

In the Receive Inven-
tory model described
earlier, cost rates for the Provides iterns that calculate costing as: [resources o
laborer are defined in

V¥ Define Activity Based Costs

he R Iten Cost [o.75 |+ [hour® |
the Resource Items
s Costperuse:
Cost tab. The block’s i P]
Total cost: 97.5

dialog indicates that
items stored in the
block are resources, as Cost tab of Resource Item block, providing resources
seen at right.

For the Resource Item block to provide resources, the Cost tab must be set to Items are:
resources, the default choice. Otherwise the items will be cost accumulators, as discussed earlier.

Activities
You can also define cost information in activity-type blocks; those costs are accumulated by each

item the block processes. The activity-type blocks are the Activity, Convey Item, Transport, and
Workstation. Within the Cost tab of these blocks, enter a cost per time unit and a cost per item:

* The processing cost per time unit is used to calculate the time-based processing cost of each item
that passes through the block.

* The cost per item is a fixed cost added to every item that passes through the block.

=)
=
e}
Q
I
-
o
3!
<
I}
=
-

Combining resources with cost accumulators

As discussed in “Modeling resources” on page 209, there are two ways that items can use resources.
One method is to batch a resource item with another item. While batched, the resource item is in
use and cannot be used by another item until it is unbatched and returned to the Resource Item
block. The second method is to use the resource pool blocks, which act as a constraint on the flow
of items throughout the model. This section discusses how to properly use these two methods
when performing ABC.

Batching and unbatching resources with cost accumulators

The Resource Item block holds resources for use in the model. When batching a resource item
with a cost accumulator, the resource’s cost rates are automatically stored with the cost accumula-
tor and used in any subsequent cost calculations.

A maximum of two separate types of resource items can be combined with a cost accumulator at a
time. For instance, one or more worker resources from a Resource Item block and one or more cart
resources from a different Resource Item block.

To unbatch a resource and remove its cost rate information from the cost accumulator, you must
select Release cost resources as the Unbatch block’s behavior. This choice tells the block to modify
the information stored with the cost accumulator to indicate that the resource has been released.

If the Unbatch block’s behavior is set to Create multiple items, the items released by the block
will be identical to the item which entered the block. In other words, there would be multiple cop-
ies of the cost accumulator, and each copy would still be joined with the resource.

230 | Activity-Based Costing
Modeling with activity-based costing

Multiple Resources model
P,

<<Return both resource A<<

Time ftem Index Cost -
1} 1 12 4
: 1 15 6 4
@ H 2 az 4
3 248 ar 4
TR wU 4 3 a6 4
Resource A il 3.4 4 4
Link | « v
o
2 wy—E—=a @ i
-) ! o®ea @ m L
= = @ G|t
1 ow W @) =
® Cost /
- Ow wF
Cost Accumulacr hd
o
——15| @
TR -l
Resource C <<Return first resource C<<

<<Return second resource C<<

Multiple Resources model

In the example model, the cost accumulator is initially batched with 2 of Resource A and 2 of
Resource C. When multiple resources are batched with a cost accumulator, they may be released all
at once (as with Resource A), released incrementally (as with Resource C), or remain with the cost
accumulator. Whenever a resource is batched or released, the cost array of the cost accumulator is
updated to reflect the current number of resources in use. (The cost array is described in “Combin-
ing resources with cost accumulators” on page 234.)

-
b,
>

o8
L

=1
[
P
9
<t
a

There are three things to remember when batching resource items with cost accumulators:

1) A resource will be released from the output connector that corresponds to the input connector
originally used to batch it to the cost accumulator. For example, if the resource entered the
Batch block through the “ItemsIn(2)” connector, it will be released through the Unbatch

>«

block’s “ItemsOut(2)” connector.

I Asin the Multiple Resources model, this could mean that one or more of the Unbatch block’s out-
puts will be unconnected and you will need to define that there will be zero items output through
that connector.

2) Ifan item is simultaneously batched with different types of resources, you must use different
connectors for each resource type when creating the batch. In the Multiple Resources model
above, Resource A uses connector “ItemsIn” and Resource C uses connector “ItemsIn(2)”.

3) When performing ABC, you are limited to two different zypes of resource items batched with a
cost accumulator item at one time. This limitation is not true, however, when modeling
resources using the resource pool blocks, as you will see below.

Cost accumulators and the resource pool blocks

As described in “Resource Pool method” on page 209, as cost accumulating items pass through a
Queue block in Resource Pool mode, resources are allocated to the items. When this happens, the
cost rate of the resource pool unit is automatically stored with the cost accumulator and used in
any subsequent cost calculations.

When a resource pool unit is released using the Resource Pool Release block, the information
stored with the cost accumulator is modified to indicate that the resource has been released.

Activity-Based Costing | 231
Modeling with activity-based costing

Unlike what happens where resource items are batched with other items, there is no limit to the
number of different types of resources a cost accumulator can use when using the resource pool
blocks. Furthermore, the two methods of modeling resources (batching resource items and
resource pools) may be used in conjunction with each other.

Combining cost accumulators

The Batch block can be used to combine cost accumulators arriving from one or more paths. This
may be used in conjunction with an Unbatch block, for instance to combine cost accumulators for
processing and separate them after processing has been completed. In the Properties tab of both
the Batch and Unbatch blocks you can specify what the block should do with the cost values. This
is accomplished by selecting an Action for the _cost and _rate attributes.

Costing attributes when items are unbatched

For example, assume a Batch block combines three cost accumulators together and that while
batched, these items accumulate an additional $9.00 due to processing. When these cost accumu-
lators are unbatched, you can select one of the following actions for the _cost and _rate attributes

in the Properties tab of the Unbatch block:

* Preserved value. This option causes the cost accumulators to retrieve their preserved value, if S
« . » 1J
preserve uniqueness” is turned on. In this case, the $9.00 is discarded. Q
a
. (=g
* Batched value. With this choice, the $9.00 will be copied = o
. 1on
to each of the resulting cost accumulators. “Batched vale— §
o Distribute. The value will be divided among each item Batched val Preserved value -
B Batched wal
equally. In this case, $3.00 to each. Batohed wql | Datched value

Distribute

For more information, see “Preserving the items used to cre-
ate a batch” on page 204 and “Properties when items are
batched” on page 199.

Working with cost data
To provide access to cost information, ExtendSim creates two attributes (_cost and _rate) for every
item in models that have costing. Since these are automatically created, they are considered syszem
attributes. If a cost is defined somewhere in the model, these attributes will appear in attribute
popup menus, shown below:

_Item quankity

_Item priarity

Mew Malue Attribube
_rask
_rate

Mew String Atkribuke
Mew DB Address Attribuke

Mone

Attribute popup menu

The information that is stored in these attributes depends on whether the item is a cost accumula-
tor or a resource, as described in the following table:

232 | Activity-Based Costing
Modeling with activity-based costing

Item type _cost attribute _rate attribute

Cost accumulator The accumulated cost of the item The item’s waiting or storage cost
(cost per time unit defined using the
model’s global time unit)

Resource The cost per use of the resource The resource’s cost per time unit
(defined using the model’s global time
unit)

The attribute handling blocks in the Item library (Get, Set, and Equation(I)) can be used to read,
set, or manipulate these attributes. In addition, two statistics blocks in the Item library (Cost By
Item and Costs Stats) can be used to gather cost data.

Viewing Cost Data

You can use a Get block to read the _cost and _rate attributes of any item, then plot the data or use
the attribute value to perform additional calculations. For example, you can use a Get block to
read the _cost attribute of cost accumulators and connect the Get block’s _cost output connector
to a Plotter Discrete Event to plot the accumulated cost of each item that passes through. This is
shown in the model discussed in the following section.

Changing Cost Data

In most cases, it is sufficient to define the cost rates of the various cost drivers in a model and allow
ExtendSim to automatically calculate and track costs. However, there may be times when you need
to manipulate the cost values generated. The attribute handling blocks in the Item library (Get,
Set, and Equation(I)) can be used to accomplish this.

-
b,
>

o8
L

=1
[
P
9
<t
a

Change Rate model
For example, suppose the cost rates of a resource vary throughout the day. During peak times the
demand for the resource is high and the cost per time unit increases. This can be modeled using

Activity-Based Costing | 233
Modeling with activity-based costing

the Set block (Item library) and the Lookup Table block (Value library) to explicitly set the _rate
attribute of the resource as it exits a Resource Item block, as shown in the model below:

SIS AA 7]
w

Flotter, Discrete Evert

v v

4 [} il
At Time
Q — attribals — Red — Green = Black
Dv -F
Batch Potivity Unbatch

|:| _|:u:u:|
Changing the *_rate" attribute changes the E —a=g
cost of uging this rezource. Here, the ate

waries by time of day.

Change Rate model

The table in the Lookup Table block has a different rates for the period between hour 4 and hour
6.

I=" A change in the rate will only affect resources as they exit the Resource Item block. Resources cur-
rently in use will not be affected until they are recycled back through the Resource Item and Set

blocks.

In the above model, a Get block reads the _cost attribute before the items exit the model. The
accumulated cost of each cost accumulator is then plotted. The plot (cloned onto the worksheet),
shows that the cost of the items increases during the period of time that the resources’ cost rates are

higher.

=)
=
e}
=
[
-
o
1
<
a
=
-

Gathering and Analyzing Cost Data

The Create, Resource Item, and Resource Pool blocks, as well as queue and activity-type blocks,
are capable of generating costs that get tracked with cost accumulating items. Additionally, each
cost-generating block displays the total cost it generated in its 7ozal Cost dialog item.

You can also use the Cost By Item and Cost Stats blocks (both in the Item library) to gather sum-
marized cost information. The Cost By Item block reads and stores the _cost and _rate attributes
of all the cost accumulating items that pass through it. The Cost Stats block collects and displays
the total cost for each cost-generating block in a model.

Cost By Item block

Depending on selections in its dialog, the Cost By Item block lists the accumulated cost of each
item that passes through it, the time the item passed through the block, and the total and average
cost of all the items that have passed through. This block can also be used to list the cost of the
items sorted by type.

In the Sort By Type model (shown below) three different item types are generated by randomly
assigning a Type attribute of 1, 2, or 3. It costs $5.00 per hour to run the machine. The machine’s
processing time for, and therefore the cost of, each item varies by type. The Cost By Item block

234 | Activity-Based Costing
How ExtendSim tracks costs

lists the costs of the items sorted by the Type attribute. As an item passes through the block, the
row corresponding to the value of the Type attribute (1, 2, or 3) is updated.

oiz

F

Set Atribute

Queus
Rand

Ohnimum
-

ftem Type

HAuwerage Cost Total Cost i‘
o o

346 103933152658
8.86 44.3061958597
T8 I0I016TI6821 7

FREATEY Y

Sort by Type model

Cost Stats block

The Cost Stats block is useful to determine which blocks are contributing the most to the total
cost of the items being processed. See the help text of the block for a detailed description of how to
use the Cost Stats block.

How ExtendSim tracks costs

I=" The previous sections discussed how to perform ABC in ExtendSim. This section provides a more
detailed look at how ExtendSim tracks costs and is included mainly for informational purposes.

-
b,
>

o8
L
=1
[
P
9

<t

a

Setting the _cost and _rate attributes

When you define the cost or cost rate for a cost accumulator or resource (as discussed in “Defining
costs and cost rates” on page 226), ExtendSim will assign the value to the appropriate costing sys-

tem variable for that item. The fixed cost of the item is assigned to the _cosz attribute and the vari-
able cost rate is assigned to the _rate attribute.

Combining resources with cost accumulators
Whether you use the resource item and batching method or the resource pools method to model
resources, two things happen when a resource is attached to a cost accumulator:

1) The value of the resource’s fixed cost is automatically added to the cost accumulator’s _cost
attribute.

If using the batching method, the resource’s fixed cost comes from the resource’s _cost attribute. If
using resource pools, the resource’s fixed cost comes from the Cost per use dialog item of the corre-
sponding Resource Pool block.

2) The resource’s variable cost rate and the number of resources used are stored in an internal pro-
gram structure called the cost array.

The cost array stores costing information for each cost accumulator in the model. ExtendSim uses
the data in the cost array to calculate the time-based cost contributed by any resources that are
combined with the cost accumulator. If using the batching method, the resource’s variable cost rate
comes from the resources _rate attribute. If using resource pools, the resource’s variable cost rate
comes from the Cost per time unit dialog item of the corresponding Resource Pool block.

Activity-Based Costing | 235
How ExtendSim tracks costs

When a resource is released by an Unbatch or Resource Pool Release block, the information stored
in the cost array is updated to indicate that the resource is no longer combined with the cost accu-
mulator.

Calculating costs

As previously mentioned, the Create block and activity, queue, and resource-type blocks are all
capable of generating costs. As these blocks process cost accumulators, they will automatically cal-
culate the cost and add it to the item’s _cost attribute. In addition, each cost-generating block will
update its 7otal Cost information. This dialog item displays the total cost contributed by that par-
ticular block only. The following sections briefly discuss how these calculations are performed.

In the Create block
When a cost accumulator is generated, ExtendSim will add the fixed cost (Cosz per use) of the Cre-
ate block to the cost accumulator’s _cost attribute.

For each cost accumulator generated, ExtendSim also will add the fixed cost of the Create block to
its Total cost dialog item.

In activity-type blocks

When a cost accumulator enters an activity-type block, ExtendSim will add the activity’s fixed cost
(cost per item) to the cost accumulator’s _cost attribute. In addition, it will calculate the variable
time-based cost (the processing or transportation cost of the activity and the waiting cost of any
resources currently combined with the cost accumulator), and add it to the _cost attribute of the
cost accumulator.

=)
=
e}
o}
I
-
o
3!
<
I}
=
-

For each cost accumulator that passes through the block, ExtendSim also will add the fixed and
variable cost contributed by that activity-type block (not including costs contributed by any
resources combined with the cost accumulator) to that block’s Tozal cost dialog.

In queue-type blocks

Queue-type blocks have a checkbox labelled “Calculate waiting costs”. If that checkbox is selected
when a cost accumulator enters a queue-type block, ExtendSim will calculate the time-based cost.
This is composed of the waiting or storage cost of the cost accumulator as calculated from the cost
accumulator’s _rate attribute and the variable cost of any resources currently combined with cost
accumulator. The time-based cost is added to the _cost attribute of the cost accumulator.

For each cost accumulator that passes through a queue-type block, ExtendSim also will add the
waiting cost calculated from the cost accumulator’s _rate attribute (not including costs contributed
by any resources combined with the cost accumulator) to that block’s 7ozl cost dialog item.

In resource-type blocks
Tfhe. Resource Item.block is capable of provid- | 5 pefine actiity Based Costs
ing items that are either cost accumulators or
resources, depending on selections in its Cost

Provides iterns that calculate costing as: [resources |

tab, as shown at right. Cost @] timeunit
Cost per uze:

If the block is providing cost accumulators, it Totalcost. (17

will generate costs similar to a queue-type

block.

Cost options in Resource Item block

If the block is providing resources, the total

cost of using the resources is calculated and displayed in the block’s 7ozal cost dialog item. The cal-
culations are based on the resource’s utilization rate and cost rates defined in the block’s Cost tab.

236 | Activity-Based Costing
How ExtendSim tracks costs

Combining multiple cost accumulators

In manufacturing processes, different parts of the product may be worked on in parallel, then com-
bined later to form the final product. In these cases, multiple cost accumulators will contribute to
the cost of the final product.

Multiple Cost Accumulators model

For example, when a computer manufacturer prepares a system for an end user, the CPU and the
monitor must each be assembled then combined into one shipment. The CPU and monitor may
be worked on in parallel, then combined using a Batch block, as shown in the model below:

and honitors are added together.

v ow wF —
E—a | [[B—aT
& 1L Vs

The _cost and _rate attributes of the CPUs |

|
[lp=—o_f—{o>4_| s

To Shipping
Ete . .
o
o

-

ink_| 4

CPUs Queue Fzzemble CPUs

v 0w wF
hdanitars Queue Fzzemble hionitors Queue

- A e
coocoooo
coocoooof

,_
T ooooo
it

-
b,
>

o8
L
=1
[
P
9

<t

a

Multiple Cost Accumulators model

When the two cost accumulators, the CPU and the monitor, are batched together, two things will
happen:

* The _cost and _rate attributes of the input items are added together. The resulting cost accumu-
lator will have an accumulated cost equal to the combined accumulated cost of the input items
and a waiting cost rate equal to the combined waiting cost rates of the input items.

* Any resources, whether from batching or from a resource pool, that are combined with the input
cost accumulators will be combined with the cost accumulator that is output from the batching
block. Note that any rules or limitations associated with batching resources with items will apply
to the resulting cost accumulator (see “Batching and unbatching resources with cost accumula-
tors” on page 229).

Discrete Event Modeling

Statistics and Model Metrics

Statistically analyzing discrete event models

238 | Statistics and Model Metrics
Commonly used blocks

Remember that, by itself, simulation does not provide exact answers or optimize a system. Instead,
a well-built model will capture important data and report statistical results. These metrics should
provide the information needed for the analysis and decision-making process.

This chapter discusses specific methods for statistically analyzing discrete event models, such as:

* Gathering statistics for specific types of blocks

* Clearing statistical accumulators after a warm-up period

¢ Using the History block to get item information

* Using attributes to accumulate information about items

¢ Determining cycle time by timing the flow of items

* When to use time weighted statistics

For a more generalized discussions of statistical analysis, see also the following chapters:

* “Math and Statistical Distributions” starting on page 599

* “Analysis” starting on page 563

-
b,
>

o8
L
=1
[
P
9

<t

a

e

0 Clear

Stats

igo

I=" The models illustrated in this chapter are located in the folder \Examples\Discrete Event\Statistics.

Commonly used blocks

The following blocks will be the main focus of this chapter. The block’s library and category
appear in parentheses after the block name.

Clear Statistics (Value > Statistics)
Clears statistics in other blocks, eliminating the statistical bias of the warm-up period.

Display Value (Value > Outputs)
Displays and outputs the value that is input.

History (Item > Information)

Records information about items and their properties, such as the value of an attribute, the
item’s arrival time, its priority, and so forth.

Information (Item > Information)

Reports item statistics such as a count of the number of items, the throughput rate, cycle
time, and the time between item arrivals.

Mean & Variance (Value > Statistics)
Calculates a mean, variance, standard deviation, and confidence interval.

Statistics (Value > Statistics)

Summarizes statistics for a particular type of block, such as activities or queues. Reports
results in a table. Information is calculated using a specified statistical method, which can
be customized.

Gathering statistics

The Statistics block (Value library) accumulates data and calculates statistics for a particular type of
block using a specified statistical method. In addition to the block number, block name, and the

Statistics and Model Metrics | 239
Clearing statistics

time the information was observed, this block displays metrics that are specific to the block type,
such as utilization or average wait time for activity-type blocks or the mean, variance, and standard
deviation of all the Mean & Variance blocks in the model.

The Queue Statistics model, located in the folder \Examples\Discrete Event\Statistics, uses the Sta-
tistics block to gather information about queues.

Since the Statistics block is used to gather information in continuous, discrete event, and discrete
rate models, it is discussed fully in “Statistics” on page 564.

Clearing statistics

At the start of a simulation run the queues are often empty and operations have nothing to process.
After the model has been running for a while, it gets to the point where it is functioning more like
the real system at normal operating levels. The interval from when the model starts to when it is
functioning in a steady or normal state is called the warm-up period.

The Clear Statistics block (Value library) is used to reset statistical accumulators for the blocks
specified in its dialog, eliminating the statistical bias of the warm-up period. For more information
about this block, see “Clear Statistics” on page 566.

. . g
Clearing Statistics model 2
-
S (o]
(=g
o
@ - bl s
oy g Sk p
J v o
¥ b [I hd 0¥ F Exit E
Create Oueue 1 Fotivity A Queue 2 -l
=) —T=T=)
O|—o=o
HMV Oo_sm=
i Clear . |,&;|
Clear Statistics -
ol
ue 1 Flotter, Discrete Evert
¥ Clear activity statistics |
Uncheck the “Clear activity statistics" 078 [
checkbox and re-run the model. Notice that sk
if clearing iz tumed off, the wtilization of F
PActivity B approaches 1, but does not reach 0.5 [
it. Clearing the statistics (running with the

box checked) remowes the initial startup
bias of this system.

125 280
Time

o
Q — Utilization
1

Clearing Statistics model

In the Clearing Statistics model, statistics are cleared after 40 seconds, removing the warm-up
period for the model. This is seen by the utilization of 1 for Activity B when the model is run.
Unchecking the Clear activity statistics checkbox on the model worksheet causes the utilization of
Activity B to approach, but never actually reach, 1. This is due to the effect of the initial idleness of
the Activity B block at the start of the simulation run.

Using the History block to get item information

When building a model, it is important to start small, verify that the section you have built is
working as expected, then enhance that model section. The History block is particularly useful for
verifying model data because it provides important information about each item as the simulation
runs.

There are two ways to add a History block to a model:

* Connect it in series by dragging a History block from the Item library and connecting it
between other blocks so that items pass through it.

240 | Statistics and Model Metrics
Using the History block to get item information

¢ Connect it in parallel by right-clicking an item output connector and selecting Add History
block. This automatically connects a History block to the original block’s item output connec-
tor. If a History block is added in this manner, only its input connector is used. (Caution: Be
sure there is an Item library block connected to the original block’s item output connector, oth-
erwise its item will have no place to go.)

Each item that passes through the block (if it is connected in series) or is viewed by the block (if it
is connected in parallel) is allocated a row in the History block’s table. The table’s first column dis-
plays the item’s arrival time. Popup menus at the top of the other columns are for selecting addi-

tional information to display, such as the value of an attribute, an item’s property, and so forth. You
can choose to save item history with the model, show string attributes, and display Calendar dates.

I Since the History block can use a lot of memory, put it in the model during testing, then remove it
when you have verified that the section is working as expected. To automatically remove all of the
blocks that have been added by right-clicking, right click one of them and select “Delete all auto-
created History blocks”.

History model

b= The History model shows two
o .
& History blocks: one has been
° physically placed in series between
N o .
o a Queue and an Activity and one ' R’
5 8)p—c)
2 has been auto-created and placed o e tems
. Ow wF
) in parallel to the Queue block.
Aival time ttem armival vi‘
. .- o o o
Both blocks report the same infor- I 1 1.1 0.301601243056
mation (the item’s arrival time and History montor . R
istory monitors output | 3 33 1.46756002328
the value of an attribute called 5 55 3 m0ssr
’ 1 [:} 6.6 41005284506
Ttem arrival), as shown in the Sk [o

cloned table in the model window.

I Ifa History block has been auto-
created and placed in parallel to
another block, there must be subsequent blocks that can pull the items in. This is discussed at
“Pulling and viewing” on page 247.

History model

Verifying Information model
The example shown at the right
illustrates the use of the History
block to verify that batches are cre-
ated at the correct time with the

correct number of items. Link | « N>
The topmost Create block (labeled

Schedule Batches) schedules when J =N
the batch is created and the Queue’s _/E

length (L) output determines the Ereate FIFO Queus Batch
batch size. This causes all items Verifying Information model

within the Queue to be batched.

Aival (min) count . &
100 16

-t

I =

F

Statistics and Model Metrics | 241
Accumulating data

Accumulating data

There are various methods you can use to accumulate data. Attributes can be used to hold cumula-
tive values, such as the total weight of an assembly or the number of parts in a box. And the Hold-
ing Tank block (Value library) can accumulate total processing time to determine equipment
refurbishment schedules. Data can be accumulated at any step in the model, even when the item is
not being processed.

& It is important to not make the error of assuming that you can combine attribute values and then
accumulate them. See “Using the Holding Tank block to accumulate values” on page 252 for more
information.

Non-Processing model

In the Non-Processing model, one part from Stock and another from Manufacturing are com-
bined into an assembly. The stock part weighs 10 pounds and the manufactured part weighs
between 1 and 3 pounds. The model uses an attribute called Weight to track the weights of the
separate parts.

Loading Dock U

TR WU g 3

Stock Partz ™ -1 Q

=i y=1ix) = F o

- -

n. / o
o Exit 1

J | /E E.-(" [Batoh Aecumulate Wizight <
= [«]

v v [EEf E

Wanufacture Part Set Weight Parts from hifg
Dizplay weight

Rand 135

Ohnimum
-

Random Humber

Non-Processing Model

The Properties tab of the Batch block is set to sum the values of the Weight attribute for the com-
pleted assembly. After the parts are batched, an Equation(I) block increments the Weight attribute
by 0.5 pounds. At the loading dock, the weight of the current item is displayed as it leaves.

Processing model
If the data to be accumulated is dependent on processing, you can accumulate values using a Hold-
ing Tank block (Value library) connected to the P7 (process time) connector on an Activity block.
For example, to accumulate the total amount of processing time parts required, as an indication of
when the processing equipment needs to be refurbished.

{’_f 2_ i
Y dn

TR -l

oi3

Stock Parts —1f E—= 1 @ = F
S n—ﬁ ’
4 0w F Exit
J = e Batch
v h L P

hanufactured Partts FIFO Queue

=

NB Quant Ig:et
s
SH

wRT Totaltime: 23 47786364414
Potivity

Accumulate

Oooooon
o

Processing model

242 | Statistics and Model Metrics
Time weighted versus observed statistics

In this model, each time an item leaves the Activity, its processing time will be added to the value

in the Holding Tank.

Time weighted versus observed statistics

The Mean & Variance block (Value library) can calculate either a time weighted or observed statis-
tic:

o If Use time wel'ghted statistics is checked in the Mean & Variance block, the mean, variance,
and standard deviation are calculated by weighting the input value based on the simulation time.
This is derived by dividing the input value by the duration of that input value and then sum-
ming these over the course of the simulation.

o If Use time weighted statistics is not checked, the sum of the input values will be divided by the
total number of input values received, resulting in an observed statistic.

When using the Mean & Variance block, carefully consider the type of statistics that you want to
calculate. Some guidelines for whether or not to select the time weighted statistics option are:

o If the value that you are collecting statistics on has a value at every point in the simulation,
enable time weighed statistics. A good example of this is the number of items in a block
(reported by the L connector). At any point in the simulation, there are a certain number of
items in a block. To determine the average value, weight it over time.

o If the value that you are collecting statistics on only has a value at specific events, do not use time
weighted statistics. An example of this is the W or wait time connector. This connector only has

-
b,
>

o8
L
=1
[
P
9

<t

a

a value when an item leaves the block, which is a specific event. In that case, time weighted sta-
tistics should not be used.

Time Weighted Statistics model
The Time Weighted Statistics example shows the difference between the two methods of calculat-
ing statistics and how they are calculated.

TEREA]
w w

}: vl Platter, Disersts Evert

r—LlE—{or—

= K

CIRE Mg ———iifeighted ave

Time weighted

= o o P
—a Mvﬁl, Time

s Quieue length — Wisighted ave.— Unwsighted ave.
CIRS WMB——Unueighted ave ﬂ

Mot time weighted
Average queue length fweighted) =01 +1"1+2%1+371+4 6+3710)/20=3~

Average queue length (unweighted) = {1 + 0+ 1 +2+3+4+3+2)/8=2"

Queus length —_g

isighted ave. ——&1 _aEE

Unmeighted ave, — [/ _WmME| 9 i
20 is the length ofthe simulation

**8 is the nurnber of observations, see the record message block

L g

Record message

Time Weighted Statistics model

Comparing the weighted and un-weighted approaches to the average queue length reported in the
Queue block’s Results tab, it is clear that not using time weighted statistics would give an incorrect
answer for this model.

Statistics and Model Metrics | 243
Timing the flow of items in a portion of the model

Timing the flow of items in a portion of the model
In addition to performance information that is directly available in a model, you may want to
determine cycle time — how long it takes an item to go from one part of the model to another. For
example, you may want to know how long a customer waits in line to place an order, or how long
it takes that customer to get served once the order is placed.

To see how to determine cycle time in a model, see “Cycle timing” on page 254.

=)
=
e}
o}
I
-
o
3!
<
I}
=
-

244 | Statistics and Model Metrics
Timing the flow of items in a portion of the model

-
b,
>

o8
(2]

=1
[
S
9
2
a

Discrete Event Modeling

Tips and Techniques

Helpful information for when you build discrete event models

246 | Tips and Techniques
Moving items through the simulation

This chapter provides some tips, techniques, and information you may find helpful when building
discrete event models. The chapter covers:

* Moving items through a simulation
* How items move: holding and pushing. viewing and pulling
* Implications of connecting to multiple item inputs
* An jtem’s travel time
* Using scaling for a large number of items
* Preprocessing
* Restricting items in a system
¢ Connecting to the select connector
¢ Issues for continuous blocks in discrete event models
* Setting time-based parameters using a Random Number or Lookup Table block
* Varying a distribution’s arguments for the Create block
* Accumulating values using a Holding Tank block
* Cycle timing
* Item library blocks

¢ The Executive

-
b,
>

o8
L
=1
[
P
9

<t

a

* Types of blocks: residence, passing, decision, and non-item
¢ Common connectors on Item library blocks
* Event scheduling
* Messaging in discrete event models
I=" The models for this chapter are located in the folder \Examples\Discrete Event\Tips.
Moving items through the simulation

In general, item input connectors on discrete event blocks will pull an item in, do something with
it, wait for the block connected to the item output connector to pull the item out, then pull in
another item. For example, the Activity block will pull items from preceding blocks, process those
items, and hold them to be picked up by another block.

It is important that you understand the ExtendSim discrete event behavior so you can avoid mak-
ing modeling errors.

How items move through the simulation

It is important to understand how items move through specific blocks so that you can avoid two
rare but possible pitfalls: losing items from the simulation and having items stop moving in the
simulation.

To avoid the problems discussed below, you should probably connect Create blocks to queues so
that items do not get lost and connect the History block in parallel with other blocks that will
actually pull in the items.

Holding and pushing
Item library blocks treat their output items in one of two ways:

Tips and Techniques
Moving items through the simulation

* Most blocks hold the item and it leaves only when another block pulls it in.

* When set to create items randomly, by schedule, or infinitely, the Create block pushes the item
from the block when it is generated, regardless of whether it will be picked up by another block.
The Create block has to push items out, because those items are created within the block and are
arrival time related.

Avoid this pitfall

When a Create block pushes an item and

it is not picked up, the item disappears . B}
from the simulation. Generally this Unwise: J |—‘f§=§|n@f=g—_/
would only be used in certain very spe- ov wF

cific types of models. In most situations

where the Create block is set to create -
items randomly, by schedule, or infi- Wise: J |.—f§iﬂ|_j=gn|§j=@_—/
nitely, follow the block with a queue to - ey -

collect the items and hold them, so that

all the items generated are available for

the rest of the model.

b

F

Of course, if the Activity has an infinite capacity, it is not necessary to place a queue after the Cre-

ate block.

& A Create block set to Create items infinitely should never be connected to an infinite capacity
queue, since generating an infinite supply of items would overwhelm the system.

Pulling and viewing

There are two ways a block’s item input connector can have access to an item: it can pull an item
from the preceding block (as most connectors do), or it can simply vzew an item that is waiting at
the item output of the preceding block. If an item input connector pulls an item in, it has access to
the item for processing. However, if an item input connector only views items, it does not have
direct access to them, it can only sense their presence at the preceding output connector.

The particular connectors that only view items (not pull them) are:
* The Gate block’s sensor connector when it is set to Type: area gating or its demand connector
when the block is set to Tjpe: conditional gating with items.

* The item input connector on the History block, if the block has been added in parallel to
another block. This is shown below and described in “Using the History block to get item infor-
mation” on page 239.

247

=)
=
e}
o}
I
-
o
3!
<
I}
=
-

248 | Tips and Techniques
Moving items through the simulation

Avoid this pitfall

When one block holds an item and that

item is o7/y viewed by another block, . | F =

the item does not move through the Error: J |__|// |E
simulation and is blocked. This is never v o wF
desired. {111}

For example, both screenshots to the
right show a History block that has
been auto-created and is viewing items J |__ /HL“‘F%
in an Activity block. In the top (error) OK:

screenshot, after the Activity block has

finished processing its first item, the
item will have nowhere to go since it is

blocked.

Connections to multiple item input connectors

You can connect from one item output connector to as many item input connectors as you want.
However, since items can only be in one place at a time, the first connector to pull in the passed
item gets it and the other connectors do not.

Furthermore:

¢ If more than one input on a single block is free, the item will arbitrarily go to any available
input. (Note that the selection is arbitrary — not random.)

-
b,
>

o8
L
=1
[
P
9

<t

a

* If more than one block is free to accept the item, the item will go to the block that was first con-
nected in the model. This is shown in “Implicit routing” on page 151 and “Simple parallel con-
nections” on page 166.

It is more typical that you would want to specify which input connector, or which block, would
get an item. For more information, see “Items going to several paths” on page 149.

A Unless it is completely unimportant in the model, you should always use the Select Item In and
Select Item Out blocks to explicitly state how items should be routed. Otherwise, the order in
which their connections were made will dictate the routing.

An item’s travel time

In a discrete event model items travel from block to block as dictated by the connection lines. The
lines between blocks indicate the path of the movement, but they don’t provide any delay to the
items.

In most cases, travel time is insignificant and can be safely ignored. Where an item’s travel time is
significant to the model, you can:

* Increase the delay time of destination blocks to compensate for the travel time
* Specify a minimum wait time in a Queue block’s Options tab

* Explicitly set a travel time in a Transport or Convey Item block, as discussed in “Transportation
and material handling” on page 185. (You can easily add a Transport block between two blocks
by right-clicking the leftmost block’s output connector and selecting “Add transport block”.)

Tips and Techniques | 249
Moving items through the simulation

Using scaling for large numbers of items

In discrete event modeling problems, the number of items that need to be processed through the
simulation may be quite large. This will slow down the execution of the model and increase the
amount of memory required. It is often possible (and non-destructive to the validity of your
results) to scale down the number of items passing through the model. For example, if there is one
item representing a single log in a simulation of a lumber mill, the same model could quite possi-
bly run faster, and equally well, with one item representing ten logs.

When you make scaling changes to a model of this nature, it is very important to reflect the
changes everywhere in the model. Thus, if an activity that represented a saw in the lumber mill was
set to take one time unit to process an item (one log) before, it must now take ten time units to
process the same item (ten logs) after the scaling.

While scaling can sometimes be a useful approach, the Rate library is specifically designed to
model high volume and/or high speed systems. In most cases, using the Rate library is superior to
item scaling. The Rate library is available with the ExtendSim AT and Suite products.

