
USER GUIDE

Imagine That Inc. • 6830 Via Del Oro, Suite 230 • San Jose, CA 95119 USA
408.365.0305 • fax 408.629.1251 • info@extendsim.com

www.extendsim.com

®

Copyright © 2007 by Imagine That Inc. or its Licensors.

All rights reserved. Printed in the United States of America.

You may not copy, transmit, or translate this manual or any part of this manual in any form or by any
means, electronic or mechanical, including photocopying, recording, or information storage and retriev-
al systems, for any purpose other than the purchaser's personal use without the express written permis-
sion of Imagine That Inc.

The software described in this manual is furnished under a separate license and warranty agreement. The
software may be used or copied only in accordance with the terms of that agreement. Please note the
following:

ExtendSim blocks (including icons, dialogs, and block code) are copyright © by Imagine
That Inc. and its Licensors. ExtendSim blocks may contain proprietary and/or trademark
information. If you build blocks, and you use all or any portion of the blocks from the
BPR, Discrete Event, Flow, Item, Items (db), Mfg, Rate, SDI Tools, or Quick Blocks li-
brary in your blocks, or you include those ExtendSim blocks (or any of the code from those
blocks) in your libraries, your right to sell, give away, or otherwise distribute your blocks
and libraries is limited. In that case, you may only sell, give, or distribute such a block or
library if the recipient has a legal license for the ExtendSim product from which you have
derived your block(s) or block code. For more information, contact Imagine That Inc.

Imagine That!, the Imagine That logo, ExtendSim, Extend, and ModL are either registered trademarks
or trademarks of Imagine That Incorporated in the United States and/or other countries. Mac OS is a
registered trademark of Apple Computer, Inc. Microsoft is a registered trademark and Windows is a
trademark of Microsoft Corporation. GarageGames, Inc. is the copyright owner of the Torque Game
Engine (TGE), Simulation Dynamics, Inc. is the copyright owner of SDI Industry, Wolverine Software
Corporation owns the copyright for Proof Animation, and the copyright for Stat::Fit® is owned by Geer
Mountain Software. TGE, SDI Industry, Proof Animation, and Stat::Fit are licensed to Imagine That,
Inc. for distribution with ExtendSim. All other product names used in this manual are the trademarks
of their respective owners. All other ExtendSim products and portions of products are copyright by
Imagine That Inc. All right, title and interest, including, without limitation, all copyrights in the Soft-
ware shall at all times remain the property of Imagine That Inc. or its Licensors.

Extend was originally created by Bob Diamond

Chief architects for ExtendSim 7:
Bob Diamond, Steve Lamperti, Dave Krahl, Anthony Nastasi, and Cecile Damiron

Graphics, documentation, and production for ExtendSim 7:
Carla Sackett, Pat Diamond, and Kathi Hansen

ExtendSim 7 is dedicated to the memory of Peg Feasby – she would have been so proud.
Special thanks to Lynn Scheurman, whose insight and dedication inspired us all.

Table of Contents

T2 Table of Contents
Table of Contents

... 1

About ExtendSim

Preface.. 1

Introduction... 3
Why simulation is important ..4
Simulation with ExtendSim ..4
What ExtendSim can do ...4

Modeling capabilities ..4
Simulation architecture ...5

Levels of use ..5
About this User Guide...6
Additional resources ..7

Electronic documentation ...7
ExtendSim Help..8
User forums ..8
Support ...8

Model illustrations ..9

Tutorial

Running a Model ... 13
Opening the Reservoir model..14
Model basics..15

Blocks ...15
Connections..16

Blocks used in the Reservoir model ...17
Running the Reservoir model..18
Displaying the results on the Plotter..18
Notebooks...19
Making changes to the model..19

Adding and removing blocks ...20
Changing dialog parameters ..20

Other modifications ..21

Building a Model ... 23
Steps to create the Reservoir model ...24
Opening a new model worksheet ..25
Setting the simulation parameters..25
Building the model..25

Basic steps ...25
About libraries...26
Adding blocks to the model...26
Connecting blocks ..27

Working with block dialogs...29

Table of Contents T3
Rainfall source...29
Stream source ..30
Combining the sources..31
Water in the reservoir ..31
Displaying the results ..32

Running the simulation .. 32
Additional ways of connecting blocks ... 32

Straight line connection ..32
Multi-segment line connection..33
Named connection..33

Plotting against multiple axes.. 34
The final Reservoir model... 36
Additional enhancements.. 36

Introduction to hierarchy ..36
The ExtendSim Navigator...37

Cloning .. 38
Other modifications.. 39
Next steps ... 40

Simulation Concepts ..41
Systems, models, and simulation... 42

Systems ...42
Models ..42
Simulation ..43

Modeling methodologies .. 43
Comparison of main modeling methodologies ..44
Comparison table..45
Table of continuous, discrete event, and discrete rate differences ...45

Other modeling approaches .. 47
Monte Carlo modeling..47
State/Action models ..49
Agent-based models ..51

The modeling process ... 54
Goals of modeling...54
The simulation process..55
Before you build a model ..55
Refining models ..56
Model verification ...56
Model validation ...57

Additional modeling terminology ... 57
Model parameters, variables, inputs, and outputs ..57
Constant values and random variables...57

Continuous Modeling

Introduction ...59
How the Continuous module is organized .. 60
Blocks for building continuous models ... 60

Using the ExtendSim blocks..60

T4 Table of Contents
Building custom continuous blocks...60
Third-party libraries ..61

Application areas ...61
Next steps..62

Tutorial .. 63
Removing overflow from the Holding Tank ..64

Setting the maximum capacity ..64
Determining if there is too much water...65
Comparing contents to overflow limit...66
Calculating how much water to remove ..66
Removing the overflow..67

Simplifying the model ...68
Adding an Equation block...68
Specifying input variables ..69
Specifying output variables..69
Entering the equation..69

Improving the accuracy of the model ..69
Next steps..70

Areas of Application... 71
Scientific ...72

Predator/Prey ..72
Drug Ingestion..73

Engineering...75
Noisy FM system ..75

Business ..76
Inventory Management ...76

Social sciences ...77
City Planning..77

Custom blocks ..79
Planet Dance...79
Fish Pond ..80

Concepts, Tips, and Techniques... 81
Simulation timing ...82
Delta time ...82

Delta times other than 1 ...83
Determining which dt to use...83
Specifying dt or the number of steps ...83

Feedback and delays ..84
Feedback ...85
Delays in feedback loops ...85

Integration ..85
Simulation order ...86

Flow order...86
Left to right order ...86
Custom order ..86

Mixing block types..87

Table of Contents T5
Connections to multiple inputs .. 87
Using plotters as inputs... 87
Using a plot line as reference or standard .. 88
Uncluttering models ... 88

Discrete Event Modeling

Introduction ...89
About the Discrete Event module ... 90

How the Discrete Event module is organized ..90
What the Introduction to the Discrete Event module covers ...91

Discrete event systems and processes ... 91
Blocks for building discrete event models.. 92

Item library ...92
Third-party libraries ..92
Creating custom discrete event blocks ...92

Terminology and architecture ... 93
Overview of a discrete event model ...93
Layout of a discrete event model ...93
Executive block ...93
Items and informational values..93
Item properties..94
Events ...94
Activities ...95
Resources ..95
Connectors..95
Closed and open systems...95
Types of item handling blocks ...96

Application areas... 96
Next steps ... 97

Tutorial...99
A basic discrete event model.. 100

About the model ...100
Starting a model and setting simulation parameters...100
Start small ...101

Adding complexity.. 103
Creating a second wash bay...103
Explicit routing ...104
Requiring resources ...105
Item attributes...106

Further exploration... 108

Items, Properties, and Values..109
Blocks of interest... 110

Item generating and removing...110
Item properties..110
Property-aware blocks ...111

Item generation... 111

T6 Table of Contents
Generating items at random intervals ..111
Random intervals with dynamic parameters ..112
Generating items according to a schedule..114

Item properties ..115
Attributes ..115
Priority..122
Quantities ...124
Other item properties..126

Queueing.. 127
Blocks of interest ...128
Queueing disciplines ...128
Queue/server systems ..129

M/M/1 queues ..130
Priority queues ..130

Queueing considerations ...131
Blocking..131
Balking..131
Reneging ...131
Jockeying ..132

Sorting items using the Queue Equation block..133
Variables and rules...134
Least dynamic slack...135
Minimizing setup..136
Maximizing service levels...136
Combined rules...137

Matching items using the Queue Matching block ...138
Queue Matching model ..138
Other models that use the Queue Matching block ..138

Advanced queue topics ..139
Viewing and manipulating queue contents..139
Initializing a queue..139

Animating queue contents...140

Routing .. 143
Commonly used blocks ...144

Blocks that route items..144
Blocks that affect the flow of items..144

Items from several sources ...145
Select Item In dialog..146
Merging several item flows into one stream ...146
Balancing multiple input lines...147
Throw Item and Catch Item blocks for merging item streams ...148

Items going to several paths...149
Select Item Out dialog ..149
Implicit routing...151
Simple routing ..152
Scrap generation..153
Sequential ordering ...154

Table of Contents T7
Explicit ordering ...155
Routing decisions based on properties ...155
Conditional routing ..157
Machines that can only process certain types of items ...161

Processing...163
Commonly used blocks... 164

Systems and processes..164
Processing in series.. 165
Processing in parallel... 166

Parallel processing using one block ..166
Simple parallel connections ...166

Setting the processing time ... 167
Processing time for an Activity ..167
Processing time for other activity blocks..168
Fixed processing time ..168
Scheduled processing time...168
Random processing time ...169
Custom processing time ..170
Implied processing time ..171
Cumulative processing time: time sharing ...171
Adding setup time...172

Bringing an activity on-line... 173
Scheduling activities ..173

Controlling the flow of items to an activity... 175
Fixed number of items ..175
Fixed period of time ..177

Interrupting processing ... 177
Preemption ...178
Shutting down ..179

Multitasking ... 183
Simulate Multitasking Activity model ...184

Kanban system.. 185
Transportation and material handling ... 185

Travel time ..185
Transport blocks..186
Convey Item blocks...188
How the length is calculated ...189
Transportation models ..190

Batching and Unbatching...193
Blocks of interest... 194
Batching ... 194

Batch dialog ..195
Simple batching ..196
Batching by matching items ..197
Batching a variable number of items..198
Properties when items are batched...199
Delaying kits ...201

T8 Table of Contents
Unbatching ...201
Simple unbatching ..202
Variable batching and unbatching ...203
Properties when items are unbatched...204

Preserving the items used to create a batch ..204
Both blocks choose to preserve uniqueness ..204
Either block chooses to preserve uniqueness ..205

Additional models ...205

Resources and Shifts... 207
Blocks of interest ...208

Resource pool blocks ...208
Other resource blocks..209

Modeling resources..209
How to model resources ..209
Resource Pool method...209
Resource Item method ..213
Other methods for modeling resources..215

Closed and open systems...216
Scheduling resources ...216

Scheduling resource pools and resource items..216
Scheduling resource items ...217

The Shift block ...218
Shift types and what they control ..218
Status connectors ..219
Shift models ..219

Activity-Based Costing ... 223
Blocks of interest ...224
Modeling with activity-based costing...225

Item types ...225
Defining costs and cost rates ...226
Combining resources with cost accumulators ..229
Combining cost accumulators ...231
Working with cost data ...231

How ExtendSim tracks costs ...234
Setting the _cost and _rate attributes...234
Combining resources with cost accumulators ..234
Calculating costs ...235
Combining multiple cost accumulators ...236

Statistics and Model Metrics .. 237
Commonly used blocks ...238
Gathering statistics ..238
Clearing statistics ..239

Clearing Statistics model ...239
Using the History block to get item information...239

History model ...240
Verifying Information model...240

Table of Contents T9
Accumulating data .. 241
Non-Processing model ..241
Processing model...241

Time weighted versus observed statistics ... 242
Time Weighted Statistics model ..242

Timing the flow of items in a portion of the model... 243

Tips and Techniques ...245
Moving items through the simulation ... 246

How items move through the simulation ..246
Connections to multiple item input connectors ..248
An item’s travel time..248
Using scaling for large numbers of items ...249
Preprocessing...249
Restricting items in a system ...249
Connecting to the select connector ...250

Continuous blocks in discrete event models.. 250
Setting time-based parameters using connectors ..251
Varying a distribution’s arguments...251
Using the Holding Tank block to accumulate values ...252

Cycle timing ... 254
Using the Timing attribute feature ..254
Using a Set or Equation(I) and Information blocks ...255

Item library blocks .. 255
Executive block ...255
Block types..256
Common connectors on discrete event blocks ...257

Event scheduling... 258
Event calendars ...259
Zero time events..259
Event Scheduling model..259

Messaging in discrete event models ... 260
Block messages ..260

Discrete Rate Modeling

Introduction ...265
What this chapter covers ... 266
Discrete rate application areas ... 266
Simulating discrete rate systems .. 267

Comparison to discrete event and continuous modeling ...267
Discrete rate models ..268

Blocks for building discrete rate models .. 269
Rate library ...269
Creating custom discrete rate blocks..269

Terminology and architecture ... 269
LP technology ...269
Layout of a discrete rate model..270
Executive block ...270

T10 Table of Contents
Connectors and connections ...270
Units and unit groups ...271
Rates ...271

How the Discrete Rate module is organized ..272

Tutorial for Discrete Rate Systems ... 273
A basic discrete rate model ..274

About the model ...274
Starting a model and setting simulation parameters...275
Start small ...275
Add a dynamic constraint..278
Add a fruit processing line...279
Add maintenance ..280
Change the flow unit to containers for the filling process ..281
Cool the mixture...282
Package the containers...283
Add a palletizing area ..284
Add a second palletizing area...286

Further exploration ...287

Sources, Storage, and Units .. 289
Blocks of interest ...290

Residence blocks for holding flow ...290
Changing the flow unit group ...291

Capacity..291
Full and not-full ..291
Tank block’s capacity ...291
Interchange block’s capacity ..292
Convey Flow block’s capacity ..293

Setting an initial contents..293
Empty and not-empty...294
Tank initialization ...294
Interchange initialization...294
Convey Flow initialization ..295

Indicators ..295
Setting indicators ..296
Getting information about levels ...296

Units and unit groups ...297
Definitions..297
Declaring and selecting flow units ...298
Defining block units ...299
Time units ..300

Changing the unit group...300
Change Units block...300

Rates, Constraints, and Movement... 301
Blocks of interest ...302
Rates, rate sections, and the LP area ..303

Types of rates ..303

Table of Contents T11
Rate sections ...305
Rate precision..306
LP area ..306

Flow rules ... 306
Critical and relational constraints ..307

Defining a critical constraint... 308
Valve ...309
Tank and Interchange..310
Convey Flow...311
Merge and Diverge..311

Meeting the critical constraint requirement... 312
Valve or Convey Flow ...312
Tank or Interchange ..312
Merge or Diverge blocks ...313

Comprehensive example ... 315
Rate sections ...315
Critical constraints ..315
Relational constraint ...315
Simulation’s impact on the effective rates ..315

Merging, Diverging, and Routing Flow..317
Blocks of interest... 318
Merging and diverging flow .. 318

Mode table ..319
Select mode...319
Batch/Unbatch mode ..321
Proportional mode ..321
Priority mode ..322
Distributional mode..324
Sensing mode..325
Neutral mode..326

Features of the Merge and Diverge blocks ... 327
Bias Order – resolving competing requests for flow ...327
Internal throw and catch ...328
Changing decision rules dynamically...328

Throwing flow and catching flow remotely ... 329
Creating a throw/catch connection..330
Filter options to facilitate throw/catch connections ...330
Examples of throw and catch connections ...331

Delaying Flow ..333
Blocks of interest... 334
Controlling a Valve’s maximum rate.. 334

Using the Flow Control tab...335
Observing the maximum rate for a goal ..335
Setting a Valve’s quantity goal..335
Setting a Valve’s duration goal ...338
Setting hysteresis in a Valve ...341

Delaying flow with the Shift block.. 342

T12 Table of Contents
Adding a Shift to a model..342
Convey Flow block..342

Dialog settings ..343
Constraining rates ...344
Convey Flow information ...344
When to avoid using the Convey Flow block ..346

Mixing Flow and Items .. 347
Controlling flow with items and items with flow...348

Items controlling flow ...348
Flow controlling items...349
Flow controlling items and items controlling flow...350
Step The Flow Process model ..350

Using the Interchange block to mix items with flow..352
Behavioral rules ...352
The flow connector configuration ...353
Item release conditions ..353
Interchange modes ..354

Miscellaneous... 359
Precision..360
Biasing flow...360

Bias order ..361
Bias block..361
Merge and Diverge blocks ...362

Global and advanced options in the Executive...364
Global options ..364
Advanced options..366

Common connectors on discrete rate blocks..368
Animation...370

Tank..370
Interchange ...371
Valve ...371
Sensor ...373
Convey Flow...373

Advanced Topics... 375
What this chapter covers ...376
LP technology ...376

Overview...376
The LP area...377
The sequence of events..377
Types of information provided to the Executive ..379
The LP calculation ..382

Upstream supply and downstream demand ...382
Definition ...383
Requirements for the supply/demand calculation ..383
Cautions when using potential rates ..383

Messaging in discrete rate models ..386

Table of Contents T13
Block messages ..387

3D Animation

Introduction to E3D...389
What this chapter covers ... 390
Blocks and objects for 3D animation .. 390

Item library blocks ..390
Animation library..391
Custom 3D objects and blocks..391

Overview .. 391
Features...391
Controlling the E3D environment ..393

Prerequisites.. 393
Software and hardware ..393
Preparation..393

How the E3D module is organized ... 394

Tutorial I ..395
The E3D environment ... 396

Opening the E3D window..396
Exploring the E3D window...396
Changing the associated model ...398
Navigating within the E3D window..398
Manipulating the E3D window...399

3D animation modes .. 400
Mode descriptions...400
QuickView versus Concurrent or Buffered ..400

Running a model with 3D animation ... 400
Opening the model ...401
Running the model with 3D animation ..402

Next step .. 403

Tutorial II ...405
Adding 3D behavior to an existing model ... 406

The goal..406
Open the starter model ...407
Cause objects to move simultaneously ...409
Create objects to represent items ...409
Create objects to represent blocks..410

Enhancing the model.. 411
Add scenery...411
Add a 3D Controller block..411
Launch with the E3D window ..412

Some things to notice ... 412
Internal animation ..412
Rotation of 3D objects ..412
Mounting objects ..412
Moving blocks linked to objects ..413

T14 Table of Contents
Conveyor ..413
Item length ...413
Conveyor capacity...414

Tutorial III ... 415
Animating a bank line ...416

The goal..416
Open the starter model ...416
Animate the model in 3D ...418

Unmount the Activity blocks ..419
Add Transport blocks ..419

Animating the travel time..419
What the model needs...419
Walking and waiting in a line ..420
Leaving the bank...420
Minimizing the icons of the existing Transport blocks...421
The model so far ...421

Block positions to determine a path’s length ..421
Setting the speed and determining the distance ...422

Mounting objects ..423
Steps for mounting an object...423
Create the object ...423
Create an attribute ..424
Mount the object on the item ...424
Create a hierarchical block ..424

Unlinking objects from blocks...425
Unlinking positions...425

Creating custom pathways...426
Use the correct Transport behavior ..426
Creating paths...427
Create a new environment file...427
Create a path object ..427
Create path markers ..428
Select the path...428
Repeat the process for another path...429

Enhancing the model ..429

Environment Files & E3D Editors ... 431
Environment files ..432

Modifying the environment ..432
The E3D Editor ..433

Learning about the E3D Editor...433
E3D Editor modes ..435

Mode categories ..435
World modes...436
Terrain modes ...438

Editor menus and commands..440

3D Objects ... 441

Table of Contents T15
3D objects .. 442
Types of objects...442
Object properties ..443
Actions..443

Creating objects .. 444
Create an object that represents a block...445
Create an object that represents an item or other moveable entity ...445
Create a 3D object as scenery ..446
Create an environmental effect ..448

Deleting objects .. 449
Changing object properties ... 449

Changing skins..450
Move an object..451
Show or hide objects ...453
Rotate an object ..455
Scale an object...457

Saving changes .. 459
Saving an environment file ..459

WayPoints... 459
Creating a waypoint ..459
Choosing a waypoint as a destination..460

Mounting objects.. 460
Item object on block object ...461
Object on item object ...461
Scenery object on scenery object ...461

Other object information.. 462
Collision ...462
Gravity, friction, and momentum..462
Sound ...462
Object ID ...463
BlockNumber ...463
GroupTag and UserTag ...463

Movement, Paths, and Terrains...465
Traveling time... 466

Setting travel time in a Transport or Convey Flow block ...466
Creating paths .. 467
Terrains... 470

Modifying the terrain ..471

Tips and Reference ...473
Tips .. 474

Using an Equation block to call E3D functions...474
Hierarchical blocks and 3D animation ..474
Items stack on top of each other ..474
Performance Considerations..475

E3D commands, options, and settings .. 475
Opening the E3D window..475
3D tab in Options dialog ..476

T16 Table of Contents
3D Animation tab of Simulation Setup dialog ..477
Dialog tabs for animation..478

Item Animation tab...478
Block Animation tab ...480
Transport Animation tab...481

Animation 2D-3D blocks..482
3D Controller block..482
3D Scenery block..483
3D Text block ...483
Animate 3D block...483

E3D Editor menu commands ...484
File..484
Edit...485
Camera ...485
Window..485
Lighting Tools ...485
World..485
Action ...485
Brush ..485

How To

Libraries and Blocks... 487
The ExtendSim libraries ..488

Animation 2D-3D library ...488
Electronics library ...488
Item library (not available in ExtendSim CP) ..488
Plotter library..489
Rate library (not available in ExtendSim CP or ExtendSim OR) ...489
Utilities library ..489
Value library..489
Example Libraries folder..489
Legacy folder...489

Using libraries ...490
Opening a library ..490
Closing a library..491
Searching for libraries and blocks ..491
Library windows ...493

Creating and maintaining libraries ..493
Creating a new library ...494
Saving and compiling libraries...494
Substituting one library for another...495
Arranging blocks in libraries..495
Protecting the code of library blocks..495
Converting libraries to RunTime format ...496

Working with blocks ...496
Customizing block icons ...496
Icon views ...496
Connectors..497

Table of Contents T17
Connecting to different connector types..500
Dialogs..501
Animating blocks ..502

Hierarchical blocks ... 502
Managing blocks... 502

Copying blocks ...502
Changing a block’s name...502
Removing blocks ...502
Corrupted blocks ..502

Creating a Custom User Interface...503
Cloning .. 504

How to clone a dialog item ...504
Using cloned items..505
Unlinked clones ..506

Centralizing data in a database.. 506
Hierarchy.. 506
Creating a dashboard interface .. 506

Buttons ...507
Popup menus ..508
On/Off Switch ..508
Additional blocks to control model execution ...508

Notebooks .. 508
Controls ... 509

Slider...509
Switch ...510
Meter ..510

Interacting with the model user .. 510
Notify block..511
Equation blocks ..512
Additional interactive features if you program ...513

External applications as an interface.. 514
Documenting models ... 514

Text and graphics ..514
Help block ..514

Model Execution...515
Simulation setup... 516

Setup tab...517
Continuous tab ...518
Random Numbers tab...519
3D Animation tab...521
Comments tab ..521

Running a model .. 522
Menu commands and toolbar buttons...522
Running a model multiple times ...522
Stepping through a model ...522
Other points when running models...523
Status bar ..524

T18 Table of Contents
Blocks that control or monitor simulation runs...525
Saving intermediate results ..525

Timing ..526
Continuous simulation timing ..526
Discrete event simulation timing...526

Simulation order (continuous models) ...526
Time units...526

Global time unit..526
Local time unit..527
Calendar dates...528
Time unit conversions (non-Calendar dates) ...529

Other Units...529
Flow units ...529
Length ..529

Length and number of runs...530
Terminating systems..530
Non-terminating systems ..530
Determining the length and number of runs ...531

Speeding up a simulation ..531
Displaying data or movement..532
Inefficient settings or block code ...532
Other factors that affect simulation speed ...533

Slowing down simulations...533
Working with multiple models ..533
How ExtendSim passes messages in models ...533

Application messages...534
Block messages ..535

Presentation ... 537
Working with text ...538

Entering text ...538
Moving and copying text...538
Drag and drop text..539
Formatting text ...539

Navigator ..539
Hierarchy ..540

Uses for hierarchy..540
Hierarchical blocks..541
Making a selection into a hierarchical block ..542
Building a new hierarchical block..543
Saving hierarchical blocks..547
Modifying hierarchical blocks ...548

Animation...551
Blocks with built-in animation..551
Blocks for customized animation...553
Animation functions ...556
Animation pictures..556
Displaying messages on a block’s icon..557

ExtendSim databases ...557

Table of Contents T19
Connections ... 557
Connection lines ...557
Named connections ..560

Model appearance... 560
Showing and hiding connections and connectors ..560
Changing model styles ..561

Graphic shapes, tools, and commands... 561
Drawing objects in the Shapes menu...561
Shuffling graphics ...561
Modifying objects ...562

Patterns and colors.. 562
Working with pictures .. 562

Analysis ..563
Blocks that calculate statistics.. 564

Statistics ..564
Clear Statistics...566
Mean & Variance ..566
Information...567
Cost Stats ..567

Confidence intervals ... 567
Sensitivity analysis .. 568

Overview...568
Steps for using sensitivity analysis..568
Specifying the sensitivity method ..570
Turning sensitivity on and off..570
Reporting the results ...571
Multi-dimensional scenarios..571

Optimization .. 572
How optimization works...573
Steps for using optimization..573
Optimization tutorial ..573
Adding constraints ..580
Using the Optimizer block ..583

Stat::Fit (Windows only)... 586
Tutorial ...587

Plotters ... 588
Plot and data panes ...588
Plotter tools...589
Plotter dialogs ...592
Types of plotters..593
Copying plotted information ..596
Clearing plotted information...596

Reports ... 596
Types of reports...596
Generating reports ..597
Steps for reporting...597
Reporting example ..597

T20 Table of Contents
Math and Statistical Distributions ... 599
Blocks that represent functions..600

Other options..601
Equation-based blocks...601

Overview...602
Equation components ...602

Random numbers..604
Random number generators ..605
Random seeds ...605
Resetting random numbers for consecutive runs ...606

Probability distributions ..606
Characteristics of distributions ..606
Choosing a distribution...606
Distribution fitting..607
ExtendSim distributions..607

Integration vs. summation in the Holding Tank block ..610

Debugging Tools .. 613
Debugging hints..614
Verifying results as you build a model..615

Connector information ...615
Cloning dialog items ...615

Blocks for debugging...615
Measuring performance to debug models ..616
Find command..617
The Source Code Debugger ..618
Dotted lines for unconnected connections...618
Animation features for debugging ...618

Animating the model ..618
Animating item properties (discrete event models only) ..618

Notebook..618
Stepping through the simulation ...619
Show Simulation Order command ..619
Slow simulation speed ...620
Model reporting ..620
Model tracing..620

Generating traces ..620
Tracing example ..621

Data Management and Exchange ... 623
User interfaces for data exchange ...624

Copy/Paste..625
Importing and exporting data ...626
Read and Write ...628
Dynamic linking to internal data structures...629
DDE links (Windows only) ..636

Internal data storage and management methods ..638
ExtendSim databases for internal data storage ...638

Table of Contents T21
How this section is organized ..639
Advantages of using internal databases ..639
Creating and interacting with internal databases ...640
How to create an ExtendSim database...640
Establishing Parent/Child relationships ...643
Linking a database to data ...645
Database management ..646
Database dialogs and popup menus...648
Excel Add-In for ExtendSim databases ..650
Monte Carlo model...651

Other internal data storage and management methods.. 651
Global arrays ...652
Dynamic arrays ...654
Embedding an object (Windows only) ..655
Linked lists..657

Exchanging data with external applications ... 657
Spreadsheets ..658
External databases ...658

Blocks for data management and exchange ... 659
Read and Write blocks ..659
Data access blocks ...660
Other blocks for modelers ...661
Blocks for developers...661

Data source indexing and organization ... 661
Transferring data between a data table and a spreadsheet ...662
Transferring data between a spreadsheet and a database ...662

Communicating with external devices... 662
Technologies for communication .. 663

Text files..663
ActiveX/COM/OLE (Windows only) ...665
DDE (Windows only)...666
ODBC/SQL ...667
FTP ..667
DLLs and Shared Libraries ..668
Mailslots (Windows only) ...668

Miscellaneous ...669
Navigator.. 670

Opening the Navigator ...670
Model Navigator mode ...671
Database List mode...671
Library Window mode..671

Printing .. 672
Selecting what to print ..672
The Print command..672
Printing and Print Setup hints...674

Copy/Paste and Duplicate commands... 674
Copying within ExtendSim...674
Copying from ExtendSim to other applications...675