Preprocessing

You sometimes want to have all the items available at the beginning of a simulation instead of gen-
erating them as the simulation proceeds. For instance, if you need some random orders presented
to the model in sorted order, you might want to sort them before the simulation starts. This is dif-
ficult under normal circumstances since the first order would begin traveling through the simula-
tion as the second one was being created. There is an easy method that will cause ExtendSim to
create lots of items, store them in a queue, and release them.

=)
=
e}
o}
I
-
o
3!
<
I}
=
-

Set the initial value in a Resource Item block to the num- o

ber of items you want to generate. Connect the Resource g L ‘
Item block to a Set block where you attach item proper- ﬁ:{ |

ties (priority, attribute, etc.). Then connect to a Queue TR U g

N . Resource fem Set Ceue (Priorty)
that sorts based on the desired item property.

. . . Preprocessin
When the model is run, all the items will travel from the P &

Resource Item block to the Queue on step zero. This
makes the items, with all their properties, available to the rest of the model at the start of the sim-
ulation.

If there are many items in the Resource Item block, the status bar may show the phrase Initializ-
ing Data. As soon as the preprocessing is done, the timer will settle into a more useful number.

Restricting items in a system

As part of a model you may want to have a section composed of a group of blocks in which only
one item (or a limited number of items) can be anywhere in the section at a time. For example,
assume you are modeling a manufacturing process with a paint room. There are many blocks that
represent the steps in the paint room but only two items are allowed in the entire paint room at a
time. New items must be restricted from entering the room until one or more items leave.

When set to Type: area gating, the Gate block is perfect for this because its sensor connector tells it
each time an item has reached the end of a system. The number of items allowed are set in the
Gate block’s dialog; in this case, two. Put the Gate block at the beginning of a system; at the end of
the system, run a parallel connection from the output of the last block to the Gate block’s sensor
connector.

250 | Tips and Techniques
Continuous blocks in discrete event models

In this example, the paint room -

is represented by two Activity i‘
Sensar

blocks. The Gate block will

pass the first two items it ao
receives into the paint room, el n_fﬁngﬁ @ =
Oow wF Oow wF

g

then only let a new item pass T oma Eeit
when it sees the first item at its fems for Paint Feom Primer Ory

sensor connector. As each item Restricting items

leaves the paint room, a new

item can enter. Note that the sensor connector doesn’t accept any items; it only views them as an

indicator of their position in the model.

I Another, more flexible, approach is to use a Resource Pool block to restrict items in a section of the
model. This is useful when you need to track statistics on utilization, or if you have multiple flows
of items accessing the same physical space.

Connecting to the select connector
The select connector is used to

g control the behavior of the Select | B} - @

~ Item In and Select Item Out — Bhi-+ n—ﬂ

&3] o)
g blocks. If the select connector gets Bet | _[gie | |select hem Out T B
g its value from a Get block, you I Get solect fem Out
é should avoid putting Set blocks, Loakup Table

activities, and queues between the safe and unsafe connections to the select connector

Get block and the Select block.

These blocks can alter the value sent to the select connector or delay the item so that the Select
block routes the wrong item.

For instance, the model segment shown at the left of the above screenshot will work properly. The
one shown to its right may not work correctly, because the item to be routed may still be in the

Activity block.

Continuous blocks in discrete event models
Value library blocks can be considered passive blocks in discrete event models. In most cases,
blocks from the Value library will not recalculate unless told to do so by an Item library block. This
has important ramifications for the behavior of Value library and other continuous blocks in dis-
crete event models.

When an Item library block needs a new value at one of its value input connectors, it will send a
message out that connector to the connected Value library block, requesting a new value. Likewise,
when an Item library block has calculated a new value at one of its value output connectors, it will
send a message to the connected Value library block notifying it of the change. Typically these
messages will cause the Value library blocks to recalculate. The messages are then propagated to all
other connected Value library blocks.

In discrete event models, most blocks from the Value library typically neither post events to the
Executive nor receive event messages from the Executive. Furthermore, Value library blocks do not
recalculate on each time step in discrete event models as they do in continuous models. Rather,
they are only alerted to recalculate if they receive a message from an Item library block. And most
Item library blocks are triggered to action only by the arrival of an item. Complications can arise if
a Value library block does not get a message from an Item library block when you expect or want it
to recalculate.

Tips and Techniques | 251
Continuous blocks in discrete event models

Some Value library blocks, such as the Clear Statistics and the Lookup Table, do generate events in
a discrete event model because they need to perform a specific action at a scheduled time.

To prevent modeling errors, it is helpful to understand this relationship between Item and Value
library blocks. Common situations where this is important include:

1) Setting time-based parameters using connections from 2 Random Number or Lookup table
block. This is described on page 251.

2) Varying an argument for a Create block’s distribution with a Lookup Table where there is the
possibility of a message being ignored. This can cause a lot fewer items to be created than
expected, as discussed on page 252.

3) Using a Holding Tank block to accumulate the result of a calculation performed on two or
more values coming from Item library blocks. If not modeled properly, the Holding Tank can
get duplicate messages and will have incorrect results. This is described on page 252.

For a detailed discussion about messaging between discrete event and continuous blocks, see
“Value input and output connector messages” on page 261.

Setting time-based parameters using connectors

Some time-based parameters can be set using a connector value. In these situations, the value sent
to the input connector must be defined in the time unit specified in the receiving block. The fol-
lowing examples illustrate issues you should be aware of.

=)
=
e}
Q
I
-
o
3!
<
I}
=
-

Random Number block

Assume you want the delay for an Activity block to be approximately 30 minutes and you connect
a Random Number block to the Activity’s D input connector. If the local unit of time for the
Activity is minutes, you would set the Random Number block to generate numbers with a mean of
30. However, if the Activity block used hours as its local time unit, the Random Number block
should be set to generate numbers with a mean of 0.5.

It is a modeling error to expect the Random Number block to create random values at each event
in a discrete event model. The only time this Value library block will be activated to output a new
value is when it receives a message on one of its connectors. In the above example, the Random
Number block will get a message each time an item arrives to the Activity block, so each item will
get a random delay time. For more information, see “Value input and output connector messages”
on page 261.

Lookup Table block

It is possible that the numbers in one column of a block are based on the time unit for that block,
and the numbers in another of its columns are based on the time unit for a second block. An
example of this is described in “Choosing time units for the columns” on page 113.

Varying a distribution’s arguments

It is common to use another block to specify the arrival intervals by varying the argument (such as
the mean) of a distribution in the Create block. To avoid unexpected results, it is important to
understand what happens in the Create block when you do this. The Create block’s default behav-
ior is to send a message to the Executive block giving an arrival time, called “nextTime”, for the
next item based on the current input parameters. When simulation time reaches nextTime, the
Executive block sends a message to the Create block. The Create then releases the item and gener-
ates a new nextTime based on the current values of the input parameters. For the period of time

252 | Tips and Techniques
Continuous blocks in discrete event models

between releasing items, the Create block will not react to changes in the input parameters. If the
inputs change drastically, this can cause unexpected results as shown in the following example.

Lookup Table example
Assume you connect a Lookup Table block to the mean

. . . . | il u] 1 S
input connector of a Create bock, varying the interarrival o nout e o et 12:‘
mean according to the schedule in the table at right. 1 B 0.5

2 14 12
For this example, both the Time and Output 1 columns 3 24 -
of the Lookup Table block are defined using hours as the Link |

time unit. The mean for the interarrival time is 12 hours
except for the period between hours 6 and 14 where the
mean is 0.5 hours. Because the mean is only an average,
it is possible for the Create block to generate an item at time 0 with an arrival time of 14 or more.
If that happens, the Create block will get the message that the mean should have changed to 0.5
between hours 6 and 14, but it will ignore it. In this case, the number of arrivals will be much less
than expected.

Lookup Table’s table

The Options tab of the Create block has a check box labeled Inzerarrival time changes occur
immediately. When checked, it will cause the Create block to immediately respond to changes to
any input parameter. In the case of the above example, the Create block would recognize that the
mean had changed from 12 to 0.5 at time 6. It would then generate a new random number for the
arrival time using the new input values.

-
b,
>

o8
L
=1
[
P
9

<t

a

Using the Holding Tank block to accumulate values

When accumulating data in a model, it is important to not make the error of assuming that you
can add attribute values and then accumulate them.

Incorrect approaches

Assume you want to accumulate the sum of two attribute
values. Your first intuition might be to add the two
attribute values together and send the result to a Holding

Tank block (Value library).

B—a -]
r
Two incorrect approaches to do this are shown at right. g
In the first case the attribute values are obtained from Helding Tark
two Get blocks; in the second case the attribute values Incorrect approach #1
are captured from one Get block. In both cases the Hold-
ing Tank will give incorrect results.
Each time an item passes through a Get block, a message is sent
out each value output connector. The way this been constructed, ﬁ{"'}g
the passing of one item will result in two additions being con- = F
. . B—f r
tributed to the Holding Tank block. i ¥ Quant B
Holding Tank

Attributes Error model

The Attributes Error model illustrates the modeling problem Incorrect approach #2

and some potential solutions. The problem with this model is

clear if you look at the numbers, 11 and 42 respectively, displayed by the Exit and Display Value
blocks. Since the values of attribute A and attribute B are both 1, the accumulated total displayed

Tips and Techniques
Continuous blocks in discrete event models

on the Display Value block should only be twice the value displayed in the Exit block; clearly this
is not the case in this model.

|The top model shows 3 common error when adding and accumulating attribute values. See the solutions, below. I

F

Gt Atribute Get Atriblte Helding Tank adds values many times
because of messages from both Get blocks.

n—gljn—g |4_2_n

A
- Cwart & X
2 h get Display Sum
Holding Tank

A1 and B=1 Get £ Get B

Attributes Error model: Problem

The reason for the modeling problem shown above involves the message passing system in discrete
event models. Individual items travel through the Get blocks sequentially. As an item passes
through the first Get block, the block sends a message and the value of the attribute to the Math
block (Value library). The Math block then recalculates and sends a message and the value to the
Holding Tank block (Value library). When the item moves to the second Get block, it will send a
message to the Math block again. This causes the Holding Tank block to get two messages and two
values for each item that passes through the system. This kind of problem will occur in any discrete
event system where there are multiple connections to a Holding Tank block (either directly, or
indirectly as shown above) or if one Get block was used with two outputs.

The Attributes Error model includes four examples: the problem and the three solutions discussed
below.

Solution #1: two Holding Tank blocks

One way to solve this problem is to accumulate the
attributes’ values separately using two Holding Tank
blocks. The contents of the Holding Tanks are then
added together. This prevents the “double counting”
of the previous example, because each Holding Tank
block receives only one message and value per item
that passes through the Get block it is attached to. Guart & hath

get
Halding Tank 1

Cwant O
v get
a

Huolding Tank 2
r

Solution #2: the Equation(l) block
Another solutions is to perform the calculation in the Equation(I) aii
block (Item library). The Equation(I) sums up and accumulates the @’m
attributes in one step, so it avoids the double messaging problem alto-
gether. The equation entered is:

[22 | @
Accumulate = Accumulate + a + b;

Display S
Result = Accumulate; ISPl =um

where accumulate is a static variable and 2 and & are the two attribute values from the item entering
the Equation(I) block. The equation adds the two attribute values to the accumulated value, then
sets the output to the accumulated value.

As an alternative, instead of both summing the attributes and accumulating, the Equation(I) could
just sum the attributes and output that value to a connected Holding Tank.

253

=)
=
e}
o}
I
-
o
3!
<
I}
=
-

254 | Tips and Techniques
Cycle timing

Solution #3: the Stop Message block

You can also use the Stop Message block (Utilities
library) to prevent the Math and Holding Tank blocks
from receiving two messages for every one item. This
block stops messages from being passed through a

value connection; it is designed to solve problems of p—= P
this nature. . gt B,
Holding Tank

The Stop Message block is connected between the

value output of Get 1 and the value input on the Math

block. This will prevent the first message from reaching the Math block but will allow the value to
be passed.

Cycle timing
The amount of time one block takes to process an item is known as the delay or processing time.
Cycle time is the time an item takes to travel through a group of blocks. If there is no blocking in a
model (that is, if all items leave their blocks exactly at the end of their delay time), the cycle time is
the sum of the delay times for the section being measured. In most situations, this would rarely
occur, and cycle time is usually more than the sum of the processing times. For instance, it is com-
mon that an item cannot leave a block because the next block is still processing its item.

To track an item’s cycle time, use either the Timing attribute feature (if the item is being tracked
from its origin) or a Set or Equation(I) block with an Information block (if the item is being
tracked from some place other than its origin).

-
b,
>

o8
L
=1
[
P
9

<t

a

These methods are discussed below. In each case,

the Information block reads the attribute and cal- Cyele time

culates the difference between when the item Current. |1.334336 Minirmurm: 1

started the cycle and when it ended. The dialog of fwerage: 92422536 Maximum: 30.455513
the Information block displays the current, aver- Create time attribute: [CycleTime 1

age, minimum, and maximum cycle time for all
items with the specified attribute. Its output con- Cycle time portion of Information dialog
nectors report the count of items, the time

between items, their cycle time, and the throughput rate.

Using the Timing attribute feature

If you are tracking the item from its origin, use the 7iming attribute feature in the Create blocks
Options tab to create a new value attribute and assign it to all items that are generated by the Cre-
ate block. Then place the Information block at the end of the section you want to observe and
select the name of the attribute as the Timing attribute in its dialog.

In the example shown at

right, a value attribute | IE i IE 055 F'

named CycleTime has ' 4 9 Eﬁ 'n—rru"gla Eﬁ_—/

been created in the Cre- v o i Dv wF v 0w eF Exit
Create tem Quaus Prirmer Information DOry

ate block, and the block’s
Options tab is set to
Timing: CycleTime. Cycle Time 1

The Information block is

placed after the Primer activity and is set to Calculate TBI and Cycle Time statistics, and its Timing
attribute: is also set to Cyc/e’Time. For this model, the Information block calculates the time

¥ Timing attribute: [CycleTime 2

Tips and Techniques | 255
Item library blocks

from when items were first created to when they finish being primed. This includes the time items
wait in the Queue.

Using a Set or Equation(l) and Information blocks

If you are tracking the item from some place other than its creation point, put a Set or Equation(I)
block at the beginning of the section you want to observe, create a new value attribute in that
block, and set the attribute to the current time. Then place an Information block at the end of the
section and enter the name of that attribute as the 77ming attribute in its dialog.

In the example at right, an
attribute named CycleTime2
has been created in the Set
block. The Simulation Vari-
able block (Value library)

F

. . b -F ow wF Exit
outputs current time and is Cremte tem Ouewe SetfycleTme oo oy Information
attached to the Set block’s e
value input connector. For . Cycle time

Simulation *ariable Current: [2.4321023) Minimum: |2.0196658

this model, the Information

blOCk calculates just the time Average: 2466135 Maximurm: 29815187 g
that the items take to go Timing attribute: 3
. . [¢]

through the priming and ()
drying processes. Cycle Time 2 %1
s

-

Item library blocks

Executive block

The Executive block controls and performs event scheduling for discrete event and discrete rate
models. An Executive block must be placed to the left of all other blocks in a discrete event or dis-
crete rate model. Using it in a model changes the timing from continuous to discrete, and simula-
tion time advances when events occur, rather than periodically.

This block can be used to:

* Manually control when the simulation stops. The default is that a simulation stops at the end
time set in the Run > Simulation Setup dialog. You can also choose to stop the simulation when
the number at the Executive’s count input reaches a specified value.

¢ Allocate item availability. To conserve memory, this number should be something close to and
less than the maximum number of items that you expect to see in the simulation. The default is
that 10,000 items are initially available and additional items are made available in batches of
10,000.

* Declare string values for string attributes. A table in the Executive’s Attributes tab is used to
enter a descriptive text label (string) for each potential attribute value for a selected string
attribute. For more information, see “Creating a string attribute” on page 106 and “Attribute

types” on page 116.

* Manage all attributes. Tables in the Attributes tab allow you to select an attribute for renaming
or deleting, and display blocks that use the selected attribute.

* Manage flow units and select global and advanced options for discrete rate models. For more
information, see “Global and advanced options in the Executive” on page 364.

256 | Tips and Techniques
Item library blocks

¢ Set information for the LP solver used in discrete rate models. For more information, see “LP
technology” on page 376.

I=" Unless you use string attributes, it is rare that you would need to make any changes in the Execu-
tive’s dialog. Most of its options are for advanced users.

Block types

As discussed on “Item connector messages” on page 262, Item library blocks pass messages
through item connectors. There are three types of item-based blocks that determine how the item
connector messages are handled:

* Residence-type blocks are able to contain or hold items for some duration of simulation time.

Some residence blocks post events and some do not.

* Passing-type blocks pass item through without holding them for any length of simulation time.
These blocks implement modeling operations that are not time-based; they usually do not post
future events.

* Decision-type blocks route the items through the model. These blocks choose a route based on

-
§ an item property, a random value, a sequence, or an input from a connector. Depending on
['3 what options are selected in the block, a decision-type block may or may not be able to hold

8 onto items.
2
A Why block types matter

Knowing these categories of blocks and how they relate to the processing of items will help you to
build better models. For example an item will not enter a passing block before it has been deter-
mined that there is space in the next downstream residence block. And when you debug models it
is useful to understand where the items can reside for any amount of time, as well as the time
required for an item to move from one residence block in the model to another. In addition, some
of the options in the blocks refer to specific block types. An example of this is the Transport block
where you can specify that the distance to the next block is from the Transport block to the next
non-passing (residence or decision) type block.

Table of block types

Not all of the blocks in the Item library fit neatly into these categories, but it is helpful to use the
categories as a framework for thinking about the messaging architecture. Following is a table of the
blocks in the Item library and their associated type.

Block Type Block Type

Activity Residence Queue Matching Residence

Batch Residence Read(I) Passing

Catch Item Passing Resource Item Residence

Convey Item Residence Resource Pool N/A

Cost By Item Passing Resource Pool Release | Passing

Cost Stats N/A Select Item In Decision

Create Residence Select Item Out Decision/Residence*
Equation(I) Passing Set Passing

Tips and Techniques
Item library blocks

Block Type Block Type
Executive N/A Shift N/A

Exit Residence Shutdown Residence
Gate Decision Throw Item Passing
Get Passing Transport Residence
History Passing Unbatch Residence
Information Passing Workstation Residence
Queue Residence Write(I) Passing
Queue Equation Residence

257

*If an item is allowed into the Select Item Out block before the decision is made (see the dialog
check box), then it is a residence-type block. If the decision is made before the item enters the
block, then it is a decision-type block.

. =)
Common connectors on discrete event blocks 3
Many blocks use abbreviations or acronyms to indicate a connector’s purpose. Some of these repre- [}
sent more than one purpose and are context sensitive. The following connector labels appear on il
many Item library blocks: §
Connector Meaning
A Delta
Count
A Average cost (Cost By Item)
AD Accumulated demand (Gate)
AS Activity status
BT Blocked time
C Capacity (Activity, Workstation)
Current cost (Cost By Item)
CI Confidence interval
CT Cycle time
D Delay (Activity)
DB ExtendSim database
DT Down time (Activity)
DV Down value (Shutdown)
F Full (Activity, Queue)
Field of a database table (Read Item, Write Item)
I Interval between items
L Length of waiting line (Queue, Activity, Workstation)

Length of line (Information - will be 0 or 1)

258 | Tips and Techniques
Event scheduling

Connector Meaning

LO Length out (Queue Matching)
MG Match group (Queue Matching)
NB Number blocked

P Priority

PE Preempt

PT Process time

Q Quantity

R Renege time (Queue)

Row (Cost By Item)
Record (Read Item, Write Item when ExtendSim database is selected)

RS Reset
- SD Shut down
§ T Total cost (Cost By Item)
L; TBF Time between failures (Shutdown)
5 TP Throughput rate (Information)
é TTR Time to repair (Shutdown)
U Utilization
uv Up value (Shutdown)
W Wait time for items leaving the queue

Event scheduling

ExtendSim moves items in a discrete event model only when an event happens. Events are con-
trolled by the Executive block and only occur when particular blocks specify that they should.
Blocks that depend on time cause events to happen at the appropriate time. For instance, an Activ-
ity block holding an item until a particular time will cause an event to be posted to the ExtendSim
internal event calendar. When the time is reached, the event occurs and the model recalculates its
data.

Blocks that do not generate events allow the blocks after them to pull items during a single event.
Thus a single event can cause an item to pass through many blocks if those blocks do not stop
them. For instance, a Set block could set the item’s attribute and pass the item to the next block in
the same event.

Discrete event and discrete rate simulations use the same method for updating the simulation
clock. Simulation models of this type are driven forward by event and the state of the model
changes only at event times.

At each event, blocks that have posted an event to the event calendar for the current time receive a
message notifying them that the time has arrived. Once all of the blocks have received their mes-
sages, the time for the next event is determined. Through this event scheduling mechanism the
simulation clock jumps from one event to the next.

Tips and Techniques | 259
Event scheduling

Event calendars

ExtendSim utilizes a two-stage event calendaring method — the Executive block maintains a list of
all events for the model and time-delay blocks maintain their own event calendars.

This two-stage event calendar is very efficient and flexible. Unlike single stage event calendars, rel-
atively little time is spent by the Executive in maintaining and searching the event list.

The Executive

The Executive block maintains a list of all event times for the model in its event calendar. At the
beginning of each simulation event, the Executive locates the next future event and sends a mes-
sage to each of the blocks in sequence that posted an event for that time. Once a block has com-
pleted processing its event, it will post its next event time to the Executive. If the block does not
have a future event time, it will post a very large value as its next event time, effectively removing it
from the list of pending events.

Blocks may have two or more entries on the Executive’s event calendar. This is because they have
different types of events that need to be processed. For example the Convey Item block has an
event that occurs when an item is able to enter the block and an event for when the item leaves the

block.

For more information about the Executive block, see page 255.

Internal event calendars
Each block that has a time delay associated with it (for example the Create, Activity, Pulse, and
Shutdown blocks in the Item library) maintains its own, independent next event time.

=)
=
e}
o}
I
-
o
3!
<
I}
=
-

Blocks such as the Activity, Convey, or Shutdown block can have multiple future events (one event
for each item in the block) ongoing simultaneously. In this case, the blocks maintain their own
internal event calendar, posting only the earliest of these events to the Executive's event calendar.

Zero time events

As the simulation progresses, there are many times when it is useful to generate a zero time event.
This is done to allow an item to complete the process of moving into a block before the block
attempts to perform additional actions on the item. For this purpose, the Executive contains a cur-
rent events list. This is a short list of the blocks in the model that need to receive a message before
the simulation clock advances.

A prime example of this is the Queue block. When an item arrives to a Queue, a zero time event is
posted so that the Queue can return control to the upstream block that sent the item. The Queue
receives another message before the clock advances so that an attempt can be made to send the
item to the next downstream block. This feature enhances the efficiency and predictability of dis-
crete event models.

Event Scheduling model

A discrete event model is helpful in
understanding how event scheduling
works. For this example: items arrive,
wait at the first queue, are processed at
the first activity, wait at the second
queue, are processed at the second
activity, and leave through an exit.

Event Scheduling model

In this model, there are three blocks that post events:

260

-
b,
>

o8
L

=1
[
P
9
<t
a

Tips and Techniques
Messaging in discrete event models

¢ The Create block posts an event for the creation of each item. The time between item arrivals is

0.6.

* The Activity 1 block posts an event for the earliest completion time of an item in the block. The
duration of this activity is 1.0.

¢ The Activity 2 block posts an event for the earliest completion time of an item in the block. The
duration of this activity is 0.5

As the simulation progresses through time, the event calendar in the Executive might look like this:

Create posts next Activity 1 posts Activity 2 posts

Time . . . Events
event time next event time next event time

0.0 0.0 Infinity Infinity Item #1 is created

0.0 0.6 1.0 Infinity Item #1 begins service at Activity 1

0.6 1.2 1.0 Infinity Ttem #2 is created

1.0 1.2 2.0 1.5 Item #1 completes service at Activity 1
Item #1 begins service at Activity 2
Item #2 begins service at Activity 1

1.2 1.8 2.0 1.5 Item #3 is created

1.5 1.8 2.0 Infinity Item #1 completes service at Activity 2

1.8 2.4 2.0 Infinity Ttem #4 is created

2.0 2.4 3.0 2.5 Item #2 completes service at Activity 1
Item #2 begins service at Activity 2
Item #3 begins service at Activity 1

2.4 3.0 3.0 2.5 Item #5 is created

Notice how the next event time is always the lowest of all of the event times for all the blocks; this
is how a discrete event simulation works. Also, the table illustrates the concept of event scheduling
but does not show all of the detail of what is happening as the items move through the blocks. For
example, the Queue schedules a zero time current event as it moves the item through, but this is
not shown in the table.

Messaging in discrete event models

As discussed in “How ExtendSim passes messages in models” on page 533, the ExtendSim archi-
tecture allows application messages to be sent from ExtendSim to a model’s blocks and block mes-
sages to be passed between blocks.

Discrete event models use the same application messages as do continuous and discrete rate mod-
els. The block messages sent between Item library blocks are discussed below.

Block messages

Discrete event blocks have a sophisticated messaging structure for communicating with each other
and with blocks in the Value and Rate libraries. These messages can be categorized as:

¢ Event

¢ Value connector

¢ Item connector
¢ Block-to-block

Tips and Techniques | 261
Messaging in discrete event models

Event messages

Event messages communicate between the Executive block and Item library blocks in a model. In a
discrete event model the simulation clock advances from one event to another. Each time the clock
advances, the Executive block sends event messages to the Item library blocks that have associated
themselves with that event. There are two types of events: future and current.

* A future event message occurs when the simulation clock reaches a time posted by a block. For
example, when an item enters an activity, the activity will post a future event to the Executive
corresponding to the item’s “finished time”. Once the simulation clock has advanced to this
future event, the Executive sends an event message to the activity, alerting it that the item has
finished processing.

* A current event message occurs when a block wants to be activated before the simulation clock
advances, but after it has completed its response to another message. For example, a queue will
post a current event message to the Executive as it is pulling in items. After all the items have
arrived to the queue, the Executive sends a current event message to the queue. This signals the
queue to try and push all the items out of the block.

The only blocks in the Value library that post future events are the ones that provide values or per-
form actions at specific times. Examples are the Clear Statistics block that resets the simulation sta-
tistics at a scheduled time and the Lookup Table block that provides values at scheduled times.
Other Value library blocks lie dormant during a discrete event simulation unless they receive an
activating message (either directly or indirectly through another block) from an Item library block.

=)
=
e}
=
[
-
o
1
<
a
=
-

Value input and output connector messages

Blocks in a discrete event model send value connector messages either because a new number is
needed by an input connector or because the value of an output connector has changed. These
messages either request updated information for the input connectors or notify connected blocks
that the output value has changed.

* When a message is sent from an input value connector, the sending block requests an updated
connector value from the receiving blocks. Messages sent out the input connectors go only to
the outputs of the directly connected blocks.

* Whenever an output connector changes, messages are sent to all of the inputs of the directly
connected blocks. In this case, the sending block alerts the receiving blocks of a connector value
change. Blocks that receive messages at their input connectors may, if appropriate, propagate
messages:

* Out other input connectors to make sure that all input values are current
* To their output connectors to notify other blocks of the change in value

Through this mechanism, a single value change may cause any number of connected blocks to
recalculate, ensuring that any system dependencies are automatically evaluated. For example, if the
value of an input connector on an equation-type block changes, messages are first sent out the
other input value connectors if they are connected (ensuring the equation will have up-to-date
inputs prior to calculation.) Then, with updated inputs, the block recalculates its equation and
posts the new results on its output value connectors. Once the new results have been posted, mes-
sages are sent out the output connectors, alerting any connected blocks that the results have

changed.

262 | Tips and Techniques
Messaging in discrete event models

Example of value connector messaging

The sample model shown below illustrates how value connector messages work. In this example,
items arrive, an attribute is set to a random number, and the items are then processed at two work
areas (Queue and Activity blocks) in series. Three Value library blocks (Random Number, Math,
and Display Value) provide a random number for the attribute value, add the two queue lengths,
and display the sum of the lengths, respectively.

fufn]:] oo
J = H ‘ nﬁ{)ﬁa‘ nﬁ{)j:@__) |n
ow o hd [- 0¥ wF Exit
Create Set Queue 1 Petivity 1 Queue 2 Activity 2
Rand

B—a a
o y -
v "
Random Mumber higth Display ‘alue

Ohdean
-

Example of value connector messages

When an item arrives to the Set block a message is sent out its value input
connector. The Random Number block responds by providing a new random
number each time it receives a message. This simple messaging example is
shown at the right.

. . . . Rand
In a discrete event or discrete rate model, the only time most Value library

blocks (such as the Random Number block) are alerted to do something is Shean
when they receive a message on one of their value connectors. For instance, do
not expect the Random Number block to continuously output a stream of
random numbers in discrete event or discrete rate models.

-
b,
>

o8
L
=1
[
P
9

<t

a

One message sent

In the more complex messaging case that

is shown to the right, when an item IE|| ® ‘
arrives at the first queue its length will nﬁ
increase by 1. Since this changes the v | ov wF b

N Quene 1 Potivity 1 Dpene 2
block’s L (length) output connector,

. e—a| |B
Queue 1 sends a message to all inputs gl |4 =
. . -

connected to L (in this case the Math histh Display “alue

block). When the Math block receives
this message, it sends a message to the L
connector at Queue 2, ensuring that
both inputs are up-to-date before any calculation is made. The values of the two length connectors
are then added together and a third message is sent to the Display Value block, which then updates
its animation and dialog.

Three messages sent

Item connector messages

Item connector messages (primarily wants, needs, and rejects) propel items through the model.
These messages use a conversation of messages to move items from one block to another. This
mechanism allows for items to be both pushed and pulled from one block to the next. How these
messages are handled depends on whether the block is a passing, residence, or decision block (see
“Cycle timing” on page 254.)

Pushing items
In the case of pushing, the upstream block first sends a wants message.

* If the downstream block is a passing block, it forwards the message to the next downstream
block through its output connector.

Tips and Techniques | 263
Messaging in discrete event models

* If the downstream block is a residence block, it responds with either a 7eeds message (if it can
accept an item) or a rejects message (if it is unable to accept an item based on its status).

* If the downstream block is a decision block, it determines the status of the decision and any

downstream blocks. It often does this by sending additional item or value messages and then
responding with a needs or rejects.

Create sends
“wants” to
downstream block

Need Item

Do | need an

Passing Block item?

Reject Item

Send wants to
next downstream
block

Flowchart for how items are pushed

=)
=
e}
=
[
-
o
1
<
a
=
-

Pulling items
To pull an item, a residence block sends the wants message upstream. This wants message is passed
through the passing and decision blocks until it reaches a residence block. If the residence block

has an item that is ready to leave, then a needs message is returned. If no item is available, then the
residence block rejects the wants message.

Following is an example of pulling an item from an upstream block to a downstream block:

Iltem “needs” to
be taken

Activity completes
processing and
sends a “wants”
upstream

Passing or
decision block

Do | have an
item?

A Y .
No item,
“reject” wants

Send wants to
next upstream
block

Flowchart for how items are pulled

This is only the first step in the process of moving an item. A number of messages follow that pro-
pel the item through the network of blocks. More details about those messages can be found in the
Developer Reference.

264 | Tips and Techniques
Messaging in discrete event models

Block-to-block messages

Block-to-block messages update the status of other blocks in the model. Sometimes a block needs
to communicate with another block in the model, but there is no direct connection between them.
For example, if a change in the shift status occurs, a Shift block needs to notify all of the blocks
that reference that shift. These messages are sent ‘through the air’ to the blocks. In most cases, you
will not even be aware that these messages are being passed back and forth. The actual operation
and context of the message depends on the blocks involved in the conversation.

-
b,
>

o8
(2]
=1
[
P
9

2

a

Discrete Rate Modeling

Introduction

Some things to know before you start
modeling discrete rate systems

“The question of doubt and uncertainty is what is necessary to begin;
for if you already know the answer, there is no reason to gather any evidence about it.”

— Richard P. Feynman

266

]
5
-4
)
Al
o
S
3]
@
o v
a

Introduction
What this chapter covers

=

Discrete rate modeling is based on rates of flow that change when events occur. In a discrete rate
system, quantities of “flow” (material, product, data, etc.) are located in one or more parts of the
model. During the simulation run, the flow moves from one location to another at a certain speed,
called the effective rate. The movement between blocks that hold or route the flow follows paths,
rules, and constraints that are set in the model.

As discussed in “Modeling methodologies” on page 43, the primary modeling approaches are con-
tinuous, discrete event, and discrete rate. In some situations (listed later in this chapter), simulat-
ing a system using discrete rate modeling is a more natural fit compared to using continuous or
discrete event modeling. Processes that are event driven, rather than time driven, do not lend
themselves to continuous simulation. Systems where there is no “item” that can be identified, or
when there are so many items that identification is meaningless, can be more naturally represented
using a rate-based approach rather than discrete event modeling. Furthermore, rate-based models
run faster than discrete event models and are applicable to thinking in terms of flows, tanks, rates,
and so forth.

Any system or process that involves a quantity of something that is stored at one place, then moves
to another place at a rate per time unit, can be simulated using discrete rate modeling.

Like continuous and discrete event modeling, rate-based modeling can help you perfect processes
and products. It is useful for planning resource capacity by determining the rate at which products
are being processed or sold. It is helpful for testing various schedules to maximize process effi-
ciency. And it can be used to analyze the effect of processes on the internal and external environ-
ment.

For information about discrete rate modeling in general, including how it differs from continuous
and discrete event modeling, see “Modeling methodologies” on page 43.

What this chapter covers

* Discrete rate application areas
* Simulating discrete rate systems
* Blocks for doing rate-based modeling
* An introduction to some important discrete rate concepts:
* LP technology
* Layout of a discrete rate model
* The Executive block
* Connectors and connections
* Flow units and unit groups
* Flow rates: constraining, effective, infinite, and potential

* How the Discrete Rate module is organized

Discrete rate application areas

Discrete rate simulation is used in two diverse areas:

* To model commodities that would normally be considered “stuff” rather than “things”, for
example powders or liquids, gases and other fluids in the following areas:

¢ Petrochemical

* Manufacturing

Introduction | 267
Simulating discrete rate systems

* Mining

* Water Treatment

¢ Pharmaceutical

* Metallurgy

* Electric power transmissions

* Any other industry that processes commodities in bulk or batches

* To model “things” that are so numerous that it would be inconvenient or overwhelming to
model them individually:

* Food and beverages (tea bags, cereals, soda cans, cheese)

* Drugs, cosmetics, and biotech (pills, bottles of lotion)

* Milling (carpet and paper)

* Data storage and manipulation (samples, messages, packets)

* Any other industry that mixes, fills, or packages products on high-volume or high-speed
lines

Thus discrete rate models simulate flows that are either homogeneous (identical goods that are the
same throughout and do not vary in essential characteristics) or heterogeneous (numerous items
that are clearly distinct, but cannot be easily sorted or separated).

=" As will be seen in the Discrete Rate Tutorial, it is common for discrete rate models to also include
portions that are discrete event processes.

Simulating discrete rate systems

Discrete rate modeling takes a very different approach compared to continuous or discrete event
modeling.

ey AISI(|

Comparison to discrete event and continuous modeling

The Value library blocks in continuous models and the Item library blocks in discrete event mod-
els act individually and independently to calculate values or move items. They may send messages
and communicate with each other, but there is no overall global connection between the blocks in
those types of models.

By comparison, Rate library blocks are dependent on each other and have an effect on one another.
Discrete rate models are divided into areas where the included blocks are not independent but
instead are part of a global system. The blocks within each area communicate through an internal
linear program (LP) that provides the global oversight for that area. Each block in an LP area con-
tributes a part of the LP equation for the area; the result of the LP calculation is the effective rate
for that part of the model. This system is optimized such that, if a particular area does not need to
recalculate, it won't.

Another major difference is how items move in a discrete event model compared to how flow
moves in a discrete rate model.

¢ In a discrete event model, items move from one block to another instantaneously. An Item
library block might hold an item for some simulated period of time, but there is no constraint
on the movement of items between blocks and that movement is instantaneous.

* By contrast, the movement of flow in a discrete rate model must take some time. In the absence
of any constraints, the rate of flow would approach infinity and the flow would move instanta-

268

]
5
-4
)
Al
o
S
3]
@
o v
a

Introduction
Simulating discrete rate systems

neously from one point in the model to another; this is never correct. For this reason, flow
movement must be constrained by rates and conditions that are built into the model, and a lack
of appropriate constraints is a modeling error that will stop the simulation run.

Discrete rate models

Discrete rate models are concerned with flows, constraints, rates, events, storage capacity, and rout-

ing.

* Flow is what is stored in and moves through a discrete rate system. Flow can be almost anything,
as long as it is not important that specific properties of each part of it be directly identified. For
instance, liquids, electronic transactions, and cereal can all flow in a model. Flow is expressed
and measured in flow units — either generic units or defined units such as packets, gallons, trans-
actions, boxes, etc.

* Flow moves through flow connections in one direction, from one block’s outflow connector to
another block’s inflow connector. It moves at a rate that is expressed as a quantity of flow per
time unit — the number of packets per second, gallons per minute, boxes per hour, and so forth.

¢ The discrete rate architecture maximizes the movement of flow. Unless limited in some manner,
flow would approach infinity and overwhelm the system. Because the discrete rate architecture
maximizes the movement of flow, every model must contain one or more constraints (typically a
Valve) to limit the rate of flow to something less than infinity. Some examples of constraints
include the presence or absence of flow in a Tank, the maximum flow rate defined by a Valve
block, and the rule chosen to distribute flow in a Diverge block.

¢ While constraints determine the maximum rate that flow can move, the effective rate is the
actual rate of movement. The effective rate for each section of the model is determined using
linear programming (LP), given the set of constraints that has been defined by the model's struc-
ture. The model’s set of effective rates define how fast flow actually moves from one section of
the model to another. As the simulation clock advances from one event to the next, the quantity
of flow which has moved is updated.

* The state of a discrete rate model changes only when an event occurs. An event might be a Tank
that becomes empty or full, a maximum rate that changes during the run, a block that changes
its output proportions, and so forth. Each time an event occurs, ExtendSim makes a calculation
to determine, at that moment, what the effective rates are in each part of the model. Any portion
of the model that can potentially be impacted by the new event has its effective rates recalcu-
lated. This takes into consideration the constraints put on the rates, the location of the flow, and
storage capacity in the system.

* Each discrete rate model is conceptually divided into unit groups, rate sections, and LP areas.
These divisions are handled automatically and internally, and are determined by the type of
blocks used in a model, how the blocks are connected, the settings in the blocks, and so forth.
Unit groups are introduced on page 271, rate sections are described on page 303, and LP areas
are discussed on page 306.

A connection between two rate-based blocks can thus be viewed as an infinitely small pipe that is
always full of something at a constant pressure — as soon as the effective rate is more than 0, the
pipe’s contents move at the highest rate possible based on all the constraints given by the system.
When the effective rate is 0, the pipe is still full but the flow instantly stops.

Introduction | 269
Blocks for building discrete rate models

0= While the ExtendSim discrete rate architecture preserves mass balance in the system, no explicit
consideration is given to pressure, energy, momentum, or temperature, since these are beyond its
scope.

Blocks for building discrete rate models

The blocks in the Rate library are optimized for creating discrete rate models. In addition, you can
build custom discrete rate blocks using the ExtendSim development environment.

Rate library

The Rate library allows you to simulate a wide range of flow systems by _
connecting blocks together and entering parameters. The complexity of cal- Bias
culating the effective flow rate and the generation of events that dictate a Cakch Flow
new rate calculation are handled within the blocks, alleviating the need to Zhange Units
do any programming in the ModL language. Convey Flow
The blocks in the Rate library can be categorized as follows: Diverge

* Some blocks hold and provide flow :::re;;hange
¢ Other blocks impact the effective rate of the flow Sensar

* The remaining blocks are for routing flow Tank

These blocks are optimized for modeling anything flowing through a sys- Throw Flaw
tem. They incorporate concepts like constraints, goals, flow prioritization, Yalve

mixing, batching, unbatching, level indicators, and so forth. The blocks
have been designed to meet most rate-based flow needs so you can quickly
and easily perform complex high-volume/high-speed modeling tasks.

Rate library blocks

As mentioned in the Tutorial module, discrete rate models can use continuous blocks from the
Value library for data management and model-specific tasks. Using Value blocks with Rate library
blocks does not change the fundamental architecture of discrete rate models; they will still be
event-based rather than use the time-based architecture of continuous models. Discrete event
blocks from the Item library can also be used in discrete rate models; they are helpful for represent-
ing entities such as tankers, airplanes, people, and so forth that interface with flow.

ey AISI(|

I5" See “Rate Library Blocks” on page 731, “Item Library Blocks” on page 723, and “Value Library
Blocks” on page 715 for a listing and brief description of the blocks in those libraries.

Creating custom discrete rate blocks

Because of the Rate library’s extensive capability, it is not likely that you would need to program
your own discrete rate blocks. If you do want to do this, it is important to note that discrete rate
blocks use different data structures and programming methods than continuous or discrete event
blocks. It is suggested that you start with an existing discrete rate block as a base, using a copy of a
Rate library block similar to the one you want to build. Read the Developer Reference before mod-
ifying discrete rate blocks so you have a better understanding of how those blocks work internally.

Terminology and architecture

Before building a discrete rate model, it is helpful to understand the terminology that will be used
and to have an overview of ExtendSim discrete rate architecture.

LP technology

To provide global oversight to calculate the effective rates in a discrete rate model, ExtendSim uses
linear programming (LP) technology. The purpose of the LP calculation is to determine the maxi-

270

Discrete Rate

Introduction
Terminology and architecture

mum effective flow rates in the system given the constraints defined by block settings and the
structure of the model. After all the rules for storage capacity and movement have been declared in
the model, ExtendSim uses the LP calculation to cause as much flow as possible to move through
the system. This calculation is handled automatically and internally. For more information, see the
advanced topic “LP technology” on page 376.

Layout of a discrete rate model

A discrete rate model can combine continuous blocks (such as those in the Value library), and dis-
crete event blocks (typically from the Item library), with discrete rate blocks from the Rate library.
If you use any discrete rate blocks in a model, the model will require the Executive block (Item
library).

Other than the Executive block, you can place the blocks in a model anywhere you want, remem-
bering that ExtendSim evaluates discrete rate blocks along the path of the connections.

Since ExtendSim will always try to maximize the flow, causing the rate of flow to approach infinity
in the absence of any constraints, it is important to place upper limits on the flow at strategic loca-
tions throughout the model. Otherwise, the flow would move instantaneously from one part of the
model to another; this would be a modeling error.

Executive block
The Executive block (Item library) does event scheduling and makes the LP calcula-
tion for rate-based models. It must be present in every discrete rate model and it must

be placed to the left of all the other blocks in the model.

In addition to the information discussed on page 93, the Executive plays a special role gyecutive
in discrete rate simulations. The block’s Discrete Rate tab allows you to set global

options for discrete rate models, manage quantity units, and select advanced options

for specific Merge and Diverge modes. Its LP Solver tab has information about the linear program
(LP) that provides global oversight for discrete rate models.

The settings in the Discrete Rate tab are explained fully on page 364.

For most purposes you will not need to change the settings in the Executive block.
Connectors and connections

The Rate library provides blocks for simulating rate-based flows. Most of the blocks in the Rate

library have flow connectors and value connectors; the Interchange block also has item connec-
tors.:

Connector type Line type
Flow =
Value B—f

Irem E—L

* In a discrete rate model, flow connectors report the effective rate of the flow at each event. The
flow moves in one direction, from one block’s flow output (“outflow”) connector to another
block’s flow input (“inflow”) connector.

Introduction
Terminology and architecture

* Value connectors provide information about the quantity of flow and a block’s capacity, as well
as information about the effects that the flow has in the model.

* The item connectors on the Interchange block provide an interface between portions of the
model that are discrete rate and portions that are discrete event.

When combining discrete rate blocks with blocks from other libraries, you will only be able to

connect compatible connectors. To represent the flow from one block to another, an outflow con-
nector has to be connected to an inflow connector. Each flow connector can have one and only one
flow connection. However, it is possible to connect an outflow connector to both an inflow and a
value input connector. In this case the value connector reads the effective rate from the connection.
A flow connection cannot be made with an item connector. For more information, see “Connector

types” on page 498.
Units and unit groups
There are four types of units in the Rate library:

o Flow units indicate what is flowin . . .
8 Select units for inflove and outflowy connections
from one flow connector to

. i *
another. For instance, gallons, bot- (Gallons o] |/ [minute |

tles, and transactions are all types of
flow units. Fach discrete rate block ~ Flow units
in a discrete rate model has a flow

unit. The flow units are identical for all the blocks within a unit group (defined below).

o Time units define how time is measured as the model run progresses. Like other ExtendSim
blocks, blocks in the Rate library can use the default global time unit or a local time unit. Hours,
minutes, and seconds are all examples of time units.

Calendar dates are not available if months or years have been selected as the specific global time
unit for a discrete rate model. Furthermore, if Calendar dates has been selected, Rate library blocks
will not be able to select Months or Years as their local time unit.

o Length units specify how long something is; they are usually entered as feet, meters, and so
forth. The Convey Flow block has a length unit.

* Block units are an internal unit of volume specific to the Tank and Interchange blocks. If you
select a block unit that differs from the flow units that come into and out of a block, you must
enter a conversion factor. The conversion factor represents the ratio of the block unit to the flow
unit.

A unit group is a collection of blocks connected together
through flow connections and sharing one flow unit. To see
the unit group, click the grey square to the right of a block’s ynit group selector to right of popup
flow units popup menu. All the blocks in that block’s unit

group will be highlighted on the model worksheet.

[Gallons J |

For more information, see “Units and unit groups” on page 297.

Rates

One of the most important aspects of a discrete rate model is the rate of flow. A rate is the ratio of
the flow units to the model’s time units. This is displayed in block dialogs as units/time, gallons/
minute, transactions/second, boxes/hour, and so forth.

271

ey AISI(|

272 | Introduction
How the Discrete Rate module is organized

Several different types of rates are considered during the model building process:

* Maximum rate — the upper limit of the rate of flow, as described on page 303.

* Effective rate — the actual rate of flow. See page 303 for more information.

* Upstream supply and downstream demand — potential rates. See page 382.

* Infinite rate — any value equal to or greater than a large specified number. See page 304 for more

information.

How the Discrete Rate module is organized

The discrete rate portion of the User Guide shows how to build models to simulate rate-based
flows moving through a system at a certain speed. It will show you how to design and document a
rate-based model, run the simulation, test different scenarios, and analyze the results. The Discrete
Rate module is divided into several chapters:

* Introduction
* Tutorial
* Chapters that discuss specific discrete rate modeling concepts and techniques:
* Flow sources, storage, and units
* Flow movement: rates and constraints
* Routing flow directly and remotely
* Delaying flow using goals, hysteresis, and the Convey Flow block
* Mixing flow and items
* Bias, animation, and other miscellaneous concepts and features

* Advanced topics such as LP technology, upstream supply and downstream demand, and messag-

Discrete Rate

ing in discrete rate models.

A It is important that you complete the chapters in the main ExtendSim Tutorial module that starts
on page 14 before you proceed to the Discrete Rate Tutorial. If you will use any item-based blocks
in your discrete rate models, it is also suggested that you complete the Discrete Event Tutorial that
starts on page 100.

Discrete Rate Modeling

Tutorial for Discrete Rate Systems

How to build a discrete rate model

274

Discrete Rate

Tutorial for Discrete Rate Systems
A basic discrete rate model

The key to discrete rate modeling is constructing a flow diagram using blocks from the Rate library
to represent flows through the system. The Rate library is designed specifically for building discrete
rate models. Blocks from other ExtendSim libraries, especially the Item, Plotter, and Value librar-
ies, are often used with the Rate library to create discrete rate models.

The example in this chapter shows how to build a discrete rate model of a yogurt process; it will
use many of the blocks from the Rate library. Starting with a simple model, then adding complex-
ity and features, this chapter will show how to:

* Build a model of a simple rate-based process

¢ Add a maximum flow rate that varies with the time of day

* Add a second supply of product that is occasionally shut down for maintenance
* Mix the two supplies according to a proportion

* Create a filling operation that puts the liquid yogurt into containers

* Add a conveyor to simulate a cooling process

* Package the containers into cartons

¢ Create a palletization area where the cartons are stored

* Add a second palletization area in parallel to the first

While this example model simulates a mixing, filling, and packaging process, the Rate library is
useful for simulating many diverse concepts and processes.

This tutorial assumes you have completed the chapters in the main Tutorial module that starts on
page 14 and that you have read the Discrete Rate Introduction that starts on page 266. It is also
suggested that you complete the Discrete Event Tutorial that starts on page 100.

A basic discrete rate model

Rate-based models are mainly concerned with how quickly the flow moves in different sections of
the model, and what the yields will be, given the constraints and configurations of the model. A
common rate-based model involves a flow of product moving from one holding area to another,
with a valve that determines how quickly the flow moves.

About the model

The Yogurt Production model represents a process that takes a supply of liquids, converts it into
plain yogurt, then mixes the yogurt with fruit. The fruited yogurt mixture is poured into individ-
ual yogurt containers and cooled and the containers are then packaged into cartons. The final step
is to place the cartons on pallets for storage.

The assumptions for the final model are:

¢ The supply of liquid to make the yogurt comes from one location and the fruit comes from
another location. Both locations have an infinite supply.

* For most of the day, the liquid is processed into yogurt at a rate of 100 gallons/minute. Since
fewer workers are available during lunch, the processing rate decreases to 60 gallons/minute for
that hour.

o After processing, the yogurt is routed to the mixing area.

* The fruit is processed and delivered to a mixing area at a rate of 8 gallons per minute when
equipment is not undergoing maintenance, and a rate of 2 gallons per minute when it is.

* Each 10 gallons of mix is composed of 1 gallon of fruit and 9 gallons of plain yogurt.

Tutorial for Discrete Rate Systems
A basic discrete rate model

* The packaging process yields 12 containers of yogurt per gallon of mix.

* The cooling cycle occurs on a 100 foot long refrigeration unit. The yogurt must be cooled for at
least 20 minutes before the containers can be packaged into cartons.

¢ Each carton holds 48 containers of yogurt

* There are two palletizing areas, one of which has a higher priority than the other.
* Pallets arrive every 2 minutes and can hold 24 cartons.

¢ Time units are in minutes and the simulation duration is 480 minutes.

¢ The blocks come from the Rate, Item, and Plotter libraries.

The final Yogurt Production model, and the models that illustrate the steps described in this chap-
ter, are located in the folder \Examples\ Tutorials\Discrete Rate. To get the maximum benefit of
this tutorial, it is recommended that you build the models yourself.

Starting a model and setting simulation parameters
The following steps are typical when starting any discrete rate model:

» Open a new model worksheet

» Give the command Run > Simulation Setup. In the Setup tab enter the simulation parameters:
» End time: 480
» Global time units: minutes

P If they aren't already open, open the Rate, Item, Plotter, and Value libraries

» Place an Executive block (Item library) on the top left corner of the model worksheet

As mentioned in the Introduction to this module, the Executive block does event scheduling and
manages discrete rate and discrete event simulations. It must be present in every discrete rate and
discrete event model.

Start small

In building any simulation model, it is easiest to start

with a simplified subset of the process and add detail

until you arrive at a completed representation of the

system that's being modeled. This allows you to test at

various stages while making the model building pro- 0
5

cess more manageable. E9C0 yogut Pragess C
Liquid Supphy fogurt

SR

The first step is to model a single line of production,
where one Tank holds product that moves to another
Tank at a constant rate. When you have finished this
portion of the tutorial, your model should look like the one shown above.

Basic yogurt production line

275

ey AISI(|

276 | Tutorial for Discrete Rate Systems
A basic discrete rate model

Creating a model of the simple yogurt production process
The following table lists the blocks that will be added to the worksheet and their use in the model.
Except for the plotter from the Plotter library, the blocks in the table are from the Rate library.

Name (Label) Block Function Purpose in Model
Tank Acts as a source, intermediate storage, Contains an unlimited amount of lig-
(Liquid Supply) ~ or sink for the stuff of the model. uids that can be processed into yogurt.
c! vlcu
Valve Acts as a constraint on flow. Controls, Regulates the flow of liquid at 100 gal-
(Yogurt Process) ~ monitors, and transfers the flow ata lons per minute. (A constraint is
specified rate. required; otherwise, the flow would
gm approach infinity!)
R® WR
Tank Acts as a source, intermediate storage, Can hold an unlimited amount of
(Yogurt) or sink for the stuff of the model. processed yogurt.
[w0
Plotter, Displays information about the flow Reports how many gallons of yogurt
Discrete Evene and about model values. per minute are processed (the effective
Pl rate) and the total amount of yogurt
é otter) produced.
E —a58

Discrete Rate

P Starting at the right of the Executive block, place the blocks on the model worksheet in a line
from left to right, based on their order in the above table.

» Label the blocks as indicated in the table.

I=" An easy method for placing blocks on a model worksheet is to access an open library using the
Navigator as discussed in “Library Window mode” on page 671.

Making connections
To indicate the flow of product, connect the blocks’ flow connectors as follows:

» Connect from the outflow connector on the first Tank (labeled Liquid Supply) to the Valve’s
inflow connector.

» Connect from the Valve’s outflow connector to the second Tank (labeled Yogurt).
To gather information about the amount of yogurt processed:
» Connect from the Yogurt tank’s inflow connector to the top input on the plotter.

» Connect from the Yogurt tank’s LE (level of contents) value output connector to the plotter’s
second input.

When you are finished, the model should look like the one shown on page 275.

Tutorial for Discrete Rate Systems
A basic discrete rate model

Entering dialog parameters and settings
To reflect the basic assumptions for this model, the flow units and the constraints need to be

defined.

& Each model must contain one or more blocks (typically a Valve with a non-blank maximum rate)

to restrict flow. The ExtendSim discrete rate architecture attempts to move flow through the model
as fast as possible. In the absence of any constraints, the flow rate would theoretically approach
infinity and flow would move from one part of a model to another instantaneously. This condition
would cause ExtendSim to stop the simulation and display an error message.

» For the Liquid Supply tank:

» In its Tank tab, check the o0 (infi-
nite) checkbox for the field labeled Initial contents: gallons
Initial contents. This places the

word “infinite” in the initial con- Capacity: infinite_==| gallans

tents field, as seen at right. N o
d’ & Initial contents set to “infinite”

» In the block’s Options tab, select
New Unit in the popup menu for Flow group unit: and enter gallons as the flow unit.

P In the dialog of the Valve block, enter Maximum rate: 100 gallons/minute.

» There are no entries to make for the Yogurt tank. Its default settings indicate that it has no ini-
tial contents and its maximum capacity is infinite, which is what you want.

In this model, the plotter will display the Valve’s maximum rate on its top input and the number of
gallons of yogurt processed on the second input. Since the scaling for these numbers is so different,
the plotter’s graph needs to be adjusted. To do this:

» In the plotter dialog’s toolbar, open the Trace Properties dialog,.
» Choose that the second input (Values) is plotted against the Y2 axis.
» Change the style of the line for that second input to interpolated.

(For information on how to change the properties of lines, see “Trace properties tool” on

page 590.)

» Save the model and run the simulation.

277

ey AISI(|

278 | Tutorial for Discrete Rate Systems
A basic discrete rate model

Verifying results
This is a good opportunity to verify the
results. There is never any change to the

ol | [8] Plotter, Discrete Event

rate of flow, so there is no need for the e v v Z "
model to recalculate the effective rate. This 1o _—-—-—-—-—%mm
means that the simulation is finished in two 108} 37500
events: the start event and the end event. 25000
The plotter indicates that the effective rate P :/ 12500
is 100 and a total of 48,000 gallons of ”n- — — — e
product (shown on the Y2 axis) have been " S,
produced in the process. This makes sense |[\]

because the assumptions were that 100 gal- point b, Cfime — {[Jsle — Cime sCRaies 51—
o o

lons of yogurt would be produced per 8 a0 o

. 1 480 100 450 42000
minute and the simulation time is 480 2 480 48000
minutes. < | aw

Add a dynamic constraint Plot of simulation

While the preceding model used a constant

maximum rate, a more common situation is for a Valve’'s maximum rate to change with time. The
model assumptions are that the liquid is processed into yogurt at a rate of 100 gallons per minute
for most of the day, but that during the lunch period the rate is reduced to 60 gallons per minute.
To show this in the model:

» Add a Lookup Table block (Value library) to the model.

» Connect the Lookup Table block’s output to the R (maximum rate) input connector on the
Valve.

» In the Lookup Table block’s dialog, select Lookup the: time.

Discrete Rate

» In the block’s Options tab, enter the column labels Minute;Gallons/Minute.

finute GallonsMinute &
o 100

240 G0

» In the block’s Table tab, enter the values shown at the
right for the Minute and Gallons/Minute columns.
This will cause the Valve’s maximum rate to be 100
gallons/minute for the entire model except for the 2 323 :gg -
period from time 240 to time 300, when it will be 60 Link 5

gallons/minute.
» Label the block Variable Constraint Rate.

The model should now look like the screenshot at
the right. When the simulation is run, the plot

b —

Values for Lookup Table’s dialog

shows that the Valve’s maximum rate (from the E%
Lookup Table block) is 100 gallons/minute for Plcter
most of the day, but changes to 60 gallons/ 8 B,

minute for 60 minutes, as expected. It also shows i Sugal Yogurt Process % o

that the yogurt output is reduced from the

48,000 gallons achieved in the previous model. g

This occurs because the Valve’s maximum rate Viriabls Constraint Fite

reduced from the constant 100 gallons/minute in

the previous model. Adding a variable constraint

Tutorial for Discrete Rate Systems
A basic discrete rate model

I The Lookup Table block will actively output values at each specified time, based on entries in the

table in its dialog, and does not need to be prompted for output. This is discussed in “Polling con-
g promp p g

straints” on page 309.

Add a fruit processing line

So far you have created a yogurt processing line. The specification for the final model indicates
that fruit is mixed with the yogurt, requiring a second processing line:

» Delete the connection from the Valve to the Yogurt tank and move the tank to the right.

» Below the Lookup Table block of the yogurt processing line, add another Tank block to the
model.

» In the block’s Tank tab, check the checkbox in the field labeled Initial contents, causing

the initial contents to be infinite.
» In the block’s Options tab, select Flow group unit: gallons.
» Label the block Fruit Supply.
» Add a Valve to the right of the Fruit Supply tank.
» Connect from the Fruit Supply tank’s outflow connector to the Valve’s inflow connector.
» In the Valve tab, enter Maximum rate: 8 gallons/minute.
» Label the block Fruit Process.

Notice that gallons have automatically been selected as the flow units for the Valve. This is
because it is connected to the Tank. (If you had not first connected the Tank to the Valve, you
could select gallons as the units in the Options tab.)

» To merge the two flows, add a
Merge block to the model and place
it to the right and between the

TEA00

[
Yogurt Process and the Fruit Process i Sugal Yogut Proceds
— o m
blocks. 555
Time:

» Connect from the outflow con-
nector of the Yogurt Process
Valve to the top inflow connec-
tor on the Merge.

“ariable Constraint Rate

Re %R
Fruit Process

» Connect from the outflow con- 7 Reo
nector of the Fruit Process Pt Supely
Valve to the second inflow con- Fruit process line added
nector on the Merge.

» In the Merge tab of the block’s dialog, select Converge mode: proportional from the
popup menu.

» In the Proportion column of the Merge block’s dialog table, enter 9 for the Yogurt Process
and 1 for the Fruit Process.

» Label the Merge block Mixing.
» Connect the Merge block’s outflow connector to the Yogurt tank’s inflow connector.

When finished, the model should look similar to the one above.

279

ey AISI(|

280

Discrete Rate

Tutorial for Discrete Rate Systems
A basic discrete rate model

When you run the model, the mixing process should output 80 gallons per minute and the entire
process will yield about 37,600 gallons of yogurt. This is an interesting model to run with anima-
tion on. (Be sure to have animation set to the slowest speed.) When you do this, the rate displayed
at the top of the Yogurt Process icon is sometimes displayed as the fraction 72/100. This is the
ratio of the effective rate to the Valve’s maximum rate. In this model, there is sometimes not
enough fruit and the entire process becomes constrained, so the effective rate can be less than the
specified maximum rate.

In validating the model, notice that the effective rate for the yogurt part of the process can never be
higher than 72. Since the maximum output of the fruit process is 8 gallons per minute, and the
mixing process requires a ratio of 9 portions of plain yogurt to 1 portion of fruit, the maximum
amount of plain yogurt that can be required is 72 (8*9) gallons per minute.

05" A complete description of the animation information shown on the icons for Rate library blocks is

given on “Animation” on page 370.

Add maintenance

A common situation is for a process to have a slow production rate when some of the equipment is
down for maintenance and a faster rate the rest of the time.

The fruit process has a slow rate of 2 gallons per minute during equipment maintenance and a
normal rate of 8 gallons per minute. Maintenance occurs approximately every 60 minutes with a
random duration of a minimum of 5 minutes, a maximum of 20 minutes, and a mostly likely time
of 15 minutes. To reflect this:

» Add a Shutdown block (Item library) to the model. There are two 8
ways to do this:

» Click the Add Shutdown button in the Valve’s dialog. This auto- Pt ol
matically connects a Shutdown block to the Valve’s R (maximum
rate) input connector and opens the Shutdown’s dialog.

[eR
Fruit Process

Q

» Place the Shutdown block on the worksheet from the Rate library. smenance shudoun

Ify(.)u do this, connect the output of the Shutfiown block to the ¢}, \:qown block added
Fruit Process Valve’s R (maximum rate) value input connector.

» In the Shutdown block’s dialog:
» For the shutdown configuration, enter Down value: 2 and Up Value: 8
» For the time between failures (TBF) choose an Exponential distribution with a Mean: 60

» For the time to repair (TTR) select a Triangular distribution with a Minimum: 5, Maxi-
mum: 20, and Most likely: 15

» Label the block Maintenance Shutdown.

0= Like the Lookup Table block, the Shutdown block outputs its information without being

prompted. Thus the Valve does not need to ask it for data and it should not be set to poll con-
straints. Polling constraints is discussed more on page 309.

When you run the model with animation on, notice that the Valve is partially shut down for main-
tenance a random amount of time and that its maximum rate is reduced to 2 gallons/minute dur-
ing maintenance. Also notice that fewer gallons of yogurt are produced during the process than

before the Shutdown block was added.

Tutorial for Discrete Rate Systems
A basic discrete rate model

Change the flow unit to containers for the filling process

It would be difficult to ship the processed yogurt without putting it into containers. The model
assumptions state that the yogurt mix is packaged into containers at a ratio of 12 containers per
gallon of liquid. To represent this:

» Delete the connection
between the Merge block and

the Yogurt tank. Beo Vgt Froods
Liquid Supply — =
» Add a Change Units block to gallons Gi—i=s
. Time =>containers Plotter
the model and connect it g
between the Merge and the Variable Censtraint Rate 10 Ednge nit 1

Yogurt tank. Label the block
Change Unit 1.

hdxing ogurt

The model should now look like R R S
the screenshot to the right. Frt Supply Frft Pocess
©
» In the dialog of the Change v
Units blOCk: hgintenance Shutdown

» Do not change the first ~ Changing the flow unit

setting (Change units
[from: gallons)

» In the popup for the second unit setting (to: gallons), select New Unit and name the new
flow unit containers.

» So that each gallon will result in 12 containers, enter Conversion factor: 12 containers/
gallons. (Be sure to select containers/gallons from the popup menu.)

P If you check the box for Show unit change on icon in the Change Units dialog, the area
above the icon will display the text gallons=>containers.

After the settings have been entered, the dialog of the Change Units block should look like the fol-

lowing:

Change the flow unit, resulting in a new unit group

Change units fram: |[gallons i
! £ : | I |minute™ i
to; [containers |

Caonversion factar: |12 [containers Fgallans |

W Show flowe unit change onicon

Dialog of Change Units block with user entries

When the model is run, the number of yogurt containers produced each minute, and thus the
total number of containers processed, will vary depending on the Valve’s maximum rate and the
flow restrictions caused when there is not enough fruit for the mix. Although it may vary from the
example model, the plotter should indicate that approximately 370,000 containers of yogurt were
produced. This makes sense because, as the Results tab in the Merge block shows, the process pro-
duced about 30,000 gallons of yogurt.

At the end of the simulation run, holding the cursor over each outflow connector will show the
final rate at that connector. For example, when the Yogurt Process has an effective rate of 72 gal-
lons per minute, the Fruit Process will have a rate of 8 gallons per minute, the Mixing block will

281

ey AISI(|

282 | Tutorial for Discrete Rate Systems
A basic discrete rate model

indicate that 80 gallons of mix were produced that minute, and the Change Units block’s output
will show that 960 (80 * 12) containers of yogurt were packaged.

I=" This model assumes that the process of pouring yogurt into containers occurs at the same rate as
the process of mixing the plain yogurt with the fruit. In this case, the packaging process does not
slow down the rest of the process. To model a packaging process that would have an impact on the
rest of the process, connect a Valve between the Merge and Change Units blocks and enter the
appropriate packaging rate.

Cool the mixture

The yogurt process includes a 20 minute cooling phase on a 100-foot long refrigeration unit
before the yogurt containers can be packaged into cartons. The Convey Flow block is designed to
represent a delay in the movement of flow.

» Delete the flow connection from the Change Units block to the Yogurt tank.

» Add a Convey Flow block to the model and connect it between the Change Units block and the
Yogurt tank.

Notice that if you make these connections first, the correct flow unit (containers) is automati-
cally selected in the new block’s Options tab.

» In the Options tab of the Convey Flow block:

» Select New Unit from the Length unit: length unit popup menu. In the dialog that
appears, enter feet.

» In the Convey tab of the Convey Flow block:
» Notice that the block is already set to Accumulating-maximum density by default.

» From the popup menu to the right of that popup, select the behavior Delay determines
travel time.

Discrete Rate

» Enter Delay: 20 minute*.
» Enter Maximum density: 500 containers/feet.
» Label the block Cooling Cycle.

The model should now look like the following:

e

wCo ogurt Procegs
Liquid Supphy

gallons

=reontainers
kg .

“ariable Constraint Rate

vR
wCo it Process
Fn.ut Supphy

TeFw™
haintenance Shutdown

[=[]x] =] [- -
M faaﬂnge Unit 1 o i wCo

tofixing Coaling Ciycle

Cooling phase represented by Convey Flow block

Tutorial for Discrete Rate Systems
A basic discrete rate model

When you run this model, notice that there is no product flowing into the Yogurt tank for the first
20 minutes. This happens because it takes that long for the first containers to leave the refrigera-
tion unit represented by the Convey Flow block. This causes szarving in the downstream portion
of the model that follows the Convey Flow block. Because it takes longer to get the finished prod-
uct, fewer containers get produced than in the previous model.

Although it doesn’t happen in this model, if the Convey Flow block were full, it could slow down
the upstream processes that feed into it. This is known as blocking.

While the use of the Convey Flow block is appropriate for this model, be careful about placing too
many Convey Flow blocks in a model as they are computationally intensive. The Convey Flow
block should only be used if the system requires precise tracking of flow movement. A Valve and a
Tank can often be used instead, with less impact on simulation speed. For more information, see
“When to avoid using the Convey Flow block” on page 346.

Package the containers

The next step of the process involves packaging the yogurt containers into cartons. This is repre-
sented using another Change Units block.

» Delete the flow connection between the Cooling Cycle and the Yogurt tank.
» Add a second Change Units block to the model;
» Connect it between the block labeled Cooling Cycle and the block labeled Yogurt.

» In the block’s Change the flow unit, resulting in a new unit group

dialog, do
4 Change units from: [containers d | —
not change ;
the first set- to: [cartons |
ting(C/Jﬂnge Conversion factar: |48 [containers f cartons 2]
umt;ﬁom: [v Show flow unit change onicon
containers).

» In the popup Dialog of second Change Units block
for the sec-
ond unit setting (to: containers), select New Unit and name the new flow unit cartons.

» So that each carton will hold 48 containers, enter Conversion factor: 48 containers/car-
tons.

P If you check the box for Show unit change on icon, the area above the icon will display
the text containers=>cartons.

» Label the new block Change Unit 2.