T22 Table of Contents
Copying from other applications to ExtendSim...675
Tool tips ..676
Changing parameters dynamically...676

Methods..676
Sharing model files ..677

Locking the model ..677
The ExtendSim LT-RunTime version..678

Reference

Menu Commands and Toolbars ... 679
ExtendSim menu (Mac OS only) ..680
File menu ..680

New Model ...680
New Text File..680
Open...680
Close...680
Revert Model/Revert Text File...681
Save Model and Save Model As ...681
Save Text File and Save Text File As...681
Update Launch Control (Windows only) ..681
Import Data Table ..681
Export Data Table ...681
Import DXF File (Windows only)...682
Show Page Breaks..682
Print Setup (Windows) and Page Setup (Mac OS) ..682
Print..682
Network License (Windows only; network license only)..683
Properties ..683
Five most recent models or text files ..684
Exit/Quit ..684

Edit menu ...684
Undo...684
Cut ...684
Copy...684
Paste..684
Clear ...684
Delete Selected Records...685
Select All ...685
Duplicate ..685
Find ..685
Find Again ..686
Replace..686
Replace, Find Again ..686
Replace All ..686
Enter Selection..686
Create/Edit Dynamic Link..686
Open Dynamic Linked Blocks ..687
Sensitize Parameter..687
Open Sensitized Blocks ...687

Table of Contents T23
Paste DDE Link (Windows only)..687
Delete DDE Link (Windows only) ...687
Show DDE Links (Windows only)..688
Refresh DDE Links (Windows only)...688
Insert Object (Windows only)...688
Design Mode (Windows only) ..688
Object (Windows only)...688
Show Clipboard ..688
Options...688

Text menu .. 695
Library menu.. 695

Open Library ..695
Close Library ..695
New Library..695
Tools ...695
List of libraries ..697

Model menu ... 698
Make Selection Hierarchical..698
New Hierarchical Block ..698
Open Hierarchical Block Structure..698
Connection Lines..698
Show Named Connections..698
Hide Connections ...698
Hide Connectors...698
Controls..698
Align ...698
Rotate Shape ...699
Flip Horizontally/Flip Vertically..699
Border Thickness ..699
Shape Fill/Border ..699
Change Model Style ..699
Lock Model...699
Use Grid ...699
Show Block Labels ..699
Show Block Numbers..699
Show Simulation Order ..700
Set Simulation Order...700

Database menu ... 700
New Database ...700
Import New Database ...700
Export Database..701
Rename Database..701
New Table...701
Import Tables..701
Export Selected Tables...701
Rename Table ...701
New Tab ...702
Rename or Delete Tab...702
Clone Selected Tables to Tab...702

T24 Table of Contents
Append New Field ..703
Insert New Field..703
Append New Records..703
Insert New Records ...704

Develop menu...704
New Block ..704
Open Block Structure ...704
Rename Block ...704
Set Block Category... ...704
Compile Block ..705
New Dialog Item...706
New Tab ...706
Rename or Delete Tab...706
Move Selected Items to Tab...706
New Include File ...706
Open Include File ...706
Delete Include File ..707
Shift Selected Code Left ..707
Shift Selected Code Right..707
Go To Line ...707
Go To Function/Message Handler ..707
Match Braces...707
Match IFDEF/ENDIF..707
Set Breakpoints ...707
Open Breakpoints Window...707
Open Debugger Window..707
Continue...708
Step Over ..708
Step Into ...708
Step Out ...708

Run menu...708
Run Simulation...708
Continue Simulation...708
Run Optimization...708
Simulation Setup...708
Prioritize Front Model...709
Use Sensitivity Analysis ...709
Show 2D Animation ...709
Show 3D Animation ...709
Show Movies (Mac OS only)...709
Launch Proof (Windows only) ..709
Launch StatFit (Windows only) ..710
Generate Report..710
Report Type ..710
Add Selected To Report...710
Add All To Report...710
Remove Selected From Report ..710
Remove All From Report ..710
Show Reporting Blocks ...710

Table of Contents T25
Stop ..710
Pause...710
Step...710
Resume ...711
Debugging ..711

Window menu.. 712
Notebook..712
Navigator ..713
Database List...713
Calendar ...713
E3D Window ...713

Help menu ... 713
ExtendSim Help..713
Support Resource Center ..713
Downloads and Updates ...713
User Forum...713
What’s New...713
ExtendSim Product Line ...713
Imagine That Inc. Online ...714
About ExtendSim (Windows only) ...714

Toolbar buttons .. 714
ExtendSim database tool bars.. 714

Value Library Blocks ..715
Submenus ... 716
Data Access... 716
Holding .. 717
Inputs ... 718
Math... 718
Optimization .. 719
Outputs .. 720
Routing .. 720
Statistics.. 721

Item Library Blocks..723
Submenus ... 724
Activity ... 724
Batching ... 725
Data access.. 725
Information .. 726
Properties.. 726
Queues ... 727
Resources .. 727
Routing .. 728
Executive .. 729

Rate Library Blocks ..731
Block descriptions... 732

T26 Table of Contents
Utilities Library Blocks .. 735
Submenus ...736
Developer Tools ..736
Discrete Event Tools..736
Information...737
Math ...737
Model Control ..737
Time ...738

Upper Limits .. 739

Cross-Platform Considerations .. 741
Libraries ..742
Models ..742
Menu and keyboard equivalents ..742
Transferring files between operating systems..743

File name adjustments...743
Physically transferring files ..743
File conversion ..743

Index

About ExtendSim

Preface
ExtendSim’s architect
talks about simulation

“What we experience of nature is in models,
and all of nature’s models are so beautiful.”

— R. Buckminster Fuller

2 Preface

Ex
te

nd
Si

m

Dedicated to the pleasure of finding things out

Simulation is defined as the act of imitation. Even a word processor simulates pen and paper, but
how do you get the computer to behave like the stock market, or an electronic circuit, or even a
car, and how can you communicate this power to the user? My search for the answer began in the
early days of the space race.

I was attending the Polytechnic Institute of Brooklyn when the head of the Electronics Engineer-
ing department told us that a new department was being formed... a combination of mathematics,
computers, physics and engineering. Being into math, and curious about the large IBM mainframe
lurking down the hall, I immediately joined and made a constant pest of myself at the computer
center.

The bug bit hard, I guess, and I began to realize that I could use computers to duplicate the labo-
ratory experiments in class so well, that I never really did them, I just simulated them on the com-
puter. NASA then asked if I could develop a simulation of their new liquid fuel booster for
something called Project Apollo. I came up with the Rocket-Drop simulation, a monstrously large
program that only had one function: follow the path of a single droplet of fuel, from the shower
heads (as the fuel sprayers at the top of the engine were called) to the rocket engine exhaust, via
subsonic, supersonic, and hypersonic flow.

It hit me then that simulation was inaccessible, except to the select few who had the resources to
put together an entire system dedicated to one function. A generalized simulation application
would be a great and useful thing, if one could find the computer that was both powerful enough
and widespread enough to support it. This was 1965, and Seymour Cray was still building his
superfast (at the time!) computers by hand and graphic user interfaces were still decades in the
future.

When I saw the graphical user interfaces (GUIs) on the Mac OS and Windows machines, I real-
ized that I could use these tools to fulfill that long awaited dream. ExtendSim is built upon those
roots. Imagine That Inc. was founded in 1987 to develop and market Extend and its successor
ExtendSim, the first simulation applications allowing users of any discipline to use simulation and
to develop their own libraries of customized simulation tools.

Imagine That! is dedicated to bringing the art, science, and fun of simulation to the desktop, in a
form digestible and accessible by everyone. ExtendSim is the first user-extendible simulation pack-
age that meets those expectations.

Bob Diamond
President

“You see? That’s why scientists persist in their investigations, why we struggle so desperately
for every bit of knowledge, stay up nights seeking the answer to a problem, climb the steepest obstacles to the

next fragment of understanding, to finally reach that joyous moment of the kick in the discovery,
which is part of the pleasure of finding things out.” attributed to Richard P. Feynman

About ExtendSim

Introduction
Learn about ExtendSim’s capabilities

and how to get started using them

“‘Begin at the beginning,’ the King said, gravely,
‘and go ‘til you come to the end; then stop.’”

— Lewis Carroll

4 Introduction
Why simulation is important

Ex
te

nd
Si

m

ExtendSim is a powerful, leading edge simulation tool. Using ExtendSim, you can develop
dynamic models of real-life processes in a wide variety of fields. Use ExtendSim to create models
from building blocks, explore the processes involved, and see how they relate. Then change
assumptions to arrive at an optimum solution. ExtendSim and your imagination are all you need
to create professional models that meet your business, industrial, and academic needs.

Why simulation is important
Simulation involves designing a model of a system and carrying out experiments on it as it
progresses through time. Models enable you to see how a real-world activity will perform under
different conditions and test various hypotheses at a fraction of the cost of performing the actual
activity.

One of the principal benefits of a model is that you can begin with a simple approximation of a
process and gradually refine the model as your understanding of the process improves. This “step-
wise refinement” enables you to achieve good approximations of very complex problems surpris-
ingly quickly. As you add refinements, the model more closely imitates the real-life process.

Simulation with ExtendSim
ExtendSim is an easy-to-use, yet extremely powerful, tool for simulating processes. It helps you
understand complex systems and produce better results faster. With ExtendSim you can:

• Predict the course and results of certain actions

• Gain insight and stimulate creative thinking

• Visualize your processes logically or in a virtual environment

• Identify problem areas before implementation

• Explore the potential effects of modifications

• Confirm that all variables are known

• Optimize your operations

• Evaluate ideas and identify inefficiencies

• Understand why observed events occur

• Communicate the integrity and feasibility of your plans

What ExtendSim can do
ExtendSim allows you to simulate any system or process by creating a logical representation in an
easy-to-use format.

Modeling capabilities
With ExtendSim, you get powerful modeling constructs, including:

• A full set of building blocks that allow you to build models rapidly

• A customizable graphical interface that depicts the relationships in the modeled system

• Unlimited hierarchical decomposition making enterprise-wide models easy to build and under-
stand

• Dialogs, Notebooks, and an integrated database for changing model values, so you can quickly
try out assumptions and interface with your model dynamically

• 2D and realistic 3D animation of the model for enhanced presentation

5
Levels of use

ExtendSim
• A full-featured authoring environment for building user-friendly front ends that simplify model
interaction and enhance communication

• The ability to adjust settings dynamically, while the simulation is running

• An equation editor for creating custom-compiled equations

• The ability to create new blocks with custom dialogs and icons

• Complete scalability since model size is limited only by the limits of your system

• Evolutionary optimization, Monte Carlo, batch-mode, and sensitivity analysis

• Customizable reports and plotters for presentation and in-depth analysis

• Activity-based costing capabilities for analyzing cost contributors

• Full connectivity and interactivity with other programs and platforms

Simulation architecture
A robust architecture adds advanced features to make it the most scalable simulation system avail-
able:

• Multi-purpose simulation. ExtendSim is a multi-domain environment so you can dynamically
model continuous, discrete event, discrete rate, agent-based, linear, non-linear, and mixed-mode
systems.

• Library based. The blocks you build can be saved in libraries and easily reused in other models.

• Integrated compiled programming language and dialog editor, optimized for simulation.
Modify ExtendSim’s blocks or build your own for specialized applications.

• Scripting support. Build and run models remotely, either from an ExtendSim block or from
another application.

• Integrated support for other programming languages. Use ExtendSim’s built-in APIs to
access code created in Delphi, C++ Builder, Visual Basic, Visual C++, etc.

• Over 1000 functions. Directly access functions for integration, statistics, queueing, animation,
IEEE math, matrix, sounds, arrays, FFT, debugging, DLLs, string and bit manipulation, I/O,
and so on; you can also define your own functions.

• Message sending. Blocks can send messages to other blocks interactively for subprocessing.

• Sophisticated data-passing capabilities. Pass values, arrays, or structures composed of arrays.

• Full support for a wide range of data types and structures. Arrays, linked-lists, and integers,
real, and string data types are built in.

• Integrated data linking. Connect block dialog data to internal databases.

To see the new features added in this release, go to the ExtendSim web site or choose the menu
command Help > What’s New.

Levels of use
You can use ExtendSim on many levels:

• Run pre-assembled models and explore alternatives by changing the data. If you work in a group
environment, one or more authors can create models for others to run for experimentation. The
author can also build a custom front end to facilitate user interaction with the model. The LT-
RunTime version of ExtendSim allows non-modelers to run pre-assembled models, change data,

6 Introduction
About this User Guide

Ex
te

nd
Si

m

and obtain results. For more information, see “The ExtendSim LT-RunTime version” on
page 678.

• Assemble your own models from the blocks that come with ExtendSim. ExtendSim is shipped
with libraries of blocks to handle most modeling needs. To assemble a model, pull blocks from
libraries and link connectors on the blocks. You can also assemble your own hierarchical blocks
of subsystems and save them in libraries. This saves starting from scratch when you’re building a
model of a process that has elements in common with a previous model.

• Use the integrated development environment to create new blocks that conform to the
ExtendSim modeling architecture. The development environment is optimized for simulation
and allows you to create blocks with custom code, dialogs, and icons and use them in your mod-
els just as you would other ExtendSim blocks. You can also modify the blocks that come with
ExtendSim to work with your specific needs.

• Develop your own modeling architecture, conventions, and features. With the ExtendSim
development environment, you can create a custom set of blocks with unique interfaces, com-
munication protocols, and behaviors. This new architecture can be continuous, discrete event,
discrete rate, agent-based, or an entirely new type of simulation.

• Automate your model building using the scripting functions to build wizards, or by using
ActiveX/COM. You can use ActiveX/COM or block-based wizards to cause models to be auto-
matically created or modified. Models can be also be programmatically created from a user input
form or data file. This allows the modeling environment to be utilized indirectly by end-users
who have little or no simulation experience.

 An ExtendSim ASP license is required to distribute the functionality of ExtendSim to other users
or to provide internet or intranet access to ExtendSim or to its functionality. Contact Imagine
That, Inc. for more information.

As you read this manual, you will see how ExtendSim caters to the needs of users at all levels.

About this User Guide
This manual is a general-purpose tutorial and reference for using ExtendSim. Every effort has been
made to present sample models that you can easily understand, whatever field you are in, so you
can quickly learn how to use this powerful tool. While you may find that your subject area is not
represented in the manual, or that the sample models reflect some disciplines which are unfamiliar
to you, remember that their purpose is to teach you how to use ExtendSim. What you model, and
how you model it, are determined mostly by your knowledge and expertise in your subject area.

This manual is divided into several modules:

• About ExtendSim

This module includes the preface and introduction to ExtendSim.

• Tutorial

The Tutorial module starts on page 14. The first two chapters use a simple model to explain the
most important concepts of modeling with ExtendSim. It is highly recommended that you build
and run the models as you read the tutorials.

7
Additional resources

ExtendSim
The third chapter in this module provides a more in-depth discussion of simulation technolo-
gies, general modeling concepts, and terminology.

☞ The first two Tutorial chapters use a very simple model to make it easier to learn basic modeling
techniques. In real life, ExtendSim is used to simulate complex processes, as illustrated by the
models shown at the end of this chapter.

• Continuous Modeling

An introduction to continuous modeling concepts, a tutorial, example areas of application, and
additional modeling tips not covered elsewhere in the manual. The Continuous module starts
on page 60.

• Discrete Event Modeling

An introduction to event-based modeling of discrete items, a tutorial, and several chapters with
tips and concepts specific to discrete event modeling. The Discrete Event module starts on
page 90.

• Discrete Rate Modeling

An introduction to rate-based modeling, a tutorial, several modeling tips and concepts chapters,
and an advanced topics chapter. This module starts on page 266.

• E3D Animation

Shows how to use 3D animation to enhance the simulation experience. This module starts on
page 389.

• How To

The chapters in this module provide additional concepts and techniques for developing and
running models, such as creating a custom user interface, statistical analysis, data management
and transfer, and so forth. The How To module starts on page 488.

• Appendix

The Appendix module, which starts on page 680, has several reference chapters, including a
description of each of the menu commands and toolbars, lists and descriptions of blocks in the
main libraries, and upper-limit values for a variety of parameters.

☞ A separate Developer Reference is also available for advanced users who want to create libraries of
blocks for specific purposes.

Additional resources
In addition to the printed documentation, there are several resources to support your simulation
experience.

Electronic documentation
If you install ExtendSim from a CD, PDF files of the User Guide and Developer Reference are
installed in the application’s Documentation folder. You can also download the documentation
files from www.ExtendSimManuals.com.

8 Introduction
Additional resources

Ex
te

nd
Si

m

ExtendSim Help

Context-sensitive help
Context-sensitive help is available any time you are using ExtendSim. Just select the menu com-
mand Help > ExtendSim Help or press F1 on your keyboard.

Block help
Blocks provide a complete definition of how they work, including descriptions of their dialog
items and connectors. You can access this information through a button labeled Help in each
block's dialog. The window that opens also has a Blocks button at the bottom left that will let you
access the Help information for blocks from any library that is currently open.

Tool tips
Additional information, such as the name of a block and its purpose, or the name and sometimes
the value of an output connector, can be obtained by mousing over the block or connector, respec-
tively.

User forums
The ExtendSim E-Xchange is a user forum for sharing ideas, insights, and modeling techniques
with other ExtendSim users. Use this forum to post issues and solutions, share blocks and models,
and to talk directly to other people developing simulations. You will also find useful information
about upcoming training sessions and seminars. You must register to join, but access is free and
available to all ExtendSim users at
www.ExtendSimUsers.com, or select the command Help > User Forum.

The ExtendSim Academic E-Xchange is a user forum for educators using ExtendSim to teach
modeling concepts and simulation to their students. Access is free but there is an approval process
to obtain membership in this forum. To apply, go to www.ExtendSimAcademic.com.

Support
Following are some suggestions if you need help while using ExtendSim.

How to get technical and modeling support
To find answers to your modeling or technical questions as quickly as possible, we recommend that
you refer to the various resources in the order shown below:

1) ExtendSim context-sensitive Help, as discussed on page 8.

2) User Guide or Developer Reference.

3) Frequently Asked Questions at www.ExtendSimFAQ.com.

4) For modeling questions, the ExtendSim E-Xchange or the ExtendSim Academic E-Xchange, as
discussed at “User forums” on page 8. (Note: User forums are for modeling questions and are
not appropriate for technical support questions.)

5) For technical support questions, choose the command Help > Support Resource Center or go
to www.ExtendSimSupport.com and submit your question online.

Contacting Imagine That Inc. Technical Support
 You must be a registered customer to receive technical support from our support staff. Register
online when you install ExtendSim (Windows only), register online after installation using the
Register.exe file in the ExtendSim7\Online Registration folder (Windows only), or mail or fax the
registration card that was included in your ExtendSim package.

9
Model illustrations

ExtendSim
When you contact our support representatives, please provide the following information:

1) ExtendSim serial number, product name, and release number:

Windows: Located in the Help > About ExtendSim menu command, on the title
page of the User Guide, or on the tear-off remainder of your registration card.

Mac OS: Located in the ExtendSim > About ExtendSim menu command, on the
title page of the User Guide, or the tear-off remainder of your registration card.

2) Name and contact information (telephone, email, and/or fax), so we can reply.

3) Type of computer.

4) Operating system and version.

Model illustrations
The tutorials used throughout this guide are specifically simplified so that you can easily learn how
to use ExtendSim. In contrast, simulation is more typically used to model complex processes, like
the ones shown on the following pages.

10 Introduction
Model illustrations

Ex
te

nd
Si

m

Sa
nt

ee
 R

iv
er

 B
as

in
 M

od
el

 (
SR

M
),

 d
ev

el
op

ed
 b

y
th

e
N

at
io

na
l H

er
it

ag
e

In
st

it
ut

e,
 e

t
al

T
hi

s
co

nt
in

uo
us

 h
yd

ro
lo

gi
c

m
od

el
 p

re
di

ct
s

ho
w

 o
pe

ra
ti

on
al

 a
lte

rn
at

iv
es

 w
ill

 a
ff

ec
t h

yd
ro

po
w

er
 g

en
er

at
io

n,
 la

ke
 le

ve
ls

, i
n-

st
re

am

flo
w

, a
nd

 w
at

er
 u

se
s.

 I
t a

na
ly

ze
s

ho
w

 d
am

 o
pe

ra
ti

on
s

ca
n

be
 a

lte
re

d
to

 im
pr

ov
e

st
re

am
 fl

ow
 in

 o
ve

r
30

0
ri

ve
r

m
ile

s
an

d
he

lp
s

as
se

ss

th
e

ef
fe

ct
s o

n
la

ke
 le

ve
ls

 a
nd

 p
ow

er
 g

en
er

at
io

n.
 A

 se
ri

es
 o

f h
ie

ra
rc

hi
ca

l b
lo

ck
s w

ith
 n

es
te

d
su

bm
od

el
s k

ee
p

de
ta

ils
 in

 la
ye

rs
 b

el
ow

 th
e

m
od

el
’s

re
al

is
ti

c
to

p
le

ve
l.

Fo
r

in
st

an
ce

, t
he

 C
at

aw
ba

-W
at

er
ee

 h
ie

ra
rc

hi
ca

l b
lo

ck
 c

on
ta

in
s

9
ad

di
ti

on
al

 h
ie

ra
rc

hi
ca

l b
lo

ck
s,

 s
om

e
of

w

hi
ch

 c
on

ta
in

 e
ve

n
m

or
e

la
ye

rs
.

11
Model illustrations

ExtendSim
In
te

rn
at

io
na

l S
up

pl
y

C
ha

in
 m

od
el

, b
y

Ja
m

es
 D

ai
le

y
an

d
A

ss
oc

ia
te

s
T

hi
s

di
sc

re
te

 e
ve

nt
 m

od
el

 c
ap

tu
re

s
tw

o
ke

y
su

pp
ly

 c
ha

in
 r

ea
lit

ie
s:

 th
e

va
ri

an
ce

s
of

 s
up

pl
y

ch
ai

n
dy

na
m

ic
s

an
d

th
e

no
n-

lin
ea

ri
ty

 o
f b

us
i-

ne
ss

 e
nv

ir
on

m
en

ts
. T

he
 m

od
el

 u
se

s
an

 in
te

rn
al

 d
at

ab
as

e
to

 s
to

re
 th

e
ex

te
ns

iv
e

am
ou

nt
 o

f d
at

a,
 in

cl
ud

in
g

SK
U

s,
 S

K
U

 G
ro

up
s,

 S
to

ck

Po
in

ts
, a

nd
 A

ss
em

bl
y

Li
ne

s.

12 Introduction
Model illustrations

Ex
te

nd
Si

m

St
an

di
ng

 J
oi

nt
 F

or
ce

 H
ea

dq
ua

rt
er

s
(S

JF
H

Q
)

m
od

el
 b

y
th

e
N

av
al

 P
os

tg
ra

du
at

e
Sc

ho
ol

 a
nd

 T
he

 B
oe

in
g

C
om

pa
ny

T
hi

s
di

sc
re

te
 e

ve
nt

 m
od

el
 s

im
ul

at
es

 th
e

pl
an

ni
ng

 p
ro

ce
ss

es
 p

er
fo

rm
ed

 b
y

SJ
FH

Q
 m

em
be

rs
, a

na
ly

ze
s

ti
m

e-
cr

it
ic

al
 in

fo
rm

at
io

n
sy

st
em

s,
 a

nd
 p

er
fo

rm
s

tr
ad

e
st

ud
ie

s
to

 o
bt

ai
n

sy
st

em
 m

ea
su

re
s

of
 p

er
fo

rm
an

ce
. I

t c
ap

tu
re

s
al

l p
ro

ce
ss

es
, s

ub
-p

ro
ce

ss
es

, i
nf

or
m

at
io

n
flo

w
s,

 a
nd

 p
er

so
nn

el
 ta

sk
 a

ss
ig

nm
en

ts
. T

he

si
m

ul
at

io
n

ta
ke

s
ap

pr
ox

im
at

el
y

th
re

e
se

co
nd

s
to

 r
un

 th
ro

ug
h

on
e

fu
ll

cy
cl

e
of

 p
ro

ce
ss

es
, s

im
ul

at
in

g
26

0
ho

ur
s

of
 o

pe
ra

ti
on

al
 w

or
k

ti
m

e
an

d
60

00
 in

di
-

vi
du

al
 t

as
k

as
si

gn
m

en
ts

. T
he

 d
at

ab
as

e
al

lo
w

s
th

e
m

od
el

er
 to

 u
se

 a
 s

et
 o

f r
ul

es
 to

 d
ri

ve
 th

e
m

od
el

 a
rc

hi
te

ct
ur

e
an

d
si

m
ul

at
io

n
pa

ra
m

et
er

s.

R
ef

er
en

ce
: “

M
od

el
in

g
an

d
Si

m
ul

at
io

n
Su

pp
or

t
fo

r
th

e
St

an
di

ng
 J

oi
nt

 F
or

ce
 H

ea
dq

ua
rt

er
s

C
on

ce
pt

”
by

 S
us

an
 G

. H
ut

ch
in

s
et

 a
l.

Pu
bl

is
he

d
in

 t
he

 1
0t

h
In

te
rn

at
io

na
l C

om
m

an
d

an
d

C
on

tr
ol

 R
es

ea
rc

h
an

d
Te

ch
no

lo
gy

 S
ym

po
si

um
.

Tutorial

Running a Model

Learn how to run an ExtendSim model
and investigate its components

“For the things we have to learn before
 we can do them, we learn by doing.”

— Aristotle

14 Running a Model
Opening the Reservoir model

T
ut

or
ia

l

The first two chapters of this User Guide provide a tutorial that will help you learn the basics of
working with ExtendSim models. This chapter covers:

• Opening a model

• Blocks, including their icons, connectors, and dialogs

• Connections between blocks

• Running a model

• Displaying simulation results on a Plotter

• Using the Notebook to display model inputs and outputs

• Modifying models

The following chapter will show how to build the model seen in this chapter. To get the most out
of the tutorial, we recommend that you follow along by performing the actions described.

 The ExtendSim Tutorial uses a continuous model to illustrate how to run and build a model. Even
if you will be building non-continuous (discrete event or discrete rate) models, it is important to
complete this Tutorial because:

• The tutorials in the non-continuous modules assume you have completed this Tutorial.
• It is common to use continuous blocks when building non-continuous models.

Opening the Reservoir model
The tutorial uses the sample Reservoir model. This simple continuous model is useful for illustrat-
ing concepts because it can be accessed and understood by all ExtendSim modelers.

To open the model,

Select File > Open.

Browse to
\ExtendSim7\Exam-
ples\Tutorials\

Select Reservoir 1 and
click Open.

This model simulates a reser-
voir being filled by two water
sources—rainfall and an
incoming stream. The purpose
of the model is to see how
much water accumulates in the
reservoir over time.

Interface with Reservoir 1 model open

Running a Model 15
Model basics

T
utorial
Model basics
In the simplest terms, ExtendSim models are made
up of blocks and connections. The Reservoir model,
for example, has five blocks, as you can see in the
model window. As the model runs, information
goes into a block, is processed and/or modified, and
is then sent on to the next block via a connection.

Blocks
Each block in ExtendSim represents a portion of
the process or system that is being modeled. Blocks
have names, such as Math or Queue, that signify the
function they perform. A Queue block, for exam-
ple, will have the same functional behavior in every
model you build. You can also add your own label
to a block to indicate what it represents in your spe-
cific model, such as a Queue block labeled Waiting Line.

☞ Blocks are stored in Libraries. You will learn more about libraries and how to access blocks from
them at “About libraries” on page 26.

Most blocks are composed of an icon, connectors, and a dialog.

Icons
A block’s icon is usually a pictorial representation of its function. For instance in the Reservoir
model, the block labeled Reservoir is a Holding Tank block. Its icon symbolizes an actual tank that
can have quantities added or removed from it. The small squares attached to the sides of the icon
are connectors, which are discussed in more detail in the following section.

☞ Place your cursor over a block’s icon to see a Tool Tip with its number (a unique identifier based on
when the block was placed in the model), block name, and the library it comes from. To also dis-
play a description of the block, go to Edit > Options and check Include additional block
information in the Model tab.

Connectors
Most blocks in ExtendSim have input and output connectors (the small squares attached to the
block). As you might expect, information flows into a block at input connectors and out of the
block at output connectors.

A block can have many input and/or output connectors; some blocks have none. For instance, the
Holding Tank block labeled Reservoir has an input connector on the left for values to enter. The
output connector on the right reports the results of the block's computations; in the tank it reports
the contents at each time step. Additional inputs on the bottom are for controlling specific tank
behavior.

The function of a connector is specific to the block; you can get information about a connector’s
function by clicking the Help button in the bottom left-hand corner of the dialog, as discussed in
“Dialogs”, below. Since connectors are more important when you build a model (as compared to
when you run it), they are discussed in more detail in “Connecting blocks” on page 27.

☞ Place your cursor over a connector to see its name and current value. You may also see additional
information depending on how the block is programmed.

Parts of a model

Input
connector

Output
connector

ConnectionBlock

Block

16 Running a Model
Model basics

T
ut

or
ia

l

Dialogs
Most blocks have a dialog associated with them. Dialogs are used to enter values and settings
before running simulations and to see results as the simulation runs.

To open a block’s dialog, double-click the block’s icon,
or right-click the icon and select Open Dialog. For
example, if you double-click the Holding Tank icon,
the dialog at right opens.

At the top of the dialog is the block’s global block num-
ber, its name, and, in braces, the library it resides in.
Global block numbers are unique identifiers assigned
sequentially to blocks as they are placed in a model.

At the bottom of every dialog is a Help button. The
block’s Help provides information about the block,
such as its purpose and use, connector usage, descrip-
tions of each dialog item, and so on. Beside the Help
button is a text box where you can enter a label for the
block, up to 31 characters. The View popup is for
changing the icon’s orientation or appearance when you build models—for example, the Holding
Tank offers a choice of Default View and Default View Reverse.

Some dialogs also calculate and display values that are generated as the model runs, so if you leave
a dialog open during the simulation, you can watch the impact on different variables. This interac-
tive simulation capability means you can even change some of the settings in a dialog during a
simulation run, such as choosing different buttons or typing new values.

☞ When you click a button while the simulation is running, the block gets that changed value on the
next step. However, if you type text or enter numbers into a parameter field, the model pauses
while you are typing in order to get your entire input.

Connections
Connections are the lines that are used to join blocks together. They represent the flow of informa-
tion from block to block through the model. The simulation itself is a series of calculations and
actions which proceed along the path of the connections repetitively. Each repetition is called a step
for continuous models or event for discrete event and discrete rate models.

In the Reservoir model, the blocks calculate in an order determined by the connections, starting at
the left and going to the right.

Holding Tank dialog

Running a Model 17
Blocks used in the Reservoir model

T
utorial
Blocks used in the Reservoir model
There are five blocks in the Reservoir model.

The following chart lists the blocks and their functions.

Name (Label) Block Function Purpose in Reservoir Model

Lookup Table
(Rainfall)

Acts as a lookup table. You can choose
to set it to output data based on the
current time or based on the value it
receives at its input.

Represents rainfall entering the reser-
voir each month. The amount of rain-
fall is based on historical averages and
varies with the month.

Random Number
(Stream)

Generates random integers or real
numbers based on the selected distri-
bution.

Generates random values that corre-
spond to the changing flow of the
stream. In this model, the stream
increases the reservoir level between 0
and 1 inch of water per month.

Math Performs mathematical functions. The
same Math block can be used for a
wide variety of purposes by selecting
the desired function from a popup box
in the dialog.

Adds the amounts from the two differ-
ent water sources and transfers them
to the Reservoir.

Holding Tank
(Reservoir)

Accumulates the total of the input val-
ues. It also allows you to request an
amount to be removed and outputs
that requested amount, if available.

Accumulates water from its two
sources. In this model, the tank has an
infinite capacity and nothing is
removed.

Plotter I/O Displays plots and tables of data for up
to four value inputs for continuous
models. Can be used to input its
results to another section of the model
or to another model.

Shows the amount of input from the
two sources and the level of water in
the reservoir, as it is affected by the
amount of water entering it.

Holding Tank

Math Plotter I/O

Lookup Table

Random

Blocks in the Reservoir model

Number

18 Running a Model
Running the Reservoir model

T
ut

or
ia

l

There is nothing fundamentally different about the structure of these different blocks. Any block
may create, modify, or present information, and many blocks perform more than one of these
functions. You can, of course, have multiple instances of the same block within a model.

Running the Reservoir model
Now that you have seen the basic parts of a model, you are ready to run the Reservoir simulation
and see how models operate. After running the model, you will see how easy it is to modify models
as you change your assumptions. For now, do not change anything in the blocks’ dialogs.

Select Run > Run Simulation or click the Run Simulation button in the toolbar.

As the simulation runs, progress information will be displayed in the status bar at the bottom left
of the model window. (For a simple model like Reservoir that is completed very quickly, the mes-
sages may go by too quickly to be read.)

You can learn more about commands for running, stopping, and pausing models in “Running a
model” on page 522.

Displaying the results on the Plotter
Plotters show both a graphical representation of the numbers fed to them as well as a table of the
numerical values. As described on page 588, ExtendSim comes with a number of flexible plotters
to use in your models.

The Reservoir model runs for a simulated 36 months.
While the model runs, ExtendSim displays the results on
the Plotter, which by default remains on the screen when
the simulation is finished. This is your primary method
for determining what happened during the simulation.

The Plotter block in this model has information enter-
ing three of its four input connectors, so the graph dis-
plays three lines. The Plotter also has two value axes,
each using a different scale. The legend below the graph
indicates which axis is used for each line (Y2 indicates
the values are plotted on the right axis) and what each
line represents.

In this case, the blue line, labeled 1, is matched with the
left axis to show the total contents of the reservoir over
time. Using the right axis, the red line (2) shows the amount of water entering the reservoir from
the rainfall alone and the green line (3) shows the input from the stream. (Because the model uses
random numbers for the stream, specific values may be different after each run.)

The bottom of a plotter window shows the data points which produce the line. Scroll down this
list to see the numerical values for each line. You can also observe the values for any given point by
moving the cursor anywhere in the graph. The corresponding values are displayed above the data
table’s column headings.

☞ ExtendSim plotters remember the pictures (but not the data) of the last four plots. You can see the
previous plots by clicking on the small turned-up page symbol at the bottom left of the graph
part of the plot window.

Plotter results for the model

Running a Model 19
Notebooks

T
utorial
Notebooks
ExtendSim features like the Notebook give you capabilities that go beyond the basics of building
and running models. A Notebook is a window you can customize to help organize and manage the
data in a model.

You can use a Notebook as a “front-end” to the model - to control model parameters, report simu-
lation results, and document your model. Each model has its own Notebook which can contain
plots, text, pictures, drawing items, and cloned duplicates of dialog and plotter items.

Select Window > Notebook or click the Open Notebook button in the toolbar.

The Notebook for the Reservoir model opens. As you can see, the important parameters and
tables you saw in the dialogs of the Reservoir model have been placed in its Notebook.

Run the simulation again. Note that the results shown on the Plotter and the results shown in
the Notebook are the same (the results will change slightly from one simulation run to the next
because the Stream source uses a random distribution).

Notebooks are easy to create and are especially useful for documenting models and to view the
impact of inputs on results. For more information, see “Notebooks” on page 508.

Making changes to the model
So far, you have run the simulation and viewed the Notebook without changing any of the
assumptions that were supplied when the model was created. One of ExtendSim’s strongest fea-
tures is the ability to change assumptions on the fly and see the results instantly. Since the Plotter
remembers the previous four plots, you can easily compare the results after you change assump-
tions.

Reservoir 1 model with Notebook containing clones of dialog items from the Lookup
Table, Random Number, and Plotter I/O blocks.

20 Running a Model
Making changes to the model

T
ut

or
ia

l

You can change a model by adding or removing blocks or by changing parameter values in a block’s
dialog.

Adding and removing blocks
If you have some processes running in parallel (such as the two water sources in the
Reservoir model), you can easily test the results of adding additional parallel processes or removing
existing ones.

You will learn how to add blocks in “Building a Model” on page 23.

To remove a block, click it to select it, then choose Edit > Clear Blocks or use the Delete or Back-
space key. Note that deleting a block removes its associated connections as well.

Changing dialog parameters
You can change a dialog value by clicking in a parameter field while the model is running. When
you do this, ExtendSim pauses the simulation. To continue the simulation, select Run > Resume
or click the Pause/Resume tool in the toolbar. Note that when you make changes to a dialog and
then save the model, the changes are saved with it.

On page 509 you will see how to vary a dialog value manually using Controls, such as Sliders, and
on page 568 how to use sensitivity analysis to automatically explore various scenarios. For simplic-
ity, parameters in the following blocks are entered in the dialog as static values that do not change
based on model conditions. To see how easy it is to change dialog parameters and see the impact
on results, try some of the following suggested changes.

Lookup Table block (Rainfall)
The Lookup Table block provides a time-
varying value (in this case, the amount of rainfall
each month) for the simulation.

This block looks at the current simulation time,
compares it to the time values in the column labeled Months,
and outputs the corresponding Rain (inches) value.

Right now, the Lookup Table block shows that 2.6 inches of
water are fed into the reservoir at time 0, the beginning of the
run, 4.4 units at the beginning of the next month, and so on.

Change the first value in the Rain column from 2.6 to a
high number, such as 90, then run the simulation again to
see the impact on the results.

Lookup Table block dialog

Running a Model 21
Other modifications

T
utorial
Random Number block (Stream)
The Random Number block generates values
based on a random distribution. In this model,
it outputs a real number from 0 to 1.

Change the distribution’s maximum output
from 1 to a different number, such as 30, and run the
simulation again.

☞ ExtendSim lets you choose from dozens of probability dis-
tributions or create your own. Learn more about how to
use random numbers in your models in “, Math and Statis-
tical Distributions”.

Math block
The Math block can be used to perform any
mathematical function. In this model, it is used
to add the amounts of water coming in from the
rainfall and the stream.

To add a constant value to the input number, enter an
amount in the Add field.

The Math block is very versatile. By clicking radio buttons
you can quickly change the type of mathematical function
that the block performs.

Holding Tank block (Reservoir)
In addition to accumulating the amounts
entering, the Holding Tank allows you to
enter an initial amount and to remove
some or all of the contents. You can also
specify which mathematical method is per-

formed on the inputs to calculate the contents.

Enter an amount in the Initial contents field and
run the simulation again to see how the results
change.

Other modifications
As you have seen, ExtendSim offers many options to
change the way a model runs so that you can explore
different scenarios. The Reservoir model can be
expanded upon in other ways that will be explored later since they involve more advanced tech-
niques. For example, you can:

• Add more real-life contingencies by adding blocks to the model. For example, add more water
sources, then use a Notify block (Utilities library) to monitor the simulation and sound an alarm
if the water level goes above a certain value. For more information, see “Notify block” on
page 511.

• Add blocks and connect them to the Holding Tank to remove some of the water from the
Reservoir. The blocks can cause the water to be removed randomly or based on a table of

Random Number block dialog

Math block dialog

Holding Tank block dialog

22 Running a Model
Other modifications

T
ut

or
ia

l

expected outputs. The Reservoir models in “Tutorial” on page 63 demonstrate some ways of
doing this.

• View the status of blocks by connecting their outputs to the Plotter, by leaving their dialogs
open while running the simulation, or by taking some of their dialog items and putting them in
the model window, which is referred to as cloning. You’ll learn more about cloning in “Creating
a dashboard interface” on page 506.

• Perform analysis such as Sensitivity Analysis or Optimization and have ExtendSim find the best
set of parameters. See the chapter “Analysis” on page 563.

• Build a user interface for the model by putting sections of the model in layers (hierarchy), build-
ing custom reports (Notebook and reporting features), or creating a dashboard front-end (using
buttons and cloned dialog parameters to run the model). These features are discussed in “Creat-
ing a Custom User Interface” on page 503.

Now that you understand how easy it is to run an ExtendSim model, the next chapter will show
you how to build a model from scratch. When you are finished with that chapter, you will see how
easy it was to create the Reservoir model and the ease with which you can create your own models.

Tutorial

Building a Model
How to build an ExtendSim model

and use the model window features

“He builded better than he knew;
 The conscious stone to beauty grew.”

— Ralph Waldo Emerson

24 Building a Model
Steps to create the Reservoir model

T
ut

or
ia

l

This chapter continues the Tutorial by describing the steps required to create the Reservoir model
that you ran in Chapter 1. As stated earlier, this model uses continuous simulation, but the con-
cepts described in this chapter also apply to other types of modeling.

☞ Other modules in this guide describe specific discrete event and discrete rate concepts and show
you how to build those types of models, but they assume that you have already completed this
Tutorial.

The topics covered in this chapter include:

• Opening a new model window

• Simulation setup and run options

• Opening a library of blocks

• Adding blocks to the model

• Connecting blocks using different methods

• Using dialogs to set parameters

• Making adjustments to the Plotter graph

• Hierarchy - top down

• Navigating the model

• Cloning duplicates of dialog and plotter items

Steps to create the Reservoir model
The basic concept behind the Reservoir model is to simulate what happens to a reservoir’s water
level as water enters it over a 36 month period. There is no water in the reservoir at the start of the
simulation and no water is removed from it. As water sources add their contributions each month,
the water level rises.

The steps to create the Reservoir model are:

1) Open a new model worksheet

2) Set simulation run parameters

3) Build the model using blocks from libraries

4) Select block settings and enter dialog parameters

☞ For your reference, the final version of the Reservoir 1 model is located in the ExtendSim7\Exam-
ples\Tutorials folder and is shown on page 36. However, you will learn more about ExtendSim and
modeling if you build the model yourself.

Building a Model 25
Opening a new model worksheet

T
utorial
Opening a new model worksheet
To start a new model:

Choose File > New Model.

ExtendSim opens a blank model worksheet titled
Model-1.

Setting the simulation parameters
You enter simulation parameters, such as the model’s time
units and duration, in the Simulation Setup command.

Choose Run > Simulation Setup

The Simulation Setup command opens a dialog for set-
ting a variety of simulation and 3D animation parameters, such as how long and how many times
the simulation will run, when the random number seed gets reset, the mode of interaction between
the simulation and the 3D window, and so forth. The dialog has tabs for Setup, Continuous, Ran-
dom Numbers, 3D Animation, and Comments.

The most common simulation settings you will need to enter in the Simulation Setup window
(and often the only ones) are the End time and Global time units parameters located on the
Setup tab. For most purposes, you want the simulation to start at the beginning, so you would
use the default start time of 0.

Customize the Setup tab by entering the follow-
ing parameters:

End time: 36

Start time: 0 (Default)

Runs: 1 (Default)

Global time units: Months

Click OK

This model will run for 36 months, performing
calculations once each month.

Each time you run a simulation, ExtendSim uses
the same values entered in the Simulation Setup
window. Thus, you will usually only configure
the settings once per model. The Simulation Setup command is discussed fully in “Simulation
setup” on page 516.

Building the model
The Reservoir model requires five blocks. There are two sources of water: rainfall and a stream; the
data for rainfall comes from a table while the stream contributes a random amount. You need a
block to add the two water sources, another block that can hold values (representing the reservoir),
and a plotter to display the results of the simulation.

Basic steps
The basic steps for building a model are:

1) Open the relevant libraries, if necessary.

New model worksheet (Windows)

 Setup tab of Simulation Setup window

26 Building a Model
Building the model

T
ut

or
ia

l

2) Add the blocks to the model.

3) Move them to the desired positions.

4) Add connections between blocks.

About libraries
Blocks used in a model are stored in repositories called libraries. The entire definition for a block
(its program, icon, dialog, and so on) is stored in the library. When you include a block in a model,
the block itself is not copied to the model. Instead, a reference to the block is included in and
stored with the model. Any data you enter in the block’s dialog is also stored within the model.

There are many advantages to this method of using references to libraries instead of actual blocks
in models. If you change the definition of a block in a library, all models that use that block are
automatically updated. Also, block definitions are quite large, so storing just a reference to the
library saves memory and reduces processing time.

☞ When you save a model, ExtendSim saves the names of the blocks as well as the locations of the
libraries that store the blocks. The next time you open the model, ExtendSim automatically opens
the libraries the model uses. You can also set a preference in the Options window to have up to
seven libraries load automatically whenever ExtendSim is launched (see“Options” on page 688).

Opening the relevant libraries
To add a block to a model, the library in which that block resides must be open. For the Reservoir
model, you need to open the Value and Plotter libraries.

To open the Value library:

Choose Library > Open Library. ExtendSim takes you to the Libraries folder.

Select the Value library.

Click Open.

Repeat the above steps to open the Plotter library.

Open libraries are listed in alphabetical order at the bottom of the Library menu.

Adding blocks to the model
There are two methods for adding a new block to a model:

• Select the block from its library within the Library menu.

• Drag the block from a Library window, as discussed on “Library Window mode” on page 671.

For this Tutorial, you will use the first method and select blocks from the Library menu.

Building a Model 27
Building the model

T
utorial
The first block needed for the Reservoir model is a
Lookup Table block, which will be used to enter data
about the amount of rainfall entering the reservoir.

To add the Lookup Table block to the model work-
sheet:

From the Library menu, scroll to the Value library,
which is listed at the bottom of the menu. When the
Value library is highlighted, a secondary menu opens
that lists several categories, each of which further
expands to show the blocks contained in that cate-
gory.

Under the Math category, click Lookup Table.

An icon for the Lookup Table block
appears in the top-left corner of the model
window. By default, the icon is selected.
To deselect a block, click anywhere in the
window. To move a block, select it and
then drag it to the desired position in the
model window or use your keyboard arrow
keys to move it one pixel at a time.

☞ If you click at a location on the model win-
dow before you pick a block from the
menu, the block will appear at the point
where you clicked.

From the Library menu choose the
library, category, and block (as indicated
below), to add the four remaining
blocks to the model:

Value library > Inputs category >
Random Number block

Value library > Math category >
Math block

Value library >Holding category >
Holding Tank block

Plotter library >Plotter I/O block

When you have finished, the model should look similar to the screenshot above.

This is a good time to save the model so far.

Choose File > Save Model As and name the file My Reservoir.

Connecting blocks
As mentioned in Chapter 1, connections pass information from one block to another. Blocks are
usually connected together by drawing connections from one block’s output connector to another
block’s input connector.

Library menu with Value library categories

Lookup Table block added to model

All blocks added to model

28 Building a Model
Building the model

T
ut

or
ia

l

Connectors
In ExtendSim, the behavior of most connectors is predefined for each specific block. For example,
when you set a Math block to use a function (add, subtract, divide, etc.) it knows what to do with
the values that are input into the block. This makes model building easy since you can connect
blocks and run simulations without having to write equations to define what each block should do
with the inputs or outputs.

There are several types of connectors in ExtendSim. Continuous models,
such as Reservoir, only use value input and output connectors to pass infor-
mation from one block to another. Other types of connectors will be dis-
cussed in later chapters.

☞ Each input connector can only have one source of information. Therefore,
blocks that need to have many sources of input require a separate input
connector for each piece of information.

Types of connections
There are two types of connections in ExtendSim: line connections and named connections. Line
connections join the output of one block to the input of another using connection lines; named
connections use text labels as outputs and inputs, causing data to jump from the output to the
input without using connection lines.

Connection lines can be drawn using three different styles: right-angle, straight, and multi-segment.
The default style is right-angle, which you will use in the following example.

The other styles of line connections, as well as named connections, will be discussed at “Additional
ways of connecting blocks” on page 32.

Connecting the Lookup Table block to the Math block’s variable connector
In the Reservoir model, the two water sources need to be connected to the Math block so that the
amounts of water entering the reservoir from rainfall and from the stream can be added together.
The first step is to connect the Lookup Table block to the Math block.

As mentioned earlier, blocks that need to have more than one source of input require a separate
input connector for each piece of information. ExtendSim provides for this by putting variable
connectors on blocks that might need them. This is usually indicated by a black arrow beneath the
connector that can be dragged to display additional connectors.

The Math block, for example, has a variable input connector as indicated by the black arrow below
its input. However, since the Math block displays two inputs by default, you do not need to
expand the variable connector. For more information about using variable connectors, see “Vari-
able connectors” on page 498.

To connect the Lookup Table block to the Math block:

Move the cursor to the output connector of the Lookup
Table block.

The cursor changes from an arrow to a technical drawing
pen:

Click the Lookup Table’s output connector, then drag a
line to the top input connector on the Math block. You
can tell when you are over the connector because the line
you draw becomes thicker.

OutputInput

Value connectors

Thickened line = successful connection

Building a Model 29
Working with block dialogs

T
utorial
Let go of the mouse button.

☞ If you accidentally release the mouse button before the line
has thickened, a dotted red line will appear to indicate the
connection has not been made. To remove it, double-click
the line so that the entire connection thickens (indicating
that you have selected it), then press the Delete or Backspace
key, or choose Edit > Clear Connection. (A single click will
select one segment of the line only.) You can then make a
correct connection.

Connecting from the Random Number block
The next step is to connect the second water source, the Ran-
dom Number block, to the input of the Math block. To do
this:

Draw a connection line between the output connector on
the Random Number block and the second input connec-
tor on the Math block, just as you did for the Lookup
Table block earlier.

Connecting the remaining blocks

Connect the other blocks in the model as follows:

Draw a connection line between the output connector on
the Math block and the input connector on the Holding
Tank block.

To monitor the reservoir’s level, draw a connection
line between the Holding Tank’s output connector
and the top input connector on the Plotter block.

Working with block dialogs
Now that all the blocks have been placed and con-
nected in the model, you can enter data and select
options in block dialogs. The data for this model
comes from a table of values and from a random sample. The sections below will describe the set-
tings used in each block’s dialog.

Rainfall source
The amount of rainfall entering the reservoir is determined by a Lookup Table block that contains
each month’s expected rainfall. In a real-life situation, for example, these numbers may have been
determined by annual recorded averages.

Double-click the Lookup Table block to open its dialog.

By default, the Lookup Table block is set to Lookup the: input value. In that mode, the block
outputs a value that corresponds to the value it receives at its input. However, you want the
Lookup Table block to output a value--the amount of rainfall for the month--that corresponds to
the current simulation time.

Customize the dialog’s Table tab by setting the behavior of the block to look up simulation time
each month:

Right-angle connection

Connect from Random Number block

Connection from Math block

Connection between Holding Tank and Plotter
blocks

30 Building a Model
Working with block dialogs

T
ut

or
ia

l

Lookup the: time

Output is: stepped (Default)

Time units: months (Model Default)

Time means the block will compare current simulation time to a time in the table and output the
corresponding value. Stepped means that ExtendSim will use the exact values you enter in the
table, not an interpolated amount.

Increase the number of rows so the table has room for
twelve months of data:

Click the +/- sign in the green square at the bot-
tom right of the table.

Enter 12 for the number of rows and 2 (the
default) for the number of columns.

Click OK

Enter data into the table as shown in the screenshot at
right.

☞ If you click Enter after each value, the cursor will auto-
matically move to the next cell.

Check the Repeat table every checkbox and enter
12 in the months box.

This causes the determination of monthly rainfall to start over every 12 months.

In the label entry box beside the Help button, type in Rainfall.
Labels can have a maximum of 31 characters, including spaces.

On the Options tab, enter the following text in the column labels
box to give more meaningful headings to the table (be sure to include the semi-colon):

Month;Rainfall (inches)

Return to the Table tab

The table’s left column now specifies the month and the right column specifies the amount of
expected rainfall in inches. At each step, ExtendSim will check the block’s table for a time in the
first column that is less than or equal to the current simulation time and output the corresponding
value (inches of rainfall) to its right. For instance, for the fourth month the block will output 1.9.

Click OK to close this block’s dialog.

Stream source
In this model, the Random Number block is used to specify a random distribution of water enter-
ing the reservoir from the stream. The distribution is a real number between 0 and 1, indicating
that the stream will add between 0 and 1 inches of water to the reservoir’s level each month.

Table settings for Lookup Table

Block labeled “Rainfall”Adding label to the Lookup Table block

Building a Model 31
Working with block dialogs

T
utorial
Open the Random Number block’s dialog.

By default the dialog’s parameters already have the set-
tings you want:

Distribution: Uniform Real (Default)

Minimum: 0 (Default)

Maximum: 1 (Default)

Enter Stream in the label field next to the Help button.

Click OK.

Combining the sources
The Math block combines the values from the two water
sources. As indicated by the plus sign on its icon when you
placed the block in the model, the Math block is set by
default to add its inputs. There is no need to change its dialog
settings.

☞ Although you don’t need to for this model, the Math block
function can be changed directly in its dialog or by right-
clicking a special area on its icon. For the Math, Decision,
and Simulation Variable blocks (Value library), the icon’s
lower right corner has a sensitized area that looks like a par-
tially turned page. You can right-click that area to change dia-
log settings.

Water in the reservoir
The Holding Tank block represents the level of water in the reservoir. In this model, the Holding
Tank has no beginning contents and does not release any of its contents.

Open the Holding Tank block’s dialog.

In the dialog, set:

Initial contents: 0 (Default)

Inputs are: integrated (delay)

Enter Reservoir in the label field next to the Help
button.

Click OK.

☞ The Holding Tank should be set to integrate, rather
than sum, its inputs. This will output the value at time
1 that has been calculated for the period from time 0 to
1. These continuous simulation concepts are discussed
more thoroughly in “Integration vs. summation in the
Holding Tank block” on page 610.

Random Number dialog settings

Math dialog settings

Holding Tank dialog

32 Building a Model
Running the simulation

T
ut

or
ia

l

Displaying the results
The Plotter I/O block monitors the total amount of water in the reservoir. (Later in this chapter
you will learn different techniques for connecting the Lookup Table and Random Number blocks
to the Plotter, to also monitor the amounts flowing in from the rainfall and the stream.)

Double-click the Plotter to open its plotter window.

Notice that the first column in the table is titled Contents. The Plotter automatically named it
when you connected from the contents output of the Holding Tank block.

To further personalize the plotter window:

Click the text label Value in the upper left corner of the Plotter’s graph to select its text box.

Type Inches in the text box and click the Tab, Return or Enter key.

Using that same process, change other Plotter labels in the graph pane as follows:

Change Plotter I/O (located at the top of the graph) to Reservoir Model.

Change Time (located below the graph) to Month.

Close the plotter window

Save the model.

☞ When you save a model, ExtendSim creates a backup, ModelName.bak, of your previously saved
model. To open a backup file, add the extension .mox after the .bak so that the file reads Model-
Name.bak.mox. Then Open the backup file from the File menu.

Running the simulation
Now that you have placed blocks on the model, con-
nected them, and configured their dialogs with data, it is
time to run the model.

Select Run > Run Simulation or click the Run Simu-
lation button in the toolbar.

A plot similar to the one at right will be displayed. It
only shows one line because only the Holding Tank is
currently connected to the Plotter block.

Additional ways of connecting blocks
For this simulation, you need to also connect the rainfall
and stream blocks to the Plotter so you can compare their outputs to the total water collected in
the reservoir.

When you built the model, you used the right-angle connection line style to connect blocks. This
is the default setting for all new models. You can also connect blocks using the straight and multi-
segment connection line styles. In addition to using connection lines, you can connect blocks
using named connections. These methods are discussed in the following topics.

Straight line connection
You draw this line style in exactly the same way as the right-angle style, but it displays differently.

Select Model > Connection Lines and select the straight line option (second item).

Building a Model 33
Additional ways of connecting blocks

T
utorial
☞ Changing the setting in the Model menu will only affect subsequent connections in this model.
You can change the default setting for all models by choosing Edit > Options > Model tab and
unchecking “Default connection line style is right angle”.

Draw a line from the output connector on the Lookup Table block to the second input connec-
tor on the Plotter.

Both the straight line and right-angle line connections have the disadvantage of running directly
over other blocks and connections, making the model more difficult to read.

Delete the straight line connection by selecting it and pressing Delete or the Backspace key.

Multi-segment line connection
This style has the advantage of letting you draw the lines so that they go around blocks rather than
over them.

With the straight line option still selected, click the Lookup Table’s output connector and drag
your cursor until it is above the space between the Holding Tank and the Plotter blocks.

Release the mouse.

This creates the first segment. The cursor
remains a technical pen because you are pointing
at an anchor point.

Immediately click again and drag the cursor to
the second input connector on the Plotter, then
release the mouse button.

You now have a multi-segment connection. (Note
that a right-angle connection is simply a multi-
segment connection that is automatically created
by the application.)

☞ Anchor points can be moved if the connection did
not come out as you intended. Simply move your
mouse over the anchor point until the cursor
changes into a hand, then click the anchor point
and drag it to the desired location.

Although this connection no longer crosses over any other elements of the model, you can see how
a larger, more complex model could become very cluttered with so many line segments in the win-
dow.

Delete the multi-segment connection by double-clicking a segment until the entire connection
line thickens, then press Delete or the Backspace key. (To delete just one segment of the line,
you would click the segment once and press the Delete key.)

Named connection
Named connections are text labels that are used to represent one output at many locations in your
model. If you have two labels with the exact same text, you can use these to have the flow of data
jump from one part of the model to another. Named connections are often used when you do not
want to clutter up your model with many lines. You can place the names near the blocks to which
they connect and leave much of the area of your model free from connection lines. Named connec-
tions are discussed in detail at “Named connections” on page 560.

First segment and anchor point

Multi-segment connection

34 Building a Model
Plotting against multiple axes

T
ut

or
ia

l

☞ Named connections are not case sensitive and spaces and returns are ignored, but you must use
identical spelling in the text names.