283

ey AISI(|

284 | Tutorial for Discrete Rate Systems
A basic discrete rate model

If you clone the plot pane onto the model worksheet, your model should be similar to the follow-
ing:

o —amm
[| —o=o
Lci: " S'CID ogurt Process -
uid Su)
a PR Plotter
Time gallons containers
15y — =reontainers =reartons
“ariable Constraint Rate
[=]li] [u] [- -]
v faaﬂnge Unit 1 o vl 'Cofaaﬂnge Unit 2
hiixing Cooling Cycle c wCo
_foqurt
[EILERIAL2]2]
alug) v Y2 Cartons
=) eR 0 Flotter, Discrete Evert 000
¢ wco it Process
Fruit Supply
o 240 420
. TEFW Minutes
haintenance Shutdown Q — Rate = 2 Cartons = Green = Black
1

Packaging containers into cartons

Although the amounts will vary depending on the yogurt process’s constraint rate and the potential
unavailability of fruit due to maintenance, when you run the model it should result in approxi-
mately 8,000 cartons. (Each carton holds 48 containers and the process should have produced
about 390,000 containers of yogurt.)

Add a palletizing area

The model’s assumptions state that there is a palletizing area where cartons are stored for shipment.
One empty pallet arrives every 2 minutes and each pallet can hold 24 cartons. If there is no empty
pallet to replace it, the flow of yogurt stops when a full pallet leaves. As discussed below, this is eas-
ily represented using the Rate library’s Interchange block and discrete event blocks from the Item
library.

Discrete Rate

Interchange block

The Interchange block represents a tank, or holding area, where the flow of discrete rate blocks can
interact with items from discrete event blocks. The block can only get one item at a time. In its
default behavior (7ank only exists while item is in it), the block behaves similar to an on/off
switch. When it has an item, it has a capacity for flow; in the absence of an item, the block has no
flow capacity. (In the block’s alternate behavior, the tank has capacity and items that come to it can
contribute flow to the block and/or remove flow from it.)

In this model, empty item/pallets are generated randomly. The arrival of an item/pallet causes the
Interchange block to have flow capacity; the maximum capacity of 24 cartons is entered in the
block’s dialog. Once the maximum capacity is reached, the full item/pallet leaves the block. The
Interchange block then has no capacity until another empty pallet arrives.

I The Interchange block is discussed more fully in “Using the Interchange block to mix items with
flow” on page 352.

Adding a palletizing area to the model
» Delete the Yogurt tank.

A basic discrete rate model

Tutorial for Discrete Rate Systems | 285

» Place the following blocks in the model and connect

o240
their item connectors as shown at right: J |_—/E=E|‘_EF=E| B85y F‘
ow Q

- ICw wCo Exit 1
Queue 1 Interchange 1

» Create (Item library) Create 1
» Queue (Item library) First palletizing area
» Interchange (Rate library)
» Exit (Item library)
» Label the 4 new blocks as indicated in the screen shot above.
» Connect from the outflow connector of Change Unit 2 to the plotter’s top input connector.

» Connect from the outflow connector of Change Unit 2 to the inflow connector on the Inter-

change 1 block.

P In its dialog, set the behavior of the Create block to Create items randomly, choose the Con-
stant distribution, and enter constant: 2. This causes one item/pallet to be available every 2
minutes.

» There are no changes required for the Queue block. It is already set to hold items in a first in,
first out manner.

» In the Item/Flow tab of the Interchange block, define item behavior (Item is Tank) by making
the following entries:

» On arrival, Item/Tank capacity is: a constant 24 cartons. (Be sure to enter the number

24.)
P Release item: when tank contents > Level (load process).
» Define Level: full.
With these settings, the Interchange block has a capacity of 24 cartons each time it gets a new
item, which represents an empty pallet. Once 24 cartons of yogurt have arrived through its flow
connector, the block’s Level will be full and the item (now representing a full pallet with 24 car-

tons) will be released. The Interchange block will then try to access another empty pallet; the
yogurt process will stop until an empty pallet is available.

» There are no dialog changes required for the Exit block.

ey AISI(|

286 | Tutorial for Discrete Rate Systems
A basic discrete rate model

When you are finished with this section, the model should look like:

o Plotter

Rw -
c oo ‘Yogurt Proceds
Liquid Supphy -
Time gallons sontainers J |_—/E=E|‘_E‘F=E| H_—/ F
{3 gy oonEnErS =seartons| | d o - o8 B Bt 1
\riable Constraint Rate ‘._=_9! Create 1 Queue 1 Interchangs 1

[=[]x] [u] [- -
v faaﬂnge urit1 D vl 'Cofaaﬂnge Unit 2
tofixing Coaling Ciycle

s %
¢ wco it Process
Fruit Supply

TeFw™
haintenance Shutdown

First palletizing area

When you run this model, you should see an almost solid block of color on the plotter’s plot pane.
This is caused by the plot line being repeatedly redrawn as the effective rate goes from a high of
about 52 cartons per minute to 0 and back again. To see this, stretch the plot wider until you can
see some white areas between the colored areas. These white areas occur when the effective rate is
0. In this model, pallets aren’t arriving quickly enough and the process is slowed from what it could
be and frequently stops. One way to solve this would be to have two palletizing areas.

Add a second palletizing area

The easiest way to add a second palletizing area is to duplicate the blocks in the first palletizing
area to another part of the model.

Discrete Rate

P Select the 4 blocks in the palletizing area and give the Edit > Duplicate command. This creates
a second set of blocks.

» Move the 4 blocks that comprise the second palletizing area below the first area.
P Label the new blocks Create 2, Queue 2, Interchange 2, and Exit 2.
» Add a Diverge block to the right of the Change Unit 2 block:

» Connect from the Change Unit 2 block to the Diverge.

» Connect from the Diverge block’s top outflow connector to the inflow connector on the
Interchange 1 block

» Connect from the Diverge’s second outflow connector to the inflow connector on the

Interchange 2 block.

» In the dialog of the Diverge, notice that by default the block is set to Diverge mode: prior-
ity of outputs and that a priority of / is assigned to the top Interchange block and a priority
of 2 to the bottom Interchange block. Do not change these settings, since this is what you
want.

Tutorial for Discrete Rate Systems | 287

Further exploration

The model should now look like:

gallons sontainerg
=>sontainers =>eartons|

] o_ o ! =1
aE0ge Unit 1 O w50 POt o i 2 nse
Cooling Cycle Diverge __/E%E EI%@:?
0w o

- Icw w0 Exit 2
Create 3 Oueue 2 Interchange 2

-

[wCio
Frutt Supply

S

TRFw™
hgirtenance Shutdown

Fruit Process

Two palletizing areas

In this model, the top palletizing area has first priority for the cartons and the lower palletizing area
only receives product if the top area is busy. Unlike the previous model, the plotter indicates that
the effective rate of the process is hardly ever 0 cartons per minute.

I The final model, named Yogurt Production, and the models for all the intermediate steps, are
located in the folder Examples\Tutorial\Discrete Rate.

Further exploration
Additional ways to enhance and explore this model include:

Verify that the model is working as you expected by running it with animation on or by adding
a Pause Sim block (Urtilities library) to the model and pausing each step. (Animating a discrete
rate model is described in “Animation” on page 370. The Pause Sim block is discussed in
“Blocks that control or monitor simulation runs” on page 525.) The final Yogurt Production
model located at Examples\Tutorials\Discrete Rate is animated and includes a Pause Sim block
so you can step through each event.

A Shift block could be added to the Convey Flow block, stopping the process at the end of the
day and causing the Convey Flow block to be emptied of product.

The palletization areas could include the time it takes to unload a full pallet and load an empty

pallet. Adding this type of changeover is shown in the “Yogurt Changeover model” on page 355.

The filling processes could be enhanced by adding delays for the filling, cleaning the equipment

and other maintenance.

ey AISI(|

288

Discrete Rate

Tutorial for Discrete Rate Systems
Further exploration

Discrete Rate Modeling

Sources, Storage, and Units

Providing and storing flow and the use of flow units

290

Discrete Rate

Sources, Storage, and Units
Blocks of interest

=

As discussed in “Simulating discrete rate systems” on page 267, quantities of flow are located in
one or more parts of a discrete rate model. During the simulation run, the flow moves from one
location to another at the effective rate. In order for the flow to move, one or more of the model’s
blocks need to have the capacity to hold flow as time advances.

The Convey Flow, Interchange, and Tank blocks are residence type blocks — they have capacity
and can hold defined amounts of flow. They can also be “pre-loaded” with an initial amount, serv-
ing as a source of flow for the system.

Flow units describe what is flowing from one Rate library block to another. Blocks that are con-

nected together through flow connections and share the same flow unit are part of the same unit
group. The Change Units block is used to create a new unit group. This causes the blocks down-
stream of the Change Units block to be in a unit group different from its upstream blocks.

This chapter discusses providing and storing flow and the use of flow units in a discrete rate model.
It will cover:

* Defining a block’s flow capacity

* Setting an initial contents of flow

* Indicators that provide information about a block’s level of flow

* Defining and selecting time, flow, and length units

* Using the Change Units blocks to create a different flow unit group

This chapter focuses on setting capacity and initial contents for the Convey Flow, Interchange, and
Tank blocks. Other aspects of those blocks are covered in different chapters:

* The Convey Flow block is most often used for delaying flow and will be discussed more fully on
page page 342.
* The Interchange block is mainly used for interacting with items from discrete event portions of

the model and will be discussed more completely starting on page 352.

* Setting maximum inflow and outflow rates for the Tank and Interchange blocks is described in

page 310.

The Tank Flow Unit model is located in the folder \Examples\Discrete Rate\Sources and Storage.
The Yogurt Production model is located at \Examples\ Tutorials\Discrete Rate.

Blocks of interest

The following blocks from the Rate library will be the main focus of this chapter.
Residence blocks for holding flow

Convey Flow

Delays the movement of flow from one point to another. Can accumulate flow to a max-
imum density, accumulate flow to fill empty sections, or act as a non-accumulating con-
veyor.

Interchange

=] | | B Represents a Tank that can interact with discrete event items. The block has two behav-

ICw wCOo

iors: the Tank only exists while an item is in it; the Tank is separate from the item.

Sources, Storage, and Units | 291
Capacity

Tank
C!Qtr Acts as a source, intermediate storage, or final storage (sink). The block has a capacity and

can have an initial quantity of flow for the simulation.
et Feo

Changing the flow unit group

Change Units
rdio Changes the flow unit from one unit to another, resulting in a new flow unit group. The
o’ dialog has a field for entering the conversion factor and a popup menu for indicating the
direction of the change.

Capacity
The Tank, Interchange, and Convey Flow blocks are considered residence blocks. This means that

they have capacity and can hold defined amounts of flow as time advances.

A residence block's maximum capacity can be a specific number or, in the case of the Tank or
Interchange blocks, it can be set to infinite.

Full and not-full

When a residence block’s capacity is finite, its status can alternate between the full and not-full

states. This change of state has an impact on the model's set of effective rates:

* Ifa residence block with finite capacity is not full, there is room for the flow level to rise. Conse-
quently, the effective inflow rate can be greater than the effective outflow rate.

* Ifa residence block with finite capacity is full, the flow level is not permitted to rise; the effective
inflow rate will be less than or equal to the effective outflow rate.

Any time a residence block with a finite capacity changes state between full and not-full,
ExtendSim will calculate a new set of effective rates.

ey AISI(|

0" A residence block with infinite capacity can never be full during the simulation run. In this situa-
tion, it is similar to a residence block with finite capacity that is not full; its effective inflow rate can
be greater than its effective outflow rate.

Tank block’s capacity

A Tank can be a source of flow, an intermedi-

ate storage for flow, or a final storage for flow ~ Capacity: gallans

(sink). A Tank’s capacity can be infinite, a

R Default setting for Tank’s capacity
finite but non-zero number, or zero.

* By default, the Tank has an infinite capacity to hold flow, as indicated by the Maximum capac-
iry: inﬁnite 00 setting in its dialog. In this state it will never be full.

I=" A blank is the same as checking the infinite setting.

* A TanK’s maximum capacity can be changed in the block’s dialog by entering an amount in the
Maximum capacity field (which unselects the 00 checkbox). It can also be changed dynamically
through the block’s C' (capacity) value input connector. If the C connector is used, it overrides
any entries made in the dialog. With a non-zero finite capacity, the Tank can be in either the full
or not-full state at any point in time.

292

Discrete Rate

Sources, Storage, and Units
Capacity

e Ifa Tank's capacity is set to zero, flow can still move through the block but the flow will not stay
in the block for any length of time. In this case, the Tank is neither full nor not-full, and the
effective inflow rate will equal the effective outflow rate.

I If a Tank has no outflow connection, by definition it is being used as a sink. If at some point the

sink reaches the full state, its effective inflow rate will be set to zero for the remainder of the simu-
lation run.

Interchange block’s capacity

The Interchange block represents a tank, or holding area, where flow can interact with items gen-
erated by discrete event blocks. Flow can enter the Interchange block not only through its inflow
connector but also through the arrival of an item. Conversely, flow can exit the block through its
outflow connector or through the exiting of an item.

The Interchange block has two options that affect how the blocK’s initial contents and maximum
capacity are set:

o Tank only exists while item is in it. This behavior is analogous to a truck (an item) that arrives
at a loading dock (a tank) where the loading or unloading of product can take place at a certain
rate. The truck arrives with a capacity and perhaps some quantity of product already in it. As
long as the truck is in the dock, loading or unloading is possible and occurs at the specified rate.
When the truck leaves, the dock’s ability to load and unload product disappears (the inflow and
outflow effective rates are set to zero).

o Tank is separate from item. This behavior is similar to a truck (an item) that brings product to
a holding area (a tank) that may nor may not contain product. The truck empties its load and
perhaps takes some of the holding area’s product with it when it leaves. This process occurs
instantaneously. Whether the truck is at the holding area or not, both the truck and the holding
area can have product. The holding area can receive or deliver flow to the system even if there is
no truck (the inflow and outflow effective rates can be greater than zero).

Setting the maximum capacity with these options is described below.

Tank only exists while item is in it

This is the default behavior. With this setting the Interchange block has a capacity to hold flow
only while an item resides in the block. With an item present, the block acts like a tank and there-
fore has a definable capacity, either finite or infinite. If the capacity is finite, as along as an item is
present in the block, the block can alternate between the full and not-full states.

The blocK’s capacity is fixed at the moment the item enters the block; it remains fixed until the
item leaves. When the item leaves, the Interchange's capacity automatically goes back to zero.
Therefore, at the time of item departure any flow currently in the block is loaded onto the item.
The timing of when the item leaves the Interchange depends on logic set in the Interchange block.
For more information, see “Item release conditions” on page 353.

To define the capacity for an

[i i : a constant
Interchange block when it is set Capacity (when itern is present) | - - i
to this behavior, choose one of units

the options from the dialog’s

A Maximum capacity; default behavior
popup menu, shown at right.

* A constant. Enter a number in the field; the default is infinite.

o Value at IC. The value at this input connector will control the block’s capacity.

Sources, Storage, and Units
Setting an initial contents

o Value of attribute. Select an attribute in the dialog. When an item arrives, the tank’s capacity
will equal the item’s attribute value.

In the Yogurt Production model of the Discrete Rate Tutorial, the Interchange blocks are set to
Iank only exists when item is in it and their capacity is set to the constant value 24.

Tank is separate from item

With this option, the Interchange block’s behavior is similar to a Tank block — it receives flow from
its inflow connector, it holds flow, and it releases flow from its outflow connector. The difference is
that an item’s arrival can contribute flow to the existing contents and an item’s departure can
remove flow from the existing contents. The item’s impact on the block’s contents is entered in the
Define Item behavior section of the block’s Item/Flow tab.

To set the capacity for the block when this . —— :
behavior has been selected, enter a number in Capacity: unite

the Mﬂxlmum fﬂpﬂ(flty field or leave it set to Maximum capacity; alternate behavior
the default value of infinite.

Convey Flow block’s capacity
The maximum capacity for a Convey Flow block is a combination of two factors:

1) The block’s length and maximum density deter- : — :
mine the maximized capacity. By defaul, Capacity. unite
ExtendSim calculates a maximized capacity for 1onn
the Convey Flow block by multiplying its length
by its maximum density. This is indicated in the =~ Maximized capacity
Capacity field by the “maximized” capacity
checkbox shown above. In this case, the block’s maximum capacity will equal its maximized
capacity.

2) A number in the Capacity field in the Options tab can reduce the capacity below the maxi-
mized amount. In some cases, it may be necessary to define a capacity smaller than the maxi-
mized capacity determined by the length*density calculation. For instance, the Convey Flow
block could have structural properties limiting how much weight it can safely support. To do
this, uncheck the checkbox in the Capacity field of the Options tab and enter the desired num-
ber. In this case, the block’s maximum capacity will be less than or equal to its maximized
capacity.

I=" A Convey Flow block’s maximum capacity can never exceed its maximized capacity, no matter
what number is entered in the Capacity field.

For example, if the Convey Flow block’s length is 100 and maximum density is 10, the block’s

maximized capacity will be 1,000. To reduce the capacity to something less than 1,000, enter a

number (for instance 300), in the Capacity field. The block will then only be able to contain 300
units of flow, even though its calculated maximized capacity was 1,000.

Setting an initial contents

All three residence blocks (Convey Flow, Interchange, and Tank) can be preloaded with starting
amounts of flow. A residence blocK’s initial contents can be a specific number or, in the case of the
Tank and Interchange blocks, it can be set to infinite.

293

ey AISI(|

294

Discrete Rate

Sources, Storage, and Units
Setting an initial contents

Once an initial contents is set, it cannot change during the simulation. The exception is the Inter-
change block when it is set to Tank only exists while item is in it. In this case, each arriving item
can establish the initial contents.

I [f the initial contents of a Tank or Interchange block is set to infinite, its capacity will automatically

be set to infinite.

Empty and not-empty

If a Tank or Interchange blocK’s initial contents is finite, its status can alternate between the empty

and not-empty states. This change of state has an impact on the effective rate calculations:

o If the Tank or Interchange block is not empty, its flow level can fall. Consequently, the effective
outflow rate could be higher than the effective inflow rate.

o If the block is empty, it cannot provide more flow than what it concurrently receives. In this
case, the effective outflow rate has to be less than or equal to the effective inflow rate.

When a Tank or Interchange block changes state between empty and not empty, ExtendSim will
calculate a new set of effective rates.

I=" The Convey Flow block has a different mechanism for calculating a change of state between empty

and not-empty. For more information, see the “Delaying Flow” chapter.

Tank initialization

As seen to the right, a Tank’s initial contents — .
can be: Initial contents: Lnits

¢ 0 (the default) Default settings for initial contents

¢ An entered number
¢ Infinite

To cause the Tank to have an infinite amount of initial contents, check the 00 (infinite) checkbox
in the Initial contents field. For example, in the Yogurt Production model from the Discrete Rate
Tutorial, the Tank blocks that represented Liquid Supply and Fruit Supply had infinite initial con-
tents, while the Tank that stored the Yogurt product had no initial contents.

If a Tank has no inflow connections, by definition it is being used as a source. If at some point the
source reaches the empty state, the effective outflow rate will remain at zero for the remainder of
the simulation run.

Interchange initialization
As discussed in “Interchange block’s capacity” on page 292, the Interchange block has two options
for behavior that affect how its initial contents are set. These are discussed below.

Tank only exists while item is in it

This choice allows the block to ») o T
have an initial contents only Initial contents (on iterm arrival); [a constan .|

when an item arrives. To set an units

initial contents for this block,
choose one of the options from
the dialog’s popup menu,
shown above:

Interchange initial contents, default behavior

Sources, Storage, and Units | 295
Indicators

» A constant. Enter a number in the field; the default is 0. To cause the initial contents to be infi-
nite, check the field’s 0 (infinite) checkbox or set the field to blank.

o Value at ICO. The value at this connector will control the initial contents.

e Value 0f attribute. Select an attribute in the dialog. When an item arrives, the initial contents
will equal that attribute’s value.

In the Yogurt Production model from the Discrete Rate tutorial, the Interchange blocks were set to
Iank only exists when item is in it and Initial contents (on item arrival): 0.

Tank is separate from item

To set the initial contents for the Interchange N — _
block when this behavior has been selected, Initial contents: units
leave the [nitial contents field set to the default

. . Interchange initial contents, alternate behavior
infinite amount or enter a number.

Convey Flow initialization

The initial contents for the — — -

C FI block are set in High Limnit Low Limit Dlensity J
—onvey rlow block are s 0 100 length unit 75 length unit 10 unitzAength un

its Initialize tab. The table 1 50 length urit 25 length unit § unitsAength unit

allows you to customize a
number of segments for the
conveyor, each with its own
initial contents. Each row in the table represents an individual segment of the conveyor possessing
a uniform density that differs from the adjacent segments.

Example initial contents for Convey Flow block

The Initialize tab has a Show Example button that places example settings in the table. These are
helpful for understanding how to make the entries you want; they can also be used as a starting
point for entries. Shown above is the example setting for a 100 foot long accumulating-density
conveyor that transports containers. The table indicates that the block would have an initial den-
sity of 10 containers per foot for the segment from 75 to 100 feet (a total of 250 containers) and 5
containers per foot for the segment from 25 to 50 feet (a total of 125 containers).

ey AISI(|

0= In this example, the sections between 0 and 25 feet and between 50 and 75 feet do not hold any
product.

Indicators

As the simulation runs, the level of flow in the residence blocks (Convey Flow, Interchange, and
Tank) will vary over time.

You might want an indication when a block’s flow level is within a certain range of values. This is
common when monitoring a block to determine if its contents are approaching or have reached
one or more important benchmarks. For instance, some emergency procedures might need to take
place if a Tank’s level reaches the “high” range; they can be discontinued when the contents return
to a “normal” range.

For residence blocks, 7ndicators are a method of reporting what category or range the current level
of flow falls into. With this feature, each range is assigned a name, a lower limit, and an upper
limit. When the level of flow reaches a value that falls within a different range, the block reports
the change on its / (indicator) value output connector and alerts any connected blocks to the
change in status.

0= While the Tank and Interchange blocks report information about the current level of flow from
their I (indicator) connectors, the Convey Flow block reports how far (the accumulation

296

Discrete Rate

Sources, Storage, and Units
Indicators

length) the accumulation point is from the end of the conveyor. (When the amount of product
ready to leave exceeds the amount that can be received downstream, flow begins to accumulate
from the end of the conveyor. For more information, see “Distribution of flow” on page 345.

Setting indicators
The Indicators tabs on all

. Indicator Name Low Limit “walue to Output
three residence blocks have ol 00 ya— =

0

similar interfaces. Each 1 High 0

Indicators tab has a table 3 r“‘ELdDi'-""" ‘1‘32
. . 1]

(showt} on the rlgl{’:lt with . a Empty 04

example .sett'lngs) or speci- T %7

fying an indicator name for

each range ofvalues, enter- Example indicators in Tank block

ing the low limits, and

defining values (an ID number for each indicator) to output when the block's flow level falls

within a particular range.

L= SV)

To create indicators, enter your own information or click the Show Example button to populate
the table with some example indicator names and settings. In either case, ExtendSim will calculate
the High Limit values based on the Low Limit entries.

I The top row has to have the highest range; the bottom row must have the lowest range.

I To add or delete table rows, use the +/- button in the table's lower right corner. For instance, to

delete the example settings, change the number of rows to 0.

The screenshot above shows a Tank’s names, limits, and ID values to output after the Show Exam-
ple button has been clicked. Each indicator name corresponds to a range of flow contents defined
by the Low and High Limits for that row. (The High Limit column is presented for clarity only,
since those numbers are calculated using the values entered for the Low Limits.)

Unless the block has infinite capacity, the indicator limits can be expressed in absolute numbers
(shown above) or as percentages.

See “Bucket Elevator 2 model” on page 357 for an example of how indicators are used in an Inter-
change block to control a Valve’s effective rate.

I If the block has infinite capacity, the limits must be expressed as absolute numbers. If the block's

initial contents are set to infinity, the indicators are disabled.

Getting information about levels

There are tWO types of Indicator Hame Low Limit “wilue to Output J
events that will cause a new o Fal 50000 pirts 3
indicator to be reported: 1 High 175000 pints 3
o 2 hedium 100000 pints 2
¢ When the level is increas- 3 Low 25000 pint= 1
ing and the blocK’s con- 4 Empty 0 pint= o
tents reach the next Example indicators in a Tank

indicator’s Low Limit.
* When the level is decreasing and the block’s contents reach the next indicator’s High Limit.

In each case, the new output ID is used to update the I value output connector, and any connected
blocks are alerted to the change.

Sources, Storage, and Units | 297
Units and unit groups

Using the above table as an example, if the level in the Tank increases from 120,000 to 175,000
containers, the block will compare that level to the Low Limit and send the value 3 to its I (indica-
tor) output connector. However, if the level of the Tank instead decreases from 230,000 to
175,000 containers, the block will compare that value to its High Limit and output the value 2.

I The value that is output at the I (indicator) connector depends on whether the level of flow is
increasing or decreasing, and where in the range the new indicator level falls. The Tank block has a
S (status direction) output connector that reports if the level is going up or down when the event
occurs.

Tank Flow Units model
The Yogurt tank in the Tank Flow Units model outputs values that indicate the level of flow in the
Tank; those values are displayed on the third line on the plotter.

I For more information about the Convey Flow block, including the use of sensors, see the discrete
rate chapter on “Delaying Flow”.

Units and unit groups
This section focuses on defining, selecting, and changing flow units, discusses the effect of chang-
ing time units, and shows how to use the Change Units block to change the unit group.

Definitions
The following sections discuss flow, block, time, and length units. A unit group is two or more
blocks connected together through flow connections and sharing one flow unit.

Units and unit groups were introduced on page 271; they are described fully below.

Flow units

The flow unit indicates what is flow-
ing from one Rate library block to
another. As is true for ExtendSim time [units J | |
units, flow units can be unspecified
generic units (in which case the block
dialog will just display the word
“units”) or they can be specifically
defined in the model. For instance, a defined flow unit could be a packet, gallon, transaction, box,
liter, and so forth. Existing flow units can be selected, and new units can be defined, in the
Options tabs of Rate library blocks. In addition, the Discrete Rate tab of an Executive block (Item
library) has a section for managing flow units. This provides a central location where units can be
added, deleted, or renamed.

Select units

ey AISI(|

Generic flow and time units in a Valve

0= This chapter will be mostly concerned with flow units.

Block units

The Tank and Inter-
change blocks can have
an internal block unit
that is different than the Flawy unit: [allons J |r [minoie® |
flow unit. This is an
internal representation
of volume that is specific
to the Tank or Inter-
change block, and does

Select units for the flow unit group and for this Tank

[Define a flow unit for the group and a block unit for the block .]

Block unit: [pints] f minute*

Unit factar: |8 [mints rgallons |

Flow and block units in the Tank

298

Discrete Rate

Sources, Storage, and Units
Units and unit groups

not affect the flow unit for the unit group. If you select a block unit that differs from the flow units
that come into and out of a block, you must enter a conversion factor. The conversion factor rep-
resents the ratio of the block unit to the flow unit. Block units are discussed fully in “Defining
block units” on page 299.

IS Using block units is optional; the default block unit is the flow unit.

Time units

Time units can be generic, in which case the block will just say “time” or can —
. rminute -

be specific. Each model can define specific time units, which become the

default for the model. You can change a discrete rate block’s time unit from the pefault time unit

model default time unit to any local time unit using a popup menu in the

block’s Options tab.

If a local time unit is selected in a discrete rate block, that local time applies to the entire block but
only to that block. Changing to a local time unit does not change the global time unit for the flow
group or for any blocks in the rest of the model. For complete information, see “Time units” on

page 520.

& Calendar dates are not available if months or years have been selected as the specific global time

unit for a discrete rate model. Furthermore, if Calendar dates has been selected, Rate library blocks
will not be able to select Months or Years as their local time unit.

Length units

For convenience, the Convey Flow block allows you to name a length unit. This is used internally
by the block with other settings to determine the block’s speed. You can use the default generic
unit “length unit” or declare a specific unit of length such as feet or meters.

Unit groups

A unit group is two or more blocks connected together through flow connections and sharing one
flow unit. Connecting the first block’s outflow connector to the second block’s inflow connector
creates a unit group. Unless the unit group is explicitly changed, all the blocks that are connected
through flow connectors use the same flow unit and are in the same unit group. If a flow unit is
changed in one of the blocks in a unit group, the unit group does not change but all the other
blocks in that group are updated automatically to the new flow unit.

To see the unit group, click the grey square to the right of a
block’s flow units popup menu, shown above. All the blocks
in that block’s unit group will be highlighted on the model ynit group selector to right of popup
worksheet.

[gallons J |

You can define multiple unit groups, which use different flow units, in portions of a discrete rate
model. For instance, one part of the model could be expressed in bottles and another could repre-
sent boxes of bottles. The Change Units block can create a different unit group.

Declaring and selecting flow units

As mentioned above, flow units indicate what is moving from one flow connector to another, and
a unit group is a collection of connected blocks that share the same flow unit. This section focuses
on defining, selecting, and changing flow units.

A To convert from one unit group to another in a model, use the Change Units block discussed on

page 300.

Sources, Storage, and Units
Units and unit groups

Where to declare a flow unit

Each block in the Rate library has the ability to select an existing flow unit or create a new one.
This is done in the block’s Options tab, which has a popup menu for either selecting an existing
flow unit or creating a new one. Specifying a flow unit in one block causes that unit to be used by
every block within the same unit group, and automatically sets that flow unit for any blocks that
are subsequently added to that unit group.

To see the unit group, click the unit group
selector button to the right of a block's
flow units popup menu. All the blocks in ynit group selector to the right of the popup menu
that block's unit group will be highlighted

on the model worksheet.

Flowe unit; [gallons J |

Declaring a flow unit

To declare a flow unit, select an existing unit or create a new unit from the popup menu in the
Options tab. The selected flow unit applies not only to the block but also to the entire flow unit
group and it will automatically be set in new blocks that are connected within the unit group. For
instance, page 277 of the discrete rate tutorial showed how to create a new flow unit named “gal-
lons”. When the fruit processing section was added, the popup menu for the Fruit Supply Tank
already included gallons selected as its flow unit.

Managing flow units in the Executive block
The Executive block’s Discrete Rate tab has a section [-yanage fow units for discrete rate modeis
for managing flow units in a model. The table dis-

¢] : FlowUnt _ ~| AddUnit | Refresh Tahle |
plays all the units for a given model and provides o urits

. . . ! gallons Delete Unit | Delete All Units |
buttons for adding, deleting, and renaming the 2 pints
units. Rename Unit|
To use this feature, select the flow unit you want to I

change in the table, then click the appropriate but-
ton. ExtendSim will warn you and give options if
the unit is being used in the model.

Flow units for Yogurt Production model

Defining block units

As mentioned earlier, the Tank and Interchange blocks allow you to define a block unit that is dif-
ferent from flow units. This is an internal representation of volume only and is specific to the Tank
or Interchange block. It does not change the flow units or the unit group for the flow that has
entered or exited the block. If a block unit has been specified, a factor to convert the block unit
into flow units must also be entered.

To define a block unit, in the Options tab of the Tank or Interchange block, select Define a flow
unit for the group and a block unit for the block. In addition to providing fields for declaring a
flow unit, this option displays a field for entering an internal block unit. It also has a field for
entering the factor to convert between the flow unit and the block unit.

299

ey AISI(|

300

Discrete Rate

Sources, Storage, and Units
Changing the unit group

Tank Flow Units model
The Tank Flow Units
model is the same as the
model described on

page 280. However, the Flowr unit: [mallons J | [rinute® |
newer model has pints,
rather than gallons, as
the block units in the Unit factor: I [wints Foalons N
Yogurt Tank, causing
the process’s output to
be displayed in the plot-
ter as pints. Clicking the unit group selector button in its Options tab shows that this Tank is still
part of the unit group that uses the flow unit “gallons”.

Select units for the flow unit group and for this Tank

[Define a flow unit for the group and a block unit for the block .]

Block unit: [pints . f minute*

Defining a block unit in the Tank

Time units
A popup menu in the Options tab allows a block’s time unit to be changed from the model default
time unit to any local time unit.

If a local time unit is selected in a discrete rate block, that local time applies to the entire block but
only to that block. Changing to a local time unit affects every parameter in the block, but it does
not change the models global time unit or the time units used in any other block in the model. For
more information, see “Time units” on page 526.

Changing the unit group

By default all the blocks connected to the same flow stream belong in the same unit group. How-
ever, the Change Units block has the ability to create a new unit group, causing connected blocks
in a portion of the model to have a different flow unit.

Change Units block

TO change the ﬂOW units from Change the flow unit, resulting in a new unit group
one part of a model. to another, Change units frorm: [GATARE 1
use the Change Units block. o: [containers =
While changln'g a flow unit in Conversion factar: [12 [containers Fgallons -]
most blocks will change the flow _ _
. . . ¥ Show flow unit change on icon
unit for the entire group, adding

a Change Units block to the
model causes a new unit group to
be created — the Change Units block’s inflow connector will be part of one unit group comprised
of those blocks upstream of the Change Units block; its outflow connector will be part of another
unit group comprised of those blocks downstream of the Change Units block.

Dialog of Change Units block

The Change units from: popup menu defines the flow unit that is entering the block; the zo:
popup menu is for selecting or creating the new flow unit. The block has a field for entering the
factor that converts the incoming flow unit into the outgoing unit, and a popup menu to select the
direction the conversion should take. You can also change the time units for this block in its dia-
log.

Yogurt Production model
An example of changing flow units is shown in the tutorial on page 281, where gallons of liquids
were converted into containers of yogurt.

Discrete Rate Modeling

Rates, Constraints, and Movement

Limiting the movement of flow through rates and constraints

302 | Rates, Constraints, and Movement
Blocks of interest

As discussed in the Introduction to this module, the movement of flow in a discrete rate model
must take some time. It is a modeling error if the flow moves instantaneously throughout a model.

ExtendSim's discrete rate system attempts to move flow through the model as fast as possible. In
the absence of any constraints, the effective rate of flow would approach infinity and the flow
would move instantaneously throughout the model; this is never correct. For this reason, flow
movement must be constrained by rates and conditions that are built into the model, and a lack of
appropriate constraints is a modeling error that will stop the simulation run

In order to restrict flow rates:
* Discrete rate blocks are required to define their own sets of constraining flow rules
¢ FEach area of a model must have one or more critical constraint mechanisms

Critical constraint flow rules, such as a block’s maximum rate, place an upper bound on the rate of
flow, limiting it to a number less than infinite. The blocks” aggregated set of flow rules ultimately
defines how fast flow is permitted to move over time throughout the model.