Creating a named connection between the Lookup Table and the Plotter
To add a text label for the named connection:

Choose Model > Connection Lines and select either the right-angle or
straight line style.

Double-click in the model window, slightly above and to the right of the
Lookup Table block’s output connector. This opens a text box.

Type Rainfall in the text box.

When you are finished typing, click anywhere else on the model
window.

Join the Lookup Table’s output connector to the word
Rainfall by dragging a line from the connector to the text and,
when the line thickens, release the mouse.

☞ Until you connect the text to an input connector on another block,
the line will remain dotted.

Click the Rainfall text to select it, then choose Edit > Dupli-
cate.

Drag the duplicate text to a spot slightly below and to the left of
the Plotter and release the mouse.

Draw a line between this text and the second input connector on
the Plotter. Note that both the connection lines are now solid.

Named connection between Random Number and Plotter
Repeat the process above to create a named connection between the Random Number block and
the Plotter:

Create a Stream text label and place it near the output of the Random Number block.

Connect from the Random Number block’s output connector to the text label.

Duplicate the text label and drag it to a spot below and to the left of the Plotter.

Connect from the text label to the third input connector on the Plotter.

☞ To display the actual connection lines between blocks, choose Model > Show Named Connections.

Plotting against multiple axes
Click the Run Simulation button on the toolbar.

Typing in text box

Lookup Table joined to named
connection text

Named text connection joined
to Plotter

Building a Model 35
Plotting against multiple axes

T
utorial
The Plotter that appears now has three lines on it: the
blue one displays the amount of water in the reservoir
over time, the red one displays the amount entering the
reservoir from the rainfall, and the green line displays
the water entering from the stream.

At the end of the simulation run, the Plotter automati-
cally scales its axis to be able to display all values for both
columns of data. However, because the total amount of
water in the reservoir has a much greater range than the
amount entering it each month, the lines representing
the rainfall and stream amounts can barely be seen. They
simply look like horizontal lines across the bottom of the graph.

To solve this problem, you can add a separate axis (Y2) on the right-hand side of the graph and set
the Plotter to display the rainfall and stream values against that axis.

If its not already open, double-click the Plotter to open its plotter window.

Click the Trace properties button , which is the left-most button in the toolbar at the top of
the plot window.

The Tools dialog opens.

In the second row, labeled Rainfall, click the Y1/Y2 button ,
second from the right.

The button changes so the vertical line is to the right of the hori-
zontal line.

In the third row, labeled Stream, click the Y1/Y2 button, causing
the stream to also be plotted against the Y2 axis.

Close the Tools dialog box.

Click the Run Simulation button on the toolbar.

Plotter Tools dialog

36 Building a Model
The final Reservoir model

T
ut

or
ia

l

The graph now displays the Rainfall and Stream lines using the right-hand axis.

The final Reservoir model
If you have followed all the steps, your model should look similar to the Reservoir model shown
here.

Additional enhancements
Now that you know how to create a model, you can explore some other features, such as hierarchy
and cloning, that are easy to do and will greatly enhance your models.

Introduction to hierarchy
The Reservoir model displays one block per function performed, i.e. the Lookup Table block out-
puts the amount of water coming from rainfall, the Random Number block outputs the water
coming from a stream, etc. For such a simple model, this works fine. However, models created for
real-life simulations can involve thousands of blocks. Building, organizing, and presenting a com-
plex model with all the blocks on one layer of the worksheet would be very difficult.

My Reservoir model

Building a Model 37
Additional enhancements

T
utorial
To help simplify and clarify models, ExtendSim lets you create hierarchical blocks (H-blocks) that
group several blocks together into one block while still allowing you to drill down into the lower
levels to access the individual blocks.

Creating a hierarchical block from existing blocks
In the Reservoir model, you can group the blocks that represent sources of water together into one
hierarchical block. This process is extremely easy.

Shift-click the Lookup Table, Random Number, and Math blocks to select them.

 Do not select the text labels (Rainfall and Stream) of the named connections!

Select Model > Make Selection Hierarchical.

A dialog appears prompting you for a name for the hierarchical block.

Enter Water Sources.

Click Make H-Block.

The three individual blocks are replaced with a single hierarchical
block with a white rectangle for an icon. By default, hierarchical
blocks have drop shadows to distinguish them from other blocks; you
can change that option by choosing Edit > Options > Model tab.
Note that there are three connectors, including the Rainfall and Stream named connections, on
the hierarchical block’s icon.

Double-click the hierarchical block to see the sub-
model, or individual components, inside it.

☞ The hierarchical block and submodel may look
slightly different depending on how the blocks were
placed.

The window’s title bar displays the name of the
hierarchical block. Note that connections for
transferring data from within the hierarchical
block to the outside model are represented in the
submodel as named connections with red borders
around the text. Those connections correspond to
the three connectors on the block’s icon.

Close the Water Sources window.

ExtendSim provides many more features for creating and using hierarchical blocks, including
building hierarchical blocks from scratch, assigning custom icons to them, and providing Help
information. To learn more, see “Hierarchy” on page 540.

The ExtendSim Navigator
The Navigator is an explorer-like window that can be used for multiple purposes:

• To navigate through the hierarchical structure of a model

• To access any databases used in the model

• To add blocks to the model worksheet, as an alternative to using the Library menu

Hierarchical block

Water Sources submodel

38 Building a Model
Cloning

T
ut

or
ia

l

Navigating through the Reservoir model
Since your reservoir model now has a hierarchical block (the Water Sources block you created ear-
lier), you can see how the Navigator is helpful for exploring a model.

To open a Navigator:

Select Window > Navigator or click the Open Navigator tool in the Toolbar.

By default, the Navigator opens in Model Navigator mode,
with the word “Model” selected in the leftmost popup menu.
The name of the active model is listed at the top of the win-
dow and below the Navigator’s leftmost popup menu, and
each block’s icon and information (name, label, and global
block number) is displayed.

Click the plus sign beside the Water Sources hierarchical
block.

The hierarchical block expands to show the blocks within it.

Select the Lookup Table block in the Navigator.

The corresponding block is selected in the model window.

Double-click the Lookup Table block in the Navigator.

The block’s dialog opens.

As you can see, the Navigator is indispensable for exploring
complex models, especially for models with many layers or
instances of hierarchy. For additional information, see “Navigator” on page 670

Cloning
In “Running a Model” on page 13 you saw how Notebooks help organize, monitor, and interact
with data during simulations. ExtendSim lets you add dialog and plotter items to your Notebook
using a technique called cloning. Clones are exact replicas of dialog items, behaving exactly like the
original. When a cloned value changes, the original dialog item or plot graph also changes.

To clone a plot from the Plotter block to the Notebook:

Select Window > Notebook or select the Open Notebook tool in the toolbar.

An empty Notebook window opens.

Double-click the Plotter block in your reservoir model.

Navigator in Model mode

Building a Model 39
Other modifications

T
utorial
Using the Clone layer tool from the toolbar, click the plot (graph portion) of the plotter
and drag it to the Notebook window.

Run the simulation again.

The plot in the Notebook is the same as the graph on the Plotter.

For more information, see “Cloning” on page 504.

Other modifications
Since it is so easy to add and modify elements in ExtendSim models, there are many ways you can
enhance them. Here are just a few examples.

• Add blocks to represent more sources of water entering the reservoir.

• Add an additional Plotter to see the various lines on different plots--for example if the scales of
the results are very different and you do not want to plot against the Y2 axis. There are four ways
to create a second instance of a Plotter:

• Insert another Plotter block from the Library menu, as you did earlier in this chapter.

• Insert another Plotter block from the Plotter library’s library window, as discussed at
“Library Window mode” on page 671.

• Copy and paste the existing Plotter.

• Select the Plotter, choose Edit > Duplicate, and move the duplicate Plotter to the desired
location.

You can use these same techniques to duplicate any block in the model. Note that if you copy or
duplicate a model’s existing block, any dialog settings for that block will also be copied.

• Configure the Holding Tank block so that it outputs water over time. For an example of this, go
to “Tutorial” on page 63.

• Run the model with Show 2D animation enabled to display the water level in the Holding Tank
block. Learn more, see “Blocks with built-in animation” on page 551.

Cloning plot onto Notebook

40 Building a Model
Next steps

T
ut

or
ia

l

• Set delta time to a value less than 1, as discussed onpage 83. This calculates output values
between the steps, so you can see finer resolution of the model results.

Next steps
You have learned the basic techniques for running and building models and some additional tech-
niques for enhancing your models. The following are some suggestions on which sections of the
manual to explore next, depending on what your own simulation requirements are.

• The Tutorial module’s “Simulation Concepts” chapter discusses more general simulation and
modeling concepts and how ExtendSim can be used for all types of modeling. It describes the
three main modeling methodologies (continuous, discrete event, and discrete rate) as well as
modeling approaches such as Monte Carlo, Agent Based, and State/Action.

• If you already know the type of modeling you want to do, the specific modules are:

• “Continuous Modeling” starting on page 59.

• “Discrete Event Modeling” starting on page 89.

• “Discrete Rate Modeling” starting on page 265.

• “3D Animation” starting on page 389.

• The “How To” module starting on page 488 has several chapters that show how to use
ExtendSim to do common modeling tasks (such as creating a user interface, analyzing model
results, etc.).

Tutorial

Simulation Concepts
Learn about systems, simulation,

and modeling methodologies

“It must be remembered that there is nothing more
difficult to plan, more doubtful of success, nor more

dangerous to manage, than the creation of a new system.”
— Niccolo Machiavelli

42 Simulation Concepts
Systems, models, and simulation

T
ut

or
ia

l

The first two chapters of the Tutorial showed how to build and run simulation models in
ExtendSim. Since you have seen some of what can be accomplished with ExtendSim, now is a
good time to explore some modeling and simulation concepts. The following discussion is meant
to familiarize you with modeling and simulation terminology and concepts used throughout this
guide. This chapter:

• Explains modeling concepts and terminology

• Discusses model types and common approaches to modeling

• Describes the modeling process, including goals and steps

• Shows how to verify and validate a model

After reading this chapter you will have a better grasp of modeling concepts and will be ready to
start using ExtendSim for your modeling needs. Note that an in-depth exploration of simulation is
beyond the scope of this document. For more detailed definitions and theory, please refer to the
numerous books on simulation.

☞ If you are already familiar with the concepts to be presented in this chapter, skip it and proceed to
one of the other modules, as discussed in “About this User Guide” on page 6.

Systems, models, and simulation
All professions use models of one form or another. But the word “model” does not always have the
same meaning to business professionals, managers, scientists, and engineers. Even within a specific
discipline, such as manufacturing, modeling has many different definitions. The following discus-
sion serves to clarify what “modeling” means as it relates to ExtendSim.

Systems
The real world can be viewed as being composed of systems. A system is a set of related compo-
nents or entities that interact with each other based on the rules or operating policies of the system:

• Entities are the internal components of the system. Entities are involved in processes—activities
in which they interact with each other.

• Operating policies—the types of controls and availability of resources—are the external inputs
to the system. They govern how the system operates and thus how the entities interact.

Over time, the activities and interactions of entities cause changes to the state of the system; this is
called system behavior or dynamics. Systems can be mathematically straightforward, such as a
flower growing in the soil and turning towards the sun to maximize photosynthesis. Or they can be
more complex, such as supply chain operations composed of planning, selling, distribution, pro-
duction, and sourcing subsystems.

Models
A model is an abstracted and simplified representation of a system at one point in time. Models are
an abstraction because they attempt to capture the realism of the system. They are a simplification
because, for efficiency, reliability, and ease of analysis, a model should capture only the most
important aspects of the real system.

Most models can be classified into four basic types:

• A scaled representation of a physical object, such as a 1:18 diecast model of a Ferrari, a clay
model of a proposed packaging bottle, or a scale model of the solar system.

Simulation Concepts 43
Modeling methodologies

T
utorial
• A graphical or symbolic visualization, such as a flow chart of office procedures, the board game
Monopoly (which represents the hotels and facilities of Atlantic City), or an architect’s plans for
a building.

• An analytical or mathematical formula that yields a static, quantitative solution. For instance, an
analytic model might consist of several independent sample observations that have been trans-
formed according to the rules of the model. Common examples of analytic models are spread-
sheet models or linear programming models.

• A mathematical description that incorporates data and assumptions to logically describe the
behavior of a system. This type of model is typically dynamic—it has a time component and
shows how the system evolves over time. ExtendSim products are tools for building mathemati-
cally-based, dynamic models of systems.

Dynamic modeling is the foundation for computer modeling. Thus, for purposes of this manual,
the word “model” will be used to mean a description of the dynamic behavior of a system or pro-
cess.

ExtendSim models typically have a time component and can show cause and effect and the flow of
entities throughout a system (you can also create ExtendSim animations that show spatial relation-
ships.)

Simulation
The Merriam-Webster OnLine Dictionary defines simulation as “the imitative representation of
the functioning of one system or process by the functioning of another.” This means that to deter-
mine how an actual system functions, you would build a model of the system and see how the
model functions.

Simulations run in simulation time, an abstraction of real time. As the simulation clock advances,
the model determines if there have been changes, recalculates its values, and outputs the results. If
the model is valid, the outputs of the simulation will be reflective of the performance or behavior
of the real system.

Simulation with ExtendSim means that instead of interacting with a real system you create a logi-
cal model that corresponds to the real system in certain aspects. You simulate the operations or
dynamics of the system, then analyze one or more areas of interest. You do this in order to reduce
risk and uncertainty so that you can make informed, timely decisions.

Modeling methodologies
The formalism you use to specify a system is termed a modeling methodology. The three main
modeling methodologies are:

• Continuous

• Discrete event

• Discrete rate.

These methodologies are described, compared, and contrasted in the later topics in this chapter.

In addition to the main modeling methodologies listed above, other modeling approaches are use-
ful and will be discussed in this chapter. These approaches are usually based on one of the three
main methods and include:

• Monte Carlo

44 Simulation Concepts
Modeling methodologies

T
ut

or
ia

l

• Agent-based

• State/Action

For more information, see “Other modeling approaches” on page 47.

As you might expect, you can use different methods to model different aspects of real-world sys-
tems. For example, at a chemical plant you could model the chemical reactions as a continuous
process, the control logic of the chemical process using discrete event modeling, and the tanks,
valves, and flow of the production process with discrete rate.

It is good to note, however, that there is no such thing as “the” model of a system: a system can be
modeled in any number of different ways, depending on what it is you want to accomplish. In
general, how you model the system depends on the purpose of the model: what type, level, and
fidelity of information you want to gather and the amount of detail, or level of abstraction or gran-
ularity, of the model. Once that has been determined, you can intelligently choose which type of
model to build.

☞ The types of models that can be built depend on the ExtendSim product that was purchased.

Comparison of main modeling methodologies
The three main modeling methodologies are continuous, discrete event, and discrete rate. Contin-
uous modeling (sometimes known as process modeling) is used to describe a flow of values. Dis-
crete event models track unique entities. Discrete rate models share some aspects of both
continuous and discrete event modeling.

In all three types of simulations, what is of concern is the granularity of what is being modeled and
what causes the state of the model to change.

• In continuous models, the time step is fixed at the
beginning of the simulation, time advances in
equal increments, and values change based directly
on changes in time. In this type of model, values
reflect the state of the modeled system at any par-
ticular time, and simulated time advances evenly
from one time step to the next. For example, an airplane flying on autopilot represents a contin-
uous system since its state (such as position or velocity) changes continuously with respect to
time. Continuous simulations are analogous to a constant stream of fluid passing through a
pipe. The volume may increase or decrease at each time step, but the flow is continuous.

• In discrete event models, the system changes
state as events occur and only when those events
occur; the mere passing of time has no direct
effect on the model. Unlike a continuous model,
simulated time advances from one event to the
next and it is unlikely that the time between
events will be equal. A factory that assembles parts is a good example of a discrete event system.
The individual entities (parts) are assembled based on events (receipt or anticipation of orders).
Using the pipe analogy for discrete event simulations, the pipe could be empty or have any num-
ber of separate buckets of water traveling through it. Rather than a continuous flow, buckets of
water would come out of the pipe at random intervals.

Time line for continuous simulation

1 2 3 40

Time line for discrete event simulation

40 2.3 2.7

Simulation Concepts 45
Modeling methodologies

T
utorial
• Discrete rate simulations are a hybrid type, com-
bining aspects of continuous and discrete event
modeling. Like continuous models they simulate
the flow of stuff rather than items; like discrete
event models they recalculate rates and values
whenever events occur. Using the pipe analogy
for a discrete rate simulation, there is a constant stream of fluid passing through the pipe. But
the rates of flow and the routing can change when an event occurs.

☞ In some branches of engineering, the term discrete is used to describe a system with periodic or
constant time steps. Discrete, when it refers to time steps, indicates a continuous model; it does
not have the same meaning as discrete event or discrete rate. Continuous models in ExtendSim are
stepped using constant time intervals; discrete event and discrete rate models are not.

Comparison table
The three main modeling methodologies are summarized in the table below.

Table of continuous, discrete event, and discrete rate differences
Although not definitive, the following table will help to determine which style to use when model-
ing a system.

Modeling method ExtendSim library What is modeled Examples

Continuous time Value library

Electronics library

Processes Processes: chemical, biologi-
cal, economic, electronics.

Discrete event Item library Individual items Things: traffic, equipment,
work product, people.

Information: data, messages,
and network protocols at the
packet level.

Discrete rate Rate library Flows of stuff Rate-based flows of stuff:
homogeneous products, high
speed production, data feeds
and streams, mining.

Factor Continuous Discrete Event Discrete Rate

What is modeled Values that flow
through the model.

Distinct entities
(“items” or “things”).

Bulk flows of homoge-
neous stuff. Or flows of
otherwise distinct enti-
ties where sorting or
separating is not neces-
sary.

What causes a change
in state

A time change An event An event

Time line for discrete rate simulation

40 2.3 2.7

46 Simulation Concepts
Modeling methodologies

T
ut

or
ia

l

Some systems, especially when a portion of the flow has a delay or wait time, can be modeled using
any of the three styles. In this case, you would generally choose how to model the system based on
the level of detail required. Discrete event models provide much more detail about the workings of
these types of systems than continuous models. Continuous and discrete rate models, on the other
hand, usually run faster than discrete event models.

Remember that you may combine blocks from different libraries within the same model. For
example, it is quite common to use continuous blocks from the Value library when creating a dis-
crete event model. However, the discrete event blocks in the Item library and the discrete rate
blocks in the Rate library can only be used in event-driven (non-continuous) models. If you use
any discrete event or discrete rate blocks in a model, the timing will change to event driven (time
steps will not be periodic) and it will not be a continuous model.

Time steps Interval between time
steps is constant. Model
recalculations are
sequential and time-
dependent.

Interval between events
is dependent on when
events occur. Model
only recalculates when
events occur.

Interval between events
is dependent on when
events occur. Model
only recalculates when
events occur.

Characteristics of what
is modeled

Track characteristics in
a database or assume
the flow is homoge-
neous.

Using attributes, items
are assigned unique
characteristics and can
then be tracked
throughout the model.

Track characteristics in
a database or assume
the flow is homoge-
neous.

Ordering FIFO Items can move in
FIFO, LIFO, Priority,
time-delayed, or cus-
tomized order.

FIFO

Routing Values need to be
explicitly routed by
being turned off at one
branch and turned on
at the other (values can
go to multiple places at
the same time.).

By default, items are
automatically routed to
the first available
branch (items can only
be in one place at a
time.)

Flow is routed based on
constraint rates and
rules that are defined in
the model (flow can be
divided into multiple
branches.)

Statistical detail General statistics about
the system: amount,
efficiency, etc.

In addition to general
statistics, each item can
be individually tracked:
count, utilization, cycle
time.

In addition to general
statistics, effective rates,
cumulative amount.

Typical uses Scientific (biology,
chemistry, physics),
engineering (electron-
ics, control systems),
finance and economics,
System Dynamics.

Manufacturing, service
industries, business
operations, networks,
systems engineering.

Manufacturing of pow-
ders, fluids, and high
speed, high volume pro-
cesses. Chemical pro-
cesses, ATM
transactions. Supply
chains.

Factor Continuous Discrete Event Discrete Rate

Simulation Concepts 47
Other modeling approaches

T
utorial
Other modeling approaches
Although there are several other approaches to modeling, they usually fit within one of the three
major categories (continuous, discrete event, or discrete rate) discussed above. For example, System
Dynamics and Bond graphs are subsets of continuous modeling, and queueing theory models are
subsets of discrete event modeling.

Because of their specialized use, three specific modeling approaches (Monte Carlo, State/Action,
and Agent Based) are described below.

Monte Carlo modeling
Widely used to solve certain problems in statistics, Monte Carlo simulations provide a range of
results rather than a single value. This approach can be applied to any ExtendSim model and used
wherever uncertainty is a factor.

Monte Carlo modeling uses random numbers to vary input parameters for a series of calculations.
These calculations are performed many times and the results from each individual calculation are
recorded as an observation. The individual observations are statistically summarized, giving an
indication of the likely result and the range of possible results. This not only tells what could hap-
pen in a given situation, but how likely it is that it will happen.

You build a Monte Carlo simulation in ExtendSim by incorporating random elements in a model
and obtaining multiple observations. There are two ways to do this:

• The classical Monte Carlo method is to take a single mathematical equation or set of equations,
then cause the equation to be calculated many times. In this type of simulation, time is not a fac-
tor. The entire model is run to completion and evaluated at each step; each subsequent step per-
forms a new calculation. An example is the Monte Carlo model, discussed later in this section.

• An alternative Monte Carlo approach, typically applied in a discrete event model, is to either
divide a single simulation run into multiple sections (batch means) or run the simulation many
times (multirun analysis). Monte Carlo is incorporated by adding randomness to the model,
running it many times, and analyzing the results. This method can be applied to any continu-
ous, discrete event, or discrete rate model. It is shown in the Queue Statistics model, described
later in this section. For more information about using the Statistics block (Value library) for
performing batch means or multirun analysis, see “Statistics” on page 564.

Monte Carlo model
An example of the classical method is the Monte Carlo model. This model determines the
expected revenue from a new product. It runs for 10,000 steps, from time 0 to time 9999, and
each step results in an observation. This cycle is repeated 24 times, once for each of the cases.

48 Simulation Concepts
Other modeling approaches

T
ut

or
ia

l

For scenario experimentation purposes, the inputs and outputs for this model are stored in an
ExtendSim database.

☞ The Monte Carlo model is located at \Examples\Continuous\Standard Block Models.

Queue Statistics model
The Queue Statistics model is an example of an alternative Monte Carlo modeling approach. It
applies batch means analysis to a discrete event model. The model uses the batch-means method
to collect multiple observations of the queueing statistics. Every 100 time units a new set of
observations are recorded. Information (such as the maximum and average queue length, the
number of arrivals and departures, and utilization) is stored and displayed in a table in the dialog
of the Statistics block (Value library).

☞ The Queue Statistics model is located in the folder \Examples\Discrete Event\Statistics. It is not
available with ExtendSim CP.

Monte Carlo model

Queue Statistics model

Simulation Concepts 49
Other modeling approaches

T
utorial
State/Action models
With state/action modeling a system is modeled as a collection of discrete states. Sometimes
known as a state chart, a state/action model represents a system that responds to an event by tran-
sitioning to another state. The model is composed of a series of states where each state depends on
a previous state. A state has an associated action and an event that will cause that state to change to
another. The transition from one state to the next is not sequential; each state can lead to any other
state.

There are rules that govern the communication and transition between the states:

• All states accept events.

• One or more states may create an event as a result of a transition by another state or group of
states.

• A group of states can be set to transition conditionally, for instance to only change if another
state or group of states achieve a specific stage. These are known as guard conditions.

State/action models are independent of any of the three modeling methodologies (continuous, dis-
crete event, or discrete rate.) They are useful for specification and verification in many areas, from
computer programs to business processes.

In ExtendSim, the most common ways of creating state/action models are:

• Define one or more discrete event items as objects with behavior that is determined by their
states. The information about each state and its next state is stored in a Lookup Table block
(Value library) or an ExtendSim database table. This uses ExtendSim’s internal event queue and
scheduling capabilities to signal and manage events for the item/objects within the system. This
method can only be used with discrete event models and is illustrated in the State Action model,
described later in this section.

• Store each state, action, event, and next state for the system in rows in an ExtendSim database
table. This maps the states for the entire model into one block and works with any type of
model. This method can be used with continuous, discrete event, and discrete rate models and is
shown in the Markov Chain Weather model, described later in this section.

• Create new blocks that store their current state in a static variable and send messages to other
blocks at appropriate state change events. To do this, use ExtendSim functions and its simula-
tion modeling environment to create a custom block. For more information about creating new
blocks, see the Developer Reference.

State Action model
In the State Action model, items are created with attributes that determine the item’s state. The
items are then routed to one of three operations depending on their state. After processing, the

50 Simulation Concepts
Other modeling approaches

T
ut

or
ia

l

item’s state is changed based on entries in a Lookup Table block (Value library). The item contin-
ues to be routed to various processes until it reaches state 4, at which point it leaves the simulation.

Initially, each item has a CurrentState attribute with a value of 1. The Lookup Table block causes
each item with CurrentState 1 to be changed to CurrentState 3 after processing, then to Current-
State 2, and finally to CurrentState 4. The operations are represented by Workstation blocks,
which can hold and process the items. After each operation, the item is examined and its state is
transitioned accordingly.

Running the simulation with animation on shows the items changing from state 1 (green), to state
3 (red), then state 2 (yellow), and finally state 4 (blue).

☞ The State Action model is located in the folder \Examples\Discrete Event\Routing, It is not avail-
able with ExtendSim CP.

Markov Chain Weather model
A Markov chain represents a transition from one state to another as defined by a table of probabil-
ities. The Markov Chain Weather model simulates the weather based on a Markov chain. The
states are the weather – sunny, cloudy, rainy, and so forth; they are stored in an ExtendSim data-
base named “Weather”. The model runs for 365 days. Each day there is a probability of transition-
ing from one weather state to the next. For example, if today is sunny, the next day could be sunny
(50%), partly cloudy (30%), cloudy (10%), light rain (5%), or rainy (5%). As the model runs, the
states move through a probability table, changing the weather for each day.

Most of the calculation in this model is done by a single Equation block (Value library) inside the
hierarchical “Weather Forecast” block. In the equation, a random input and the previous state (the
output of the equation) are used to lookup a probability for the next day’s weather in the Weather
database. The number and percent of days at each weather state is also calculated and recorded in
the database. Additionally, if the model is run with animation on, the current weather state is ani-

State Action model

Simulation Concepts 51
Other modeling approaches

T
utorial
mated on the icon of the Weather Forecast block. It does this by showing different icon views,
depending on the state. (For information about icon views, see page 496.)

☞ The Markov Chain Weather model is located in the folder \Examples\Continuous\Standard
Block Models.

Agent-based models
Most of the models discussed in this User Guide represent a system where the behavior of the com-
ponents of the system are known or can be estimated in advance. With agent-based modeling you
usually do not know model dynamics in advance; instead, you obtain that information from the
interaction of the agents in the model.

Agent-based models share the following characteristics:

• The identification of individual entities within the model

• A set of rules that govern individual behavior

• The premise that local entities affect each other’s behavior

Agent-based modeling is concerned with individual entities (called “agents”) that interact with
other agents within their specified locality. All the agents have a set of rules to follow but they also
have a degree of autonomy such that model dynamics cannot be predefined. This is because agents
can have intelligence, memory, social interaction, contextual and spatial awareness, and the ability
to learn.

Programming for agent-based models
The agents used in agent-based modeling are programmed as ExtendSim blocks. Blocks and their
enclosed data have unique searchable identities and locations within the model. ExtendSim func-
tions can find and send messages to blocks that have specific characteristics, locations, and values.
This makes it easy to create intelligent behavior, facilitate block-to-block interaction, and cause
blocks to be moved in, added to, or removed from, a model.

The Developer’s Reference includes several categories of functions that are helpful when creating
agents for agent-based modeling:

• Scripting functions are used to build a new model or to add or remove blocks from an existing
model. They do this by creating, placing, and connecting blocks, then populating the blocks
with specific data. These functions can be called from an ExtendSim block within the model or
from an external application.

• Block and inter-block communication functions query the status of a block – its type, label,
data, location, size, and connectivity with the rest of the model. They also get information about
block dialog values and data table settings.

Markov Chain Weather model

52 Simulation Concepts
Other modeling approaches

T
ut

or
ia

l

• Message sending functions can use the results of inter-block communications to send messages
globally to unconnected blocks or blocks that are connected in specific ways.

• Animation functions provide a visual indication of block-to-block interaction, such as the influ-
ence of one block on another.