This chapter discusses rates, the blocks that constrain flow, and how model conditions impact the
rate of flow. It will cover:

* Rates, rate sections, and the LP area

* Flow rules for defining how a block permits flow to move through it
* The blocks that specify critical constraints

* How to meet the constraint requirement

* A comprehensive example of constraints and rate sections

I Most of the models illustrated in this chapter are located in the folder \Examples\Discrete
Rate\Rates and Constraints. The tutorial models mentioned are located at \Examples\Tutori-
als\Discrete Rate.

]
5
-4
)
Al
o
S
3]
@
o v
a

Blocks of interest
The following blocks from the Rate library will be the main focus of this chapter.

Convey Flow

Delays the movement of flow from one point to another. Can accumulate flow to a max-
s B58co imum density, accumulate flow to fill empty sections, or act as a non-accumulating con-

veyor.

Interchange
=] @ Used to mix flow with items, this block can also limit its maximum rate of inflow and
outflow.

Tank

<> The block most frequently used to store flow can also limit its maximum rate of inflow
and outflow.

Rates, Constraints, and Movement | 303
Rates, rate sections, and the LP area

Valve
ok Controls and monitors the flow, limiting the rate of flow passing through. This block
R ®r can also be used to set a goal for the duration or quantity of flow.

Rates, rate sections, and the LP area
One of the most important aspects of a discrete rate model is the rate of flow — the speed of flow
movement. The flow rate is represented as the ratio of flow units to the model’s time units. This is
displayed in block dialogs as units/time, gallons/minute, transactions/second, boxes/hour, and so

forth.

Discrete rate models can be thought of as being divided into rate sections and LP areas. The flow
connectors within each rate section have the same effective rate, which is the speed at which flow
moves through those blocks. The LP area is composed of one or more rate sections whose effective
rates might change during the simulation.

The types of rates considered during the model building process, rate sections, and the LP area, are
discussed below.

Types of rates
The following rates are taken into consideration by ExtendSim and by a block’s flow rules. (Flow
rules will be discussed on page 306.)

Maximum rate

ExtendSim's discrete rate architecture
attempts to move flow through the model as
fast as possible. In the absence of any con- Default maximum rate for Valve

straints, the flow rate would theoretically

approach infinity and flow would move from one part of a model to another instantaneously; this
would be a modeling error.

Maxirmum rate: 10 Olunits f time

ey AISI(|

The maximum rate puts an upper limit on the movement of flow through a block. Six Rate
library blocks have the ability to set a maximum rate. You can set an explicit maximum rate in the
Interchange, Tank, and Valve blocks. The maximum rate for the Convey Flow block is mathemat-
ically derived. Maximum rates may also be implicitly specified under certain conditions in the
Merge and Diverge blocks. In each case, the maximum rate is the highest rate of flow those blocks
will allow, and hence the highest potential rate of flow for that part of the model.

I An inflow connector for a Convey Flow, Interchange, or Tank block can have one maximum rate
while the block’s outflow connector can have a different maximum rate. The maximum rate for the
Convey Flow block’s inflow is derived from settings in its dialog; the maximum rate for its outflow
is derived from dialog settings and model conditions. The maximum inflow and maximum out-
flow rates for the Interchange and Tank blocks can be entered directly in their dialogs.

& In order to avoid an error condition, each area of a model must have some mechanism in place to
restrict the rate of flow to a number that is less than infinity. If the required minimum set of con-
straints is not present, ExtendSim stops the simulation and displays an error message.

Effective rate

One of the most important reasons for creat-
ing a discrete rate model is to determine the
actual rate of flow movement. The e]fective Effective rate (Valve’s Results tab)
rate is the calculated actual rate of flow

Effective rate: 72 gallons f minute™

304

Discrete Rate

Rates, Constraints, and Movement
Rates, rate sections, and the LP area

between Rate library blocks during the simulation run. It is the result of an internal calculation
taking into account the maximum rates and all the constraints of the process. In some situations
the effective rate is the same as the maximum rate; in others it is lower. One effective rate is associ-
ated with each rate section in a model, as discussed “Rate sections” on page 305.

In a rate section, the effective rate of flow cannot be higher than the lowest maximum rate for all
the blocks in that section. In fact, it can be lower than the lowest maximum rate, and could even
be zero (0), depending on model conditions.

While each rate section can have only one effective rate, a section can have more than one block
that has a maximum rate. In fact, it is common to have several Valve blocks, each with their own
maximum rate, in a rate section.

Infinite rate

An infinite rate is a theoretical rate that would cause the flow to instantaneously move from one
location in the model to another.

The Executive block’s Discrete Rate tab
specifies that a rate equal to or greater ANy rate = [1.0000000e+10_|is considered infinite

than some number is considered infi-
nite; the default is that a rate > 1e10 is
considered infinite, as shown above.

From the Executive’s Discrete Rate tab

You can change the infinite number to be anything that you want. However, because of the 12
digit precision limitation of the effective rates, the number should be set as close as possible to the
highest possible effective rate which would ever reach this limit. (Setting a correct infinite rate is
more critical in the case of potential upstream supply and potential downstream demand calcula-
tions, an advanced topic discussed on page 382.)

Infinite effective rate

Since instantaneous movement is not possible in the real world, the Rate library does not support
an infinite effective rate. The infinity number specified in the Executive establishes an upper limit
on the model’s allowable set of effective rates. If the simulation calculates an effective rate that
equals or exceeds that number, ExtendSim will stop the simulation and generate an error message.
This could happen, for instance, if a source tank is directly connected to a sink tank, without any
intervening constraint.

Infinite maximum rate

The Executive’s infinity number (by default, 1€10) can be used in a block's rule set when condi-
tions are such that it cannot in any way constrain the movement of flow. For example this would
be accomplished by checking the 00 (infinite) checkbox for a Valve’s maximum rate. With an infi-
nite maximum rate, the Valve will not limit the speed of flow passing through it.

If you set the Valve’s maximum rate field to blank or to a number > 1e10, the block would also not
limit the speed of flow passing through it.

Upstream supply/downstream demand
This potential rate is considered when using an advanced mode in the Diverge. Merge, and Sensor
blocks. It is described fully in “Upstream supply and downstream demand” on page 382.

Rates, Constraints, and Movement | 305
Rates, rate sections, and the LP area

Rate sections

A rate section is defined as a network of con-
nected blocks, all possessing the same effective
rate. Each rate section can include a succession of
blocks and connections. A rate section always
starts with an outflow connector and ends some- el o i ant?
where downstream with an inflow connector.

Thus it will always contain at least two blocks
sharing at least one flow connection.

Rate Section 1 Rate Section 2

&0

Two rate sections in a model

While some blocks always define the boundary between two rate sections, other blocks never
define a new rate section boundary:

* Because a residence block (Convey Item, Interchange, or Tank) can hold flow for some period of
time, its effective inflow rate can be different from its effective outflow rate. Since the bound-
aries between rate sections never change, residence blocks always define the boundary between
two different sections, even if their effective inflow rate is the same as their effective outflow rate.
For example, a Tank’s inflow connection ends one rate section and its outflow connection starts
another section.

* Some passing (non-residence) blocks define a new rate section and others don’t. While flow is
not permitted to be held in a passing block for any length of simulation time, some passing
blocks are capable of defining boundaries between sections. For example, a Valve is part of one,
and only one, rate section. On the other hand, the Change Units block's effective inflow rate
will always be different than its outflow rate because it performs a unit conversion. It therefore
defines the boundaries between two rate sections.

0" All residence blocks, and certain passing blocks, always define the boundary between two different
rate sections. These boundaries are established internally by ExtendSim at the beginning of the
simulation run; they do not change.

)
=
@
<)
=
o
(=g
o
2
o

The table below lists what role each block in the Discrete Rate library plays in defining the bound-
aries of a rate section:

Block Always defines a

. Comments
new rate section?

Bias No The inflow effective rate is the same as the outflow effec-
tive rate. The block influences the effective rate associated
with the section it is part of.

Catch Flow No The outflow effective rate is the same as the catch effec-
tive rate.
Change Units ~ Yes The outflow effective rate is the inflow effective rate mul-

tiplied by the conversion factor.

Convey Flow Yes The outflow effective rate can be different than the out-
flow effective rate because it is a residence block.

Diverge Yes The effective rates can be different across all flow connec-
tors — the input and all the outputs.

306

]
5
-4
)
Al
o
S
3]
@
o v
a

Rates, Constraints, and Movement

Flow rules
Block Always deﬁn?s a Comments
new rate section?
Interchange Yes See Convey Flow comment
Merge Yes See Diverge comment
Sensor No The inflow and outflow effective rates are the same.
Tank Yes See Convey Flow comment
Throw Flow No The inflow effective rate is the same as the throw rate.
Valve No The inflow and outflow effective rates are the same.

For an example of rate sections, see the “Comprehensive example” on page 315.

Rate precision

The mathematical precision for effective rates is limited to 12 digits. This can become an issue if
you separate any two effective rates in an area by more than 12 digits of precision. For more infor-
mation, see “Precision” on page 360.

LP area

While rate sections don’t change after the start of a run, the boundaries of the LP area change
dynamically during the simulation. An LP area is composed of one or more rate sections linked
together by the fact that their effective rates could change during the simulation run. When an
event occurs that causes the effective rate for one rate section to be reevaluated, ExtendSim deter-
mines which other rate sections might be impacted. The affected rate sections constitute the LP
area and become part of the LP calculation.

Since the LP area is computed internally, and because it is most important for the LP calculation,
it is discussed fully in “The LP area” on page 377.

Flow rules
Flow rules completely define how a block permits flow to move through during the simulation
run. When calculating rates of flow, ExtendSim's discrete rate architecture tries to maximize
throughput throughout the system, subject to a set of constraints. In order to restrict flow, discrete
rate blocks are required to define their own sets of flow rules. The aggregated set of these rules ulti-
mately defines how fast flow is permitted to move over time throughout the model.

A block’s particular set of flow rules is derived from four factors:
¢ The block’s fundamental behavior.

* How its dialog has been configured, such as setting a Tank’s maximum input rate or entering a
conversion factor in the Change Units dialog.

¢ How its value connections have been connected. For instance, the Valve block’s R (maximum
rate) input connector can be used to dynamically modify the block’s maximum flow rate.

* How its flow connections have been connected. A Tank is a source if only its outflow connector
is connected; it is a sink if only its inflow connector is connected.
These flow rules completely describe the events or conditions under which a particular block may

constrain the movement of flow through it. However, changes in a block’s constraints during a
simulation cause its effective rates to be reevaluated and can cause a connected block’s effective

Rates, Constraints, and Movement
Flow rules

rates to be reevaluated, propagating calculations throughout an LP area. When recalculation is
required, the Executive block (Item library) uses the aggregated set of flow rules from all the blocks
in the LP area to calculate a new set of effective rates for the area. Thus a particular block’s flow
rules can be superseded by the global calculations of the Executive.

Critical and relational constraints
There are two primary types of flow rules: critical constraints and relational constraints.

Critical constraints

While all flow rules cooperate to constrain the rate of flow,
some blocks provide special rules called critical constraints. Critical constraintin a Valve

If a rate section contains one or more critical constraints, they

place an upper bound to the rate of flow for the blocks within that section. A critical constraint is
unconditional — no matter what happens in the simulation, the effective rate of flow cannot be
higher than the lowest critical constraint of any block in that rate section. For example, the Maxi-
mum rate field is a Valve's critical constraint; the entry in that field defines an upper limit on the
rate of flow through the block. If that entry is the lowest critical constraint in the rate section, the
effective rate for every block in that section cannot be higher.

Maximum rate: 10 | units f time

The blocks with the potential to set a critical constraint for flow are the Convey Flow, Diverge,
Interchange, Merge, Tank, and Valve; of these, the Valve is most commonly used. As will be shown
in “Meeting the critical constraint requirement” on page 312, these blocks must be placed at criti-
cal locations in order for the model to run properly.

& ExtendSim's discrete rate system attempts to move flow through the model as fast as possible.
Without any mechanism to impede its progress, the effective rate would theoretically approach
infinity and the flow would move from one part of a model to another instantaneously. In order to
avoid this error condition, each LP area of the model must contain one or more constraints (typi-
cally a Valve) to restrict the flow to a number that is below infinity. If the required minimum set of
critical constraints is not present in a model, ExtendSim stops the simulation and displays an error
message.

Relational constraints

Relational constraints define the way the effective rates of different sections are related to each
other, creating dependencies between rate sections. For instance, the relational constraint between
one rate section (effective rate x) and another rate section (effective rate y), could be defined as x>y,
x=y, 2x-3=y, or any other expression. Relational constraints get updated when the block reacts to
new parameters or to changes in its state, but they don’t affect a blocK’s critical constraints.

An example of a relational constraint is the
Change Units block, where the use of a con-
version factor causes the outflow effective rate | Dutflowy rate: |960 containers F minute®
to be different than the inflow effective rate.))

The Change Units block defines the bound- Different inflow and outflow rates

aries between one rate section and another;

the conversion factor specifies the relationship of the two effective rates.

Inflowe rate: (30 gallons f minute™

For another example of a relational constraint, see “Comprehensive example” on page 315. For an
advanced discussion of relational constraints, see “The relational constraint calculation” on

page 381.

I=" You don'’t enter relational constraints, they are determined by the behavior of the blocks.

307

ey AISI(|

308 | Rates, Constraints, and Movement
Defining a critical constraint

Comparison of constraints

Some blocks can set a critical constraint, some can set a relational constraint, and some can do
both. Even for blocks that can set constraints, the block may in some situations place no constraint
on the flow.

* The blocks that can set a critical constraint are the Convey Flow, Diverge, Interchange, Merge,

Tank, and Valve.

* Relational constraints can be set by the Change Units, Convey Flow, Diverge, Interchange,

Merge, and Tank blocks.

For example, a Tank where both the Maximum inflow rate and Maximum outflow rate are
checked will set critical constraints for its inflow and outflow.

If neither Maximum inflow rate nor Maximum outflow rate is checked, the Tank will not have
any critical constraints but could have relational constraints. If the Tank has a finite capacity but is
neither full nor empty, it places no constraints on the flow. However, once the Tank reaches the full
state, its inflow rate is required to be less than or equal to its outflow rate; this is a relational con-
straint.

The effective rate for a rate section cannot be any higher than the lowest critical constraint set for
by any of the blocks in that section. Furthermore, because the aggregated set of flow rules also typ-
ically contains relational constraints, the effective rate for the section can vary anywhere between
zero and the smallest critical constraint.

I For a table that lists the blocks and which constraints they can provide, see “Types of information
provided to the Executive” on page 379.

Defining a critical constraint
As mentioned earlier, a critical constraint defines the upper limit to the rate of flow through a rate
section. While a particular rate section may or may not have a critical constraint, at least one of the
rate sections within the LP area must have a critical constraint mechanism to limit the flow rate to
a number that is less than infinity.

]
5
-4
)
Al
o
S
3]
@
o v
a

* You can explicitly set a critical constraint in the Valve, Tank, and Interchange blocks. You do this
by entering a maximum rate in the block's dialog, obtaining a value for the maximum rate from
the block’s input connector, or linking the maximum rate field to the value of a cell in a global
array or ExtendSim database.

* For the Convey Flow block, the critical constraint is derived from settings in its dialog and
sometimes other model values, rather than being entered directly.

* A critical constraint may also be implicitly specified under certain conditions by the Merge and
Diverge blocks.

The next sections describe how to set a critical constraint. See also “Meeting the critical constraint
requirement” on page 312 for examples of how to apply the constraint requirement in your mod-
els.

Rates, Constraints, and Movement | 309
Defining a critical constraint

Valve

The Valve is the block most often used for explicitly set- |, . -
. L . N aximum rate at"r" 100 gallons / minute

ting a critical constraint. You can enter a value in the T T

maximum rate field in the block's dialog, link the field
to an ExtendSim database or global array, or connect the
block’s R (maximum rate) input connector to some

value output. Defining constraints for Valve

[Initial maxirmurn rate:

™ Poll constraint only each:

For an example of setting a fixed maximum rate for the
Valve, see “Entering dialog parameters and settings” on page 277.

Dynamically changing the maximum rate
There are two ways to change a Valve’s maximum rate during a simulation run:

* Connect to the block’s R (maximum rate) input connector
* Link the block’s Maximum rate field to an ExtendSim database or global array

Connecting to the Valve’s R input connector or linking its maximum rate field to a data source
overrides any values directly entered in the maximum rate field. Instead, that field will display the
current maximum rate as determined by the simulation run.

I=5" The checkboxes for “Initial maximum rate” and “Poll constraint every”, discussed below, are only
used when the Valve's maximum rate is configured to change dynamically.

For an example of using the Valve’s R input connector to cause the maximum rate to change
dynamically, see “Add a dynamic constraint” on page 278.

I As you saw in “Add maintenance” on page 280, the “Add Shutdown” button in the Valve’s dialog
automatically connects a Shutdown block (Item library) to the Valve's R input connector. This can
be used to stop the flow, or reduce its rate of movement, for a period of time. See also “Shutting
down” on page 179 for a description of how to use the Shutdown block.

)
=
@
(2}
=t
(¢
[y
o
2
o

Initializing the maximum rate

When the Valve’s maximum rate is configured to change dynamically, the /nitial maximum rate
checkbox serves an important role. This is because the first effective rate calculations for a simula-
tion occur just before simulation time starts moving forward. If the Valve’s R connector is con-
nected or if the maximum rate field has been dynamically linked, problems can arise at this stage
because neither the block connected to the R connector nor the linked data source has yet had a
chance to provide an initial value. The /nitial maximum rate checkbox resolves this issue by ini-
tializing the maximum rate.

The initial value entered in the dialog will be used until the Valve gets a different value from its R
input connector or from the linked data source.

I For multiple runs, the Initial maximum rate checkbox prevents the Valve from using the last
maximum rate from the current run as the initial maximum rate for the next run.

Polling constraints

The checkbox to Poll constraint every... can be used when a Valve’s maximum rate is configured to
change dynamically. This option directs the Valve to request a new maximum rate value at fixed
intervals during the run. This causes the Valve to periodically query the block connected to its R
(maximum rate) input connector or the cell linked to its maximum rate field for the new values.
Any values received between the queries will be ignored.

310

Discrete Rate

Rates, Constraints, and Movement
Defining a critical constraint

This checkbox is optional when the maximum rate field is connected to a fixed number in a linked
cell in a data source. It is required if the linked cell contains a random number or if the R input
connector is connected to a passive block like the Random Number (Value library), since a passive
block won’t independently generate a new value for the maximum on its own. (The checkbox is
not needed if the R connector is connected to block that actively generates values, such as the
Lookup Table block set to output values at regular time intervals in the discrete rate tutorial.)

IZ" Each time the maximum rate in a Valve changes, effective rates must be re-calculated across multi-

ple sections. If you are using the poll constraint feature in several Valves, consider having them
update at the same time. This will dramatically reduce the number of recalculations.

I While the polling feature can be handy during the early stages of the model building process, flow

rates in real world systems rarely change at fixed intervals. Use this feature judiciously and with
caution.

Controlling how and when the Valve applies its maximum rate

The Valve’s Control Flow tab has advanced options that allow you to manage how and when that
block applies its maximum rate. By setting a goal or using hysteresis, you can explicitly control
when the Valve’s constraining rate will be observed, when it will be ignored, and for how long
cither of those will happen. These topics are discussed in the “Delaying Flow” chapter.

Tank and Interchange
The Tank and Interchange blocks have _ _
dialog options for explicitly defining W Madmurn inflow rate:
their maximum inflow and outflow rates. .) . .
. . . [Masimurmn outflo rate._unltaitlme
Unlike the maximum rate in a Valve, _
these constraints do not change dynami- pefauit maximum rates for Tank
cally during the simulation.

You can enter either a maximum inflow rate or a maximum outflow rate, or both of these.

Rates, Constraints, and Movement | 311
Defining a critical constraint

The Tank Constraint example shows two flow streams with identical behavior. In the bottom flow
stream, Tank 2 uses the options Maximum inflow rate and Maximum outflow rate to replace
the filling and emptying valves found in the upper flow stream.

Rate Section 1 Rate Section 2
5010 5
9 [m] o N [m] -]
R wF R wF
C 1] Filling C (1] Emptying C w0
Source Storage Sink
C w0 c w0 c wC0
Source 2 Storage 2 Sink 2
v HO {units /time
v B {units i time

Tank Constraint model. Top stream with two Valves to constrain flow; bottom
stream with maximum rates defined in Tank 2.

=" Instead of using a Valve block to constrain flow, setting maximum inflow and/or a maximum out-
flow rates in a Tank or Interchange block can be used to satisfy the model’s requirements for a con-

straint.

Convey Flow
The Convey Flow block calculates critical constraints for its inflow and outflow connectors sepa-
rately. The critical constraints are derived from model conditions and settings in the dialog.

* The critical constraint for the Convey Flow blocK’s inflow is calculated by multiplying the
block’s effective speed by its maximum density entry.

05" The effective speed can be less than or equal to the speed set in the dialog. If the block is non-accu-
mulating, or if it is accumulating but cannot accumulate more, and the block’s ability to deliver
flow exceeds downstream demand, the effective speed will be lower than the entered speed.

* The critical constraint for the block’s outflow is the result of the multiplication of the block’s
speed setting by the density of flow present at the outflow end of the block.

I Setting the initial contents or capacity for a Convey Flow block is discussed in the chapter
“Sources, Storage, and Units”. The “Delaying Flow” chapter shows how to use the Convey Flow
block to delay the movement of flow in a model.

Merge and Diverge
The critical constraint for one or more of a Merge or Diverge block’s branches can be implicitly
specified under certain conditions. Most often, the result would be a rate of 0 (zero).

When a Merge or Diverge block is set to certain modes, flow can be blocked from moving through
one or more of its branches. For example, if one branch of a Diverge block in Distributional mode
has been assigned a blank value or a value <=0, flow through that branch is halted. Similarly, flow

ey 2SI

312

Discrete Rate

Rates, Constraints, and Movement
Meeting the critical constraint requirement

through all but the selected branch is blocked when the Merge block is in Select mode. In both of
these cases, the maximum rate would be 0 for the affected branches.

The “Mode table” on page 319 lists each mode for the Merge and Diverge blocks. The column
labeled “Parameter values that always block the flow” indicates which conditions would always
cause a branch to have an implied constraint of 0.

Meeting the critical constraint requirement

As discussed earlier, while a particular rate section may or may not have a critical constraint, at
least one of the rate sections within the LP area must have a critical constraint mechanism to limit
the flow. Otherwise, the rate of flow would approach infinity.

I By definition, residence blocks always delineate the boundary between two rate sections. A general

rule is that there must be at least one critical constraint between every two residence blocks. (The
critical constraints can be provided by the Convey Flow, Diverge, Interchange, Merge, Tank, and
Valve blocks. The residence blocks are the Convey Flow, Interchange, or Tank.) The exceptions to
the general rule include certain situations where a Merge or Diverge block is between two resi-
dence blocks.

The following examples illustrate some ways the required critical constraint mechanism can be met
in discrete rate models.

Valve or Convey Flow

The No Merge or Diverge model illustrates two typical ways to provide a critical constraint to the
rate of flow between two residence blocks (in this case, Tanks) that don’t have a Merge or Diverge
block between them.

The example to the right uses a Valve to constrain the

flow between two Tanks. This is the most straight for- o
ward and most common situation. In order for the M 0::#
Valve’s maximum rate to provide the critical constraint R SR
it must be: cwoo

* Greater than or equal to 0 (zero)
e Less than 1el0 (the defined infinite rate)
¢ Not a blank

a00n The example to the left uses a Convey Flow block
to meet the requirement for a critical constraint.
A Convey Flow block derives the critical con-
straint for its inflow from its dialog settings and
the critical constraint for its outflow from its dia-
log settings and model conditions. Because it has
critical constraints at both its inflow and outflow connectors, the Convey Flow block limits the
rate of flow from the first Tank to the second to a number that is less than infinite.

w0 [wCo

Tank or Interchange

Instead of using a Valve to provide the critical constraint between two residence blocks, you can
specify maximum inflow and maximum outflow rates for an intervening Tank or Interchange
block. With these maximum rates, the Tank or Interchange will limit the rate of flow between the
two residence blocks to a number less than infinite. This is shown in the Tank Constraint example
discussed in “Tank and Interchange” on page 310.

Rates, Constraints, and Movement
Meeting the critical constraint requirement

Merge or Diverge blocks
If a Merge or Diverge block is between two residence blocks, the inflow and outflow branches may
or may not require a critical constraint mechanism.

05" For any Merge/Diverge mode, if a critical constraint has been placed on a Merge block’s outflow
branch, no critical constraints are required on its inflow branches. Likewise, a critical constraint on
a Diverge blocK’s inflow branch means that no critical constraints are required on its outflow
branches. If those constraints have not been placed, the critical constraint requirement depends on

the block’s mode.

The following table provides an overview of each mode’s requirements for critical constraints when
neither the Merge block’s outflow branch nor the Diverge block’s inflow branch has a critical con-
straint. (In this table, the word “variable branch” means an inflow branch for the Merge block or
an outflow branch for a Diverge block.)

Critical constraint requirements if there is no critical constraint on
the non-variable branch

Mode

Batch/Unbatch ~ Only on one of the variable branches

Distributional Each variable branch
Neutral Each variable branch
Priority Each variable branch
Proportional Only on one of the variable branches (See Note, below)
Select Each variable branch
Sensing Each variable branch

Note: For the Proportional mode, the variable branch with the critical constraint should not have a
proportion <=0. Otherwise, that branch will be closed and the other variable branches will have
potentially infinite effective rates. This is an error condition.

IS Merge and Diverge blocks, including their modes, are described fully in the chapter “Merging,
Diverging, and Routing Flow”.

The two examples that follow use the Minimum Valve model to illustrate some of the table’s con-
cepts.

313

ey AISI(|

314 | Rates, Constraints, and Movement
Meeting the critical constraint requirement

Proportional mode

The top section of the Minimum Value model indi-
cates the critical constraint requirement when a Merge
or Diverge block is in Proportional mode. If the block
is located between two residence blocks, only one criti-
cal constraint is needed as long as the branch's propor-
tion is neither 0 nor blank. (This lower requirement for
constraints is an exception to the general rule described
on page 312.) The effective rates for the other branches
are deduced from the Valve's maximum rate.

In the Minimum Valve example shown on the right, a
Valve is placed on a Diverge block’s bottom outflow
branch, and that branch does not have a 0 or blank Only one constraint needed
proportion.

Priority mode

The lower section of the Minimum Value model indicates the critical constraint requirements
when a Merge or Diverge block is in Priority mode. In this case, the number of critical constraints
that must be placed on the branches between residence blocks depends on where those constraints
are placed. These situations are shown in the Minimum Valve model.

If a critical constraint is placed between a residence
block and a Diverge blocks inflow branch, you do not
need to place any other critical constraints on the
Diverge block’s outflows. Likewise, if you place a critical
constraint on a Merge blocK’s outflow branch, you do
not need to place any critical constraints on its inflow
branches. This is shown on the right, where a Valve with
a maximum rate greater than or equal to 0 but less than
1el0 (the infinite rate) is on a Diverge block’s inflow
branch and there are no critical constraints required on
its outflow branches.

]
5
-4
)
Al
o
S
3]
@
o v
a

No constraint on each outflow

If you don’t

place a critical constraint on a Diverge block’s inflow
branch, you must place at least one critical constraint
on each outflow branch. Likewise, if you don’t place a
critical constraint on a Merge blocK’s outflow branch,
you must place at least one critical constraint on each
inflow branch.

This is shown in the screenshot to the left, where there
is no critical constraint on the Diverge block’s inflow
branch. This means each outflow branch must have a
critical constraint, in this case a Valve with a maximum
Constraint on each outflow rate greater than O but less than 1e10 (the infinite rate).

Rates, Constraints, and Movement | 315
Comprehensive example

Comprehensive example
The following example illustrates many of the
concepts from this chapter. The top line of the
Tank Constraint model, shown on the right, has
two rate sections, two critical constraints, and one
relational constraint.

Rate Section 1 Rate Section 2

&0

RS R
Emptying wCo
Source Storage Sink:

I" The sections that follow use the abbreviation FPT Tank Constraint model
to indicate “flow units per time unit”.

Rate sections

Rate sections are determined internally by a communication between Rate library blocks and the
Executive (Item library). The boundaries between rate sections are established at the beginning of
the simulation run; they do not change during the run even if the effective rates change.

At the beginning of the simulation run:

* The Filling valve has a maximum rate of 10, gets its inflow from an infinite Source, and sends its
outflow to an empty Storage tank that has a capacity for 100 flow units. The system will thus
calculate an effective inflow and outflow rate of 10 FPT for the Filling valve at the start of the
simulation run. (This will change once the Tank fills.)

* The Storage tank has a a capacity for 100 flow units, gets its inflow from a valve with a maxi-
mum rate of 10 FPT and sends its outflow to a valve with a maximum rate of 5 FPT. At the
beginning of the simulation run, its effective inflow rate will thus be 10 FPT and its effective
outflow rate will be 5 FPT.

* The Emptying valve has a maximum rate of 5 FPT and sends its outflow to an infinite Sink. Its
effective inflow and outflow rate is 5 FPT.

At the start of the simulation run, the Storage tank’s effective inflow rate is different from its effec-
tive outflow rate. Thus the first rate section for the Tank Constraint model starts at the Source
block’s outflow connector and ends at the inflow connector on the Storage tank. The second rate
section starts at the Storage tank’s outflow connector and ends at the SinK’s inflow connector.

ey AISI(|

Critical constraints

There are two critical constraints in the top line of the Tank Constraint model. The first critical
constraint is the 10 FPT entered in the Filling valve’s maximum rate field. The second is the 5
FPT entered in the Emptying valve’s maximum rate field.

Relational constraint

Relational constraints define the way the effective rates of different sections are related to each
other. At the beginning of the simulation run there are no relational constraints — the effective
inflow rate is independent of the effective outflow rate. When the Tank (which has a finite capacity
of 100 flow units) becomes full, it applies one critical constraint: inflow rate must be less than or
equal to outflow rate.

Simulation’s impact on the effective rates

Since it is empty at the start of the run, the Storage tank's initial set of flow rules will not include
placing any restrictions on its inflow rate. Consequently, the initial effective rate of flow through
Rate Section 1 is limited only by the Filling valve's critical constraint of 10 FPT.

316

Discrete Rate

Rates, Constraints, and Movement
Comprehensive example

However, this initial effective rate for the first rate section is only temporary. Since the Storage
tank's capacity is finite and since Rate Section 2's effective rate is only 5 FPT, the Storage tank will
eventually become full. Once this happens, the effective rate of 10 FPT in Rate Section 1 can no
longer be maintained. Consequently, the Storage tank introduces a relational constraint that
requires its inflow effective rate (Rate Section 1) to be less than or equal to its outflow effective rate
(Rate Section 2). Once the Storage tank is full, its relational constraint causes the effective rate
through Rate Section 1 to be reduced to 5 FPT.

Discrete Rate Modeling

Merging, Diverging, and Routing Flow

Using the Merge, Diverge, Throw Flow and Catch Flow blocks

318

Discrete Rate

K ¥

Merging, Diverging, and Routing Flow

B

=

locks of interest

When building models, you will frequently encounter situations where you want to route the
streams of flow in a model. This is accomplished using the Catch Flow, Diverge, Merge, and

Throw Flow blocks.

The Merge and Diverge blocks have similar interface and capabilities. These two blocks send and
receive flow through a variable number of inflow and outflow connectors. Their dialogs provide
rule-based options to merge or diverge flow in a discrete rate environment.

The Throw Flow and Catch Flow blocks also have similar interfaces. These blocks route flow
remotely from point to point.

This chapter covers:

* Blocks for merging, diverging, and routing flow

* Merge and Diverge modes

¢ Additional features of the Merge and Diverge blocks
* Using the Throw Flow and Catch Flow blocks

The models illustrated in this chapter are located in the folder \Examples\Discrete Rate\Merge and
Diverge.

Blocks of interest

O
=]

The following blocks from the Rate library will be the main focus of this chapter.

Catch Flow
Receives flow sent from Throw Flow or Diverge blocks. Allows you to group blocks that
can send the flow into sets, so that the list of possible connections can be filtered.

Diverge
Distributes flow from one inflow branch to one or more outflow branches at a time. The
block has several modes for determining how the flow is distributed through the branches.

Merge
N Merges flows from one or more inflow branches at a time into one outflow branch. The
oo block has several modes for determining how the inflows should be received.

Throw Flow

o: Sends flow to Catch Flow or Merge blocks. Allows you to group the blocks that can receive

the flow into sets, so that the list of possible connections can be filtered.

Merging and diverging flow
The systems modeled using discrete rate technology typically have multiple flow streams that need
to be merged into one stream or, conversely, one flow stream that needs to be diverged to multiple
streams. The Merge and Diverge blocks have been designed specifically to model this type of rout-
ing behavior.

The Merge and Diverge blocks have seven different rule-based options that determine how they
send and receive flow. These 70des mostly behave as mirror images of each other in the two
blocks. The list of modes, and their similarities and differences, are summarized in the “Mode
table”, below. The examples that follow the table show how each of the modes can be applied.

Merging, Diverging, and Routing Flow
Merging and diverging flow

I=5" For the Merge block, each input connector is referred to as an Znflow branch. For the Diverge

block, each output connector is referred to as an outflow branch. Collectively they are known as

the variable branches.

Mode table

The following table lists the Merge and Diverge modes in alphabetical order and summarizes their
main similarities and differences.

Sum of Parameter value at .
. . Compatible
inputs = . Bias order |each branch that . .
Mode See page Fixed rule? . . with Sensing
sum of required? | will always block
mode?
outputs? the flow
Batch/Unbatch | 321 No Yes No None Yes
Distributional | 324 Yes No Yes Blank, <=0 Maybe
Neutral 326 Yes No No None Maybe
Priority 322 Yes No Yes Blank Maybe
Proportional 321 Yes Yes No Blank, <=0 Yes
Select 319 Yes Yes No None Yes
Sensing 325 Yes No Yes Blank, <=0 Yes
Characteristics

Explanations for the mode characteristics are:

Some modes use a fixed flow rule to obtain or distribute the flow — no matter what happens in
the rest of the model, the fixed rule will be respected. For other modes, the flow rules express a
preference and are only invoked in specific situations depending on model conditions.