For example, in constructing an agent-based model of the robotic clean up of a chemical spill, you
could use the inter-block communication functions in a “Controller” block to locate all of the
“Robotic Clean Up” blocks in the model. The Controller could send messages to the robots asking
them to move towards a spill and clean it up. The robots could send messages back to the Control-
ler stating whether they were available or were currently being recharged, and whether they were
too far from a chemical spill or close enough to be useful. The scripting and animation functions
would show the robot blocks physically moving around within the model and the spill being
removed.

The Game of Life
The Game of Life was devised by British mathematician John Conway in 1970 and published as
an article in Scientific American. It is the most well known example of cellular automata (CA), a
type of modeling studied in computability theory, mathematics, theoretical biology, and other
fields.

A CA model represents a regular grid of finite state automata (cells) that sit in positional relation-
ships to one another, with each cell exchanging information with the eight other cells to which it is
horizontally, vertically or diagonally adjacent. A cell can be in one of a finite number of states and
the state of a cell at time t is a function of the states of its neighboring cells at time t-1. Every cell
has the same rule for updating; each time the rules are applied to the whole grid a new generation
of cells is produced.

You interact with the Game of Life by specifying an initial configuration of effects and observing
how the CA universe evolves. At each step in time, the following happens:

• A cell is born if it has a specified number of neighbors who act as parents.

• “Loneliness” causes any live cell with fewer than a specified number of neighbors to die.

• “Overcrowding” causes any live cell with more than a specified number of neighbors to die.

The initial pattern constitutes the first generation of the system. The second generation is created
by applying the above rules simultaneously to every cell in the first generation. In other words,
births and deaths happen simultaneously. The rules continue to be applied repeatedly to create fur-
ther generations.

Life has a number of recognized patterns that emerge from particular starting positions, including
static patterns (“still lifes” such as block and boat), repeating patterns (“oscillators” such as blinker
and toad), and patterns that translate themselves across the board (“spaceships” such as gliders).

The Life model
The one-block Life model was created using the Life block (Custom Blocks library) that was spe-
cifically developed for this model. The code of the block contains the algorithm for Conway's

Simulation Concepts 53
Other modeling approaches

T
utorial
Game of Life. The block's dialog has fields for specifying initial settings and rules; the dialog items
have been cloned to the model worksheet for convenience.

The concept for this model is that each cell of the grid is defined as living or empty. On each gen-
eration, a given cell can give birth to a new life, survive, die, or remain empty. Using the default
settings in the Life block, the model adheres to the following rules:

• Count the number of neighbors a given cell has (the maximum possible is 8).

• If an empty cell has 3 neighbors, it will produce a new life (birth).

• If a full cell has less then 1 or zero (loneliness), or 4 or more neighbors (overcrowding), it will
die.

Changing the default rule values causes some interesting affects on the population.

There are two ways to set the starting population for the model:

• Define an initial number of cells (1000 is a reasonable starting population for the size of this
block.) The cells will be populated randomly.

• Use the Custom Start grid to select up to 16 initially populated cells in specific locations. This is
a quick way to begin with a recognized pattern, such as a glider or a blinker.

One feature of the Life block that is not specified in Conway's algorithm is that the color of the
cells varies with the age of the cell - new cells are green and older cells vary from light gray to black
as they age.

Variations
The Life block is open source so you have complete access to the dialog editor and block code. To
see the underlying structure of the block, select it on the model worksheet and give the command
Develop > Open Block Structure. The procedures that define cell birth, death, or survival are listed
at the top of the block's structure window.

☞ The Life model is located in the folder \Examples\Agent Based. The Life block is located in the
Custom Blocks library.

Life model

54 Simulation Concepts
The modeling process

T
ut

or
ia

l

Boids
The Boids model is based on an artificial life program, developed by Craig Reynolds in 1986, that
simulated the flocking behavior of birds. It can also be applied to schools of fish, herds of animals,
or any other type of flocking behavior.

☞ The Boids model requires 3D animation; it requires ExtendSim Suite to run. The model is located
in the folder \Examples\3D Animation.

In the model, each bird is an individual agent that interacts with other local agents based on a set
of rules:

• Separation – birds steer to avoid crowding their local flock mates.

• Alignment – each bird steers towards the average heading of its local flock mates.

• Cohesion – birds steer toward the average position of their local flock mates.

Other agent-based models
Additional agent-based models, including “Sheep and Wolves” and “Breakout” are located in the
folder \Examples\Agent Based.

The modeling process
An ExtendSim simulation project involves creating a logical model of the system, running the sim-
ulation, analyzing the data, optimizing the solutions, and interpreting and presenting the results.

Goals of modeling
The Introduction chapter gave several examples of what you can do with simulation. As stated in
Modeling Tools for Environmental Engineers and Scientists (N. Nirmalakhandan, CRC Press), the
“...goals and objectives of modeling are two-fold: research oriented and management oriented.
Specific goals of modeling efforts can be one or more of the following: to interpret the system, ana-
lyze its behavior, manage, operate or control it to achieve desired outcomes; to design methods to
improve or modify it, to test hypotheses about the system, or to forecast its response under varying
conditions.”

Boids model in E3D window

Simulation Concepts 55
The modeling process

T
utorial
The simulation process
Like all tasks, you can start modeling simply by jumping into it. Also like other tasks, it is usually
better to have a plan before starting. ExtendSim makes following a plan for making a model easy.
The basic steps to creating a model are:

1) Formulate the problem. You should define the problem and state the objectives of the model.

2) Describe the flow of information. Determine where information flows from one part of the
model to the next and which parts need information simultaneously.

3) Build and test the model. Build the system with ExtendSim’s blocks. Start small, test as you
build, and enhance as needed.

4) Acquire data. Identify, specify, and collect the data you need for the model. This is usually the
most time-consuming step. It includes finding not only numerical data values but also mathe-
matical formulas such as distributions for random events.

5) Run the model. Determine how long you want to simulate and the granularity of results, then
run your model.

6) Verify the simulation results. Compare the model results to what you intended or expected.

7) Validate the model. Compare the model to the real system, if available. Or have system experts
evaluate the model and its results.

8) Analyze your results. Draw inferences from the model’s results and make recommendations on
how the system can change.

9) Conduct experiments. Implement and test recommended changes in the model.

10)Document. State the model’s purpose, assumptions, techniques, modeling approaches, data
requirements, and results.

11) Implement your decisions. Use the results in the real world.

Before you build a model
Remember that building a model is an iterative process and each step in the process will require
comparing the model to the existing system, analyzing the results, and refining the model. A natu-
ral inclination is to immediately start building the model. However, you will end up with more
useful models if you begin the model-building process by asking a few basic questions, such as:

• What is the goal of the model? It is important to determine the purpose of a model. This will indi-
cate the levels of detail required and will help keep you focused.

• What are the boundaries of the model and what level of detail should be included? The model goal
should dictate what to include in the model and what to leave out.

• Where is the required data? It is useful to start collecting data early in the model building process
because it can often take a while to obtain all of the necessary information. You will also need to
know if the input data is an absolute value or if the data is from a statistical distribution. Addi-

56 Simulation Concepts
The modeling process

T
ut

or
ia

l

tional data requirements may surface once the model building process has begun. Your model
may, for example, lead you to explore alternatives that had not been considered before.

• How shall the model be conceptualized? Before even running ExtendSim, think about what the
various components of the system represent. Roughly determine the time delays, resource con-
straints, flows through the system, and any logical actions that occur in the model. This will
help you determine how to build the model.

• What alternatives will be investigated? Although the model may lead you into new, unexpected
directions, try to think ahead so that the model can be easily changed from one alternative to the
next.

☞ It is common to use a constant or a uniform (integer or real) distribution in the early stages of
model building so that modeling problems and variations can be more easily detected. After the
model is verified, you can easily change the distributions to correspond to real-world processes.

Refining models
It is important to remember that models may not give you a single “correct” answer. Instead, they
make you more aware of gaps in your thought process. These problems may involve over-simplifi-
cation in the model, false assumptions on your part when creating the model, or missing connec-
tions between parts of a model. Refining your model step by step helps eliminate these and other
pitfalls.

Every model can be made more complex by adding assumptions and interconnections. The
model-building process commonly begins with the creation of a simple model. After analyzing the
simple model, complexity is added, followed by further analysis, the addition of more complexity,
and so on. The complexity takes one of two forms:

• Taking one block (a process) and turning it into many blocks (a more complex process)

• Adding a connection between two previously unrelated blocks, usually through a mathematical
operation (finding an interconnection between two processes)

At each step, look at your results and make sure they make sense relative to the data. If you can,
verify the results in the real world. If one result is way off, check the output from each step to
determine where the process went awry.

Model verification
The process of debugging a model to ensure that every portion operates as expected is called model
verification. In the tutorial, you performed part of this verification process by building the model
in stages and with minimal detail, then running it at each stage to observe the results. A common
verification technique could be termed reductio-ad-
absurdum (reducing to the absurd), which means reducing a complex model to an aggressively sim-
ple case so that you can easily predict what the outcome will be. Some examples of “reducing to the
absurd” are:

• Remove all variability from the model, making it deterministic

• Run the deterministic model twice to make sure you get the same results

• Output detailed reports or traces to see if the results meet your expectations

• Run a schedule of only one product line as opposed to several

• Reduce the number of workers to 1 or 0 to see what happens

Simulation Concepts 57
Additional modeling terminology

T
utorial
• Uncouple parts of the model that interact to see how they run on their own

• Run very few or very many items through the model to determine if the model responds prop-
erly.

Other methods for verifying models include making sure that you can account for all the items in
a model, animating the model or portions of the model, or using diagnostic blocks from
ExtendSim’s libraries. For more information, see “Debugging Tools” on page 613.

Model validation
Once the model is verified you need to validate it to determine that it accurately represents the real
system. Notice that this does not mean that the model should conform to the real system in every
respect. Instead, a valid model is a reasonably accurate representation based on the model’s
intended purpose. When validating, it is important to make sure that you know what to compare
to and that you verify that measures are calculated in the same manner.

For validation, your model should accurately represent the data that was gathered and the assump-
tions that were made regarding how the system operates. In addition, the underlying structure of
the model should correspond to the actual system and the output statistics should appear reason-
able. While you would normally compare critical performance measures, it is also sometimes help-
ful to compare nonessential results that may be symptomatic and therefore show the character of
the system.

One of the best validation measures is “Does the model make sense?” Other methods involve
obtaining approval of the results by those familiar with the actual process and comparing simula-
tion results with historical data. For example, when validating model performance compared to
historical data, try to simulate the past. If you have sufficient historical data, break the actual sys-
tem performance into various windows of time, where all of the input conditions correspond to
the input conditions for multiple runs of your model.

For more information, see “Debugging Tools” on page 613.

Additional modeling terminology
In addition to the following general information, each of the modules in this User Guide has a sec-
tion with tips specific to that module. For additional general information about using ExtendSim,
see also the How To module that starts on page 488.

Model parameters, variables, inputs, and outputs
A parameter is any numerical characteristic of a model or system. Parameters describe something
about the model and are known or can be estimated.

• An input parameter is a value that is required as part of the model specification.

• An output parameter is a value determined by the input parameters and the operation of the sys-
tem—output parameters specify some measure of the systems performance or system dynamics.

Constant values and random variables
You enter parameter values in block dialogs to specify settings for a model. Constant values never
change; random values are based on distributions and change each time they are used. Models that
have no random input parameters are referred to as deterministic models. Models that are based on
one or more variables that are random are said to be stochastic, as discussed below:

58 Simulation Concepts
Additional modeling terminology

T
ut

or
ia

l

• Deterministic models contain only non-random, fixed components. No matter how many
times a deterministic model is run, unless some parameter is changed there is no uncertainty and
the output will be exactly the same. Thus the behavior of the model is “determined” once the
inputs have been defined.

The advantage of a deterministic model is that only one run is necessary, since it produces an
exact measurement of the model's performance. It is also helpful in when initially building a
model since you can be assured that changes in results will be due to changes made to the model
and not to randomness. The disadvantage is that these types of models can only accurately be
used to model a few types of processes, since real-world systems typically contain some element
of randomness.

• Adding randomness to one or more inputs to a deterministic model changes it to a stochastic or
Monte Carlo model. Stochastic models are run repeatedly and then analyzed statistically to
determine a likely outcome. Notice that the occurrence of randomness does not mean that the
behavior of a process is undefinable or even that it is unpredictable. Random variables vary sta-
tistically as defined by a distribution. This means that their range and possibility of values is pre-
dictable.

While stochastic models can be applied to very complex systems, a disadvantage is that the out-
put is itself random—the average of the simulation runs provides only an estimate of the
model's true behavior.

ExtendSim provides several methods for including randomness in models. For instance, as you saw
in the chapter “Building a Model”, the Random Number block (Value library) allows you to select
a random distribution or enter a table of values which specifies an empirical distribution of proba-
bilities. For more detailed information about ExtendSim’s random number capabilities, see“Ran-
dom numbers” on page 604.

Continuous Modeling

Introduction
Some things to know before you begin

modeling continuous systems

“A journey of a thousand miles begins with a single step.”
— Confucius

60 Introduction
How the Continuous module is organized

C
on

ti
nu

ou
s

The Continuous Modeling module is focused on building models where time advances in equal
steps and model values are recalculated at each time step. It is also a helpful reference if you use
continuous blocks in discrete event and discrete rate models.

How the Continuous module is organized
• Introduction

• Blocks for building continuous models

• Application areas in which continuous modeling is commonly used

• Next steps

• Tutorial

• Application areas and examples

• Continuous concepts, tips, and techniques

Blocks for building continuous models
To create continuous models you can use:

• Blocks from continuous libraries that are packaged with ExtendSim

• Continuous blocks that you create

• Libraries of continuous blocks developed by third parties

☞ You can use continuous blocks and the ExtendSim database to build State/Action models, as dis-
cussed in “State/Action models” on page 49.

Using the ExtendSim blocks
You can easily build continuous models in many fields using only the con-
tinuous libraries (Value and Electronics) included in every ExtendSim prod-
uct. The blocks in those libraries allow you to perform complex modeling
tasks often with just the click of a button. For example, you can use a popup
menu to specify a distribution in the Random Number block or to select a
function in the Math block; both blocks are in the Value library.

For added power and flexibility, the Equation block (Value library) allows
you to enter formulas and equations to calculate values for models. The
Equation block gives you access to over 1,000 internal functions. You can
also use operators to enter logical statements (if a then b), write compound
conditions (if a ≥ 0.5 or b ≤ 0.5 then c = 8), and even specify loops (do
task while input ≥ 5).

☞ See “Value Library Blocks” on page 715 for a listing and brief description
of the blocks in the Value library.

If your model becomes too cluttered with blocks, you can encapsulate por-
tions of it into a hierarchical block, then double-click the hierarchical block
to see the submodel. Hierarchical blocks are created using simple menu
commands and can be stored in libraries for reuse in other models. They are discussed in “Hierar-
chy” on page 540.

Building custom continuous blocks
Continuous simulation is used in a broad number of diverse fields, and it would be impossible to
supply one solution that would meet everyone's needs. To provide complete flexibility, all

Value library window

Introduction 61
Application areas

C
ontinuous
ExtendSim products include a development environment for creating custom blocks. You can cre-
ate your own blocks—even your own libraries of blocks—and use them to build models. Because
you have the source code for the blocks that are packaged with ExtendSim, you can adapt an exist-
ing block to your needs or create an entirely new block from scratch.

ExtendSim has an integrated, compiled development environment, so it is easy to build blocks
with custom dialogs and behavior. And because the development environment is optimized for
simulation and user-interface design, you can build blocks with less effort and more flexibility than
by using a traditional programming language. ExtendSim's development environment has the
functionality you need to create blocks that can:

• Process data, perform calculations, and show results in numerical, graphical, and animated form

• Communicate with other ExtendSim blocks and with external applications

• Interact with the user

By programming your own blocks you can:

• Obtain specific behaviors not available in the blocks included with ExtendSim

• Combine the functionality of several ExtendSim blocks into one custom block for increased cal-
culation speed and convenience. (Note that this is different than using hierarchy to encapsulate
several distinct blocks as a submodel within one block.)

• Develop a library of blocks for a specific discipline, such as for control systems or paper-making
processes

• Design your own modeling architecture

Blocks you create can be saved in libraries and used throughout your models just as you would use
any of the standard ExtendSim libraries. And the blocks that are packaged with ExtendSim, such
as the Value library, are designed to work well as supplements to any custom blocks you may
develop.

☞ The ExtendSim Developer Reference has all the information you need to program your own
blocks.

Third-party libraries
Third-party developers use the ExtendSim environment to create libraries of blocks customized for
specific fields. For more information about third-party libraries, please go to www.extendsim.com/
prtnrs_developers.html.

Discrete event or discrete rate blocks built by third parties will not run with the ExtendSim CP
product.

Application areas
Computer simulation is indispensable for understanding, analyzing, and predicting the behavior
of complex and large-scale systems. It is used to gain an understanding of the functioning of exist-
ing systems and to help design new systems by predicting their behavior before they are actually

62 Introduction
Next steps

C
on

ti
nu

ou
s

built. The following table gives some of the most common areas where continuous modeling is
used.

Next steps
The next chapter in the Continuous Modeling module provides a tutorial that expands upon the
Reservoir 1 model used in the guide’s Tutorial module. Chapter 3 describes typical industries and
applications for continuous simulation such as scientific, engineering and business; it uses models
provided with ExtendSim as illustrations.The final chapter of the Continuous Modeling module
discusses concepts specific to continuous simulations and give additional tips when building mod-
els.

The How To module that starts on page 488 includes chapters on topics relevant to all types of
modeling, including creating a custom user interface, using mathematical and statistical functions,
and statistically analyzing models.

Discipline Fields Applications

Science Biology, Biotech, Chemistry,
Ecology, Genetics, Mathematics,
Medicine, Pharmaceuticals,
Physics

Chemical reaction kinetics, ther-
modynamics, paper making,
population dynamics, growth/
decay, competition/coopera-
tion, chaos, genetic algorithms

Engineering Aerospace, Agricultural, Auto-
motive, Control Systems, Elec-
tronic, Environmental, Forestry,
Material Science, Mechanical,
Mining, Nuclear, Petroleum

Hardware design verification,
electro-mechanical systems, neu-
ral networks, adaptive systems,
algorithm validation, signal pro-
cessing

Business Finance, Information Technol-
ogy, Inventory Management,
Human Resources, Operations

Forecasting, credit risk analysis,
asset pricing, derivatives trading,
data flow and sharing, inven-
tory replacement strategies,
resource allocation, process flow

Social Sciences Economics, Gender Studies,
Migration, Psychology, Social
Dynamics, Urban Studies

Econometric studies, trade poli-
cies, relationship modeling,
finite capacity planning, eco-
nomic booms and recessions,
immigration policies

Continuous Modeling

Tutorial
Building a more complex

continuous model

“Be the change you want to see in the world.”
— Mahatma Gandhi

64 Tutorial
Removing overflow from the Holding Tank

C
on

ti
nu

ou
s

The Tutorial module showed how to build the Reservoir model. This chapter illustrates some
additional modeling techniques to enhance that model:

• Removing content from a Holding Tank block if it exceeds a specified limit

• Using the Equation block to replace the functionality of several blocks

• Adjusting delta time (dt) for more accurate simulation results

If you haven’t already done so, it is recommended that you go through the chapters in the Tutorial
module (starting on page 13) to familiarize yourself with the basic techniques for building models
and running simulations.

☞ Example models for comparison to the Overflow model you will build in this chapter are located in
the ExtendSim7\Examples\Tutorials\Continuous folder. Reservoir 2 shows a series of blocks that
calculate and remove the overflow and Reservoir 3 is the same model using an Equation block to
perform the calculations.

Removing overflow from the Holding Tank
The Tutorial chapter “Building a Model” on page 23 assumed that the reservoir had an infinite
capacity. In this chapter, the model is modified so that there is a limit on how much water the res-
ervoir can hold and overflow is removed. To do this you need to add model elements to:

• Establish a maximum reservoir capacity

• Compare the contents of the reservoir to the maximum limit

• Determine if and when the contents exceed the limit

• Calculate the amount to remove if there is any excess

• Remove the excess water

With these changes, the reservoir would behave more like an actual reservoir with a dam where
water spills over if it reaches the top.

Setting the maximum capacity
From the \Examples\Tutorials folder, open the model
Reservoir 1.

So that you don’t overwrite the original model, give
the command File > Save Model As and save the
model as “Overflow”.

In the Overflow model, add a Constant block (Value
library) at the bottom left of the model.

This block will represent the overflow limit for the res-
ervoir, in this case, 50 inches.

Constant block added to Overflow model

Tutorial 65
Removing overflow from the Holding Tank

C
ontinuous
In the dialog, set the Constant value to 50 and enter Res depth as the block’s label.

Close the dialog.

Determining if there is too much water
Add elements to the model to determine at each step if the capacity is exceeded or not.

Add a Decision block (Value library) below the Constant block and to
its right.

In the Decision block’s dialog, choose A > B (the default setting) from
the popup menu. Label the block If too high...

Close the dialog.

Add a named connection (Contents, the same as the connection from
the output of the Holding Tank block) to the Decision block’s A input.

Connect from the Constant block’s output to the B input of the Deci-
sion block.

When the model runs, the Constant will set the B value to 50.

During the simulation run, the Decision block will evaluate whether or not
the value of the Contents (A) is greater than the value of the maximum
Reservoir Depth allowed (B). If yes, it will assign a value of 1 to the Y out-
put connector. If no, it will assign a value of 0 to the N output connector.

Constant block dialog

Adding a Decision block

Decision block dialog

Decision connected

66 Tutorial
Removing overflow from the Holding Tank

C
on

ti
nu

ou
s

Comparing contents to overflow limit
To calculate the difference between the capacity limitation and the tank’s contents:

Add a Math block to the right of the Constant block, set its function to Subtract, and label the
block Subtract excess.

☞ In addition to selecting functions directly in the Math block’s dialog, you can choose settings by
right-clicking near the sensitized area (looks like a partially turned page) on the lower right of the
block’s icon.

Add a Contents named connection to the top input of the Subtract block.

Connect the output of the Constant block to the bottom input of the Subtract block.

Validating intermediate results
When building a model, it is good practice to frequently test if the model is working correctly.
Even though this model isn’t yet finished, validate that model elements are calculating as you
would expect them to.

Run the simulation.

Click the model window to make it the active window.

Hover the cursor over the connectors of the blocks you’ve added to see
the results.

For example, the top input of the Math block shows the current con-
tents from the Holding Tank, the bottom input shows the Constant
value (50), and the output connector shows the result of the subtrac-
tion. (Note that your results may be slightly different from those at
right because the Stream source is random.)

Calculating how much water to remove
The Decision block’s Y connector outputs 1 (one) if the tank’s contents exceeds the limit, but out-
puts 0 (zero) if it doesn’t. This information can be used in a calculation.

Add another Math block to the model, set its function to Multiply, and label the block Then
overflow.

Calculating the excess water

Subtraction results

Tutorial 67
Removing overflow from the Holding Tank

C
ontinuous
Connect from the output of the Math block labeled “Sub-
tract excess” to the top input of the Math block labeled
“Then overflow”.

Connect the Decision block’s Y connector to the bottom
input of the Math block labeled “Then overflow”.

This multiples the amount of excess water, if any, by the
Decision block’s Y output (1 or 0) to determine the amount
of water that should be removed from the Holding Tank at
each step.

☞ You do not need to connect the Decision block’s N connector to anything since, if the reservoir’s
contents is less than capacity, nothing further needs to be done.

Removing the overflow
When the contents of the Reservoir/Holding Tank are greater than its capacity, water needs to be
removed.

Connect the output of the Multiply block to the w (want) input connector on the bottom left
of the Holding Tank.

☞ The Holding Tank’s want input connector is used to request an amount to be removed. If the tank
has that amount, it will be reported at its get output connector. If the tank does not have that
amount, and “Tank contents can be negative” is not checked. only the amount available will be at
the get connector. Since this model is only concerned with overflow, the amount requested and
the amount available will be the same.

Create a named connection called Overflow from the get output of
the Holding Tank block to the fourth input on the Plotter.

Multiply block connected

Requesting overflow amount

Overflow connection

68 Tutorial
Simplifying the model

C
on

ti
nu

ou
s

Run the simulation.

Scroll through the Plotter’s table of data to see the point where the reservoir is beginning to reach
its capacity. Column 4 (Overflow) shows the amount of water that overflows. Because the inflows
continue even while the excess is being removed, and because there is a calculation delay, it is
unlikely that the reservoir will be at exactly 50.

☞ The equivalent model is Reservoir 2, located in the folder \Tutorials\Continuous.

Simplifying the model
Although the model works perfectly well, the blocks that make up the calculation of the overflow
can be a bit confusing to follow. You can easily replace the functionality of those four blocks with a
single Equation block that explicitly defines the mathematical expression.

Adding an Equation block
Delete the Math blocks labelled “Subtract Excess” and “Then Overflow”, as well as the Con-
stant and Decision blocks from the Overflow model.

Add an Equation block (Value library).

Add a Contents named connection to the
Equation block input.

Connect the Equation block output to the
w connector of the Holding Tank block.

Simulation results

Model with Equation block

Tutorial 69
Improving the accuracy of the model

C
ontinuous
Specifying input variables
Open the Equation block dialog.

In the Input Variables table at the left of the dialog,
note that by default Connector 0 is selected from
the popup menu in the Variable Type column. This
is the option you want, because the equation will get
its values from the top input connector. To give the
input a more relevant name:

Type Contents in the Variable Name field to the
right of Connector 0.

Specifying output variables
In the Output Variables (results) table at the right of
the dialog, note that by default Connector 0 is
selected from the popup menu in the Variable Type
column. This indicates that the results of the equation
will be sent to the top output connector, which is the
option you want for this example. To give the output a more relevant name:

Type Overflow as the Variable Name.

Entering the equation
In the equation pane, delete the default equation and enter the following code and comments:

real reservoirDepth; // define a new variable as a real number

reservoirDepth = 50.0; // set its value

if (contents >= reservoirDepth) // if contents is >= depth...

overflow = contents - reservoirDepth; // then calculate outflow.

else

overflow = 0.0; // If the contents is too low, outflow = 0.

☞ Comments, which are preceded by //, are optional but helpful for documentation.

Enter Calc overflow for the block’s label.

Close the Equation block’s dialog. ExtendSim dis-
plays a message that it is compiling the equation; the
message may appear too quickly for you to see it.

Run the simulation.

Note that the results haven’t changed - you’ve simply
substituted the Equation block for the deleted blocks.

For more information, see “Equation-based blocks” on
page 601.

Improving the accuracy of the model
Because the contents of the Holding Tank block is used
to calculate the amount of water to remove from the

Equation block dialog

Final simulation results

70 Tutorial
Next steps

C
on

ti
nu

ou
s

Holding Tank, the model incorporates feedback. When a model has feedback, the default delta
time (dt) of 1.0 is too long and results won’t be accurate. (See “Feedback and delays” on page 84
for more information.)

Choose the command Run > Simulation
Setup > Continuous tab and change the Time
per step (dt) value to 0.1.

Close the Simulation Setup dialog.

Notice that the Holding Tank is properly already
set to integrate its inputs, rather than sum them.
Summation only gives the same results as inte-
gration when delta time is exactly 1.0, but inte-
gration works with any delta time. Learn more at
“Integration vs. summation in the Holding Tank
block” on page 610.

When delta time is small, such as for this model,
simulation results will be more realistic if
Lookup Table inputs are interpolated rather
than stepped.

In the Lookup Table block (labeled Rainfall), change Output is: to Interpolated. This setting
smooths the change between rows in the table.

Run the simulation again.

☞ Because this model is small and only includes one feedback
loop, there is only a slight different in the results between this
run and the previous one with the larger dt value. However, in
a larger model where there are many instances of feedback, the
second run would produce much more accurate results.

☞ The equivalent model is Reservoir 3, located in the folder
\Tutorials\Continuous.

Next steps
The next chapter describes typical areas where continuous
modeling is applied; the final chapter in this module discusses
concepts specific to continuous modeling and provides addi-
tional tips to help you build and run continuous models.

You should also explore the How To module, beginning on
page 487. Those chapters illustrate many more of the features
and capabilities you might use when creating models, such as
sensitivity analysis, controls, and optimization.

Simulation setup dialog

Lookup Table dialog

Continuous Modeling

Areas of Application
Some of the many ways continuous modeling is used

“(Science is)...the separation of the true from the false by experiment or experience.”
— Richard P. Feynman

72 Areas of Application
Scientific

C
on

ti
nu

ou
s

ExtendSim is used to build continuous models in the fields of physical science, social science, engi-
neering, and business. The first four sections of this chapter describe models created using the
ExtendSim Value and Engineering libraries. The last section shows two models built with custom
blocks: a physics model called Planet Dance and a Fish Pond simulation that examines predator/
prey interactions.

Continuous modeling is very broad and diverse field. While it is possible to create almost any con-
tinuous model using the standard blocks (such as the Value library) packaged with ExtendSim, it is
more common to use a combination of standard blocks and custom-built blocks. For example,
ExtendSim customers have created libraries for proprietary and commercial use in the fields of
analytical chemistry, environmental decision making, chemical process control, pulp and paper
making processes, and so forth.

Scientific
Common areas where simulation is helpful in science include biology, chemistry, physics, and ecol-
ogy. This section describes two models, a classic predator/prey model and a simulation of some fac-
tors that affect drug absorption in the human body.

Predator/Prey
This model shows a small ecosystem composed of hare and lynx. Each population has a direct
effect on the other: the lynx feed on hare so the hare population declines, the diminishing food
supply results in a decrease in the number of lynx so the hare population grows again and so forth.

Model assumptions
The model particulars and assumptions are:

• The 100-hectare ecosystem initially
contains 6000 hare and 125 lynx.

• Each hare produces 1.25 offspring
per year and each lynx produces
0.25 offspring.

• Hare always have sufficient food
supply; their only cause of death is
being eaten by a lynx.

• The lynx hunting range is 1 hectare,
their only food source is the hare,
and each lynx can consume every
hare in its area.

• The number of hare killed depends
on their density in the ecosystem and the number of lynx who hunt them.

• The lynx mortality rate depends on how many hare they consume in a year.

• There are no outside factors (such as the time of year) which affect the rate at which the popula-
tions change.

• The final model runs for 24 years and calculations are done 12 times per year (dt is 0.0833).

☞ The Predator_Prey model is located in the folder \Examples\Continuous\Standard Block Models.
This model uses blocks from the Value and Plotter libraries.

Predator_Prey model

Areas of Application 73
Scientific

C
ontinuous
Model details
This model illustrates some interesting continuous modeling concepts:

• Because the model has feedback, the Holding Tank blocks are set to Inputs are: integrated (no
delay). For more information, see “Integration vs. summation in the Holding Tank block” on
page 610.

• The Holding Tank block has a want input connector that is used to tell the block how much of
the contents you want removed. The amount wanted and the amount that is actually removed
(indicated at the get connector) may differ, as discussed below.

• By default, the Holding Tank block is set to not allow its contents to become negative. This
means that the population of hare cannot be reduced below the available amount, no matter
what is requested through the want connector. The amount that is actually removed is reported
at the get output connector. If the tank were allowed to become negative, the amount at the
want connector and the amount at the get connector would be the same. Since it can’t go nega-
tive in this model, the amount at want could be higher than the amount actually removed and
reported at get.

• Dividing the hare population by the area of the ecosystem (100 hectares) determines how many
hares there are per hectare. The lynx can eat every hare in each hectare, but if they eat too many
and the hare population decreases, the lynx mortality rate increases. This contributes to the
cycles seen in the model.

• Notice that, at each point in time, the result in the Hares Killed block is higher than the hare
population shown on the plotter. This occurs because hares are constantly being born and the
lynx kill not just the previous step’s population but also some of the new births.

• The Lookup Table block is set to Output is: interpolated, which means that intermediate values
can be used. For example, an input value of 65 (which is halfway between the Hares Eaten val-
ues of 60 and 70) will cause the block to output 0.175 (which is halfway between the Lynx
Death Rate of 0.2 and 0.15).

Further exploration
If you review the initial assumptions for this model, you can probably see several enhancements
that could be made.

• The birth rates for both the hare and the lynx could vary based on model conditions or on out-
side factors. For instance, the birth rate might be dependent on the health of the parents, the
level of crowding, or the amount of pollution in the ecosystem.

• You might add a predator or an additional food source for the lynx.
• The model assumes an unlimited food supply for the hare. To a food source, the hare would be

considered the predator, so modeling a food source would follow the same logic as adding the
lynx predators.

• Hares could have predators other than lynx.
• You could factor in outside conditions, such as the time of year and expected weather condi-

tions. Then examine the effects of those conditions on mortality rates.

Drug Ingestion
There really can be too much of a good thing. For some drugs, such as blood thinners, it is impor-
tant that the patient get enough of a dose to cause the desired outcome, but not so much as could

74 Areas of Application
Scientific

C
on

ti
nu

ou
s

be harmful. One method is to monitor the concentration of the drug in the patient's bloodstream
to determine if it is at effective, but safe, level. Many factors influence drug absorption - the
amount ingested, the rate of absorption, the patient's diet, and so forth - and simulation is the best
method to explore the effect of those factors.

☞ The Drug Ingestion model is located in the folder \Examples\Continuous\Standard Block Models.
This model uses blocks from the Value and Plotter libraries.

Model assumptions
• Constant blocks specify the dosage amount (1500 mg) and frequency (3 doses/day)

• The stomach’s volume is 500ml and the absorption percentage is 0.693

• Blood volume is 5,000ml and the metabolic constant 0.0433

• The model runs for 96 hours; delta time is 0.25

Model details
The Drug Ingestion model
illustrates the bloodstream
concentration for a periodi-
cally ingested drug. The drug
is taken at even intervals and
is absorbed into the blood-
stream based on the amount
of the drug ingested, the spe-
cific rate of absorption for
the drug, and the metabo-
lism, stomach volume, and
blood volume of the person
involved.

Hierarchy compartmentalizes
the Drug Ingestion model
into submodels representing
the stomach, intestines, and
blood stream. (To see the contents of these hierarchical blocks, double-click their icons or use the
Navigator in Model mode to drill down to the underlying layers.) In the Stomach hierarchical
block, the drug is introduced with a Pulse block that generates a periodic pulse based on the value
from the Constant block that outputs the number of doses per day. This is then multiplied by the
drug dosage and placed in a Holding Tank block representing the amount of drug in the stomach.

In the Absorption section, an Equation block calculates the absorption rate by dividing the
amount of drug in the stomach by the stomach volume, subtracting the concentration of the drug
in the bloodstream, and multiplying that by the absorption constant and the stomach volume con-
stant. The absorption rate is then used to reduce the amount of the drug in the stomach and
increase the amount of the drug in the bloodstream (represented by the Holding Tank in the hier-
archical block named Bloodstream). The concentration of the drug in the bloodstream is then cal-
culated by dividing the amount of the drug in the bloodstream by the blood volume. Finally, the
amount of the drug in the bloodstream is reduced by metabolism, calculated in the Equation block
that uses the concentration of the drug in the bloodstream, the blood volume, and a metabolism
constant. A Plotter I/O reports the concentration of the drug in the bloodstream.

Drug Ingestion model

Areas of Application 75
Engineering

C
ontinuous
Variations
Try changing the dosage amount and the frequency of application using the cloned dialog parame-
ters on the left side of the model. Then observe the changes in the concentration of the drug in the
bloodstream. Or, to illustrate the affects of different drugs, vary the metabolism and absorption
constants.

Engineering
Simulation is extensively used for modeling electronic, signal processing, control, and mechanical
systems, as well as neural networks and other engineering systems. The following electronic signal
processing example investigates the performance of a receiver in a digital FM system.

Noisy FM system
When designing receivers and demodulators, engineers need to balance quality and cost. Simula-
tion helps illustrate the trade-off, for example when the objective is to filter noise without reducing
the quality of the reception. Fewer components can result in a product that is cheaper to produce
and maintain, but a product with more components might have a better sound.

☞ The Noisy FM System model is located in the folder Examples\Continuous\Standard Block Mod-
els. The model uses blocks from the Electronics and Plotter libraries.

Model assumptions
• FM center frequency is 91.6khz

• Antenna tuner uses an elliptical filter

• Demodulator is a passive RC phase locked loop using an exclusive OR comparator

Model details
This model shows the performance
of a receiver in a digital FM trans-
ceiver system, within a noisy envi-
ronment. The Transmitter is a
hierarchical block with a submodel
containing a bitstream generator and
an FM carrier generator. The bit-
stream generator is comprised of two
Voltage Controlled Oscillator blocks
(VCOs) and two Clipper blocks:

• The first VCO outputs a square
wave that varies between -1 and
+1 volt output.

• The first Clipper limits the square wave signal to 0 and +1 volt, so that it can modulate the sec-
ond VCO and produce the periodic bitstream for testing.

• A second Clipper limits this square wave output for the Frequency Modulation (FM) generator.

The Clippers can be eliminated, but limiting the VCO input voltage to between 0 and +1 volt
makes it easier to enter frequency modulation range parameters.

The Filter-Bandpass block (labeled Antenna tuner) is set to elliptical because of its economy (fewer
poles & zeroes yield the fewest components). The Comparator block after the antenna acts as a
limiter and detector of the FM signal. The Phase Locked Loop (PLL) block demodulates (sepa-
rates) the input signal from the FM carrier signal. The output from the loop has a lot of pulses on

Noisy FM model

76 Areas of Application
Business

C
on

ti
nu

ou
s

it, so it is filtered slightly by a simple Butterworth filter. The low-pass filter after the PLL smooths
out the switching transients always present in PLL outputs.

Variations
Because elliptical filters have very large group delays at their edges, a Chebyschev might be better.
Try setting the noise to 1.0 volts and running the simulation with the elliptical filter. Then try set-
ting the filter type to Butterworth, Chebyschev, click “Recalculate poles...” and rerun the simula-
tion. The Chebyschev option works better than the elliptical filter, but notice how many poles are
generated and how complex (costly) the filter will become.

The PLL's parameters can be easily changed for experimentation. For example, enter different
bandwidths, damping, loop types, and phase comparators, and running the simulation again.
Playing with the amount of noise on the signal can give interesting results. For example, increasing
the amplitude in the Noise Generator block will quickly destroy the signal.

Business
Finance, economics, inventory management, and marketplace competition all lend themselves to
analysis through simulation. The following example explores how to minimize costs while still
being able to provide products based on customer demand.

Inventory Management
A company holding inventory incurs both ordering costs and holding costs:

• Ordering costs include order processing, labor transportation, inspection, and so forth. They are
generally stated as a fixed cost per order.

• Holding cost includes such expenses as warehousing, insurance, taxes, obsolescence, and man-
agement. They are generally stated as an amount per item per time period or as a percent of unit
cost per time period.

These costs are involved in a classic trade-off because as the number of orders per time period
increases, ordering cost increases and holding cost decreases. The objective of inventory manage-
ment is to minimize the sum of the two costs.

☞ The Inventory Management model is located at \Examples\Continuous\Standard Block Models.
The model uses blocks from the Value and Plotter libraries.

Model assumptions
• Initially there are 50 units of inventory on hand

• Demand is 10 units of product per week and increases to 12.5 units at week 4

• The lead time from stock order to stock delivery is 4 weeks for the first run

• Sensitivity Analysis automatically varies the lead time by two weeks per run, from 4 weeks on
the first run to 10 weeks on the fourth run

• The stock-ordering pipeline is full at 10 units/week for the 4 weeks

• The Correction Factor is 1

• The Target Inventory is 50 (4 week lead time * 12.5/units expected to ship each week)

• The model runs for a simulated 52 weeks

Areas of Application 77
Social sciences

C
ontinuous
Model details
This model shows inven-
tory stocking/depletion
cycles. Its purpose is to
stabilize the inventory
level so that over- or
under-stocking is
avoided. The model
examines the effect on
inventory levels of a 25%
increase in product
demand. It also uses Sen-
sitivity Analysis to
explore the effect of
changing the lead times for stock delivery. The MultiSim plotter displays the difference in inven-
tory from one run to the next.

About the model
Customer demand for product is indicated by a Lookup Table block. The demand amount is the
basis for the Customer Order Backlog amount and is also the basis for ordering more stock. Note
that stock ordering, inventory replenishment, and shipments are shown as a flow, while the calcu-
lations (target inventory, etc.) are shown in a separate section. This helps clarify the model for pre-
sentation.

The demand for product determines what is shipped, unless there isn't enough inventory to meet
demand. The Correction Factor indicates that a discrepancy between target and actual would be
cured in 1 week (the lower the Correction Factor, the faster a discrepancy is cured.) Since you do
not have Just In Time (JIT) delivery, you want to order sufficient stock to meet future demand,
without over-ordering. You could order just enough to meet current demand, but because there is
a delay until stock is received, inventory levels would not necessarily meet future demand (if
demand increased, you'd be under stocked. If it decreased, you'd be overstocked). You could also
correct the stock order amounts so that they approach target inventory levels (target inventory
considers stock lead time as well as current demand).

Because the model is set to run four times for sensitivity analysis, each page of the plotter will show
the results of one of the runs. Flipping from one page to another quickly shows the effect of
increasing the lead time.

Variations
Parameters you may want to change include the Correction Factor, Target Inventory, and/or Lead
time.

Social sciences
Simulations in the fields of psychology, social dynamics are common. The example that follows
investigates the effect of available office space on new business growth in a small city.

City Planning
Cities and other governmental agencies forecast tax revenues, infrastructure needs, and operational
expenses when setting their annual budgets. Whether predicting population changes, business
usage, or housing needs, growth projection models help provide realistic estimates for budgeting

Inventory Management model

78 Areas of Application
Social sciences

C
on

ti
nu

ou
s

purposes. They are also helpful when developing policies such as environmental protections and
residential growth ordinances.

☞ The City Planning model is located at \Examples\Continuous\Standard Block Models. The model
uses blocks from the Value and Plotter libraries.

Model assumptions
The City Planning model represents office occupancy in a city with a limited amount of offices. A
projection provides the number of new businesses that will require office space each month over
the next 240 months. There is also an estimate of the number of businesses that will fail.

• 4,000 offices are initially available

• Each business requires an average of 5 offices

• 2% of the businesses fail each month

About the model
The model examines how
many of the businesses will
be able to occupy offices, the
number of businesses lost
because offices are not avail-
able, and what effect busi-
ness failures have on the
availability of offices. This
model is notable because it
mainly uses the Math block,
rather than the Equation
block, to calculate data. That
way the relationships and
calculations that occur in the
model are shown explicitly.

Growth projections (see the Lookup Table block labeled “Demand”) are derived from a study esti-
mating growth over a 20 year time period.

For clarity, this model is separated into sections:

• Office Bank: The Holding Tank represents the number of offices available. The initial amount
of 4000 is reduced as businesses occupy offices and is increased as businesses fail. Multiplying
the demand for offices by the expected number of offices required per business (5) gives the
amount that will be withdrawn from the office bank. If there are not enough offices available,
businesses cannot relocate to this city. These “lost businesses” are also calculated.

• Businesses Occupying: The number of offices occupied each month is divided by the number of
offices required per business (5) to determine the number of businesses that occupy offices per
month. This amount is accumulated to get the total number of businesses occupying offices, so
that the number of business failures can be calculated.

• Business Failures: There is a 6-month delay, then 2% of the businesses fail and move out of their
offices each month.

Notice that the number of failures is based on the net total number of businesses, not just on the
total number of new businesses occupying offices. The failure amount is removed from the “Busi-
nesses Occupying” Holding Tank, so that failures are calculated on a net number. The number of

City Planning model

Areas of Application 79
Custom blocks

C
ontinuous
offices recovered due to businesses failing is returned to the Office Bank, making more office space
available.

Variations
Vary the available office space, office space usage per business, or growth projections to explore
alternatives.

Custom blocks
As mentioned previously, it is common to develop custom continuous blocks. The advantage is
that you can use the full capability of the ExtendSim development environment, including the
ModL programming language and dialog editor, to create blocks that behave and look exactly as
you want. Then use those blocks to build a model that accesses ExtendSim’s robust simulation
architecture.

Planet Dance
The Planet Dance model demonstrates the inverse square law of gravity. It uses the Planet and
Planet Plotter blocks from the Custom Blocks library. Both blocks were created specifically for this
model.

☞ The model is located in the folder \Examples\Continuous\Custom Block Models.

About the model
When you run the Planet Dance model, the three
Planet blocks pass information about the planets
they represent to the Planet Plotter block. This
block plots the location of the blocks on the
model worksheet by drawing them as animation
objects that move over time.

Each Planet block in the model contains the defi-
nition of one planetary object whose mass will
affect, and will in turn be affected by, each of the
other objects in the model. The dialogs of the
Planet blocks contain parameters that define the mass, position, density, and initial velocity of a
particular planet. The block’s code contains the math for calculating the gravitational attractions of
the objects to each other.

When this model runs the planets display the “slingshot effect.” As one object approaches another,
the attraction between them increases, leading to the less massive object being accelerated to a high
speed. Scientists sometimes use the slingshot effect to accelerate vehicles on their trips to explore
the outer planets in our solar system.

Note that the units of the various parameters are not defined in this model. The numbers entered
in the dialogs are just used relative to the other objects in the model.

Variations
This model provides lots of room to experiment with the physics of objects:

• Small changes in initial positions or velocities of the objects can cause big changes in model
behavior.

• You can either add or remove an object, resulting in a four-body or two-body problem. In each
case, make sure that each object has one, and only one, connection to each of the other objects
on the worksheet; otherwise the math will get confused.

Planet Dance model

80 Areas of Application
Custom blocks

C
on

ti
nu

ou
s

• One interesting problem, which demonstrates the complexities of the physics involved, is to try
to modify the parameters of the objects in the three body problem to produce a system of stable
orbits like the sun, earth and moon. (Before you get too frustrated trying to set this up, please
note that no one has yet been able to get those parameters right.)

• Notice that even light objects will have an effect on the location and velocity of heavy objects.
To replicate a relationship like that of the earth and the sun, increase the mass and density of one
of the objects. No matter how much you do this, however, the heavy objects will be affected by
the position of the light object.

Fish Pond
As opposed to the Predator/Prey model shown earlier that uses blocks from the Value library, the
Fish Pond model uses a custom-built Fish block to represent both predator and prey.

☞ The Fish Pond model is located in the folder \Examples\Continuous\Custom Block Models. It uses
a Plotter I/O block from the Plotter library and the Fish block from the Custom Blocks library.
The Fish block was specifically created for this model.

About the model
This is a small pond with two types of fish: a preda-
tor and a prey. The goal is to balance the pond by
reducing the number of predators. The model uses a
Fish block from the Custom Blocks library and a
Plotter I/O from the Plotter library.

This two creature ecosystem shows how a single
block design can model many types of creatures. By
entering different parameters and connecting the
blocks differently, a more complex ecosystem can be
created. The Fish block is used to model two different species: a carrion-eating fish and a natural
predator. At the left of the model, carrion-eating fish eat other fish that have died in the pond. The
block to the right (a piranha) eats the carrion-eaters. Run the simulation and look at the graph; the
Piranha periodically decimate the carrion-eating fish population.

Variations
Each Fish block added to the model represents another species. You can add another predator to
the right of the second block and, based on the default parameters, it will control the piranha pop-
ulation. Try adding a controlling predator to reduce the Piranha population. To do this:

Add a Fish block and position it to the right of the “Piranha” block.

Connect the “Pot. food in” connector on the new block to the “Pot. food out” connector on the
block to the left.

Connect the “Carrion” connectors.

Connect the “Pop” connector to the plotter.

The addition of a predator to control the Piranha population allows all the species to propagate in
cycles. You can also experiment by changing the parameters in the dialogs.

Fish Pond model

Continuous Modeling

Concepts, Tips, and Techniques
Building robust continuous models

“The work of adult life is not easy. As in childhood, each step
presents not only new tasks of development but requires

a letting go of the techniques that worked before.”
— Gail Sheehy

82 Concepts, Tips, and Techniques
Simulation timing

C
on

ti
nu

ou
s

This chapter discusses some concepts specific to continuous modeling and provides tips to keep in
mind when building continuous models. The areas discussed are:

• Simulation timing

• Setting delta time to determine the granularity of calculations

• Feedback and delays in continuous models

• Choosing between integration and summation

• Determining the order in which blocks execute

• Mixing libraries within a model

• Connecting to multiple inputs

• Using plotters as inputs for other blocks

• Using a plot line as reference by comparing new runs to a baseline

• Techniques to unclutter your models

☞ Concepts applicable to all types of models, such as deciding whether a model should have random
elements, are discussed in the chapter “Simulation Concepts” that starts on page 41. The following
topics are specific to continuous modeling.

Simulation timing
Most simulations run for a specified time. ExtendSim determines the duration of a simulation run
based on the values entered in the Run > Simulation Setup > Setup tab; the duration is the period
from the start time to the end time.

In continuous simulations, the duration is divided into intervals or steps of equal length, where
start time is the first step and end time is the last step. The length of time, in time units, for each
step is known as delta time or dt. The delta time setting determines how frequently model data is
recalculated.

As the simulation runs, simulation time advances from start time to end time at delta time per
step, calculating model data at each step. At the first step, ExtendSim calculates what the status of
the model is initially. Then it calculates the changes that take place over the next time step and
determines a new set of data points. Model data is generated as a string of successive points corre-
sponding to the steps in time. Notice that, for each step, data is calculated for the entire period
from that step up to, but not including, the next step.

Continuous simulations require that either the number of steps or the time per step be specified.
As discussed below, in most cases a delta time of 1 is adequate. However, for model accuracy it may
be necessary to set a different delta time.

Delta time
Delta time (dt or Δt) literally means the change in time. It is defined as the length of the time
interval between the present time and one time interval later. When you select a delta time, you are
selecting how finely the total simulation time will be sliced up, i.e. how short the intervals between
calculations will be and thus how frequently the computations will take place. Delta time is set in
the Run > Simulation Setup > Continuous tab.

For the simulation results to be correct, the delta time for a continuous model needs to be small
enough to accurately reflect changes that occur in different parts of the model. In many cases, the
default delta time of 1 is adequate. However, for simulation speed or model accuracy it may be
necessary to set a delta time other than 1.

Concepts, Tips, and Techniques 83
Delta time

C
ontinuous
Delta times other than 1
Although 1 is the default setting in the Continuous tab, delta time can be set to any number. For
example, to cause the model to run faster and perform calculations less frequently, delta time could
be set to 2 or any other number larger than 1.

A delta time less than 1 reduces the step size, causing calculations to be made more frequently. It
also results in more steps, so that the simulation takes longer to run in real time for the same simu-
lation run time.

If delta time is not 1, it is most common that it would be less than 1. There are many reasons why
delta time would need to be less than 1. Feedback loops and stiff equations in the blocks can
require a smaller delta time to ensure that all calculations are reflected in the graph. Simulations
that are run with too large of a delta time often show values jumping from very high to very low.
This is known as instability or artificial chaos. Examples of models where a delta time of less than
1 may be required are:

• Signal processing models need to have their specific time per step (dt) either entered in the Sim-
ulation Setup dialog, or have it calculated by blocks in the model. For example, the Filter blocks
calculate the stepsize based on their entered parameters.

• Differential equation models (models with integrators in feedback loops) may need to have a
time per step (dt) or number of steps other than 1.

• If you are building custom blocks in process control models, you might set up the blocks so that
they have a Stepsize message handler that can calculate the value for the DeltaTime variable,
automating this process. See the Electronics library for some examples of blocks that do this.

☞ If a model contains the Holding Tank block (Value library) and delta time is not exactly 1, you
may need to change the Holding Tank to integrate its inputs, as discussed in “Integration vs. sum-
mation in the Holding Tank block” on page 610.

Determining which dt to use
To determine what delta time setting is reasonable, first run the simulation with a delta time of 1
(the default setting). Then run the simulation with a delta time of 0.5 (one half of the original set-
ting). If there is no significant difference between the two graphs, then delta time of 1 is appropri-
ate. If there is a significant difference, reduce the delta time to 0.2 and run the simulation again.
Continue halving delta time until you determine a delta time which results in no significant differ-
ences compared to the smaller delta time. The main idea is to use the largest delta time that will
give accurate results without slowing down the simulation unnecessarily.

Specifying dt or the number of steps
Extendsim requires that either the time per step (delta time) or the number of steps be specified in
the Run > Simulation Setup > Continuous tab. You can enter delta time directly in the dialog or
you can enter the number of steps and ExtendSim will calculate the delta time for you.

A value for the number of steps is automatically calculated based on the setting entered for Time
per step (dt). It is computed as: floor(((EndTime-StartTime)/DeltaTime) + 1.5). You can see this
by choosing the Number of steps radio button after changing the Time per step (dt).

You can also determine the granularity of the simulation run by manually entering a value for
Number of steps. In most cases, this would be a number equal to the duration (length of the sim-
ulation run) so that the model calculates values once for each step, and each step would be one

84 Concepts, Tips, and Techniques
Feedback and delays

C
on

ti
nu

ou
s

time unit long. A default value for delta time is automatically calculated based on the number of
steps you enter; it is computed as (EndTime-StartTime)/(NumSteps - 1). You can see this by
choosing the Time per step (dt) radio button after changing the Number of steps.

Setting the end time when delta time is 1
Assume you want a continuous simulation to run and calculate values each year for 40 years where
start time is 0 and dt is 1. The value you enter for the end time depends on whether there is inte-
gration in the model.

• If there is no integration in the model, set the end time to 39. Data will be calculated at each of
the 40 steps, starting at step 0 and ending at step 39. Each step’s calculation would represent
data for the entire year, the period beginning at that step and continuing up to but not including
the next step (one delta time unit). Thus the model would calculate 40 years worth of data. If
you specified start time as 1 and end time as 40, the duration would also be 40 years.

• If there is integration in the model, set end time to 40. Data will be calculated (but not output)
at each of the 41 steps, starting at step 0 and ending at step 40. Each step’s calculation would
represent data at the beginning of the year, the period beginning at that step. However, blocks
that integrate take their inputs at one step and output their results at the next step. Thus the
model would calculate 40 years worth of data. If you specified start time as 1 and end time as 41,
the duration would also be 40 years.

☞ Integration is discussed on page 85.

Setting the end time when delta time is other than 1
If you specify delta time as 0.5, the start time as 0, and the end time as 39, the simulation will run
from time 0 to time 39 calculating data for 79 steps, each of which is one half time unit long.

If you specify a delta time which will not result in the duration being divided into equal segments,
ExtendSim will adjust the end time to a higher value. This is to insure that the segments are of
equal duration, and that the simulation will end at the end time displayed in the dialog. Alter-
nately, you can select a new end time or delta time. For instance, assuming end time is 39, you
could specify the Time per step (dt) as 2 years. Data could be calculated every other year, from 0
through 38; however, the last step of the simulation (step 39) would not be calculated. In that case,
rather than omit a step, ExtendSim will adjust the end time to 40. This means that model data will
be calculated once every two years, starting at time 0 and ending at time 40, for a total of 21 steps.

Feedback and delays
Sometimes it is necessary to create a model that tries to compensate for, or vary itself to match,
changes in its inputs. For example, a public address amplifier should output the same sound level
even if the speaker's voice varies in loudness. A good technique to accomplish this involves feeding
back some of the amplifier's output to control its input, so that the amplifier can effectively moni-
tor itself.

Concepts, Tips, and Techniques 85
Integration

C
ontinuous
Feedback
The practice of connecting an output of a model
back to an input is called feedback; it is the main
factor that causes complex behavior in continuous
models. A model with feedback will cause the
result of a calculation to be fed back to one of the
original variables in the calculation, influencing
its own rate of change. Thus feedback causes iter-
ative changes to model variables as the simulation
runs. The initial output variable ripples through
the calculations such that the effect loops back
and re-affects the initial variable.

Delays in feedback loops
ExtendSim is designed to facilitate feedback in models, but using feedback correctly entails some
additional modeling techniques. Since continuous models are recalculated at every time step, there
will be a delay between when the initial variable first affects the model and when the chain of cal-
culations ultimately and indirectly affects the initial variable. The introduction of a delay can cause
the behavior of a model to change significantly, because there is a difference between the effect that
instantaneous access can cause and the response that would happen if access is not instantaneous.

When you run a model that uses feedback, the feedback is delayed by one simulation time step.
This happens because the output feedback signal has to be calculated before it can be used on the
next simulation step, effectively delaying it for one time step. When feedback is delayed too much,
it can have a deleterious effect as it arrives too late, causing the system to over- or under-compen-
sate. Reducing the time step or delta time of the model will reduce feedback delay and result in a
model with more accurate results. See “Determining which dt to use” on page 83 for more infor-
mation.

Integration
Integration is a method of estimating the present value by estimating the past and/or future values
of the inputs, calculations, and outputs in a model. It is another way of summing or accumulating
values when the input is a rate (expressed as units per time). The advantage of integration over just
summing values is that integration will accumulate correctly when delta time is not exactly 1.0,
making it especially useful in feedback models that need a smaller delta time to work well. A sim-
ple form of integration (Euler) just multiplies the input rates by delta time and accumulates the
result.

The Holding Tank and Integrate blocks in the Value library have integration capabilities. You can
also use ModL functions to add integration to blocks you create. The Holding Tank block accu-
mulates and, if wanted, releases values. Its dialog gives the option to either sum or integrate the
inputs. (Whichever option you choose will have an impact on the accuracy of continuous simula-
tions. To learn more, see “Integration vs. summation in the Holding Tank block” on page 610.)
The Integrate block is used to perform the mathematical function of integration in models.