Competing requests for flow amongst Merge and Diverge blocks that have been set to the Dis-
tributional, Priority, and Sensing modes require the use of bias ordering. This is discussed in
“Biasing flow” on page 360.

While other parameter values may block the flow in certain circumstances (for instance, if a
number is out of range), for some modes a Blank or zero (0) will always cause the flow to be
stopped. Values that are out of range will cause an error message; a zero (0) or Blank will not
generate an error message.

As discussed in their respective sections, incompatibilities can arise if an area of the model has
one or more blocks that use the Sensing mode and other blocks that use either the Distribu-
tional, Neutral, or Priority mode. These situations should be avoided whenever possible as they
can give inaccurate results.

Select mode

When the Merge or Diverge blocks are in Select mode, only one selected branch at a time is open.
A table in the block’s dialog allows you to assign a unique ID number to each inflow branch (for
the Merge block) or outflow branch (for the Diverge block). The ID connector on the block’s icon

is

then used to select which branch to open.

Options in the block’s dialog allow you to specify what happens if the value at the ID connector
doesn’t match any of the branch IDs listed in the table:

319

ey AISI(|

320 | Merging, Diverging, and Routing Flow
Merging and diverging flow

¢ Choose top connection

¢ Choose bottom connection
* Stop flow

¢ Generate error

A blank value received at the ID connector always stops the flow until the connector receives a
valid input.

IZ" The Select mode uses a fixed flow rule to obtain the set of effective rates for each branch and to
determine which branch to route the flow to.

Select Mode Diverge model
In the Select Mode Diverge model, a Cre-

(-

ate block is set to output a sequential @ b E - @uion |- |
value (1, 2, 3, or 4) every 20 time units. 1 2

. . . [Pause each step 2 3 ¢ wCo
At its ID input connector, the Diverge Link | 4 Ininie Sink 1
block receives the value from the Create S oy
block, compares that value to entries in its
dialog table, and selects the appropriate Lo e 0
outflow connector. Three Tank blocks,
each with an infinite capacity for flow —e!_t
units, are connected to the Diverge block. - - T8
The Tank blocks are identified by the ID Ininie Sk
values entered in the Diverge block’s dia- Ereans
log. For example, an Output ID of 1 indi- o e ———
cates the Tank labeled “Infinite Sink 1”. E gug E
In this example the Create block is | Link | <]
responsible for controlling the Diverge Select Mode Diverge model

Discrete Rate

block. When the Create block sends a
value of 2 to the Diverge block’s ID con-
nector, the flow is routed to Infinite Sink 2, and so forth.

Notice that in this model 4 is an invalid number and the Diverge block is set to Invalid value at
ID:: stop flow. When the Create block sends a value of 4, all flow through the Diverge block stops
and a red bar appears on the block's right side. This pause in the flow could be used for a specific
purpose, for instance to allow time to empty downstream Tanks.

1= Try running the model after checking Pause each step (in the upper left corner of the model).
This will cause the simulation to pause so you can more easily see the effect of the Create block
sending values to the Diverge block. Clicking the Pause/Resume button in the toolbar will con-
tinue execution to each succeeding event. (There can be more than one event without time
advancing.) For more information, see “Stepping through a model” on page 522.

Select Mode Merge model

This model is the mirror image of the Select Mode Diverge model discussed above. While the
three source tanks provide an infinite supply of flow, it is the Merge block that controls which tank
flow is drawn from. Since the Merge block is in Select mode, the Create block controls the routing
of flow by providing different values (1, 2, 3, 4 sequentially every 20 minutes) at the Merge block’s
ID connector.

Merging, Diverging, and Routing Flow | 321
Merging and diverging flow

In this model, the Merge block is set to [nvalid value at ID: choose top connection. This means
that when the ID connector gets a value of 4 from the Create block, it will select the flow from its
top input connector.

Batch/Unbatch mode

The Batch and Unbatch modes are used to cause a different total amount of outflow than what
would be indicated by the total amount of inflow or to change the total amount of inflow into a
different total amount of outflow.

* When the Merge block is in Batch mode, each unit of flow from each inflow branch is com-
bined into one outflow unit. The effective rates of each inflow branch and the outflow connec-
tor are thus required to be equal. In this mode, the Merge block's behavior is similar to that of
the Batch block (Item library).

* When the Diverge block is in Unbatch mode, each unit of flow from its inflow branch is cloned
into one unit of flow for each outflow branch. The effective rates for the inflow connector and
each outflow branch are thus required to be equal. In this mode, the Diverge block's behavior is
similar to that of the Unbatch block (Item library).

=" The Batch/Unbatch modes are different from all the other modes because the amount of total
inflow is mever equal to the amount of total outflow.

Batch Mode Merge model

In the Batch Mode Merge example, the Merge
block is set to Merge mode: batch. Each time

unit the block takes one unit of flow from g
Infinite Source 1 and one unit of flow from Flow quantity: [1000.00 %
Infinite Source 2. It then combines them to & Flow quantity: b~y
make one unit of output flow per time unit. oy T 1000.00 E):J
Since the model runs for 1,000 time units, the Infinite Saurce 1 =3

Infinite Source 1 and Infinite Source 2 blocks

. . Flow guantity: [1000.00
each provide 1,000 units of flow.

@ Infinite Sink
Notice the amount of flow (1,000 units) that LI

has entered the Infinite Sink is half the total ifinite Souroa 2

amount of flow that has left the two source
tanks. This is because the effective rate for the
Merge block’s outflow connector is required to
be the same as the rate at each of its two inflow branches.

Batch Mode Merge model

Unbatch Mode Diverge model

In this example, one unit of flow per time unit from the Infinite Source is unbatched into two flow
units per time unit — one for Infinite Sink 1 and the other for Infinite Sink 2. Notice the total
quantity of flow (2,000) in the two sink tanks is double the amount of flow (1,000) that exited the
source tank.

Proportional mode

With the Proportional mode, you define in a table what the proportion of flow through each
branch will be. The proportion for each branch is defined in the table relative to each of the other
branches. For instance, a value of 2 for the top outflow branch and 4 for the bottom outflow
branch would indicate that the bottom branch should have twice the amount of flow as the top

322 | Merging, Diverging, and Routing Flow
Merging and diverging flow

branch. If a particular branch's proportion has been defined to be blank or <= 0, the effective rate
for that branch is set to 0 and the flow is stopped for that branch.

1= See “Merge blocks in Proportional mode” on page 367 for options when a Merge block is part of
an empty loop.

& This mode uses a fixed flow rule where the effective rate at each branch is required to meet the
proportion defined by the table. Consequently, if the flow through one or more of the branches is
blocked or starved, the effective rates for all branches will be set to zero and all flow through the

block is halted.

Proportional Mode Diverge model

In this example, flow coming from the Infinite
Source is evenly distributed between the
Diverge blocK’s three outflow branches. This
occurs because the proportions in the table in

the Diverge block’s dialog have been set to o
1:1:1. With this proportion, the effective rate
across all three branches is required to be the

ITTATIA

) e 1 co o weno
Infinite Sink 1

01100 ITTATIA

. . N [co
same — an identical amount of flow must pass oD Diverge L e S 2
through each branch. : P o o

« e e “ . 0400)
The initial constraining rate for the three Valve ! :
blocks is set to 100. However, the Shutdown Link_| 4
' F “alve 3 c-wco

block forces Valve 1's constraining rate to alter- Infinte Sink 3

nate between 0 and 100 as the model runs. This
has an impact on the effective rate for all three
branches. When the constraining rate for Valve
1 switches to 0, the outflow from all three branches goes to 0 even though the constraining rate for
Valves 2 and 3 is still equal to 100. This is because the Diverge block must enforce its ratio, which
is 1:1:1 in this example.

Proportional Mode Diverge model

Discrete Rate

Proportional Mode Merge model

This model is the mirror image of the Proportional Mode Diverge model discussed above. While
all three Valve blocks limit the supply of flow from the source tanks at an initial constraining rate
of 100, the Shutdown block forces the constraining rate in Valve 1 to alternate between 0 and 100.
As in the previous model, when the constraining rate in Valve 1 switches to 0, the effective rates for
all three branches become 0 because the Merge block is in Proportional mode and must enforce
the 1:1:1 equality it is set to.

Priority mode

The Priority mode allows you to attach priorities to the inflow branches of the Merge block and
the outflow branches of the Diverge block. These priorities only impact the effective rates assigned
to the branches when discrepancies arise between the upstream flow supply and the downstream
flow demand; otherwise they are ignored.

* In the case of the Diverge block, when the upstream supply is greater than or equal to the down-
stream demand, the block passes as much flow through each branch as the downstream demand
will allow and the priorities are ignored. However, when the cumulative downstream demand
exceeds upstream supply, the priorities that have been assigned to each branch are used to calcu-
late the appropriate effective rates for the outflow branches.

Merging, Diverging, and Routing Flow | 323
Merging and diverging flow

* In contrast, the Merge block passes as much flow as possible through each inflow branch when
downstream demand exceeds upstream supply, ignoring the priorities. However, when the
cumulative upstream supply exceeds downstream demand, the priorities assigned to each branch
are used to calculate the appropriate effective rates for the inflow branches.

Special cases apply to the use of the Priority mode in a Merge or Diverge block:

e If the priority for a particular branch has been set to blank, the effective rate for that branch will
be zero and the flow will stop for that branch.

o If the priorities of two or more branches are equal, the flow will be divided among them in a
“distributional” manner with equal proportions (see Distributional mode, below.)

I The priority entries in a Diverge block’s dialog are not fixed rules but instead are situational; they
are only used to resolve discrepancies when downstream demand exceeds upstream supply. For a
Merge block, the entries are used to resolve discrepancies when upstream supply is greater than
downstream demand.

& Merge/Diverge blocks in Priority mode are not always compatible with Merge/Diverge blocks in
Sensing mode. Consequently, an area of the model with some blocks in Sensing mode and others
in Priority mode are prone to error. See “Cautions when using potential rates” on page 383 for
more information.

Priority Mode Diverge model

In thls example, the » Wary the constraining rate for Valve 1 B

Constraining rates in between 1 and B, and observe the impact 3
the valves have been set Priority rode has on the distribution of Total flow: ,.O.
flowe to Sinks 1, 2, & 3. @
such that the upstream e R T 200000 o}
. Salve 2 [¢]
supply of 8 flow units l Infinite Sink 1 8
per time unit through o =
-0 £
Valve 1 exceeds the 2 =
cumulative down- =) ;g‘;ﬂ' EUDW
o .
stream demand of 6set | k=4 &8 % —_ RY en” o Beo
by Valves 2, 3,and 4. Infinite Source vt Priorty 1J Infinite Sink 2
1 2
Because a large enough 3 H
supply of flow exists to [_Link | <] | i Total o
satisfy downstream o o T
. .« . Rw R .
demand, the priorities \alve 4 c® ®co

. . . Infinite Sink 3
m thlS case arc lgl’lOer

and have no impact on
the set of effective rates
defined for each outflow branch.

Priority Mode Diverge model

However, if a “supply scarcity” is introduced by changing the constraining rate in Valve 1 from 8 to
4, the Diverge block will calculate a set of effective rates that distributes the now limited supply of
flow according to the defined priorities. Since the priorities have been assigned in descending order
(top outflow branch has highest priority), the Diverge block will do its best to satisfy the down-
stream demand that has been placed on the top outflow branch first. After that, if supply is still
available, the Diverge block will attempt to service subsequent branches. This pattern is repeated
until every branch has been satisfied or until the upstream supply of flow runs out, whichever
comes first.

324

Discrete Rate

Merging, Diverging, and Routing Flow
Merging and diverging flow

Priority Mode Merge model

When the blocks are in Priority mode, the difference between a Merge block and a Diverge block
(illustrated above) is that the priorities defined in the Merge block’s table impact the effective rates
for the inflow branches if there is a downstream “scarcity of demand”. The Priority Mode Merge
model illustrates the use of Priority mode when 1) the downstream demand exceeds upstream sup-
ply, and 2) downstream demand is less than upstream supply.

Distributional mode

Similar to the Proportional mode described on page 321, the Distributional mode allows you to
define a desired set of proportions for each branch. However, unlike the Proportional mode (but
similar to the Priority mode discussed on page 322), these proportions serve as the decision rule for
assigning effective rates to the branches 07/y when discrepancies arise between the upstream flow
supply and the downstream flow demand.

* In the case of the Diverge block, when the upstream supply is greater than or equal to the down-
stream demand, the block passes as much flow through each branch as the downstream demand
will allow and the proportions are ignored. However, when downstream demand exceeds
upstream supply, the proportions assigned to each branch are used as a guide to determine how
the limited supply should be distributed across the outflow branches.

* In contrast, the Merge block passes as much flow as possible through each inflow branch when
downstream demand exceeds upstream supply, ignoring the proportions entered in the dialog’s
table. However, when upstream supply exceeds downstream demand, the proportions assigned
to each branch are used as guides to determine how the limited demand should be distributed
across the inflow branches.

05" The distributional proportions entered in a Merge or Diverge block’s table are significant only in
certain situations; they are ignored otherwise. Proportions do not follow a fixed flow rule; they
only impact the effective rates assigned to the branches when discrepancies arise between the
upstream flow supply and the downstream flow demand.

A Merge/Diverge blocks in Distributional mode are not always compatible with Merge/Diverge
blocks in Sensing mode. Consequently, an area of the model with some blocks in Sensing mode
and others in Distributional mode are prone to error. See “Cautions when using potential rates” on
page 383 for more information.

Distributional Mode Diverge model

In thlS example, the pro- Wary the constraining rate for Valve 1
portions for the Dlverge hetween 8,9, 10 and ohserve the impact p 6 Tatal flaw:
an Sinks 1 & 2.
block’s two branches are 5.00
set to 1:1. The constrain- l -
ing rates in the valves are Ininte Sik 1
defined such that the s .
upstream supply of 10 o 4 Total flaw:
. . . s L.

flow units per time unit & g = ==, Bl 400

O "] =l R¥ o

33 Q
through Yalve 1 equals the T R0 T Hhvergs e 3 e Soo
cumulative downstream Infinte. Source Froportion_ - |
1

demand of 10 set by i i
Valves 2 and 3. Because a L tink | «] | 2
large enough supply of Distributional Mode Diverge model

flow exists to satisfy

Merging, Diverging, and Routing Flow | 325
Merging and diverging flow

downstream demand, the distributional proportions are ignored and have no impact on the set of
effective rates defined for each outflow branch of the Diverge block.

Two examples highlight what happens when the Diverge block is set to Distributional model and
there is a “supply scarcity” that causes the upstream supply to be less than the downstream
demand:

o If the constraining rate in Valve 1 is changed from 10 to 8, the Diverge block will use the 1:1
proportions that have been defined in its dialog to allocate the now limited supply between the
two downstream demanding branches. In this case, 4 units of flow per time unit will move
through both the top and bottom branches.

* If the constraining rate in Valve 1 is set to 9 units of flow per unit of time, the situation is differ-
ent. According to the 1:1 proportions that have been defined in its dialog, the Diverge block
should allocate 4.5 units of flow to each of the two downstream demanding branches. However,
the constraining rate for Valve 3 is 4 units of flow per time unit and that is all it can accept. The
extra 0.5 units of flow will be routed through the top branch because the downstream demand
for the bottom branch cannot keep up with the upstream supply (4.0 vs. 4.5) and the Distribu-
tional mode will always try to push as much flow as possible.

05" The Diverge block's Proportional mode is used to resolve discrepancies when downstream demand
is greater than upstream supply.

Distributional Mode Merge model

When the blocks are in Distributional mode, the difference between a Merge block and a Diverge
block (illustrated above) is that the proportions defined in the Merge block’s table impacts the
effective rates for the inflow branches only if there is a downstream “scarcity of demand”. The Dis-
tributional Mode Merge model illustrates the use of the Distributional mode when 1) the down-
stream demand exceeds upstream supply, and 2) downstream demand is less than upstream supply.

ey AISI(|

I=" The Merge block's Proportional mode is used to resolve discrepancies when upstream supply is
greater than downstream demand.

Sensing mode

Similar to the Proportional mode discussed on page 321, the Sensing modes use proportions to
calculate the effective rates for the branches. However, unlike the Proportional mode where you
directly enter or control the proportions for each branch, the proportions for the Sensing modes
are derived dynamically from the model as it runs.

* In the case of the Diverge block, Demand Sensing proportions for the outflow branches are cal-
culated as a function of the potential downstream demand. For instance, the downstream
demand placed on a particular outflow branch becomes the proportion for that branch.

* Similarly, the Merge block uses the potential upstream supply to define the Supply Sensing pro-
portions for each inflow branch.

I Potential demand and supply rates are advanced concepts that are discussed in “Upstream supply
and downstream demand” on page 382.

In the Sensing mode, the block's dialog has a table where you must define the maximum possible
rate of flow through each branch. This upper bound is used as a way to limit throughput so that
the proportions can be determined if the upstream supply or the downstream demand is infinite.

The discussion on page 383 provides reasons why the Sensing mode should be used with extreme
caution and some situations where it should be avoided altogether. Given the potential problems,

326

Discrete Rate

Merging, Diverging, and Routing Flow
Merging and diverging flow

and because similar behavior can be achieved using the Distributional mode, the Sensing mode
should be used only as a last resort.

Demand Sensing Mode Diverge model
In t.hl‘s examplc?, the con- Wary the constraining rate for alve 1
straining rates 1n Valves hetween & and 7, and ohserve the impact 250
2 3 and 4 deﬁne the Demand Sensing made has an the

> distribution of flaw ta Sink Tanks 1, 2, & 3. g o
demand for flow down- G - - T8

. e

stream of the Diverge

Infinite Sink 1
block. They therefore
define the proportions

1 BEEGEGEE

.
b

. . —%
used to distribute the :
. | o [+]
flow across the Diverge R I =g - s G SE
- . .
block’s outflow branches. Infinite Source v 1 Infinie Sk 2

Output Rate Total Flow Out
A maximum pOSSiblC ? 1.333333&3326? 1686.86&6;:22
rate Of 1’000 for each 2 0833333333333 833333333233 08333333
branch is entered in the
Diverge blocK’s table. walve A
The block’s Results tab

(cloned onto the model

worksheet) displays each
branch’s actual outflow rate and the amount of total outflow for the simulation run.

Demand Sensing Mode Diverge model

Supply Sensing Mode Merge model

In the Supply Sensing Mode Merge example, the constraining rates in Valves 1, 2, and 3 define the
supply upstream of the Merge block. They therefore define the proportions used to distribute flow
across the inflow branches.

Neutral mode

Unlike any of the modes discussed previously, the Neutral mode does not allow you to control the
effective rates for the branches. This is a passive mode where no branch has a throughput advan-
tage; the branch that gets chosen cannot be predicted. It is used when the system does not need to
control how the flow is routed.

* In the case of a Diverge block, when the upstream supply is greater than or equal to the down-
stream demand, the block passes as much flow through each branch as downstream demand will
allow. However, when downstream demand exceeds upstream supply, the distribution of flow
across each branch cannot be predicted.

* In contrast, the Merge block passes as much flow as possible through each inflow branch when
downstream demand exceeds upstream supply. However, when upstream supply exceeds down-
stream demand, the distribution of flow across each branch cannot be predicted.

The Neutral mode should be used carefully but can be handy in certain cases. As a general rule of
thumb, if you don't care exactly which branch has priority, but you do want maximum flow, con-
sider using the neutral mode. The Neutral mode can also be used to resolve conflicting decision
rules. For example, using the Neutral mode in a downstream Merge block would allow an
upstream Diverge block in Proportional mode to control the effective rates of the inflow branches
in the Merge.

Merging, Diverging, and Routing Flow | 327
Features of the Merge and Diverge blocks

Merge/Diverge blocks in Neutral mode are not always compatible with Merge/Diverge blocks in
Sensing mode. Consequently, an area of the model with some blocks in Sensing mode and others
in Neutral mode are prone to error. See “Cautions when using potential rates” on page 383 for
more information.

Features of the Merge and Diverge blocks

Some features available in the Merge and Diverge blocks of particular interest include:
* Bias order

* Dynamically changing parameters

* Internal Throw and Catch connections.

These features are described in the following sections.

Bias Order - resolving competing requests for flow

As models grow in complexity, it is common for the priorities or proportions defined in one
Merge/Diverge block to compete or conflict with the priorities or proportions defined in other
Merge/Diverge blocks. This problem of “competing requests for flow” is resolved by assigning a
bias order to the competing blocks. This is accomplished through entries in either the Model Set-
tings tab of the individual blocks or the Discrete Rate tab of the Executive block. The following

example demonstrates one of the many ways competing requests can arise and be resolved.

Because certain modes allow flexibility in the way flow is distributed, Merge or Diverge blocks set
to Distributional, Priority, or Sensing modes must specify a bias order to resolve conflicts between
competing preferences for flow, as discussed below. For a complete description of the bias concept

. D)
and bias order, see “Biasing flow” on page 360. 2
g pag z
o]
, e
Competing Requests for Flow model =
This model demon- i E?
. s L. -
strates how the prior- e 3
ities in two routing A
blocks compete Tatal flow: [1000
against each other.
)
In this example: z
s L.
* The Diverge RE Bg
block’ fl Infinite Source “ahve 1 Diverge-Priority Walve 3 i Infirite Sink
OCK'S outriow e J Total flow: 2000 prm J
branch priorities g] g 7
have been specified 2 3 2 1
in descendilljlg Link | 4 » [:DEJ Link | 4 »
. R® %R
order while the Ve 4
Merge blocks' Total flow: |0
inflow branch pri- Competing Requests for Flow model

orities have been
specified ascending order.

¢ The two blocks share common flow streams.

While the Diverge block in this model will try to satisfy its top outflow branch first, the Merge
block will oppose that by trying to satisfy its bottom inflow branch. To resolve this conflict, the
Diverge block's priorities have been biased over the Merge block. This was accomplished by select-

328

Discrete Rate

Merging, Diverging, and Routing Flow
Features of the Merge and Diverge blocks

ing Each block defines its own bias order in the Discrete Rate tab of the Executive block, then
selecting the Diverge block in the Executive’s table and entering a bias of 1.

Selecting the option “Show bias order on icon” in the Discrete Rate tab of the Executive block
causes the bias value to be displayed near block icons as “<x>”. In the above model, the bias order
is indicated as <1> for the Diverge block and <2> for the Merge block, indicating that the Diverge
block has precedence over the Merge block’s requests.

I To see how the Bias block is used instead of Merge/Diverge blocks to resolve competing preferences

for flow, see the “Prioritize With Bias Blocks” model located in the folder \Examples\Discrete
Rate\Merge and Diverge and discussed on page 360.

Internal throw and catch

While the Rate library has two blocks, Throw Flow and Catch Flow, specifically designed to trans-
port flow without the use of connection lines, the Diverge and Merge blocks have been given
throw/catch abilities as well. See “Throwing flow and catching flow remotely” on page 329 for a
full discussion.

Changing decision rules dynamically

With the exception of the Batch/Unbatch and Neutral modes, decision rule parameters for the
Merge/Diverge modes can be changed dynamically during the run. However, this is an advanced
feature that requires some caution and extra insight into how ExtendSim works.

There are two ways to dynamically change a decision rule for a Merge/Diverge mode:

¢ Allow the rules to be

Modify priarities during simulation

controlled by other W Priotities defined using value connectors

blocks. To d.o thls’ check [Update onlywhen a True value is received atthe GO connector
the appropriate ‘che‘c}(— [~ Poll new priorities anly each:

box (such as Priorities

deﬁned using value con- Modifying decision rules dynamically (Priority mode)
nectors, as shown to the
right) on the Merge or Diverge block’s Options tab. When this checkbox is selected, a set of

value input connectors appear on the block’s icon, with one connector for each branch.

¢ Link the parameter table to an ExtendSim database table or global array. Any changes made to
the table or array while the model runs will have the same effect as using a block to dynamically
change the values.

Limiting the number of recalculations

While this advanced feature is useful for changing how effective rates are calculated on the fly,
there are potential pitfalls. Since computations typically happen sequentially on a computer, new
parameter values for each branch are changed one at a time. Ideally, the Merge/Diverge block will
not recalculate the new set of effective rates for each branch until after all parameters have been
updated. If this is not the case, however, the block will be forced to unnecessarily calculate an
entirely new set of effective rates every time a parameter is updated. At the very least this will cause
your runtimes to be longer than need be. At the very worst, redundant rate calculations could
introduce bugs into your model when effective rates are temporarily calculated using one or more
out-of-date parameter values.

There are three approaches that will help avoid this problem:

Merging, Diverging, and Routing Flow | 329
Throwing flow and catching flow remotely

1) The issue can be bypassed if the inputs on one Merge/Diverge block are controlled by the out-
puts from one equation-based block, such as the Equation block (Value library). This is
because the equation block will update all its outputs with the new results prior to alerting the
Merge/Diverge block to the change. For an example of this, see the model “Change Priorities
with Equation”.

2) By checking Update only when a True value is received at the GO connector in the block’s
Options tab. This allows the calculation of a new set of effective rates to be controlled explic-
itly. In this case, changes to the parameters are ignored until a message is received at the GO
input connector. This is shown in the example model “Change Proportions with Trigger”
which requests a new set of proportions at the beginning of each goal. (A goal represents the
production of 1000 units of flow and is repeated over and over until the end of the simula-
tion.) The values at the inputs change every 10 time units, but because the chosen set of
parameter values remains unchanged for the duration of the goal, effective rates are recalcu-
lated only at the beginning of each new goal.

3) By checking Poll new parameters only each: x time units in the block’s Options tab. This
causes a new set of parameters to be updated at fixed intervals. In this case, changes to the
inputs are ignored until the next interval in time arrives. In the example “Change Proportions
Periodically”, the model picks a new set of proportions every time another 100 units of time is
reached.

I=5" The options Update only when a True value is received at the Update connector and
Poll new parameters only each: x time units can be combined together.

Throwing flow and catching flow remotely

The most common way to route flow from one block to another is by drawing a connection from
an outflow connector to an inflow connector. This is a powerful mechanism for routing flow
because it's simple to implement and it provides a very clear picture of how the flow is being
routed in a model. The use of connection lines between connectors, however, can prove to be cum-
bersome when many streams of flow need to be routed into or out of hierarchical blocks.

ey AISI(|

The ExtendSim throw/catch mechanism solves this issue by allowing flow to be moved without
the use of connection lines. By creating a throw/catch connection via block dialogs, flow can be
routed from a throwing block to any catching block in the model.

In the Rate library:

* Flow can be sent from the Throw Flow and Diverge blocks

* Flow can be received by the Catch Flow and Merge blocks.

* Any sending block can throw to any catching block regardless of location.

The rules restricting how normal flow connections can be drawn between outflow and inflow con-
nectors also apply to throw/catch connections:

¢ The flow can go one way only — from throw to catch
* One throw can be connected with one and only one catch

* One catch can be connected with one and only one throw

330 | Merging, Diverging, and Routing Flow
Throwing flow and catching flow remotely

I The advantage of using a Diverge block to throw flow or a Merge block to catch flow, is that each
outflow or inflow branch can throw or catch a separate stream of flow remotely. The Throw Flow
and Catch flow blocks, on the other hand, are limited to one flow source or destination each.

Creating a throw/catch connection

The creation of a throw/catch connection can be

made from either the sending (Throw Flow or [Select Throw Flow or Diverge block =

Diverge) or the receiving (Catch Flow or Merge) Block: |Di"-"EVQE B[4] ||
block. Connections are made by selecting the o

block to catch or throw the flow in a popup menu Fosition:

in a block’s dialog. Each eligible block appears in v Show connection onicon.

the list with its block label and global block num-
ber. Once established, the connection information
is automatically displayed in the dialogs of the
sending and receiving blocks. In the screenshot
above, the Catch Flow block will receive flow from
a Diverge block labeled “Diverge B”; the Diverge block’s global block number is 4.

Diverge B [Diverge 4:0]

Selecting a connection in a Catch Flow block

Choosing the connector position for Merge and Diverge blocks

If a Diverge or Merge block is part of the throw/catch connection, after selecting the connecting
block, you must also choose a Merge or Diverge connector position for flow to come from or go
to. This is because the Merge and Diverge blocks have multiple inflow and outflow branches.
Some of their inflows or outflows may not be used for throwing/catching and some throwing/
catching blocks may get flow from or send flow to different branches on a single Merge or Diverge

block.

The number that indicates a Merge or Diverge blocK’s particular connector position is displayed in
the leftmost column of the table in the Merge/Diverge block’s Throw or Catch tab; the number of
the topmost inflow or outflow branch is zero (0). You select the connector position from a popup
menu to the right of the Position field in the corresponding block. The menu will list all the avail-
able connector positions for the named block. In the screenshot in the preceding section, the top
outflow connector position (0) for the Diverge block labeled Diverge B is entered in the Position

field of a Catch Flow block’s dialog.

I An asterisk to the right of a connector position number in the popup menu indicates that the con-
nector is already being used by some other throw/catch block.

Discrete Rate

Filter options to facilitate throw/catch connections

Inl s, it i ible to h
n large models, it is possible to have a great number 1 Filter available blacks -

of sending and receiving blocks from which a throw/

catch connection can be made. To simplify the popup Group: | |
list of blocks eligible for connection, three types of fil-

ters can be applied: Block type: {Throw, Diverge} .|

* Group filter [Onlyunconnected blacks

* Block type filter Count: |1

* Only unconnected blocks filter
k o . Filtering options
These filters can be used in combination with each

other.

Merging, Diverging, and Routing Flow | 331
Throwing flow and catching flow remotely
Group filter
Eacl}l1 blocli)}’["'it.h throle; or Define My "throwlcatch® Graup (optional)
catch capabilities can be Wy 3 : l:l;l - .
added t0 a throw/catch y Group - (0 Thiim [1 Diverge; 2 Catoh i 0 Merge)
group. Groups can be cre- [~ Show My Group an icon.
ated or selected through Defining a Group
the group popup menu
found in the sending and
receiving blocks. When this popup is blank, the block does not belong to a group. When a block
has been added to a group, its throw/catch options are limited to the blocks currently in that
group.
Block type filter
By default, the block types a throwing block can connect to include both Catch Flow and Merge
blocks and the block types a catching block can connect to include by Throw Flow and Diverge
blocks.
¢ For throwing blocks, the list of blocks to select from can be _
Type filter OpEn | |
narrowed to only Catch Flow blocks or only Merge blocks. ICatch, hergal
) . ICatch, herge} {Caktch, Merge}
* For catching blocks, the list of blocks to select from can be - Ve Only Catch Flow
limited to only Throw Flow blocks or only Diverge blocks.
Only Merge
Only unconnected blocks filter Block type filters for a D|ver e blockr
This filter narrows the selection of possible blocks to only P &
those blocks without an established throw/catch connection.
Examples of throw and catch connections
The two example models that follow show how to use catching and throwing in a model. The first

ey AISI(|

model uses Throw Flow and Catch Flow blocks; the second model uses a Diverge block.

Catch Flow and Throw Flow model
The Catch Flow and Throw Flow

. Marmal Connections
model shows two lines, one above the
other. They produce identical results - _—
even though the flow connections have g g
been created differently: Commen e A wave s £ FEO
* The top line uses normal flow con-
nection lines to connect Valve A to AT G
Valve AA.
Catch B[14]
. 10 Throw B[13] 104100
¢ The bottom line uses a throw/catch
connection to connect Valve B to R Bp s cmehs R® BR
.. . ¢ wco “alve B valve b © WCO
Valve BB. In this line, the flow is Source B Sinke B

sent remotely by a Throw Flow
block and received by a Catch Flow
block.

Catch Flow and Throw Flow model

332 | Merging, Diverging, and Routing Flow
Throwing flow and catching flow remotely

The particulars of the throw/catch connection can be
viewed from the dialogs of either the Throw Flow or
Catch Flow blocks. In the Throw Flow dialog you can
select the Catch Flow block and see the throw/catch
connection; in the Catch Flow dialog you can select the
Throw Flow block and see the throw/catch connection.

Block: |Catch B[14] - |

Portion of Throw Flow dialog

Catch Flow and Diverge model
Similar to the previous model, the .
. Mormal Connections

top and bottom lines for the g N0
Catch Flow and Diverge model ere—e| 4
produce identical results even %o
though the flow connections have
been created differently:

[=][x]

Diverge A

Source A RE eR
* The top line of the model a uses wehve arn C ¥EO
regular connections to connect
the two outflow branches of a :
Diverge blOCk to Valve AA and ThroweCatch Connections

Diverge B[4:0] 50100 e

Valve AAA.
* The bottom ll'ne uses throw/ I, Cah Flaw B8 Y ese . €0 %o
catch connections to connect @ 2 sink B8
RS & ¥ Diverge Bl gouqgn 50000
the outflow branches of the €T ahes Diverge B
OUnce
Diverge block to Catch Flow carch Flom 558 :
[w0
BB and Catch FIOW BBB. Vel BB Sink BEB

In the bottom line, both Catch
Flow blocks indicate in their dia-
logs that the block labeled Diverge
B is remotely sending the flow. Since the flow is being sent by a Diverge block which can have
multiple outflow branches, and since each Catch Flow block must receive its flow from a separate
source, the Catch Flow blocks must also specify which of the Diverge block’s connector positions
they will receive flow from.

Catch Flow and Diverge model

Discrete Rate

In the screenshot at right, the Catch tab of Catch Flow _ _
BB indicates that it is receiving flow from the Diverge Block: |Dwerge B[4 |

block labeled Diverge B. It is getting that flow from the Position:

Diverge blocK’s top outflow branch (outflow connector
position 0). Portion of Catch Flow BB dialog

I If the throw/catch connection has been properly defined
for a particular branch of a Merge or Diverge block, the “Open” button for that branch will appear
in the last column of the table in the block’s Throw or Catch tab.

Discrete Rate Modeling

Delaying Flow

For a certain period of time, either
maintaining flow at a certain speed or blocking it.

334

Discrete Rate

Delaying Flow
Blocks of interest

=

The “Rates, Constraints, and Movement” chapter discussed how to specify critical constraints
(such as a Valve’s maximum rate) and the factors that determine the actual speed of flow moving
through a model.

Since the concepts of flow rules and critical constraints are central to the discussion of delaying
flow, it is assumed that you have already read the “Rates, Constraints, and Movement” chapter.

This chapter describes how to use advanced methods to delay flow — for a specified period of time
or until a specified condition has been met, either blocking the movement of flow or maintaining
it at a certain speed. It illustrates several methods for delaying flow, including how to:

* Control how and when a Valve observes or ignores its maximum rate setting:
* Setting a goal for a quantity of flow
* Setting a goal for a duration
* Using hysteresis to control when the block’s maximum rate will be observed

* Use a Shift block (Item library) with a Convey Flow, Interchange, Tank, or Valve to delay flow
movement for a specified period of time

* Transport flow over a defined distance at a specified speed with a Convey Flow block

Most of the models illustrated in this chapter are located in the folder \Examples\Discrete
Rate\Delaying Flow. The tutorial models mentioned are located at \Examples\Tutorials\Discrete
Rate.

Blocks of interest

The following blocks from the Rate library will be the main focus of this chapter.

Convey Flow

Delays the movement of flow from one point to another. Can accumulate flow to a
%:0%:0 maximum density, accumulate flow to fill empty sections, or act as a non-accumulating

conveyor.

Valve
o[k Controls and monitors the flow, limiting the rate of flow passing through. This block

can also be used to set a goal for the duration of flow movement or the amount of flow.

Controlling a Valve’s maximum rate

The section “Defining a critical constraint” on page 308 showed how to set a Valve’s maximum
rate. Options on the Valve’s Flow Control tab provide advanced control over how and when the
Valve applies its maximum rate. These settings determine when the Valve’s maximum rate is
observed or ignored, and for how long.

The advanced control options include:
* Setting a goal for a certain quantity of flow to pass through the Valve.

o Setting a goal for how long flow can move through the Valve or for how long it should be
stopped from moving.

* Determining what happens when the goal ends.

* Using hysteresis to delay the Valve’s response to system requirements.

Delaying Flow
Controlling a Valve’'s maximum rate

Using the Flow Control tab

By default, the settings in a Valve’s Flow Control tab are disabled. Use the
tab’s popup menu, shown at right, to choose either the Goal or Hysteresis
option.

Disable contral
Goal

Hysteresis
If the Goal option is selected, an additional popup menu appears to the

right. Use this second menu to choose: Flow Control options

* Goal as a quantity

¢ Goal as a duration

Observing the maximum rate for a goal

Whether you select a quantity or a duration goal, a Valve’s maximum rate is observed while a goal
is On. While the goal is off, you have the option to choose whether the maximum rate is observed
or not and whether the flow is stopped. Thus your purpose in using a goal could be to block flow
for a period of time and allow it to move through when the goal is off; allow flow for a period of
time and block it at other times, accept a certain quantity of flow but stop flow when the goal is
off, and so forth. In fact, you can choose to observe the maximum rate when the goal is off. This
can be useful for a quantity goal, when you just want the Valve to report when a goal is finished.

e If its maximum rate is 0 (zero), the Valve will block flow while its goal is On.

¢ Ifits maximum rate is >0, blank, or infinite, the Valve will allow flow to pass through at that rate
while its goal is On. (If the maximum rate is blank, the Valve uses an infinite rate.)
If a Valve’s maximum rate is zero and a quantity goal is On, no flow will go through the block and

the goal will never end.

Options when goal is Off
Dialog options allow you to choose what will happen when the goal switches to Off:

* Stop the flow
* Ignore maximum rate (do not constrain flow)

¢ Observe maximum rate

Setting a Valve’s quantity goal

Using popup menus in a Valve’s Control Flow tab, you can specify that the block has a goal to pass
a certain quantity of flow from its inflow to its outflow. Additional options allow you to specify
what the Valve should do once that quantity of flow has passed.

The quantity goal modulates a Valve's critical constraint (its maximum rate) by cycling between

On and Off states.

* While a quantity goal is On, the value in the Valve tab’s Maximum rate field, or the value at the
block’s R (maximum rate) input connector, is observed. The goal remains On until either the
amount of flow that has passed through the block reaches the target quantity, or the goal is inter-
rupted. At that point the goal switches to the Off state.

* What happens when the goal switches to the Off state depends on the Off option selected in the

block’s dialog: stop the flow, do not constrain flow, or observe maximum rate.

I To interrupt a goal, send a value to the Valve’s szop input connector.

335

ey AISI(|

336

Discrete Rate

Delaying Flow
Controlling a Valve’'s maximum rate

Quantity Goal model

This model uses a Pulse block (Value library) to periodically start a new quantity goal. At the start
of the simulation run and every 60 minutes afterwards, the Pulse block sends a True value (a num-
ber > 0.5) to the Production Gate valve’s start connector, starting a new goal.

The Valve’s maximum rate is 20 gallons/minute and the
simulation runs for 480 minutes. The control for the
movement of flow through the block is provided by its

4000

o — st

C wCo o o C wCo
Flow Control tab. The desired quantity of flow, 500 gal- ,_Elstagv =§u—ﬂ —r
lons, is entered in the dialog. While the goal is On, flow i S R = ="

passes through the Valve at a maximum rate of 20 gallons/ pERED

minute. After 500 gallons, the goal goes Off; the flow is Quantity Goal model

stopped, and the effective rate goes to 0. As the simulation

runs, a plotter displays the Valve's effective rate, the quantity of the goal and the times when it has
been reached, and the number of each new goal.

Settings in the Flow Control tab cause the Valve to Start a
new goal when ‘start” connector value = 1. The goal-

starting options (seen at right) can also be set to start a new
goal when the block receives a message at its G (goal) input
connector or when the previous goal finishes. Options for starting a new goal

"start" connector valle
receive message ak G connector
previous goal Finishes

You could have avoided building the Quantity Goal model
by instead mentally calculating the effect of the goal on the flow. The rate interactions and results
determined by the next model would not be so easy to compute.

Changeover Quantity Goal model

The Changeover Quantity Goal model involves a more complex system than the Quantity Goal
model from above. This model, based on the stage of the Yogurt Production model that is dis-
cussed in “Add maintenance” on page 280, shows how a quantity goal in a Valve can be used to
control a sequence of production changeovers. The top part of the model is composed of Rate

Delaying Flow
Controlling a Valve’'s maximum rate

library blocks and the bottom line is Item library blocks. A Decision block (Value library) trans-
mits values from a Valve (Rate library) to a Gate (Item library).

TEA00

C wCo

Yogurt Proceds
Liquid Supphy

Time
v

“ariable Constraint Rate

Rw¥ 50

Fruit Process

C wCo
Fruit Supply

MII0AT

TGl
Production Gate

B
O A3

G 4
TBF™ wTO N!
haintenance Shutdown
i} 1 demand -
1)
® =P @
TRT WU v v it for godi” oy wF
go
Start Goal Changeower

Changeover Quantity Goal model

Since its initial goal has been set to “none”, the goal status is Off and flow through the Production
Gate valve is stopped at the start of the simulation. However, when an item passes through the Get

block (Item library) labeled Start Goal, a message is sent to the Production Gate valve’s G (goal)

input connector. Once that happens, the valve’s goal switches from Off to On and the goal quan-

tity is set to the value of the item’s Quantity

In the bottom portion of the model, when the item leaves the Get block it moves into the Queue,
where it is blocked from leaving by a Gate block. The Gate will remain closed until the Production
Gate valve reaches its new goal of 5000 gallons. At that time the goal switches from On to Off, the
flow stops (because that is the option set on the Control Flow tab), and the value at the GS (goal

attribute (5000 gallons).

status) output is set to 3 (indicating that the goal has ended).

As a result, the Gate opens and the item moves into the Changeover Activity block where it is

delayed for the amount of time required to perform a changeover. After the changeover has been

completed, the item cycles back and initiate

0" By default, a Valve’s GS (goal status) output
0 when there is no goal
1 when a goal is starting
2 when a goal is in progress
3 when a goal has ended
4 when a goal is interrupted

s the next production cycle.

connector reports the following values:

337

ey AISI(|

338

Discrete Rate

Delaying Flow
Controlling a Valve’'s maximum rate

The following screenshot shows how the Production Gate’s quantity goal has been configured on
its Flow Control tab:

—[Goal Jas a guantity]

Goal guantity is [value at G connector,]a000 gallons
v Initial goal: galluns

Goal impact on flow when On and Off:
On: Obsere maximum rate
off: [Stop flow N

Start new goal when: [receive message at G connector]

[~ Interrupt goal when "stop" connector value

If a new goal arrives hefore the previous one is finished:
[Tanare new goal]

Flow Control tab, goal is quantity

¢ The value for the Goal quantity is received through the G input connector. (In this model, the
goal is 5000 gallons because each item has a Quantity attribute value of 5000.)

* The inital goal has been set to none. (This causes the goal to be in the Off state at the start of
the simulation.)

* The Valve has been instructed to Stop flow when the goal is Off.

* A new goal is started each time the G input connector receives a message. (Getting a value at G
causes two things to happen: 1) the goal switches from Off to On, and 2) the goal has a new
quantity as defined by the value received at the G connector.)

* Ifa new goal is received before the previous one is finished, the new goal will be ignored. (In this
model, a new goal cannot arrive before the previous one is finished.)

An interesting aspect of this model is that the Production Gate valve has been set to have an infi-
nite maximum constraining rate. This means that it will, in and of itself, not limit the rate of the
flow moving through it. However, the block’s effective (actual) rate will be determined by the two
upstream Valves. One of these Valves is connected to a Lookup Table block (Value library) that
changes its maximum rate depending on the time of day. The other upstream Valve is connected to
a Shutdown block (Item library) that causes the movement of flow to be stopped periodically for
specified durations. This sequence causes some interesting effects in the model, and the Produc-
tion Gate’s effective rate ranges between 80 and 0 gallons/minute.

This examples uses the G (goal) connector to control the “when” and “how much” aspects of the
goal. Alternately, the Control Flow tab allows you to choose to start a new goal when the start
connector receives a message or when the previous goal finishes.

Setting a Valve's duration goal

Like the quantity goal, the duration goal is used to modulate a Valve's maximum rate. However,
the duration goal cycles between the On and Off states as a function of time rather than the vol-
ume criteria used for the quantity goal.

Delaying Flow
Controlling a Valve’'s maximum rate

A duration goal remains in the On state for some amount of simulation time before switching to

the Off state:

* While a duration goal is On, the value in the Valve tab’'s Maximum rate field, or the value at the
block’s R (maximum rate) input connector, is observed. The goal remains On until either the
specified amount of time has passed, or the goal is interrupted. At that point the goal switches to
the Off state.

* What happens when the goal switches to the Off state depends on the Off option selected in the
block’s dialog: stop the flow, do not constrain flow, or observe maximum rate.

To interrupt a goal, send a value to the Valve’s stop input connector.

Duration Goal model

The Duration Goal model is similar to the Quantity Goal
model from above, except the goal allows the flow to move
through the Valve for a certain period of time.

Db e 4

[wCo s a. [wCo

In this model, the Valve’s Flow Control tab is set to e S ===
. . . Pulse w5l E -

observe its maximum rate of 20 gallons/minute for 45 Production Gate =t

minutes. When the goal is On, the block passes through latils

whatever amount of flow it can, at the maximum rate of ~ Duration Goal model

20 gallons/minute. When the 45 minutes passes, the goal

is set to Off and all flow through the block stops. The Pulse block (Value library) restarts the goal
every 60 minutes. As the model runs, the block’s maximum rate cycles from 20 gallons/minute to
0, depending on whether the goal is On or Off. As a result, the block’s effective rate stays at 0 for
the period of time (15 minutes) from when the previous goal ends until when a new goal starts.

Changeover With Only Goals model

The Changeover With Only Goals model is equivalent to the Changeover Quantity Goal model
(discussed earlier) in terms of behavior. However, while the Production Gate valve still has a quan-
tity goal in this model, the changeover is controlled using a second Valve with a duration goal,
rather than by an item.

™ Production Function

e £ _noo
Yogurt Proceds =
Time

Feou N e T

fo o, fo o, c wCo

E i
b a
stait™ GO T stait™ GO
GH nG#
<> o o
e 50 Production Gate Changeower Gate

E) S'CID Fruit Process
it Supply)

TRF™ =TO
Maintenance Shutdown

C wCo
Liquid Supphy

“ariablg Constraint Rate

Production Control

Changeover With Only Goals model

Since it’s Flow Control tab specifies that it has an initial quantity goal of 5000 gallons, the Produc-
tion Gate valve starts the simulation by observing its maximum rate setting — infinity. However, as

339

ey AISI(|

340

Discrete Rate

Delaying Flow
Controlling a Valve’'s maximum rate

was true for the Changeover Quantity Goal model, the block’s actual effective rate will be
impacted by the Liquid Supply and Fruit Supply valves upstream.

The Production Gate's goal state is communicated to the Changeover Gate through the connec-
tion between the first block’s GS (goal status) output connector and the second block’s szart input
connector. Because of this connection and because of how the duration goal has been specified in
the Changeover Gate, the duration goal starts in the Off state and will switch to On only after the
Production Gate's quantity goal is completed. After 20 minutes, the Duration Goal is finished and
the Changeover Gate sends a message to the Production Gate to start a new quantity goal.

1= Unlike the Duration Goal model that allows flow to pass through for a specified amount of time,

the duration goal in this model causes flow to be blocked for a certain period. The Changeover
Gate’s maximum rate is set to 0 and the goal’s duration is set to 20 minutes. While the goal is On,
the block’s maximum rate (0) is observed and no flow passes through, allowing for the changeover.

The following screenshot shows how the Changeover Gate’s duration goal has been configured on
its Flow Control tab:

_[Goal &= a duration]

Goal duration is[constant 20 Ominute*

™ Initial goal;

Goal impact an flow when On and Off:
Cn. Observe maximum rate
Off [lgnare maximurm rate .]

Start new goal when: ["start” connectorvalue =

[Interrupt goal when "stop" connector value

If & new goal arrives before the previous one is finished:
[Tanare new goal .]

Flow Control tab, goal is duration

* The goal duration is a constant 20 minutes. The duration could be made variable by instead
choosing Goal durations is: value ar G connector.

¢ The 20 minute blocking of flow allows the changeover to occur. The maximum rate on the
Changeover Gate’s Valve tab is 0. This would cause the flow to be blocked in the absence of any
goal being set for this block. Consequently, if the block has a duration goal and it is On, that
maximum rate of 0 will be observed and flow will be blocked from entering. When the goal
turns Off after 20 minutes, the Changeover Gate doesn't apply any constraining rate on the flow
because it is set to Off* ignore maximum rate.

* A new duration goal is started only when the sta7¢ input connector receives a value of 3. Conse-
quently, a new duration goal begins only when the upstream Production Gate's quantity goal

has finished.

e When the changeover has completed and the duration goal switches from On to Off, a signal is
sent from the Changeover Gate to the Production Gate. This results in a new quantity goal
starting in the Production Gate.

Delaying Flow
Controlling a Valve’'s maximum rate

Setting hysteresis in a Valve

Hysteresis is a property of systems that causes them to not react instantly to a change. The purpose
of adding hysteresis in a model is to introduce a delay in the time it takes some part of the system
to switch from one state to another.

Hysteresis allows you to insert a lag or delay in a Valve’s response to system requirements. It is used
to avoid oscillations and to achieve better control over flow movement. This is accomplished by
using model conditions to explicitly control both when a Valve’s maximum rate is observed and
when it is ignored.

Unlike the quantity and duration goals discussed earlier, where the conditions for applying the
Valve’s maximum rate were entered in its dialog, hysteresis must always get its control information
from outside the block. The hysteresis option always relies on the Valves start input connector to
control when the Valve’s maximum rate will be observed and its stgp input connector to control
when the maximum rate will be ignored. When the maximum rate is ignored, the Valve’s dialog
provides a popup menu for choosing if the flow stops or if the Valve does not constrain the flow.

Hysteresis model

In this model, the Filling valve opens 70N o ,

when the Storage tank is empty and iy :{ y

closes when the tank is full. Conversely, o I O] S I T
the Emptying valve opens when the Stor- Soure :|_Q*—St»a°€' sink
age tank is full and closes when the tank P g | Y tying

is empty. As a result, the model repeat-
edly cycles through the following stages: ~ Hysteresis model
* Emptying valve closes and filling valve

opens

* Storage tank starts accumulating flow

* Storage tank reaches the full state

* Emptying valve opens and filling valve closes
* Storage tank starts emptying

* Storage tank reaches the empty state

Based on settings in its Indicators tab, the Storage tank's I (indicator) connector outputs a value of
0 when empty and 2 when it is full. (Tank indicators are discussed on page 295.)

The Filling valve’s Hysteresis settings _
are shown at the right. When this Obserne Maximum rate when "statt’ connector ED

valve’s start connector gets a 0 from Ignore Maximurm rate when "stop® connector EdE]
the Storage tank’s I output connector, viken ignaring: [Si0p Aow |

the valve observes its maximum rate.
When the Filling valve’s szop input
connector gets a 2, the block shuts
down.

Hysteresis settings: Filling valve

341

ey AISI(|

342

Discrete Rate

Delaying Flow
Delaying flow with the Shift block

. , .
Er}ll;siri[)tt}}l’;igp;ﬂ:ietz ilgi[le:i:sillshsrf; Ohserve Maximum rate when "start’ connector EI
valve, as shown at the right. When lghare Maximum rate when "stop" cannectar ED
this valve’s start connector gets a 2 When igharing: [STop figw |

from the Storage tank’s I output con-
nector, the valve observes its maxi-
mum rate. When its stop input
connector gets a 0, the valve shuts down.

Hysteresis setting for Emptying valve

Delaying flow with the Shift block

The Shift block (Item library) is discussed fully in “The Shift block” on page 218. It is used to
schedule capacity in certain blocks found in the Item and Rate libraries. Shifts come it two types:
On/Off and Numeric.

Rate library blocks do not support a Number type of shift. The following Rate library blocks can

be controlled using On/Off Shifts:

* Convey Flow. When the shift is Off, the effective inflow rate is set to 0, blocking any new flow
from entering. Depending on which option has been chosen in the Convey Flow’s dialog, the
block’s speed will either also be set to 0 or it will remain unchanged from what is set in the dia-
log. If the Empty when shift is off checkbox is checked, any flow already on the conveyor at the

Off shift time will continue progress towards exiting the block.

* Tank. The effective inflow and outflow rates are set to 0 when the shift is Off, effectively shut-
ting the block down.

* Interchange. Same logic as the Tank.

* Valve. Same logic as the Tank.

Adding a Shift to a model

The easiest way to add a Shift block to a discrete rate model is to click the Add Shift button found
on the Options tab of a Convey Flow, Tank, Interchange, or Valve block. This automatically does
the following:

* Places a Shift block on the model worksheet below the originating block
* Enters the Shift name in the originating block's Use Shift field
* Opens the Shift’s dialog so settings can be entered

To use the Shift, enter the required information in the block’s dialog. (The Shift controls the origi-
nating block remotely; it does not need to be connected in the model.) Each Shift block starts with
a default name for its shift. If you subsequently change the name of the shift, the new name will be
reflected in the block that uses that shift.

For more information about using the Shift block, see “The Shift block” on page 218.

Convey Flow block

Setting an initial contents and the capacity of a Convey Flow block is discussed in the chapter
“Sources, Storage, and Units”. The current chapter focuses on the behavior of the Convey Flow
block and how to set parameters that affect how flow is delayed through the block.

Flow entering the Convey Flow block is available to leave only after a specified delay that has been
defined as a function of length and speed. The flow that enters is required to move some distance
at a certain rate of speed before arriving at the block's exit point. The Convey Flow, then, is a resi-

Delaying Flow | 343
Convey Flow block

dence block with flow distributed across its length at varying densities. (Density is the amount of
flow that has accumulated at any one point on the conveyor.)

This block is useful for representing a conveyor, industrial oven, refrigeration system, or other sim-
ilar piece of equipment with a length component where the position of flow must be taken into
consideration.

A A Convey Flow block is computationally intensive, so it should be used only if the system you are
modeling requires very precise tracking of flow movement and position. For instances when the

block should not be used, see page 346.
Dialog settings

Movement of flow across the Convey Flow block is influenced by the dialog settings and parame-
ters.

Determining speed and distance
The Convey Flow block

offers two options: Speed
determines travel time or

Delay determines travel Travel time based on:
. Dependmg on Spead: length unitf hour®

which of these is selected,
the following entries can 10

be made: Length: length unit

rSelact hehaviar

Mode: [Accurnulate-maximum density]

* Speed. Specifies the Masirnurm density; uhits f length unit
maximum potential 1000
speed at which the con-
Veyor can transport Dialog parameters for Convey Flow

ey AISI(|

flow. However, when
the potential supply of flow from the conveyor exceeds the downstream demand, the observed
speed of the flow can become something less than the speed parameter.

* Delay. Represents the amount of time flow will spend in the block if there is no downstream
blocking. If the block’s dialog is set to Speed determines travel time, the delay is calculated by
dividing Length by Speed. If the dialog is set to Delay determines travel time, the flow will take
the entered Delay time to travel the stated Length.

* Length. Represents the distance flow must travel before reaching the block's exit point. The
length of a Convey Flow block has to be greater than 0.

* Maximum density. Density is the amount of flow that has accumulated at any one point on the
conveyor. The observed density of flow on a conveyor is a function of the upstream supply rate,
the conveyor's speed, the downstream demand rate, and what settings have been chosen in the
block’s dialog. The Maximum density setting limits how high the pile of flow can be at any one
point along the conveyor. For example, if the upstream supply rate is greater than or equal to the
conveyor's maximum inflow rate (speed*maximum density), then the amount of flow entering
the conveyor will be equal to the maximum density. In this case, it is the conveyor's capacity to
receive flow that limits its effective inflow rate.

344

Discrete Rate

Delaying Flow
Convey Flow block

5" The parameters for speed or delay can vary dynamically during the simulation; the length and

maximum density parameters remain fixed.

Convey Flow behavior

The Convey Flow block is divided into segments, where the boundaries of each segment are
defined by a change in the density of flow. Depending on the options chosen in the dialog, flow
could accumulate or “pile up” along the length of the block any time the amount of flow ready to
exit the block exceeds downstream demand.

The Convey Flow block has three options controlling how or if flow is allowed to accumulate:

* Accumulate-maximum density. Allows flow to accumulate up to its maximum density setting. If
the conveyor's ability to deliver flow exceeds downstream demand, any flow delayed from exit-
ing will begin piling up at the outflow end of the conveyor up to the maximum density level.

* Accumulate- fill empty segments. Allows flow to fill in any empty segments along the conveyor
when the blocK’s ability to deliver flow exceeds downstream demand. (An empty segment is an
area along the blocK’s length that has a density of 0.) This differs from the first option in that
one section of flow is not allowed to pile onto another section of flow.

* Non-accumulating. This option does not allow flow to accumulate. Therefore, the block’s speed
slows when its ability to deliver flow exceeds downstream demand.

15" The Compare Convey Flow model compares the behavior of three Convey Flow blocks, each set to

one of these behaviors, under different emptying rates.

Constraining rates

Critical constraints define an unconditional maximum upper bound to the rate of flow. As dis-
cussed in the chapter “Rates, Constraints, and Movement”, the Convey Flow block calculates crit-
ical constraints for its inflow and outflow connectors separately. The critical constraints are derived
from model conditions and settings in the dialog.

* The critical constraint for the Convey Flow blocK’s inflow is calculated by multiplying the
blocK’s effective speed by its maximum density entry.

The effective speed can be less than or equal to the speed set in the dialog. If the block is non-accu-

mulating, or if it is accumulating but cannot accumulate more, and the block’s ability to deliver
flow exceeds downstream demand, the effective speed will be lower than the entered speed.

* The critical constraint for the block’s outflow is the result of the multiplication of the block’s
speed setting by the density of flow present at the outflow end of the block.

Convey Flow information

The Convey Flow block provides different types of information concerning the distribution of
flow along the length of its conveyor. Some of the information is provided by default while other
mechanisms for reporting data, like sensors and indicators, must be customized through the

block's dialog.

Delaying Flow
Convey Flow block

Distribution of flow

If you select Run > Show 2D Animation before you run the simula-
tion, the distribution of flow in the Convey Flow block will be dis-
played across the top of its icon, as shown on the right.

On the Convey Flow block’s Animation tab, selecting Show block's O o o
Sflow distribution in table during simulation causes a table to P wil n': 0
appear. As the simulation runs, the table displays information about 5P

the current distribution of the flow in each segment of its length:

v Show block's flow distribution in table during simulation: Flow and accumulation point

High Limit Law Limit Density CQuaritity

1] 10 faet 9 faet 4 tonzfest 4 tons
1 O feet T feet 2 tons/fest 4tons
) 7 feet 4 feet 0 tons/feet 0 tons
3 5 feet 3 feet 2 tonsifest 4tons
4 3 feet 2 feet 4 tons/fest 4tons
5 2 feet 0 feoat G tonsffact 12 tons
Link |

Table showing example distribution of flow

The length of a Convey Flow block is divided into segments, where the boundaries of each seg-
ment are defined by a change in the density of flow. The table above indicates that this Convey
Flow block currently has 8 segments along its length.

Accumulation point

If the block is set to be accumulating, any accumulation will start at its outflow and go toward its
inflow. The point beyond which no more flow can accumulate is known as the accumulation
point. This point will probably move between the inflow and the outflow as the simulation runs.

The Results tab reports information about the accumulated flow: the distance from the outflow
where the accumulation point is located, the indicator, and the accumulated quantity of flow.

If the command Run > Show 2D Animation is checked while the model runs, and there is accu-

mulation, a vertical red bar will move on the block’s icon during the simulation; this indicates the
location of the accumulation point. The “Flow and accumulation point” screenshot above shows

the red line of the accumulation point.

The accumulation point is located somewhere along the length of a Convey Flow block that has
been set to accumulate flow.

Sensors

The Convey Flow block has a Sensors tab for specifying the locations and trigger points of sensors
along the length of the conveyor. Each sensor reads and communicates the density of flow over
time at a particular point on the conveyor. This information is displayed in a table in the block’s
dialog and reported by the block’s S (sensor) output connectors — one S output for each sensor.

You must spec1fy in the table not Locations are: [ahsolute numbers,] Sensorresultis: [the density

only the number of sensors desired

but also the location of each one. D L T | Show Example]
(Use the +/- button in the table’s ; ;: :::: g::::ﬁzz

lower right corner to specify the g 0 feet 0 tons/fest j

number of sensors.) The example | Link | <] g

Sensor tab table

345

ey AISI(|

346

Discrete Rate

Delaying Flow
Convey Flow block

table shown here indicates that four sensors have been placed along a ten foot section of the con-
veyor.

The S connectors should be used judiciously. Extra events are used to update them at the proper

time and the calculation is computationally intensive.

Indicators

As discussed in “Accumulation point” on page 345, the accumulation point indicates the point
beyond which no more flow can accumulate. You might want an indication when the accumula-
tion point is within a particular segment of the Convey Flow block.

The Indicators tab on a Convey Flow block is used to define segments to indicate where the accu-
mulation point is along its length. Each segment is assigned a name, a defined range, and an ID
number. The ID number is used to update the block’s I (indicator) output connector as the accu-
mulation point moves from one segment to the next.

See “Indicators” on page 295 for complete information about creating and using indicators.

05" The I connectors should be used judiciously. Extra events are used to update them at the proper

time and the calculation is computationally intensive.

When to avoid using the Convey Flow block

A Convey Flow block should be used only if the system you are modeling requires very precise
tracking of flow movement and position. While the block is very precise, it is also very time con-
suming, so use it with caution. Following are some usage guidelines:

* The travel time has to be long enough to justify using the Convey Flow block. If the impact on
the result of the simulation is small, it is a good strategy to ignore any travel time delays. For
instance, the amount of time required for product to traverse a pipe separating two tanks is often
insignificant and should usually be ignored.

* The distribution of flow along the Convey Flow block should impact the rest of the model in
some significant way. If the effective inflow rate varies significantly during the simulation and/or
if the speed changes, the product may be unevenly distributed across the length of the conveyor.
This discontinuity impacts the rate at which flow is able to exit the block over time. The greater
this variation in availability, the greater the potential impact on the rest of the model and the
greater the block's use can be justified.

One alternative would be to use a combination of Tank and Valve blocks to mimic a Convey Flow
block. This is far less computationally intensive than the Convey Flow block by itself. While some
configurations may not be as precise, you can use a combination of one Tank followed by one
Valve block in such a way that the behavior is identical or almost identical to the results when
using a Convey Flow block.

Another alternative is shown in the Tank and Valve to Convey model. In this example, the bottom
flow stream behaves almost identically to the upper stream without using a Convey Flow block.
Because Valves Al and B1 vary their constraining rate, the Convey Flow block (Convey A) will get
and create a lot of messages, slowing down the simulation. But the Convey B1 tank won't create
the extra events. This will be slightly less precise but much more efficient.

1" Never use a Convey Flow block if the system’s behavior can be modeled using a Tank and Valve.

Discrete Rate Modeling

Mixing Flow and Items

Mingling discrete rate flows with discrete event items.

348

Discrete Rate

Mixing Flow and ltems
Controlling flow with items and items with flow

It is common for systems to exhibit a mixture of behaviors, where items from the discrete event
arena intermingle with discrete rate processes. In these “mixed mode” cases, a proper understand-
ing of both the Rate and Item libraries and how they can interact with each other is required.

There are two general techniques for integrating discrete event blocks from the Item library with
discrete rate blocks from the Rate library:

1) Sending signals and sharing information via value connections. Value connections can be very
useful for triggering some type of action as the system moves from one state to another. For
example:

* Value connections can trigger the generation of an item when the level of flow in a Tank
reaches a certain level.

* The value of an attribute on an item passing through some part of a discrete rate model
could trigger a change in the constraining rate in a Valve block.

2) Mixing items with flow using the Interchange block, as you saw in the Discrete Rate tutorial
on page 284. The Interchange block (Rate library) provides the ability for items and flow to
interface with each other. For example, an empty tanker truck (an item) might arrive at a refin-
ery and fill with gas (flow) at a continuous rate using an Interchange block. Once full, the
truck might be routed through a series of Item library blocks until it reached its unloading des-
tination. At that point the item would again interface with an Interchange block to discharge
its load.

This chapter focuses on the techniques used when the need for “mixed mode models” arises. It will

show how to:

* Control flow using blocks from the Item library
* Control items with blocks from the Rate library

* Mix flow with items using the Interchange block

I=" The models for this chapter are located in the folder \Examples\Discrete Rate\Flow and Items.

Controlling flow with items and items with flow

Rate library blocks can control the movement of items and Item library blocks can control the
movement of flow. In either case, value connectors communicate state changes to the controlling

blocks.

Items controlling flow

The Item Controls Flow model shows one of many ways blocks from the Item library can be used
to control the movement of flow in a model. It uses one item to open a valve, allowing a tank to
fill, then uses the same item to trigger the emptying of that tank.

Mixing Flow and Items
Controlling flow with items and items with flow

Item Controls Flow model

Unless the presence of an item in an
Activity block triggers them to open,
Valves 1 and 2 are both closed during

100 o
the simulation run. While an item is in c!_t Id sz!_t oplide S!_lv
the Activity block (Item library) labeled B T FD e Sco T e 250 P
Filling Valve 1, it causes Valve 1 to open; Source Reception Sink
this allows the Reception tank to fill. - i
When the item moves to the Activity 1 . Id"'|_EI i — dﬂ—|_EI
block labeled Emptying Valve 2, it ;1 e—4 py O

causes Valve 1 to close and Valve 2 to
open. This allows the Reception tank to

empty into the Sink tank. The closing y v '

and opening of the valves is accom- - @'U DFF F DFF Fa
plished by detecting Whlch Activity Filling “alve 1 Emptying ‘alve 2
block has the item and for how long it is

held there.

Item Controls Flow model
In this model, constant blocks (Value
library) provide a potential constraining
rate of 100 for the valves. Multiplying the constant value by an Activity’s F (Full) output (which
will be 1 if the Activity has the item in it and 0 if it does not) gives the valves their actual constrain-
ing rate (100 or 0). This causes the valves to open and close depending on where the item is in the
model. Both Activity blocks are set to delay the item for a random amount of time, which repre-
sents how long the Reception tank can fill and empty.

Notice that the Reception tank can be full even while the item is still in the Filling Valve 1 activity.
Since the tank can’t accept any more flow when it is full, and can’t start emptying undil the item
moves to the Emptying Valve 2 block, the flow stops before the Filling process has been completed.
The next model shows how the Reception tank can let the item know that it is full.

Flow controlling items

The example below illustrates one of ways blocks from the Rate library can be used to control the
movement of items in a model.

349

ey AISI(|

350 [Mixing Flow and Items
Controlling flow with items and items with flow

Flow Controls Item model

This model is extends the one above,

adding that the state of the Reception
tank alters the movement of the item

and interrupts the filling process.

o0 o
[
d il v o

“alve 1 c C0ndi “alve 2 c wco
gl—lndlcator Sink

As in the prior model, the Reception

tank fills and empties based on the

movement of an item and delays set in o2 - Pl
— n—l-g Tihald

the two Activity blocks.

Receaption

A ¥

. . Fi I F2
In this model, whenever the Reception
tank is full, it sends an indicator signal
to the Decision block (Value library). Indicator ——gé&
[

This block in turn notifies the Activity Ng‘
block labeled Filling Valve 1, preempt-

ing the item whose presence opened F ’%

Valve 1 and allowed the tank to fill.
When the item is preempted, it moves
to the Activity block labeled Emptying
Valve 2. This causes Valve 1 to close, Flow Controls Item model

Valve 2 to open, and the Reception tank

to empty into the Sink for the duration specified in the second Activity block.

Ow wF F1 Ow wF
Filling “/alwe 1 Emptying alve 2

Flow controlling items and items controlling flow
The following model combines both of the previous concepts — flow controlling items and items
controlling flow — into an even more complex system.

Step The Flow Process model

In this model the location of a “cycling item” triggers the opening and shutting of valves for the
flow, while tank states control the opening and shutting of the gates for the item. The control logic
is circular in nature: the item's location defines the current stage; the current stage controls the

Discrete Rate

Mixing Flow and ltems | 351
Controlling flow with items and items with flow

opening and shutting of valve blocks; valves impact the level of flow; and the level of flow controls
the item's location.