☞ There is no feedback in the My Reservoir model you built in the ExtendSim Tutorial on page 23
and it uses a delta time of 1. For that model, the Holding Tank could be set to either sum its inputs
or integrate them (but the end time would need to be adjusted). The Overflow model, described in
the “Tutorial” on page 63, has feedback and uses a smaller delta time, so the inputs to the Holding
Tank must be integrated.

Reservoir 3 model feeds contents of Holding
Tank back to Equation block to calculate overflow

86 Concepts, Tips, and Techniques
Simulation order

C
on

ti
nu

ou
s

Simulation order
The Run > Simulation Setup > Continuous tab allows you to choose the order in which
ExtendSim executes block data for continuous models. (Simulation order is also used by a discrete
rate system to determine initial bias order settings for Merge and Diverge blocks.)

The choices are Flow order (the default), Left to right, and Custom. To see the order in which
blocks are executing, select the command Model > Show Simulation Order before the model is
run.

☞ It would be unusual to change the simulation order from the default choice, Flow order.

Flow order
During a simulation, the blocks that compose an ExtendSim model perform calculations that gen-
erally depend on their inputs. After doing their calculations, the blocks set their output connectors
to the results of that calculation so that other blocks may use their results.

In this type of system, there has to be a “first” block: a block that calculates before all of the others
that depend on its results. After the first block calculates, the other blocks should calculate in the
order and direction of their connections. This order is repeated for every time step of the simula-
tion. To see this order, choose Model > Show Simulation Order.

The following are the rules that ExtendSim uses to derive the order of the block calculations in
continuous models:

• Blocks that generate inputs to the simulation go first. For example, Lookup Table or Constant
blocks with only their outputs connected to inputs of other blocks would be put first.

• Next, ExtendSim executes blocks that are connected to those first blocks, in the order and direc-
tion of their connections.

• Unconnected blocks and bi-directional network blocks (that have only inputs connected to
inputs) are executed in left-to-right order.

☞ The Feedback block (Utilities library) is useful when there are flow-order issues due to feedback in
a continuous model.

Left to right order
‘ Use caution when changing from Flow order.

If you choose this option, ExtendSim looks at the left/top corner of each block on the worksheet.
The left-most block gets executed first, and the next left-most block gets executed second, and so
on. Blocks with equal left edges get executed in top to bottom order. If your model flows to the
right, and then continues at the left below that flow, this choice will still calculate all the left-most
blocks first. If you use this order, be sure that blocks that calculate values are to the left of the
blocks which need those values. Otherwise, there will be a one step delay in calculating the values.

Custom order
‘ Use caution when changing from Flow order.

In continuous modeling, there are some situations with multiple feedback loops that do not auto-
matically settle into the desired flow order solution. This occurs because there are multiple solu-
tions that solve the DAG (Directed Acyclic Graph) ordering problem, and it is possible for the less
desired solution to be picked.

Concepts, Tips, and Techniques 87
Mixing block types

C
ontinuous
To solve this ordering problem, start with the model set to Flow order and then change the order
for a few selected blocks using the Model > Set Simulation Order command.

☞ To use the Custom order option effectively, the Model > Show Simulation Order command should
be checked so that the user can see which blocks need a changed order.

Also, note that the Set Simulation Order command is not enabled unless Custom order is selected
and a block is selected.

In the Set Simulation Order dialog, you can
enter a new order number for the selected
block and it will be moved into that position
in the simulation order.

Note that any custom order is lost if either
Flow order or Left to right order is selected
again.

Mixing block types
You can use continuous blocks, such as those
from the Value library, in discrete event and discrete rate models. You cannot, however, use discrete
event or discrete rate blocks in continuous models. All blocks in the discrete event and discrete rate
libraries require an Executive block that changes the timing of the model to event timing.

☞ The types of modeling you can perform depend on your ExtendSim package.

To learn more about what types of connectors can be connected to each other, see “Connector
types” on page 498.

Connections to multiple inputs
In a continuous model, you can connect from one output con-
nector to as many input connectors as you want. Multiple
inputs from one output is useful when many blocks need the
results of a preceding block. For instance, if you have one out-
put connector connected to four input connectors, the model
might look like the image at top right.

☞ As discussed in“Event scheduling” on page 258, the connec-
tions work differently in discrete event models.

For aesthetic reasons, you may want to only have one con-
nection coming from the output connector, for example
when the blocks are far away from each other. Instead of four
connections, connect to one of the input connectors, then
connect the input connectors together (sometimes called
daisy-chaining) in the image at bottom right. (Note that
this method may be confusing to others trying to understand
the model.)

Using plotters as inputs
The blocks in the Plotter library can store every point that was plotted in the table at the bottom of
the plotter. After running a simulation, you can easily access all those points.

Set Simulation Order dialog

One value output connected to four
inputs in a continuous model

Four value inputs connected together

88 Concepts, Tips, and Techniques
Using a plot line as reference or standard

C
on

ti
nu

ou
s

There are some instances where you may want to use the plotter data as input for another
ExtendSim model. For example, if you have a larger model divided up into many smaller models
in different files, you may want to use this technique. To quickly pass data from one continuous
model to another, use the Plotter I/O block (Plotter library). That block has four output connec-
tors that correspond to the four input connectors. To get data out of the plotter into another
model, simply select the block, copy it to the Clipboard with the Edit > Copy command, select the
second model, paste the plotter at the beginning of the second model, and hook the plotter’s out-
puts to the places where you need the data.

If you want to use the data in the plotter in another computer application, open the plotter, click
the columns of data that you want, copy to the Clipboard with the Edit > Copy command, move
to the other application, and paste the data there. If you want less than a full column, select the
desired cells by clicking and dragging.

Using a plot line as reference or standard
You may want to plot the current results of a continuous simulation relative to a previous run of a
simulation that you are using as a standard. This is fairly easy with the
Plotter I/O block (Plotter library). First, run the simulation to get the line that you want as a refer-
ence in the Plotter block. Select Edit > Duplicate to create a copy of the Plotter, including all the
data contained within it.

Connect the output connector that is associated with the line you want to the input connector on
the original plotter block. When you run the simulation again, the data that generated that line
will be plotted as a reference line.

For example, assume that you want to replot the line that came
from the top input connector of a Plotter. Following the steps
above would make your model look like the image at right.

You could also paste data directly into a column of a Plotter and
use that as a reference. If you want just a straight line for a refer-
ence, instead of following the above steps, simply use a Constant
block (Value library) to generate the reference line. You can also generate a reference line from a
formula by selecting a function and connecting the output of the Math block (Value library) to the
Plotter.

Note that these approaches are different than using the Plotter MultiSim blocks in the Plotter
library. Those blocks allow you to plot the results of several runs of a simulation on a single plot.

Uncluttering models
You can use a block to mathematically combine the output of one block with the output of other
blocks. You can also use a block to feed the output of blocks into the inputs of several other blocks.
However, using individual blocks to represent each function, step, or portion of a complex model
can quickly cause models to become too busy. If your models end up being cluttered, combine the
functioning of many blocks into a single block. To do this:

• Combine groups of blocks into a hierarchical block. See “Hierarchy” on page 540.

• Use an Equation block (Value library) to replace the calculations of several blocks. See “Equa-
tion-based blocks” on page 601.

• Create custom blocks that combine the functionality of many blocks as discussed above. See the
ExtendSim Developer Reference.

Second Plotter for standard line

Discrete Event Modeling

Introduction
Read this before you start

modeling discrete event systems

“If we all did the things we are capable of,
we would astound ourselves.”

— Thomas Edison

90 Introduction
About the Discrete Event module

D
is

cr
et

e
Ev

en
t
The goal of every company, government agency, and educational institution should be to develop
an extremely strong competitive organization. Cost reduction and quality improvement alone are
not sufficient to achieve market share. Organizations must also be able to quickly develop and pro-
vide innovative new products and services. Invention, innovation, quality, productivity, and speed
are the keys to making companies competitive.

One way to maximize competitiveness is to improve operational systems and processes by:

• Eliminating nonessential, non value-adding steps and operations

• Implementing and inserting technology where appropriate

• Managing the deployment and utilization of critical resources

• Identifying key cost drivers for reduction or elimination

In spite of recent and rapid advances in technology, many companies and institutions still suffer
from outdated equipment and inefficient work practices. This is due in part to the prohibitive
expense and time required to explore alternative methods of operation and try out new technolo-
gies on real systems and processes. Simulating a system or process provides a quick and cost-effec-
tive method for determining the impact, value, and cost of changes, validating proposed
enhancements, and reducing the resistance to change. Simulation models allow for time compres-
sion, are not disruptive of the existing system, and are more flexible than real systems. They also
provide metrics for meaningful analysis and strategic planning.

ExtendSim’s graphical interface and dynamic modeling capabilities are designed to help organiza-
tions answer questions about how they do work: what they do, why they do it, how much it costs,
how it can be changed, and what the effects of changes will be.

About the Discrete Event module
The Discrete Event portion of the User Guide shows how to build comprehensive models of
industrial and commercial systems so you can analyze, design, and document manufacturing, ser-
vice, and other discrete processes. Build a dynamic model composed of iconic blocks, run the sim-
ulation, and analyze the results. Change aspects of the model and run it again to perform what-if
analyses. Whether you model current operations or test proposed changes, the resulting models
make it easy to find operational bottlenecks, estimate throughput, and predict utilization.

Discrete event modeling is an integral part of Six Sigma, business reengineering, risk analysis,
capacity planning, throughput analysis, and reliability engineering projects. Discrete event models
are also useful for examining the effects of variations such as labor shortages, equipment additions,
and transmission breakdowns. They allow companies to look at their fundamental processes from
a cross-functional perspective and ask “Why?” and “What If?”

How the Discrete Event module is organized
• Introduction

• Tutorial

• Chapters that discuss specific discrete event modeling concepts:

• Items and their properties

• Queueing

• Routing items from several sources and to multiple destinations

• Processing, travel, and transportation

Introduction 91
Discrete event systems and processes

D
iscrete Event
• Batching and unbatching groups of items

• Resources and shifts

• Activity-based costing

• Statistics

• Tips, techniques, and information about the discrete event architecture

What the Introduction to the Discrete Event module covers
• Simulating discrete event systems

• Discrete event blocks

• Conventions and terminology for discrete event modeling in ExtendSim:

• Overview and layout of a discrete event model

• The Executive block

• Items and informational values

• Properties of items, such as attributes and priorities

• Events

• Activities

• Resources

• Block connectors

• Closed and open systems

• Types of item handling blocks

• Application areas in which discrete event modeling is commonly used

☞ For detailed information about discrete event modeling in general, including how it differs from
continuous and discrete rate modeling, see “Modeling methodologies” on page 43.

Discrete event systems and processes
Most systems are composed of real-world elements and resources that interact when specific events
occur. The Item library simulates those systems using blocks that mimic industrial and commercial
operations and timing that represents the actual occurrence of events. Use blocks from this library
to create simulations of business operations, manufacturing processes, networks, service industry
flows, information processing, material handling, transportation systems, and so forth.

Discrete event systems have several things in common:

• They involve a combination of elements such as people, procedures, materials, equipment,
information, space, and energy (called items in ExtendSim) together with system resources such
as equipment, tools, and personnel.

• Each process is a series of logically related activities undertaken to achieve a specified outcome,
typically either a product or a service. Activities have a duration and usually involve the use of
process elements and resources.

• Processes are organized around events, such as the receipt of parts, a request for service, or the
ringing of a telephone. Events occur at random but somewhat predictable intervals and can be
economic or noneconomic. Events are what drive most businesses.

92 Introduction
Blocks for building discrete event models

D
is

cr
et

e
Ev

en
t
Industrial and commercial processes therefore represent the utilization and underactivity of ele-
ments and resources driven by events.

Blocks for building discrete event models
The blocks in the Item library are used to build discrete event models. In addition, third-party
developers have created customized discrete event libraries. Plus, you can program customized dis-
crete event blocks.

Item library
Blocks in the Item library correspond to typical activities, operations, and
resources in many environments. These blocks are connected in an activity or
data flow diagram that represents a system. The complexities of generating and
posting events are handled within the blocks, alleviating the need to do any
programming in the ModL language.

Item library blocks are optimized for modeling service, manufacturing, mate-
rial handling, transportation, and other discrete systems. They incorporate
high-level modeling concepts such as variable batching, conditional routing,
and preemptive operations as well as blocks that represent machines, labor,
conveyors, and so forth. Built-in performance calculations and statistical
reports allow you to predict the value, effectiveness, and cost of implementing
changes before committing resources.

These blocks have been specifically designed to meet most discrete event mod-
eling needs, allowing you to quickly and easily perform complex modeling
tasks. For instance, you can use a popup menu in a Queue block to specify that
stored items are sorted in first-in-first-out order, last-in-first-out order, or in a
custom order based on their assigned priorities or attributes.

As mentioned in the Tutorial, blocks from the Value library are frequently used
for data management and model-specific tasks in discrete event models. Using
Value library blocks with Item library blocks does not change the fundamental architecture of dis-
crete event models; they will still be event-based rather than use the time-based architecture of
continuous models.

☞ See “Item Library Blocks” on page 723 and “Value Library Blocks” on page 715 for a listing and
brief description of the blocks in those libraries.

Third-party libraries
Third-party developers use the ExtendSim environment to create libraries of blocks customized for
specific fields, such as semiconductor manufacturing or multi-stage manufacturing systems. For
more information about products that can be purchased from third party vendors, please go to
www.extendsim.com/prtnrs_developers.html.

Creating custom discrete event blocks
Because of the Item library’s extensive capability, it is not likely that you would need to program
your own discrete event blocks. If you do want to do this, it is important to note that discrete event
blocks use different data structures and programming methods than continuous blocks. Start with
an existing discrete event block as a base: either use a copy of an Item library block similar to the
one you want to build, or use one of the discrete event template blocks in the ModL Tips library;
those blocks’ names start with “MYO” for “Make Your Own”. The ModL code of an MYO block
is commented to explain how certain features are implemented. Read the Developer Reference

Item library blocks

Activity
Batch
Catch Item
Convey Item
Cost By Item
Cost Stats
Create
Equation (I)
Executive
Exit
Gate
Get
History
Information
Queue
Queue
Equation

Introduction 93
Terminology and architecture

D
iscrete Event
before modifying discrete event blocks so you have a better understanding of how those blocks
work internally.

Terminology and architecture
Before building a discrete event model, it is helpful to understand the terminology that will be
used and to have an overview of ExtendSim discrete event architecture.

Overview of a discrete event model
Discrete event models pass entities (called items) from block to block as events occur during the
simulation run. The items in the simulation are usually generated as a random distribution within
specific parameters, or as a scheduled list of when events will occur. These items can have proper-
ties, such as attributes and priorities, which help them correspond more closely to parts, custom-
ers, jobs, and so forth in real life. Items are processed by activities, and the time and extent of
processing is often dependent on the availability of resources.

The main source of discrete event blocks is the Item library. Most of the blocks in the Item library
have item connectors and value connectors. An item connector passes an item and all the informa-
tion associated with it to the next item connector. Value connectors and dialog parameters provide
specific information about the item and its properties (attributes, timing, and so on) as well as
information about the effects that the item has in the model (such as queue length and wait).

☞ It is this value information which is plotted and displayed in a discrete event model, not the items
themselves.

Often the object of the simulation is to determine where there are bottlenecks in the process and to
see which parts of the process might be improved. Each branch of the flow diagram should either
feed into another block or end in an Exit block.

A model can combine continuous blocks, typically those in the Value library, with discrete event
blocks from the Item library. If you use any discrete event blocks in a model, the model will
become discrete event and will require the Executive block (Item library).

Layout of a discrete event model
You can place the blocks in a model anywhere you want, remembering that ExtendSim evaluates
discrete event blocks along the path of the connections. The only exception to this generality is
that the Executive block (which is required for all discrete event simulations) must be to the left of
all other blocks.

Executive block
The Executive block controls and does event scheduling for discrete event and discrete rate models.
An Executive block must be placed to the left of all other blocks in a discrete event or discrete rate
model. Its use in a model changes the timing so that simulation time advances from one event to
the next, rather than at uniform intervals.

For more information, see “Executive block” on page 255.

☞ Most of the Executive’s options are for advanced users. Unless you use string attributes, it is rare
that you would need to make any changes in the Executive’s dialog.

Items and informational values
The basic units that are passed between discrete event blocks are items. An item is an individual
entity that represents an element of the system being modeled; it can only be in one place at a
time. Items have a life cycle in which they are created, transformed, and eventually destroyed. They

94 Introduction
Terminology and architecture

D
is

cr
et

e
Ev

en
t
change state (physically move, are delayed, or have their properties altered) when events occur,
such as a part being assembled, a customer arriving, and so on. In manufacturing models, items
may be parts on an assembly line; in network models, an item would be a packet of information; in
business models, items may be invoices or people. Items are passed from block to block through
item connectors. The Create block can generate items with a random distribution, at a constant
rate of arrival, at a fixed schedule, or on demand. The Resource Item block provides a finite pool of
items.

Items can have properties — different pieces of information attached to an item that make the
item unique. Item properties include attributes, priorities, and quantities, as discussed in “Item
properties” on page 94.

Values provide information about items and about model conditions. Values tell you the number
of customers in queue, how many parts have been shipped, and how frequently telephone calls
occur. Values also report processing time, utilization, and cycle time. These informational values
are passed through value connectors. When you use a plotter in a discrete event model you are
plotting information about items, not the items themselves. For example, when the top output of
an Exit block (total exited) is connected to a plotter, it displays the time that each item left the
model and the number of items that have exited.

Item properties
A property is a characteristic of an item that stays with the item as it moves through the simula-
tion. Item properties include attributes, priorities, and quantities.

Attributes
Attributes are an important part of a discrete event simulation because they provide information
about items. Each attribute consists of a name that characterizes the item and a value that indicates
some dimension of the named characteristic. For example, an item’s attribute name might be
“color” and its value could be “1” (for “red”). Or the attribute name might be “ProcessTime” and
its value “4.76”. Attributes are often used for routing instructions, operation times, or part quality
in statistical process control; they are discussed fully on page 115.

Priorities
Priorities allow you to specify the importance of an item. For instance, there might be a step in a
manufacturing process where a worker looks at all the pending job orders and chooses the one that
is most urgent. Each item can only have one priority. The top priority has the lowest value, includ-
ing negative values (that is, an item with a priority of “-1” has a higher priority than an item with a
priority of “2”). Priorities are discussed fully on page 122.

Quantities
Each item can be a single entity or a group of duplicates. If the quantity of an item is 1, it repre-
sents one item; if it is greater than 1, it represents a group. By default, items have a quantity of 1.
The quantity can be changed by a block like the Set block. For more information, see “Quantities”
on page 124.

Events
ExtendSim moves items in a discrete event model only when an event happens. Events are occur-
rences such as receipt of an order, a telephone call, or a customer arriving. They are managed by
the Executive block (discussed on page 255) and only occur when particular blocks specify that
they should.

Introduction 95
Terminology and architecture

D
iscrete Event
Blocks that depend on time cause events to happen at the appropriate time. For instance, an Activ-
ity block holding an item until a particular time will cause an event to be posted to the ExtendSim
internal event calendar. When the time is reached, the event occurs and the model recalculates its
data.

Blocks that do not generate events allow the blocks after them to pull items during a single event.
Thus a single event can cause an item to pass through many blocks if those blocks do not stop
them. For instance, a Set block could set the item’s attribute and pass the item to the next block in
the same event.

For more information, see “Event scheduling” on page 258.

Activities
Activities are undertaken to achieve a specified outcome, typically either a product or a service.
They have a duration and usually involve the use of process elements and resources. An activity
could involve processing, moving, transporting, or otherwise manipulating an item. For more
information, see the chapter “Processing” on page 163.

Resources
Resources are the means by which process activities and operations are performed. Typical
resources include equipment, personnel, space, energy, time, and money. Resources can be avail-
able in unlimited quantities but are most often limited or constrained. In ExtendSim, resources
required to be present for a process or activity to take place can be modeled as either item resources
that are batched with other items, or as a count of resources (a resource pool) where the count is
known, managed, and made available to model processes. See “Resources and Shifts” on page 207
for complete information.

Connectors
Most of the discrete event blocks pass an item index through item connectors at each event. Each
passed index contains a set of information about the item – its attributes, priority, quantity, and so
on. This is different from value connectors which only pass values.

Blocks in the Item library can contain value connectors as well as item connectors. When combin-
ing discrete event blocks with blocks from other libraries, you will only be able to connect compat-
ible connectors. Item connectors can only connect to item or universal connectors; they cannot
connect with value input or output connectors. Likewise, value connectors can only connect with
value or universal connectors; they cannot connect with the item input or output connectors. For
more information about connector types, see “Connector types” on page 498.

Closed and open systems
Blocks that provide a finite number of resources can be part of closed or open systems. How blocks
are connected in the model determines whether the system is considered open or closed.

Closed systems
In a closed system, resources are routed from a resource block and used in the model. Once they are
no longer being used, the resources are recycled back to the resource block and become available
for further use. For example, assume a technician (the resource) is required to assemble parts of a
television. While the technician is assembling the parts, he/she will be busy and will not be avail-
able to perform work elsewhere. In a closed system, the technician will return to the technician
pool after assembling the parts and will become available for other assignments.

96 Introduction
Application areas

D
is

cr
et

e
Ev

en
t
In a partially closed system, only a portion of the resources are returned to the resource block for
re-use. For example, consider a case were there are different shifts of laborers (the resource). Sup-
pose three laborers are assigned to a task. Upon completion, the shift for one of the laborers is fin-
ished and he does not return to the labor pool to be assigned to a new task.

Open systems
Resource blocks may also be part of open systems when the block’s resources are not recycled. In an
open system, resources at the end of the line are not passed back to the Resource block. The most
common example of an open system is stock. Normally, stock passes out of the model at the end of
the line. Another example of an open system is a consumable resource such as a disposable fixture
that makes only one pass through the manufacturing process.

Types of item handling blocks
Each Item library is identified in its dialog as being a residence, passing, or decision type of block,
as follows:

• Residence blocks are able to store an item for some amount of time. Examples of residence-type
blocks are the Queue and Activity.

• Passing blocks must pass the item along before any simulation time elapses. Example blocks
include the Set, which sets item properties, and the Equation (I) which performs a calculation as
an item passes through.

• Decision blocks conditionally allow an item to pass through. Examples include the Gate and
Select Item In blocks.

Knowing these categories of blocks and how they relate to the processing of items will help you to
build better models. For complete information, see “Block types” on page 256.

Application areas
Simulation is indispensable for understanding, analyzing, and predicting the behavior of complex
and large-scale systems. It is used to gain an understanding of the functioning of existing systems
and to help design new systems by predicting their behavior before they are actually built. The fol-
lowing table gives some of the most common areas where discrete event modeling is used.

Discipline Fields Applications

Manufacturing Aerospace, Biotech, Agriculture,
Semiconductor, Food and Bev-
erage, Automotive, Pharmaceu-
tical, Consumer products

Inventory and resource manage-
ment, Six Sigma/Lean initia-
tives, scheduling, capacity
planning, evaluation of proce-
dures.

Service Industries Retail, Banking, Finance, Res-
taurants, Hotels, Insurance,
Utilities

Service levels, scheduling,
throughput analysis, evaluation
of procedures, Six Sigma/Lean
initiatives, workflow.

Communications/Networks Call centers, Satellite Systems,
Airborne and Ground Commu-
nication Systems

Capacity planning, perfor-
mance evaluation, throughput
analysis, determination of reli-
ability and fault tolerance.

Introduction 97
Next steps

D
iscrete Event
Next steps
The next chapter is a tutorial showing how to use the Item library to build a discrete event model.
Other chapters in the Discrete Event module provide some tips you may find useful when building
models and illustrate specific discrete event concepts, such as item generation, assigning properties
to items, and activity-based costing.

The How To module that starts on page 488 includes chapters on topics relevant to all types of
modeling, including creating a custom user interface, using mathematical and statistical functions,
and employing different types of analysis for your models.

Transportation/Material Han-
dling

Airlines, Railroads, Freight and
Mail, Moving and Cargo, Ware-
housing, Logistics

Emergency planning, schedul-
ing, service level, Six Sigma/
Lean initiatives.

Discipline Fields Applications

98 Introduction
Next steps

D
is

cr
et

e
Ev

en
t

Discrete Event Modeling

Tutorial
Building a discrete event model

100 Tutorial
A basic discrete event model

D
is

cr
et

e
Ev

en
t
The key to discrete event modeling is the construction of a flow diagram using blocks to represent
the problem’s operations and resources. The Item library is designed for building discrete event
models of commercial and industrial processes. It is often used with other ExtendSim libraries,
especially the Value and Plotter libraries.

The following example shows how to build a discrete event model of a car wash; it will use most of
the important blocks in the Item library. Starting with a simple model, then adding complexity
and features, this chapter will show how to:

• Model a single waiting line with a single server

• Add a second server

• Animate the model in 2D

• Route items through the model

• Add constraining resources

• Use attributes to characterize items so they can make decisions about which route to take

☞ This tutorial assumes you have completed the chapters in the Tutorial module that starts on
page 14 and that you have read the introductory discrete event chapter that starts on page 90.

A basic discrete event model
The most common discrete event model involves the handling of one or more waiting lines or
queues, such as those found in supermarkets or factories.

About the model
The Car Wash model represents a business operation where cars can be washed and waxed. The
assumptions for the final model are:

• The model runs for a simulated time of 8 hours (480 minutes)
• Cars arrive approximately every 4 minutes
• There is only one route into the car wash
• There are two bays, one for washing only and one for washing and waxing
• It takes 6 minutes to wash a car; it takes 8 minutes to wash and wax a car
• Approximately 25% of the cars want to be waxed
• Cars have to be driven through the operation by an attendant
• The blocks come from the Item, Value, and Plotter libraries

☞ The Car Wash models are located in the folder \Examples\Tutorials\Discrete Event\Car Wash.

Starting a model and setting simulation parameters
The following steps are typical when starting any discrete event model.

Open a new model worksheet

Give the command Run > Simulation Setup. In the Setup tab enter the simulation parameters:

End time: 480

Global time units: minutes

If they aren’t already open, open the Item, Plotter, and Value libraries

Place an Executive block (Item library) on the top left corner of the model worksheet

Tutorial 101
A basic discrete event model

D
iscrete Event
 The Executive block does event scheduling and manages discrete event simulations. It must be
present in every discrete event model.

Start small
In building any simulation model, it is easiest to start with a simple subset of the process and add
detail until you arrive at a completed model that approximates the system that’s being modeled.
This allows you to test at various stages while making the model building process more manage-
able.

The first step is to model the car wash with one bay that just washes cars. Since there is only one
line into the car wash, each car must wait in line for the preceding car to move through the wash
before it can enter. When finished with this portion of the tutorial, your model should look like
the one shown below.

Modeling a waiting line with a single server
The following table lists the blocks that will be added to the worksheet and their use in the model.
Except for the Plotter block from the Plotter library, the blocks in the table are from the Item
library.

Name (Label) Block Function Purpose in Car Wash Model

Create
(Dirty Cars)

Generates items or values, either ran-
domly or on schedule. If used to gen-
erate items, it pushes them into the
simulation and should be followed by
a queue-type block.

Generates cars that arrive randomly,
approximately every 4 minutes.

Queue
(Entry Line)

Acts as a sorted queue or as a resource
pool queue. As a sorted queue, holds
items in FIFO or LIFO order, or sorts
items based on their attribute or prior-
ity.

Holds the cars and, when the wash bay
is available, releases cars one by one in
first-in, first-out order.

Activity
(Wash Bay)

Processes one or more items simulta-
neously. Processing time is a constant
or is based on a distribution or an
item’s attribute.

Washes the cars for a simulated 6 min-
utes.

Modeling a waiting line with a single server

102 Tutorial
A basic discrete event model

D
is

cr
et

e
Ev

en
t
Starting at the right of the Executive block, place the blocks on the model worksheet in a line
from left to right, based on their order in the table. The model should look like the one shown
on page 101.

Label the blocks as indicated in the table.

☞ An easy method for placing blocks on a model worksheet is to access an open library using the
Navigator, as discussed in “Library Window mode” on page 671.

Entering dialog parameters and settings
There are only a few values to enter to reflect the basic car wash assumptions.

In the Create block’s dialog, the default setting is that items are created randomly using an expo-
nential distribution. Since this is exactly what you want, just enter Mean: 4. With this setting,
one car will arrive approximately every 4 minutes.

By default, the Queue block is specified as a sorted queue, with items stored and released in
first-in, first-out order. Since this is what the model specifies, do not make any changes to the
Queue.

The assumptions indicate that cars are washed one at a time and that it takes the same amount
of time to wash each car. In the Activity block’s dialog, the default settings are that the capacity
is 1 and the delay is a constant amount of time. Since those settings are what you want, just
enter Delay (D): 6, indicating that it takes 6 minutes to wash each car.