€9 -6 7

[Pause each step

wCo
Recycle
00 i 12000

100 o A
i |
Re w0 = 5 §° c Re w0

c wCo c co, . Co alve 3 c wCo
Sourme “ahre 1 B Indicator 1 “ahre 2 g—Indicatar 2 Sink
Reception Processing
Stage —a y=fix) Stage —a |y=f(x) Stage —a [y=f(x)
Indicator 1 —aa Indicator 1 —aa Indicator 2 —a4a
O A2 O A0 O A
N!‘ N!‘ Ng 4
=
1 demand demand demand
art ,_
tart
o i P
Gate 1 AD Gate 2 AD F v cate 3 A0
Stage 1) Stage 2 Stage 3—L3 Stage 4 L4
Start

L p— Stage 1: Open Valve | and release flow into Reception
(3 :'; con B Stage Stage 2 Open Valve 2 and release flow info Processing
3.4 Stage 3 Process the flow

148 Stage 4: Open Valve 3 and release flow info Sink

Step The Flow Process model

Flow controlling the item

The top section of the model is where flow controls the item. The I (Indicator) connectors on both
the Reception and Processing tanks (Rate library) control the three Gate blocks (Item library) used
in the item stream at the bottom part of the model. Gate 1 is open only while the Reception tank
is in the full state. Conversely, Gate 2 is open only while the Reception tank is in the empzy state.
Finally, Gate 3 is open only while the Processing tank is empty.

ey AISI(|

Item controlling the flow

The bottom section of the model is where the item controls the flow. In this case, the three Valve
blocks (Rate library) in the top part of the model are controlled by the lengths of the three Queue
blocks (Item library) in the item stream in the bottom portion. The item stream has only one item
which cycles through the item-based blocks in a loop. Consequently, the queue lengths for each
Queue in this loop will alternate between 1 and 0. For instance, Valve 1 is open only when the
length in the Stage 1 queue equals 1. Similar logic applies to Valve 2 and Valve 3.

The activity in the model is divided into four stages: open Valve 1 and release flow into Reception;
open Valve 2 and release flow into Processing; process the flow; open Valve 3 and release flow into

Sink

Stage 1: Open Valve 1 and release flow to Reception

The I (Indicator) connector on the Reception tank is controlling Gate 1. At the start of the simu-
lation, Gate 1 is closed because the Reception tank is not full (it's actually empty at this point),
and the cycling item is blocked from leaving the Stage 1 queue. Notice the highlighted area where
the Max & Min block (Value library) is used to translate the cycling item's location into a stage

352

Discrete Rate

Mixing Flow and ltems
Using the Interchange block to mix items with flow

number. Since the cycling item remains in the Stage 1 queue, the model is now in a Stage 1 hold-
ing pattern. Consequently, Valve 1 is opened (so the Reception tank starts receiving flow) and
Valves 2 and 3 are closed.

Stage 2: Open Valve 2 and release flow to Processing

Once the Reception Tank reaches the full state, Gate 1 is opened and Gate 2 is closed. This allows
the item to move on to the Stage 2 queue. The result is that Valve 2 opens, Valves 1 and 3 close,
and flow starts moving from the Reception tank into Recycling and Processing. Gate 2 remains
closed while the Reception tank empties.

Stage 3: Process the flow

Once the Reception tank is completely empty, Gate 2 is opened, Gates 1 and 3 are closed, and the
item enters an Activity block labeled “Stage 3”. While the item remains in Stage 3, all three Valve
blocks remain closed. The Activity block, which has a delay of 2 minutes, is used to keep the flow
in the Processing tank for some period of time so it can be processed.

Stage 4: Open Valve 3 and release the flow

Once processing is completed, the item leaves Stage 3 and moves into the Stage 4 queue. Since
Gate 3 is currently closed (because the Processing tank is not empty), the model is now in a Stage 4
holding pattern and Valve 3 opens. Once the Processing tank is empty, Gate 3 opens and the item
cycles back to the State 1 queue where the whole processes starts all over again.

While this model is useful for demonstrating how mixed mode models can control item and flow
movement, the same behavior can be created without items using the Valve block’s Hysteresis
option. For more information, see “Setting hysteresis in a Valve” on page 341.

Using the Interchange block to mix items with flow

The Rate library’s Interchange block is unique in that it allows items and flow to interface directly
with each other. Flow can enter the Interchange block not only through its inflow connector but
also through the arrival of an item. Conversely, flow can exit the block through its outflow connec-
tor or through the exiting of an item.

The use of the Interchange block was introduced on page 284 of the Discrete Rate Tutorial, and
the block’s capacity to hold flow is discussed starting on page 292 of the Flow Sources, Storage,
and Units chapter. This chapter will describe how the Interchange block interfaces flow with items.

The Interchange block is where an item can be filled with flow or emptied of flow.

There are a number of occasions where it can be useful to provide items with the ability to store,
transport, and empty flow as they move from one section of a discrete rate model to another. For
example, the attribute capabilities used to distinguish one item from another can also be used to
distinguish one block of flow carried by one item from another block of flow carried by a different
item. This can be an especially useful modeling construct since flow units by themselves are indis-
tinguishable from each other.

Behavioral rules

The Interchange block has two very different modes (“Tank only exists while item is in it” and
“Tank is separate from item”) that affect how the block behaves. (These modes were introduced on
page 292 and will be discussed more fully on page 354.) Even so, the Interchange block always fol-

lows a fundamental set of rules:

* The item input and item output connectors on the Interchange block must both always be con-
nected.

Mixing Flow and Items
Using the Interchange block to mix items with flow

At least one of the Interchange block's inflow/outflow connectors must be connected (both may
be connected as well).

The Interchange block's capacity for holding items is permanently fixed at one item.

The Interchange block loads and unloads the item and its flow instantaneously. (Flow present in
the item when it enters the block is instantaneously available to the block; flow leaving the block
with an item is instantaneously removed from the block.)

The flow connector configuration

The behavior of the Interchange
block is dramatically affected by
how the inflow and outflow con-
nectors have been connected. As
mentioned above, only one of the
two flow connectors needs to be

ICw wCo
Unload ftem

connected. If only the inflow con- Arriving item is always filled (left) or is always emptied (right)
nector is connected, arriving items

can only be filled with flow, and if only the outflow connector is connected, arriving items can
only unload flow.

Item release conditions

The release conditions determine when an item is scheduled to leave the Interchange block; they
are the same for both block modes. Releases can also be accomplished at any time using the Pre-
empt connector.

Scheduled releases

There are 5 options for defining when the item should be
released:

when contents == Target {load process)
when contents <= Target {unload process)
as 5000 as possible

only with preempt connectar message
when level reaches indicator:

When contents >= Target. This option requires the item
to be filled with a certain amount of flow prior to

release. The Target amount is entered in the dialog. i
Release options for Interchange block

When contents <= Target. Requires the item's flow level
to empty to a certain point prior to release. The Target
amount is entered in the dialog.

As soon as possible. Releases the item whenever there is downstream item capacity for the item,
irrespective of the current flow level.

Only with preempt connector message. Releases the item when a true value is received at the
block’s PE (preempt) value input connector.

When level reaches indicator. Requires the flow contents to reach a certain level prior to release.
Indicators (segments that indicate the level of contents) must first be entered on the block’s Indi-
cator tab for this option to be used.

Preemption

The scheduled relegse condm.ons canbe G oicase ftem when “Preempt’ connector value
superseded at any time by using the

preempt connector. Whenever the pre- Preemption options for Interchange block

353

ey AISI(|

354 | Mixing Flow and Items
Using the Interchange block to mix items with flow

empt connector receives a value that corresponds to the preemption options selected in the Item/
Flow dialog, seen above, it will trigger a preempt.

I To immediately dispose of an item after it releases flow, connect an Exit block (Item library) to the
y y
Interchange blocK’s item output connector. To instead have an item present all the time, connect a
Create block set to Create items infinitely to the block’s item input connector.

Interchange modes

The Interchange block has two modes:
* Tank only exists while item is in it

* Tank is separate from item

These are illustrated below.

Tank only exists while item is in it

In this mode, the Interchange's capacity to handle flow is completely dependent upon the presence
of an item. The arriving item can be thought of as a “tank” with a capacity to hold flow. This item/
tank can move through the item-based blocks just like any other item would. However, once it
enters an Interchange block, the item/tank can release flow directly into the block’s outflow con-
nection and/or accept flow directly from its inflow connection. In the absence of the item/tank,
the Interchange block has no flow capacity.

Two very important behaviors result from an item exiting the block when it is set to this mode:
* Once the conditions for item release have been met, the exiting item will always take with it any

flow currently residing in the block.

Until a successor item arrives, the Interchange’s inflow and outflow will be blocked.

Discrete Rate
[]

& In this mode, the absence of an item eliminates not only the Interchange's capacity to hold flow
but also its capacity to pass flow from an upstream source to a downstream sink. (This differs from
the behavior of a Tank block, which passes flow through even if its capacity has been set to zero.)

Shipping model

A typical example
of how the Inter-
change block
could be used in
this mode is illus-
trated by the
Shipping model.

0
In this example, Returnﬂ%@% H’%

an empty Ship (an TR WU 0w wF IC¥ O pw W oY wco

. .. Resource ftem Sailto Loading Port Load 3hip sailto Unloading Port Unload Ship

item) arriving at a

loading port (an ~ Shipping model

Interchange

block) where it is filled with cargo according to a filling rate. Once full, the ship sails for a period
of time (represented by an Activity block) until reaching the new destination port (another Inter-
change block). At this point the ship’s cargo is unloaded according to the unloading rate.

Total flow: 5000 Total flow: 4900

0410

[Erm—aereturn

To simulate the loading process, flow is piped from the Interchange block's inflow connector into
the item/ship. Once filled, the item/ship exits the block, taking the flow with it. Conversely, once

Mixing Flow and ltems | 355
Using the Interchange block to mix items with flow

the item/ship arrives at the second Interchange block, flow is piped from it into the second Inter-
change block's outflow connector.

The item/ship travels with a Quantity
attribute that has been set to a value of
1000. This attribute sets the ship’s capacity.
For the filling process, the Interchange Release options for unloading

releases the ship when it is full, that is, after

1,000 units of flow have been piped in. The second Interchange block releases the ship when it is
empty, that is, after 1,000 units of flow have been piped out. At the end of the simulation run, the
ship has not yet been released from the unloading dock because it still contains 100 units of flow.

Release item: [when contents == Target {(Unload process)]
Define Target: [empty 2]

Yogurt Production model

The Yogurt Production model, located in the folder

\Examples\Turorial\Discrete Rate and discussed in the Rz
Discrete Rate Tutorial that starts on page 274, is an exam- | _/E=E| _mFiE‘ By

ple of using an Interchange block set to Tank only exists " g w1 maschange ©

while item is in it.

In this model, empty item/pallets are generated randomly

by a Create block (Item library). The arrival of an item/ | - /E=E|iéj=5| B—9) P

vlt

pallet causes the Interchange block to have flow capacity; ¥ Beo
. . . . C at 2

the maximum capacity of 24 cartons is entered in the s fuewed | merhenae?

block’s dialog. Once the maximum capacity is reached, Yogurt Production palletization

the full pallet leaves the block. The Interchange block

then has no capacity until another pallet arrives.

Yogurt Changeover model
This model is based on the Yogurt Production y
model from above. The Yogurt Changeover &Semr ll-smm

model, however, provides a period of time (the |__ /Eiﬁlu’:fiﬁ' ‘l 5150’7 __l:;s

changeover) for an operator to remove each full

ey AISI(|

I=

X X max # cw wCO0 pwv wF Exit 1
pallet and replace it with an empty pallet, and Create 1 Interchangs 1

there is an infinite supply of empty pallets.

In this model, each Create block (Item library) $sensor o1
can generate an infinite number of items so that | |_—/§1§|L:f=ﬁ| |.| Eiﬁl’i =y I“
empty pallets are available as required. Activity max # ¥ %co 08 5 B2

. . C 2
blocks (Item library) represent the two minute e erchange 2

changeover time. Once a pallet has been released ~ Yogurt Changeover palletization

from an Activity, it notifies a Gate block (Item

library) to open, pulling in a pallet from the Create block. This process causes the Interchange to
not have a new pallet/item to fill until the changeover from the previous pallet is finished.

The Create block’s ability to Create items infinitely is specifically intended for this type of situa-
tion. It provides an infinite supply of items that are available on demand, creating items when-
ever there is a capacity for flow.

Tank is separate from item

In this mode, the Interchange block's ability to handle flow is identical to the Tank block irrespec-
tive of the presence of an item. That is, the Interchange can be set to have an initial amount of
flow, its capacity can be set through the dialog or through a connector, and maximum inflow/out-
flow rates can be defined.

356

Discrete Rate

Mixing Flow and ltems
Using the Interchange block to mix items with flow

The only difference lies in the Interchange block's ability to pipe flow into and out of items. When
the Interchange block is set to Zank is separate from item, the block can receive and hold flow
that has been provided by its inflow connector or the arrival of an item and it can release flow
through its outflow connector or through the exiting of an item.

I When the Interchange block is in this mode, an item carrying flow releases its entire load instanta-
neously upon arrival. However, depending on other settings in the block, the item can also take
flow with it upon exiting. If this is the case, the Interchange block's flow level is decremented
instantaneously when the item leaves. Furthermore, an item whose load of flow exceeds the block’s
capacity will be blocked from entering the Interchange.

Bucket Elevator 1 model

The Bucket Elevator 1 model =
imul ies of buckets '(('

simulates a series o 5

(items) pulling flow out of a

source (an Interchange block)

located at a low elevation, trans-

porting the water in a series of

steps to an infinite sink located

at a higher elevation (another

Interchange block), and then

returning empty through a

series of steps to the source.

Both Interchange blocks are set

to lank is separate from item.

With this setting, both the

source and the sink have the

capacity to hold water even in

the absence of an item.

This model is similar to a con- Lo IR

tinuous loop of buckets drawing | #inte soure o8 oo
. g

water from a well, emptying Sourvs

into a catch basin, and return- Retum—8\ &
ing to the well. There are ten U
bucket/items and each bucket
has a capacity of 100 gallons;

this is defined in the Resource
Item block by the attribute Capacity. There are also ten slots in this “pseudo-conveyor” — each rep-
resented by an Activity block that can hold one item/bucket. The delay at each slot is 1/10 the sum

of all the delays, as determined by the items’ Speed attribute.

Bucket Elevator 1 model

Even if the source has less than 100 gallons, the buckets keep moving and grab as much water as
possible. As each bucket reaches the top, its contents are released instantaneously into the sink, and
the journey back down to the sink immediately starts. Running the simulation with animation on
shows the buckets as they cycle from the well, up to the catch basin, and then back down again.

Mixing Flow and Items | 357

Using the Interchange block to mix items with flow

Bucket Elevator 2 model
The Bucket Elevator 2 oy p
model is similar to the % {

[wCio
Infinite Sink

Bucket Elevator 1 model,
except there is some added
complexity. In this model,
the flow blocks at the bot-
tom and top of the model
represent streams of water.
In the bottom stream,
some of the water is
removed by the buckets,
but the rest continues on
at a varying rate of flow.
Likewise, after the buck-
ets have unloaded their
contents into the sink,
water flows from the top
stream at a varying rate.

162013026 122.218878

e S0
oo
Infinite Sink
g I

Both Interchange blocks e

Infinite Source

have a capacity of 1,000. o

Based on settings in the Retum —g) Q”? __ Na:”’““"m _ I

Interchange block’s Indica- g, 7 o s : § :‘

tors tab, the level of water D B R

affects the constraining [Link | <] _d

rate of the Valve that fol- Bucket Elevator 2 model

lows each of the blocks.

Indicators are a method of reporting what ————— i a5
category or range the current level of flow 0 Ful 1000 gallons 4 ﬂ
falls into; the table from the Source : o T o 2

block’s Indicators tab is shown to the 3 Low 0 gallons 1 ﬂ
right. An Equation block (Value library) _Link | <

looks at the Interchange block’s I (indica- Indicators for the source

tor) output to determine the range the

water level in the tank falls into. The block then adjusts the Valve’s maximum rate depending on
that information and an equation.

The upper and lower streams in this model have different equations; the upper stream bases the
Valve’s maximum rate on a constant while the lower stream bases it on a random distribution. In
the lower stream for instance, if the Source tank’s level is equal to or less than the Low range, the
maximum rate is a Triangular distribution that is most likely 30 units. If the level falls within or
above the High range, the most likely maximum rate for the Valve is 150; otherwise, the most
likely rate is 100.

I For more information, see “Setting indicators” on page 296.

ey AISI(|

358

Discrete Rate

Mixing Flow and ltems
Using the Interchange block to mix items with flow

Discrete Rate Modeling

Miscellaneous

Concepts that don’t easily fit into other chapters

360

Discrete Rate

Miscellaneous
Precision

This chapter covers:
* The precision of calculations

* Using bias to give preference to some component or portion of a model and how that affects
effective rates

* Global and advanced options in the Executive
* Value connector abbreviations and meanings

* The different types of information that animation displays

Precision

=

An LD area is made up of one or more rate sections; it encompasses all the rate sections for which
the Executive block has been notified that effective rates might change. The LP area has a linear
program (LP) that is responsible for calculating an effective rate for each section contained within
that area. (The LP area and LP calculations are discussed fully in “LP technology” on page 376.)

The maximum mathematical precision for an LP area is 12 digits. Because one LP can be responsi-
ble for calculating multiple effective rates for its rate sections, and because LP precision is limited
to 12 digits, precision can become an issue not only for the individual effective rates but also for
the effective rates calculated for the entire LP area. For example, if an LP area contains two rate
sections where the first rate section's effective rate was 1,000,000 flow units per time unit (FPT),
the effective rate for the second section could be no smaller than 0.0001 FPT.

To preserve adequate precision for all rate sections, don’t separate any two effective rates within an
LP area by more than 12 digits of precision.

Biasing flow

The discrete rate architecture includes a feature called &7as — a method for stating a preference that
flow travel one route rather than another.

Bias is only relevant when the flow is merged or diverged.
The advantages of the bias concept are that it:

1) Gives you a way to specify preferences for how flow circulates in one part of the model com-
pared to other parts.

2) Provides flexibility in resolving conflicts for how flow should be distributed among competing
branches.

Bias is present in a model whenever you use one or more of the following blocks:

* A Bias block in a model that contains Merge or Diverge blocks set to a non-fixed mode (dis-
cussed in “Merge and Diverge blocks” on page 362).

* A Merge or Diverge block (Distributional, Priority, or Sensing modes only)

Because bias can skew the way flow is distributed, it is taken into consideration by the global LP
calculation and can thus have an effect on effective rates. (For specific information on how bias is
used in the calculation of effective rates, see the advanced topic “LP technology” on page 376.)

We suggest that you read the chapters “Rates, Constraints, and Movement” and “Merging, Diverg-
ing, and Routing Flow” before the Bias section.

Miscellaneous
Biasing flow

Bias order

If a block in a model has bias, it has a bias order that indicates its ranking compared to all the
other blocks with bias. Each biasing block is listed in order from the top (strongest) bias order to
the lowest (weakest) bias order. The block at the top of the ranking list has a bias order greater than
0. Bias orders lower than the top have numbers higher than the top number; bias numbers that are
Blank or less than or equal to 0 are ignored.

Since the bias order is used during the LP calculation of effective rates, changing the bias order
often results in a different set of effective rates. It is therefore important to understand the concept
of bias order and the influence it has on how effective rates are calculated.

The bias of a Bias block is by definition stronger than the biasing effect of any Merge or Diverge
block. So Bias blocks will always have higher bias orders than Merge and Diverge blocks.

Bias block

The Bias block allows you to specify a preference for where the flow should be directed. Wherever
the Bias block is located in the model, it pulls in as much flow as possible. If a model has multiple
Bias blocks, each has its own bias order.

& If the model’s Merge and Diverge blocks use non-fixed rules to obtain or distribute flow, there is

some leeway in how flow can be biased and the Bias block is useful. If the model’s Merge and
Diverge blocks all use fixed rules, there is no possibility of biasing the flow with the Bias block.
(Fixed and non-fixed rules are discussed in “Merge and Diverge blocks” on page 362.)

Dialog settings and bias order

The block’s bias order can be set ~Setthe bias order

directly in its dialog or it can be _

modified dynamically through the Hilas order.
B (bias) input connector or by [Initial bias order;

linking the Bias order dialog
parameter to an ExtendSim data-

W Show bias order onicon

base. You can enter an initial bias || Reports information for Bias hlocks
order that has effect until the Bas Bock bal] Open - |
block gets a bias order value E Bias Order Z[:] 1]

. 1 Bias Order 1[15] —1
dynamically; you can also show

the block’s bias order on its icon.

The Bias dialog shown at the right
is for one of two Bias blocks in a j
model. The block shown has the Y

highest preference for flow, as
indicated by the setting Bias
order: 1.

The dialog table reports information about each Bias block in the model, its bias order, block label
or name, and block number. You can use the table’s Bias column to change the bias order for any

of the listed blocks.

Bias dialog

Calculation of the effective rate

The preferences for flow defined by Bias blocks has an effect on the calculation of the effective rate.
If there is more than one Bias block in the model, each block’s preference is expressed in turn based
on its bias order. As each Bias block takes its turn, it calculates the maximum effective rate which
could circulate at its location, without taking into consideration the preferences expressed by

361

ey AISI(|

362

Discrete Rate

Miscellaneous
Biasing flow

blocks with a lower bias order. When its maximum effective rate has been determined, that rate
will be fixed for the succeeding calculations involving blocks with lower rankings.

* The bias order of Bias blocks can change dynamically during the simulation

* If multiple Bias blocks have identical bias orders, the way the flow is distributed between the
effective rates cannot be predicted. The model will use one of the possible solutions.

e If a Bias block has a bias order that is Blank or is less than or equal to 0, the block does not
express any preference.

Prioritize With Bias Blocks model
This model illustrates
how Bias blocks can be
used to indicate prefer- MR-
ences for flow. It is sim- Totattow Fooa 1
ilar to the Competing
Requests for Flow
model discussed on

1 HE

—z’*:u—"m’—

R

<Ir 3000

page 327. However, i PES - o
B H Cc wCo e 1 Diverge-Neutral “alhve 3 Biaf Order 2 hierge-Neutral ¢ wCo
this model uses Bias e o v Total flow B30 Infinite Sk

blocks to indicate the
preferred route for flow,

rather than bias order e
settings in Merge and e 8
. hve 4

Diverge blocks set to Total o [

Priority mode.

In the Prioritize With
Bias Blocks model, the
Merge and Diverge blocks at set to Neutral mode and the Bias blocks indicate flow preferences.
The results are identical to the Competing Requests for Flow model.

Prioritize With Bias Blocks model

This model is located in the folder \Examples\Discrete Rate\Merge and Diverge.

Merge and Diverge blocks

As shown in the “Mode table” on page 319, some Merge/Diverge modes use a fixed rule to obtain
or distribute the flow. For other Merge/Diverge modes, flow rules are only invoked in specific situ-
ations depending on model conditions.

Because it influences the way flow is distributed, the bias concept only applies to Merge or Diverge
blocks set to non-fixed rule modes: Distributional, Priority, or Sensing. To avoid confusion when
Merge or Diverge blocks have competing requests for flow, blocks with these modes must specify a
bias order.

Fixed rule modes

The Batch/Unbatch, Proportional, and Select modes all use a fixed flow rule to obtain or distribute
flow. For example, the way flow is distributed between the branches for a Merge/Diverge in Pro-
portional mode will follow the proportions set in the block’s dialog. No matter what happens in
the rest of the model, the proportions will be respected.

The bias setting options in these block’s Model Settings tabs will be disabled.

Miscellaneous
Biasing flow

I If the model contains Merge and Diverge blocks that are only set to the Batch/Unbatch, Propor-

tional, or Select modes, bias has no impact on the effective rates.

Non-fixed rule modes

The Distributional, Neutral, Priority, and Sensing modes do not use a fixed rule to obtain or dis-
tribute flow. Instead, they provide a certain degree of freedom about where the flow can be
directed.

A Merge or Diverge block in Priority mode, for example, impacts the flow as follows:

* Taking into consideration how much flow it can get, the block will do its best to direct as much
flow as possible to its top priority branches.

* However, the block just expresses a “preference” for where to send the flow; model conditions
determine how well those preferences can be achieved and the top priority branches may not
actually get the most flow.

If the model contains any Merge or Diverge blocks set to the Distributional, Priority, or Sensing
modes, the bias order must be specified. (There is no bias order required for the Neutral mode.)

Setting a Merge or Diverge block’s bias order
When set to the Distributional, Priority, or Sensing modes, the Merge and Diverge blocks must
express a bias order. This is accomplished as follows:

1) By default, the Executive is set to Bias order: defined by Simulation Order. With this setting,
the bias order for each Merge and Diverge block is automatically determined based on Simula-
tion Order. Simulation Order is set in the command Run > Simulation Setup > Continuous
tab; the default is Flow order. It would be unusual to change the simulation order from the
default Flow order. (For further information on Flow order, see “Simulation order” on
page 86.)

2) You can also directly enter a bias order for a biasing Merge or Diverge block. To do this, first
change the Executive’s default setting from Bias order: defined by Simulation Order to Bias
order: each block defines its own. Then do one of the following:

* In the block’s Model Set- rBias seftings when block is in Distributional, Priority, or Sensing mode
tings tab, use the two arra
5 ,“u » « » Y Each hlock defines its own hias order
buttons (“<<” and “>>”) to

Biasorder. ==| 1 --|(0 Bias blocks with precedence)
M Sim Order O

change the block’s bias
order. This also changes the
block’s position in the tab’s
bias order table.

¢ Or, in the Executive’s Dis-
crete Rate tab, select the
row that contains the

. Shaw bias arder an icon
desired block, then use the =

<< and >> arrows to change

Biaz Block Mame

pen

its position in the table. Model Settings tab

The bias order changes
when the position of the block in the table changes.

363

ey AISI(|

364

Discrete Rate

Miscellaneous
Global and advanced options in the Executive

Bias order table
The bias order table in a Merge or Diverge block’s Model Settings tabs displays each biasing Merge
and Diverge block, its bias order, block label or name, mode, and Simulation Order.

o If the blocks are set to Bias order: defined by Simulation Order, the table will be inactivated

since bias order is determined automatically.

* If the blocks are set to Bias order: each block defines its own, the table is active only in Merge
or Diverge blocks in the Distributional, Priority, and Sensing modes. In blocks with those
modes, it can be used to change the blocks’ bias order, as discussed above.

The Model Settings tab also reports the number of Bias blocks in the model; Bias blocks always
have a higher bias order than any Merge or Diverge block.

Competing preferences
“Bias Order — resolving competing requests for flow” on page 327 discusses how competing prefer-
ences between Merge and Diverge blocks is resolved using Merge and Diverge blocks.

Global and advanced options in the Executive

The Executive block (Item library) oversees the global discrete rate system. It is responsible for cal-
culating a model’s effective rates, centralizing and coordinating the information from Rate library
blocks as discussed in the advanced topic “LP technology” on page 376.

The Executive’s Discrete Rate tab is used as a central location for setting options used throughout a
discrete rate model. These options are divided into global and advanced options, as discussed
below.

Global options
The Executive’s global options are:

* Defining the “infinite” rate

* Defining a “zero” effective rate

* Setting options for how often blocks should update their flow status

* Choosing that the Valve animate and report blocking and starving information

* Managing flow units

The first three options are listed in a global Global options for discrete rate models
options frame at the top of the tab (shown Any rate == [1.0000000e+12 |is considered infinite

below); the fourth option is 19cated at.the bot- any rate <= [008800510 is considered being zero
tom of the tab. They are all discussed in the fol-

lowing sections.

Blocks update flaw status: [onlywhen necessary .]

™ walve animates and reports blocking and starving information

Infinite rate

The Discrete Rate tab specifies that a rate equal
to or greater than some number is considered
infinite; the default setting is that a rate > 1e10 is considered infinite. This information is impor-
tant when setting critical constraints and for the determination of the effective rate. It is discussed
fully in “Infinite rate” on page 304.

Global options in Executive

Miscellaneous
Global and advanced options in the Executive

Zero effective rate

The Discrete Rate tab specifies that an effective rate less than or equal to some number is consid-
ered zero, resulting in no flow. The default setting for that number is 1e-10. It is strongly suggested
that you do not change the default setting unless you have an excellent reason to do so.

Update flow status

In the Rate library, some values change continuously over time. The frequency of updating those
values can be customized by setting options for the Convey Flow, Diverge, Interchange, Merge,
Tank, and Valve blocks. They define how often the following information is updated:

* The level of flow in residence blocks (Convey Flow, Interchange, and Tank)

¢ The amount of flow passing through the Convey Flow, Diverge, Interchange, Merge, Tank, and
Valve blocks

At a minimum, the discrete rate global system
updates flow status only when it needs to. The
updating options provide two additional oppor- Valve’s default update setting

tunities to have calculations performed. The

option that has been selected in the Executive is displayed in each block’s Options tab (shown in
the screenshot), along with any choices associated with that option. The choices in the popup
menu are:

Executive |Update block's status only when necessary

* Only when necessary. This default setting is computationally the most efficient option because
flow status is updated only when needed by the system. With this setting, the information is
updated:

* When a block is determined to be part of an LP area
* Whenever a block creates an internal event such as reaching a new indicator
* When a block receives an active message at one of it value output connectors

* Each block defines how often. If this option is selected, each block’s Options tab will give you
the choice to check the option Update animation and results at each event. If that is checked,
the calculation of the flow status will occur at each step for that block.

* Each block at each step. With this choice, every block will update at each step. This option has

to be used cautiously because it is computationally demanding to update the information this
frequently.

Valve animates and reports blocking and starving information

This option only affects the animation and reporting of Valve blocks. A Valve can be limiting, not-
limiting, blocked, starved, or blocked and starved. By default, the Valve’s Results tab and § (status)
output connector only report whether the block is limiting (0) or not limiting (1). The Results tab
also reports cumulative information regarding the percentage of time the block was limiting or not
limiting.

When the global option is checked, the block’s Results tab and its S output report all status infor-
mation as a value:

* limiting (0)

e starved (1)

¢ blocked (2)

e starved and blocked (3)

365

ey AISI(|

366 | Miscellaneous
Global and advanced options in the Executive

I A Valve’s complete status information is helpful during the early stages of model construction and
for debugging purposes. However, it can slow the simulation, so by default the option is not

checked.

The differentiations are animated on the Valve’s icon as discussed in “Valve” on page 371.

Manage flow units for discrete rate models

This section of the Discrete Rate tab provides a central location where flow units can be renamed
or added to or deleted from a model. To delete or rename a flow unit, select it in the table and click
the appropriate button. Flow units are discussed on page 297.

Advanced options

The advanced options in the
Discrete Rate tab only apply
to speciﬁc situations: Merge or Diverge blocks (Distributional, Priority, or Sensing mode only):
Bias order; [defined by Simulation Order]

Change hias arder: # (# Bias blocks with precedence)

rAdvanced options - only for Merge/Diverge hlocks in specific modes

* Merge or Diverge blocks
in the Distributional, Pri-

. . Bias Blocl Label [#] Block Name hiode Sim_Order DpenJ
ority, or SCHSIHg modes 1 Diverge-Priorty[2] Diverge Priarity 4
2 Merge-Priorty [55] Iberge Priorty 2

* Merge blocks in Propor-
tional mode when there is

an empty loop d

= Merge and Diverge modes

. . Show hias arder an ican N
are discussed in the chapter | I
“Merging, Diverging, and Werge blocks (Froporional mode with empty loop):
Routing Flow”. [Branches need simultaneous inflows to push fiow]

Merge or Diverge blocks Advanced options in Executive

in Distributional, Priority, or

Sensing modes
This first set of options determines how bias order is set for certain Merge and Diverge blocks and
whether the bias order is displayed on the block’s icon.

Discrete Rate

Bias order determination
For a Merge and Diverge block in the Distributional, Priority, or Sensing mode, the choices are
that the block’s bias order number is defined by:

¢ Simulation Order. This is the default; it causes the bias order to be automatically calculated by
the simulation order of the blocks in the model.

* Each block. This option allows the user to customize the bias order of each Merge and Diverge
block (Distributional, Priority, or Sensing mode only) in the model.

For detailed information about the requirement for a bias order and how it is set, see “Merge and
Diverge blocks” on page 362.

Displaying the bias order
For Merge and Diverge blocks in the Distributional, Priority, or Sensing mode, a popup menu
provides choices for displaying their bias order:

¢ Show bias order on icon

¢ Don’t show bias order on icon

Miscellaneous | 367
Global and advanced options in the Executive

¢ FEach block decides whether to show bias order on icon

If the bias order is displayed on a block’s icon, it will be in the format <#>, where # is the bias
order number. If the third option is chosen, a checkbox will appear in each Merge or Diverge
block’s Model Settings tab. Check the Show bias order on icon checkbox if you want the block to

show the bias order number on its icon.

Merge blocks in Proportional mode

For Merge blocks in Proportional mode, a conflict can result if the block is part of an empty loop
(can’t get flow). If a Merge block’s proportions are 1:2 for instance, what should happen if the top
inflow branch is part of an empty loop and cannot get any flow from that loop?

The Executive provides three options for how empty

X . Branches need simultanzous inflows to push Flow
loop situations should be resolved:

Blacks push Flow even in emphy loops
* Branches need simultaneous inflows to push flow. Each block defines howt it wil push Flow
With this default setting, flow is stopped at all Executive options for empty loops
inflow branches if one or more of them are part of
an empty loop.
* Blocks push flow even in empty loops. This choice allows the branches with flow to send it
through. The result is that the branch that is part of the empty loop will then get some flow.

* Each block defines how it will push flow. This setting causes an additional popup menu to
appear in the Model Settings tab of any Merge block in Proportional mode. The two choices in
each Merge’s dialog are:

¢ The block pushes flow even in
empty loops. This is the
default setting; it allows
branches with flow to send it Model Settings tab of Merge block
through.

Executive |[Each block defines how it will push flow
[The block pushes the flow even in emply loops L]

ey AISI(|

¢ FEach branch needs simultaneous inflows to push flow. With this choice, flow is stopped at
all inflow branches if one or more of them cannot get any flow.

Which of the three empty loop options you choose depends on the behavior of the system you are
simulating.

Merge Proportion Setting model
In this model the two flow streams have identical settings except for how the Merge blocks handle
empty loops. So that each block can specify its own behavior, the Executive’s setting for the section

“