The Exit block automatically counts and passes items out of the simulation and the Plotter will
graph results as the simulation runs. There are no settings to enter for those two blocks.

Making connections and running the simulation
To indicate the flow of items, connect the blocks’ item connectors as follows:

From the Create block’s item output to the Queue’s item input

From the Queue’s output to the Activity’s input

From the Activity’s output to the Exit’s input

So that the model will display results, connect the following value connectors:

From the top (total exited) value output on the Exit to the top Plotter input

From the L (queue length) value output on the Queue to the second Plotter input

Save the model.

Exit
(Exit)

Removes items from the simulation
and counts them as they leave.

Removes the cars from the model.

Plotter,
Discrete Event

Reports the length of the waiting line
and how many cars have been washed.

Name (Label) Block Function Purpose in Car Wash Model

Tutorial 103
Adding complexity

D
iscrete Event
Run the simulation.

Verifying results
This is a good opportunity to verify the results. Because
the model has random numbers your results will differ
slightly, but the plotter graph should be similar to the pic-
ture at the right.

At the end of the simulation, the plotter might show that
80 cars have been washed and that there are around 40 cars
waiting to be washed. This would correspond to the infor-
mation in the Create block, which shows that about 120
cars were generated. These numbers make sense consider-
ing that 1 car is generated approximately every 4 minutes and the simulation runs for 480 minutes.

Animating the model
You don’t have to animate the model, but it is sometimes helpful to see the process in action.

In the Create block’s Item Animation tab:

Choose Select item animation from the popup menu

Select Car from the animation object popup menu

Click OK to close the dialog

Select the command Run > Show 2D Animation

Run the simulation

Now cars are displayed as they flow through the model. With animation on, it is easy to see that
cars are arriving faster than they can be washed.

Animation is very useful for debugging models or for making presentations, but it can consider-
ably increase the time it takes a simulation to run. To turn animation off, unselect the command
Run > Show 2D Animation or unselect the Animation On/Off tool in the toolbar.

Adding complexity
Now that you understand how to build the basic model, you can add more details and features.

Creating a second wash bay
Since long lines deter customers, it would be better to keep the entry line short. There are two
ways to model this:

• Increase the processing capability of the Activity block

• Add a second wash line

Both of these are examples of parallel processing (described in more detail on page 166.)

To increase the number of cars that the wash bay can process at a time, you would simply change
the capacity setting in the Activity’s dialog. For instance, allowing a maximum of 2 items in the
Activity would simulate a wash bay that could wash two cars at a time.

Since the assumptions state that the final model has two bays, instead of increasing the Activity’s
capacity you will add a second bay:

104 Tutorial
Adding complexity

D
is

cr
et

e
Ev

en
t
Copy the Activity block in the Car
Wash model and paste it below the
original Activity block. Label the
new block “Wash Bay 2”.

Connect the Queue’s item output to
the item input on Wash Bay 2. This
creates a parallel connection with
the original wash bay.

Expand the Exit block’s variable
input connector so that it reveals a
second input.

Connect Wash Bay 2’s item output to the Exit block’s second item input.

Save and run the simulation.

With the second wash bay, the entry line length stays near 0 most of the time, as shown in the
plotter and the Queue block’s Results tab.

Explicit routing
In the model so far, the number exiting from one wash bay is probably larger than the number
exiting from the other. (You can see this in the Exit block’s dialog.) Since you have not specified
any rules concerning how the cars are routed to a wash bay, a car will go to the first available bay.
However, if both bays are free, the car will go to the bay that was first connected in the model. This
implicit routing is not obvious and is rarely what you want.

 Unless it is completely unimportant in the model, you should always explicitly state the routing of
items using the Select Item In and Select Item Out blocks. Otherwise, the order in which their
connections were made will dictate the routing, as discussed in “Implicit routing” on page 151.

To explicitly specify the order in which items go to free inputs, use the Select Item Out block.

Insert a Select Item Out block (Item library)
between the Queue and the two Activity blocks
and label it “Select Route”.

Connect the item inputs of the blocks.

This section of the model should look like the screen-
shot to the right.

The Select Item Output block has many options. You
can specify that the item is routed to a random out-
put, to a specific output based on a value at the
“select” input connector or based on the item’s
attribute or priority, or sequentially. Using the various
options to route items is described fully in “Select Item Out dialog” on page 149.

In the dialog of the Select Item Out block:

Choose the option Select output based on: sequential

Select If output is blocked: item will try unblocked outputs

This causes the items to be sequentially routed between the two bays. If the selected bay is blocked,
the item won’t wait for it to be free but will instead be routed to the other bay if it is available.

Adding a second bay

Explicit routing

Tutorial 105
Adding complexity

D
iscrete Event
When you run the model, the same number of cars will have been washed as in the previous
model, but each wash bay will have been used equally.

☞ The preceding examples have two wash bays and purposefully don’t take into consideration the
model assumption that 25% of the cars want wax in addition to a wash. You could specify the sec-
ond bay as also providing waxing, and use the option Select output based on: random in the
Select Item Out block to route 25% of the cars to that bay. But this tutorial will explore a more
powerful method for accomplishing this in the section “Item attributes” on page 106.

Requiring resources
Up to this point, the Car Wash model assumes that you drive the car through the wash. However,
many car washes require that an attendant do this. This situation can be easily modeled as a num-
ber of resources (the attendants) which are required by and made available to the model. As is dis-
cussed in “Modeling resources” on page 209, there are two methods to model resources:

• As a count of resources that are made available to the model as a whole and released when no
longer required.

• As items that are joined with other items and flow through the model with them until separated.

In both situations, items cannot continue traveling through the model unless the required resource
is available.

Add a Resource Pool block (Item library) to the model and place it in any convenient place.
Label the block “Attendant Resource”. In its dialog, enter Resource Pool name: Attendants,
and enter Initial number: 1 (the default).

In the Queue block’s dialog:

Change the type of queue by selecting Type: Resource Pool queue.

In the table, select the Resource Pool named Attendants and set the Quantity to 1. This
indicates that each car will now require one attendant to drive it through the car wash.

Delete the connections from the Activity blocks to the Exit block.

Add a Resource Pool Release block (Item library) after each of the two Activity blocks, and con-
nect from the Resource Pool Release blocks to the Exit block.

In each Resource Pool Release block, select to Release by: name and choose that the name of
the resource pool is Attendants.

The model should look sim-
ilar to the one at the right.
Running the model shows
that the scarcity of atten-
dants causes a constraint on
the process, and fewer cars
get processed than when an
attendant was not required.
In the dialog of the Resource
Pool block, you could try
increasing the initial num-
ber of attendants to 2 or 3 to
explore the effect that has on
model results.

Requiring resources

106 Tutorial
Adding complexity

D
is

cr
et

e
Ev

en
t
Item attributes
Most car washes allow cars to have wax applied after the wash. Attributes are a very powerful fea-
ture that give items unique properties and characteristics. You can use attributes in this model to
indicate that specific cars should or should not be waxed. This is accomplished by adding an
attribute to the cars coming from the Create block, then checking for the value of that attribute as
the car gets washed.

As discussed in “Attribute types” on page 116, ExtendSim supports both string and value
attributes. The following example uses a string attribute type.

Creating a string attribute
Add a Set block (Item library) between the Create
and Queue blocks so they look like the screenshot
to the right. Label the Set block “Set Attribute”.

In the Set block’s dialog, choose New String
Attribute from the table’s Property Name
popup menu.

Name the string attribute Preference and click OK.

This causes the Executive block’s Attributes tab to appear. The table in this tab is where the
attribute values (and the corresponding strings) for the Preference attribute are declared.

In the table for selecting an attribute, enter the strings Wash Only
and Wash and Wax as shown in the screen shot to the right.

Close the dialogs of the Executive and Set blocks.

☞ The Executive block’s lookup table provides a descriptive text label
(string) for each attribute value. That string can then be used in the
model in place of the corresponding attribute value, making the model
more understandable. But the underlying architecture is that the values
for an attribute are still numbers. In this case, the values for the Prefer-
ence attribute are 1 (for Wash Only) and 2 (for Wash and Wax).

Generating the correct types of cars
To specify that items are correctly generated as 75% Wash Only and 25% Wash and Wax:

Add a Random Number block (Value library) to the model.

Connect its value output to the first value input of the Set block.

Choose an Empirical table for the distribution in the Random Number block.

In the dialog that appears, give the table 2 rows.

☞ Connecting to a Set block causes the Random Number block’s empirical table to be aware of
attributes. In this case, connecting the Random Number block to the Set block’s first value input
causes the empirical table to be populated with popup menus that relate to the first attribute (Pref-
erence) in the Set block’s properties table.

In the first row of the empirical table, select Wash Only from the popup menu and enter a
Probability of 0.75.

In the second row of the empirical table, select Wash and Wax from the popup menu and
enter a Probability of 0.25.

Tutorial 107
Adding complexity

D
iscrete Event
Close the Random Number dialog.

So that there will be sufficient attendants to drive all the cars that are generated, in the dialog of
the Resource Pool block enter Initial number: 2.

Since the bottom bay will now be used for cars that also need waxing:

Change the label of the bottom bay to Wash/Wax Bay.

Enter Delay: 8 in that bay’s dialog, to indicate that waxing and washing takes longer than
washing alone.

Each item generated by the Create block will now have a Preference attribute. In 75% of the cases
the car will be characterized as Wash Only; 25% of the time the cars will be designated as Wash
and Wax.

The next step is to have the model determine which car is which.

Checking the attribute
In the dialog of the Select Item Out block:

Choose to Select output based on: property.

In the property popup menu, select the string attribute named Preference.

Check the box to Display string attributes in table.

This causes the Preference attribute to be listed in the table’s header and puts popup menus for
that attribute’s strings in the table.

☞ The Select Item Out block routes items to its outputs based on the selection conditions and inter-
nal rules. When attributes are used to select the outputs, the block’s top output is referenced as
number 0, the second output as 1, and so forth.

To cause cars that don’t need waxing to be routed to the top output:

In the table’s first row, select Wash Only from the Preference popup menu.

Enter 0 in the Select Output column for the Wash Only row. That setting will route the Wash
Only cars to the top output.

To cause cars that need waxing to be routed to the second output:

In the table’s second row, select Wash and Wax from the Preference popup menu.

Enter 1 in the Select Output column for the Wash and Wax string. That setting will route the
Wash and Wax cars to the second output.

Close the dialog, save the model, and run the simulation.

You may notice that fewer cars pass through this car wash than in the example without attributes
or attendants. This is due to the problem of a car with a particular attribute following another car
with the same attribute. There is only one entrance to the bays, and the bays now have designated
purpose. This means that the second car must wait for the first one to finish even if the other bay
is free. Note, however, that every time you run the model, the numbers for the two lines in the Exit
block indicate that the cars have been processed in roughly the same proportion as specified in the
Random Number block.

108 Tutorial
Further exploration

D
is

cr
et

e
Ev

en
t
Final model
For your reference, the completed
model, titled Final Car Wash, is
located in the folder \Exam-
ples\Tutorials\Discrete Event\Car
Wash. This model also has buttons
for running the model and turning
animation on and off. For infor-
mation about adding buttons to
models, see “Creating a dashboard
interface” on page 506.

Further exploration
There are many other ways to modify the model shown in this section. Some possible variations
are:

• Have the wash or wash/wax times be dynamic rather than static. There are several ways to do
this:

• Specify that the delay in the Activity block is from a distribution. This would cause the
processing times to be random, rather than fixed as shown in “Random processing time”
on page 169.

• Use a Lookup Table block to schedule the wash or wash/wax times to be dependent on the
time of day, as seen in “Scheduled processing time” on page 168.

• Have an Equation block (Value library) calculate a wash time based on model conditions.
Then connect the Equation’s output to the Activity block’s D input.

• Assign attributes to the cars to represent the expected time to process it, with each type of
car requiring a different processing time. This is especially useful in a manufacturing envi-
ronment where there are several types of products that require different process times.

• Add more wash or wax bays, then use the Select Item Out block to give preference to specific
bays rather than just letting cars randomly go to any available bay.

• Have arriving cars look at the waiting line and not enter the car wash if the line is too long (balk-
ing) or leave the line after arrival if the wait time reaches a certain point (reneging). These con-
cepts are discussed more in “Queueing considerations” on page 131.

• Model other aspects of the car wash, such as the limited capacity of a parking lot to hold cars
after the wash process. To do this, use the Resource Pool block to represent the total number of
parking spaces available. Then set the Queue block as a Resource Pool queue to hold cars wait-
ing for a parking space. The Resource Pool Release block would release parking spaces as the cars
pass through it.

Final Car Wash model

Discrete Event Modeling

Items, Properties, and Values
Generating and removing items, and using item properties

110 Items, Properties, and Values
Blocks of interest

D
is

cr
et

e
Ev

en
t
As discussed in “Items and informational values” on page 93, items are what flow through the
model, properties contain information about items, and values provide information about model
conditions. This chapter discusses items and their properties and how information about them is
reported as values. It will cover:

• Generating items randomly and by schedule

• The Create block’s Start connector

• Attributes, priorities, quantities, and other item properties

☞ Most of the models illustrated in this chapter are located in the folder \Examples\Discrete
Event\Items and Properties. For other models, location information is provided at the beginning of
their respective discussions.

Blocks of interest
The following blocks will be the main focus of this chapter. The block’s library and category
appear in parentheses after the block name.

Item generating and removing

Create (Item > Routing)
Creates items randomly, by schedule, or infinitely. Can also be used to create values ran-
domly or by schedule. Can initialize newly created items with properties, such as attributes
or priorities.

Exit (Item > Routing)
Passes items out of the simulation. Reports the total number exited and the number that
were taken from each input.

Item properties

Get (Item > Properties)
Displays the value of user-assigned and system level item properties: attributes, priorities,
quantity, and item index.

Set (Item > Properties)
Attaches user-assigned properties (attribute, priority, and quantity) to items passing
through.

Equation(I) (Item > Properties)
Can be used to set, modify, or check attributes on existing items. Calculates the equation
when the item arrives.

Executive
Its Attributes tab is used for attribute management, such as renaming or deleting attributes
or locating where they are used in a model. It is also where string/value equivalents are
declared for string attributes.

Items, Properties, and Values 111
Item generation

D
iscrete Event
Property-aware blocks
Item properties include attributes, priorities, and quantities. In addition to the blocks listed above,
the following blocks in the Item library provide an interface for viewing, selecting, or modifying
existing item properties or for adding new ones:

Item generation
Items for a model are usually generated using the Create block. While it can also generate values,
the Create block can create items:

• Randomly. A random distribution causes items to be generated with a random or constant
interarrival time. The distribution determines the time between item arrivals; a smaller interar-
rival time indicates that items will arrive more frequently. See the examples below.

• By schedule. Creating items by schedule causes an item to be generated at a specific arrival
time. The schedule defines when the item will arrive and the time between arrivals is fixed. See
the examples in “Generating items according to a schedule” on page 114.

• Infinitely. This provides an infinite supply of items that are available on demand. For instance,
connecting a Create block with this behavior to a Gate block would provide an item to the Gate
block each time it opens.

 A Create block is set to Create items infinitely should never be connected to an infinite capac-
ity queue, since generating an infinite supply of items would overwhelm the system.

☞ In a model, each item can represent an individual entity or a collection of individual entities. For
instance, 50 items coming into a model could represent 50 people or it could represent 50 bus
loads of people. How you characterize items is completely up to you.

Generating items at random intervals
The Create block can generate items that arrive to the model at random times. When set to “Cre-
ate items randomly”, the Create block outputs items at random intervals; the arguments of the dis-
tribution define the interarrival time.

Example model
As you saw in the Discrete Event Tutorial on page 100, the Car Wash model is an example of using
the Create block to generate items at random intervals.

☞ The Car Wash model is located in the \Examples\Tutorial\Discrete Event folder.

Activity Read(I)

Batch Resource Item

Cost By Item Select Item Out

History Shutdown

Information Throw

Queue Unbatch

Queue Equation Workstation

Queue Matching Write(I)

112 Items, Properties, and Values
Item generation

D
is

cr
et

e
Ev

en
t
Choosing a distribution in the Create block
The dialog of the Create block contains
several distribution choices in its “Spec-
ify a distribution” popup menu, as well
as a table for entering data when an
empirical distribution is selected. Each
distribution is described in the Create
block’s Help; they are also discussed
briefly in “Probability distributions” on
page 606.

Choosing a distribution in the dialog of
the Create block defines both the inter-
val between item arrivals (the interar-
rival time) and the characteristics of the
rate of arrival.

In the Car Wash model, for example, select-
ing an exponential distribution with a mean
of 4 will cause one car to arrive approxi-
mately every 4 minutes for the duration of
the simulation. This results in an interarrival
time of 4. However, the shape of the expo-
nential distribution dictates that it is more
likely that the time between arrivals will be
between 0 and 4 than between 4 and 8.

Random intervals with dynamic
parameters
You may want the parameters in a random distribution to change as a function of time or model
status during the simulation run. The arguments for a given distribution can be controlled dynam-
ically through the Create block's value input connectors.

Random Intervals model
In the Random Intervals model, time dependent arrival rates are modeled by connecting the
Lookup Table block (Value library) to the Create block’s value input connectors. A table in the
Lookup Table block provides the mean values for an exponential distribution that has been set in
the Create block. This causes the timing of item arrivals to be based on the time of day.

Exponential distribution selected; mean is 4

Distribution of outputs when mean is 4

Random Intervals model

Items, Properties, and Values 113
Item generation

D
iscrete Event
Specifying the dynamic parameters
As seen in the dialog of the Create block, items arrive exponentially. Notice that the exponential
distribution has a “Mean” parameter. Connecting the output of the Lookup Table block to the
Mean input connector of the Create block causes the mean of the distribution to come from the
Lookup Table during the simulation run, overriding any entry in the dialog. This dynamically
changes the average interarrival time.

☞ The distribution determines the interarrival time. A
smaller mean value indicates that there is less time
between arrivals and items arrive more frequently.

In the Lookup Table’s dialog, the mean is smallest
from hour 10 until hour 12, causing items to arrive
more frequently during that period.

Choosing time units for the columns
When the block is set to “Lookup the: time”, the
Lookup Table block looks at the current simulation
time and outputs a corresponding value. Its table is
used to determine the value that is output (by default
the Output column; in this model, the Mean col-
umn) at a given simulation time (by default the Time
column; in this model the Hour column). Its time
units popup menu (in this model “hours”) represents
the unit of time for the values in the Time/Hour col-
umn. However, that does not control what the out-
put of the Output/Mean column represents.

☞ The time unit for the Lookup Table block’s output
column is determined by the block that receives its
output values.

When a value passed to a block’s input connector is
used to set a time parameter (as in this case), the value sent must be defined in the time unit that
the receiving block expects. In this model, the values from the Mean column are sent to the Create
block and are used to calculate the average time between arrivals. Since the Create block is using
minutes as its local time unit, the values in the Mean column of the Lookup Table block also rep-
resent minutes. For instance, the value of 6 in the Mean column represents an average of 6 minutes
between arrivals, even though the event time in the Hour column is in hours.

☞ Do not set the mean of a distribution to 0. The Create block will warn you if you make this mod-
eling error.

Making sure the arrival occurs when expected
To avoid unexpected results, it is important to understand what happens in the Create block when
you vary the mean of the arrival intervals over time. The block’s default behavior is to generate an
arrival time, called “nextTime”, for the next item based on the current input parameters. When
simulation time reaches nextTime, the Create block releases an item and generates a new nextTime
based on the current values of the input parameters. For the period of time between releasing
items, the Create block will not react to changes in the input parameters. If the inputs change dras-
tically, this can cause unexpected results as discussed in “Cycle timing” on page 254.

Scheduling interarrival time

114 Items, Properties, and Values
Item generation

D
is

cr
et

e
Ev

en
t
Generating items according to a schedule
Scheduling item arrivals can provide more flexibility and precision than having them generated
randomly. Setting the behavior of the Create block to “Create items by schedule” allows item arriv-
als to occur at fixed intervals that are specified in a table.

Scheduled Intervals model
Assume you want five items generated, one per minute, but that the simulation takes ten minutes
to run. Setting the Create block to “Create items randomly” and selecting a Constant distribution
would generate one item per minute, but there will be ten items. Generating items by schedule
allows you to customize when items will be created and how many items the model will have.

In the example model, the dialog of the Create block is set to “Create items by schedule.” The
schedule of arrival times, which is cloned onto the model worksheet, indicates that one item will
be generated at Create Time 1, another item at Create Time 2, and so forth up to time 5. With this
schedule, the model has five arrival events.

The items proceed to a Queue to wait for processing by the Activity, which takes three minutes to
process each item. Since the simulation runs for ten minutes, only three items exit; one item is left
in the Queue and one item is still being processed in the Activity.

This method is especially useful when the time between item arrivals is known but not regular. For
instance, the first item could be generated at Create Time 1, the second item at Create Time 3, and
the third item at Create Time 3.5.

Notice that the Item Quantity column has a default value of 1 for each item generated. This means
that each item generated represents 1 item. Item quantities are described fully in “Quantities” on
page 124.

☞ An alternative method would be to use a Create block set to Create items randomly, and select
a Constant distribution with a value of 1 in its dialog. Then in the block’s Options tab, select
Maximum items generated: 5. This method is less flexible than the earlier method, since each
item would have to have the same interval between arrivals.

The Start connector
When the Create block is set to Create items by schedule it has a start value input connector that
can be used to control when the schedule is executed. The timing in the Create block depends on
whether or not the start input is connected:

• If the start connector is not connected, the schedule's item creation times are synchronized with
the simulation run's absolute time. For example, if the schedule's first create time is at time 2
and the simulation's start time begins at time 0, an item would be created when simulation time

Scheduled Intervals model

Items, Properties, and Values 115
Item properties

D
iscrete Event
reaches 2. However, if the starting time entered in the Simulation Setup dialog is 4, the item
scheduled at time 2 is never created.

• If the start connector is connected, such as to a Decision block (Value library), the schedule's
item creation times are relative to when the connector is activated. For instance, assume simula-
tion starting time is 0 and the first item is scheduled for creation at time 11. If the start connec-
tor gets activated at simulation time 5, then the first item will be created at time 16 (5 plus 11).

☞ Starts are activated whenever the connector receives a message with a True value (defined as greater
than or equal to 0.5).

The Create block’s Options tab provides choices for how the start connector should behave, as dis-
cussed below:

• Follows schedule. This is the default option and should be used for most situations. Once the
start connector is activated, the entire schedule will be executed. Any new activation signals
arriving before the current schedule has completed are ignored.

• Generates one item per message. This is an advanced choice for special situations. It is most
often used when a custom-created block is connected to the start connector and you want an
item to be instantaneously generated for every message. With this choice, the schedule is
restricted to one row. Each time the start connector is activated, the row is executed.

• Generates one item per event. This is an advanced option for special situations. With this
choice, the schedule is restricted to one row. Each time the start connector is activated, a zero-
time event is scheduled. Once the Create block gets the zero-time event message, it will execute
the schedule.

Item properties
A property is a quality or characteristic that stays with an item as it moves through the model.
Some properties can be assigned to items by the model builder; others are automatically assigned
by the system.

An item’s properties include:

• User-assigned attributes. These are discussed in the next section.

• Priority. See page 122.

• Quantity. See page 124.

• System-assigned attributes. See page 126.

Attributes
Because they allow items to be distinguished from each other, attributes play a very important role
in a discrete event simulation. They are especially useful for telling an activity-type block how long
the item should be processed, or for determining where the item should be routed before or after
processing. The following sections describe how to create, use, and manage attributes.

Attribute names and values
Each attribute is composed of a name and a numeric value:

• An attribute’s name identifies some general characteristic of the item such as “size”, “route”,
“CarType” or “tank capacity”.

116 Items, Properties, and Values
Item properties

D
is

cr
et

e
Ev

en
t
• An attribute’s value indicates one dimension of the named characteristic. For instance, an item’ s
“size” attribute could have a value of “8” or a value of “12”, while an attribute named “CarType”
could have a value of “1” (for Ford), “2” (for Toyota), or “3” (for Volvo). An attribute value is
not just a number; it can also be the address of data in a database.

Attributes are meant to be unique; if you attempt to add a new attribute with exactly the same
name as an existing one, ExtendSim warns you that the name already exists. While attribute names
are not case sensitive (“Type” is equal to “type”), spaces are significant and should be avoided.

Attribute names and values are stored in a pair of dynamic, global arrays, described in “Attribute
arrays” on page 121.

☞ The Car Wash model for the tutorial on page 106 used string attributes. Models with string
attributes use text to represent the corresponding attribute value. However, the underlying archi-
tecture is that attribute values are still numbers. For more information, see “Attribute types”.

Number of attributes in a model
In a model, each item can contain up to 500 attributes that uniquely describe the item. Every
item contains the full set of attributes that have been defined in the model. The Executive block’s
Attributes tab displays all of the model’s attributes.

Each attribute contain a value that can represent either:

• A number that can be used for routing, timing, and so forth.

• The address of data in a database or global array. The data pointed to can contain a single num-
ber or an unlimited amount of additional data that describes the item, its route, its properties,
and so forth.

☞ If you use attributes efficiently, there is almost no limit to what can be represented. If you do
approach the 500 attribute limit, consider using DB address attributes (discussed below) to refer-
ence information in the ExtendSim database.

Attribute types
ExtendSim supports three types of attributes:

• A value attribute holds a real number as its attribute value.

• The value of a string attribute is still a number, but it is represented in the model by a string.
With string attributes you enter a descriptive text label (string) for each potential attribute value
in a lookup table in the Executive block’s Attributes tab. The string can then be used in the
model in place of the corresponding number. For example, a string attribute named “CarType”
might have three possible values: 1, 2, and 3. Once the lookup table for this attribute has been
properly configured, the blocks referencing the CarType attribute will display the strings “Ford”,
“Toyota”, or “Volvo” instead of the numbers 1, 2, and 3.

• The value of a DB address attribute contains a single value that represents a location or address
in a database. This address is composed of four separate numbers, where each number is an
index for an ExtendSim database, table, field, and record. Taken together, the numbers target a
specific location in the database. (Incomplete DB addresses are allowed. For example, an item
may have a DB address attribute with only the database and table indexes defined.)

Items, Properties, and Values 117
Item properties

D
iscrete Event
☞ The value of a DB address attribute cannot be used directly. It must be “decoded” using a Get.
Read(I), or Write(I) block or by accessing DB attribute functions in one of the equation-based
blocks.

Using attributes
The following table lists some common attribute-based modeling activities and the blocks that are
usually used to facilitate them. All blocks are from the Item library.

Adding attributes to a model
The Item library blocks that deal with attributes are listed in “Property-aware blocks” on page 111.
These blocks provide a popup menu interface for selecting existing item properties or for adding
new ones.

To Do This: Use Block(s)

Initialize newly created items with attributes Create (when “Create items by schedule” is
the selected behavior)

Define default attributes for item resources Resource Item

Set or modify values for existing attributes Set, Equation(I), Queue Equation

Check attributes on existing items Any property-aware block; see the table on
page 111.

Route items based on attributes Select Item Out (when “Select output based
on attribute” is chosen)

Sort and release items from queues based on attributes Queue (when it sorts by attribute value),
Queue Matching

Sort items based on attribute values and conditionally
release them based on an equation

Queue Equation

Pull in items and batch them based on attribute values Batch (when “Match items into a single
item” is the selected behavior)

Use attribute values to specify a delay or processing
time

Activity (when “Delay is: an item’s attribute
value)

Define the value/string correspondence for string
attributes

Executive (Attributes tab in “Declare string
attribute values” mode)

Find which block uses an attribute Executive (Attributes tab in “Manage all
attributes” mode)

Managing attributes and their names, such as renam-
ing or deleting an attribute

Executive (Attributes tab in “Manage all
attributes” mode)

Calculate an item’s cycle time Set an attribute to the current time in a Set
block or use the Timing attribute feature in
the Create block’s Options tab. Then use the
Timing attribute feature in the Information
block so that it calculates the difference from
start to end time. See “Cycle timing” on
page 254.

118 Items, Properties, and Values
Item properties

D
is

cr
et

e
Ev

en
t
☞ Depending on the block, the popup menu may offer different choices of attribute types to set. For
example, the Set block allows creating value, string, or DB address attributes.

Creating a new attribute causes it to appear in the list of properties in the block’s dialog and makes
the attribute accessible by every property-aware block in the model.

The following information describes how to create different types of attributes in the Property
Name column of the table in the Set block’s dialog:

• To create a new value attribute, click the Property Name popup menu, choose New Value
Attribute, type the name of the new attribute in the dialog that appears, and click OK. For
example, a value attribute might be named “size”.

• To define a new string attribute, select New String Attribute from the popup menu in the Prop-
erty Name column, enter a name, and click OK. This automatically opens the Executive block’s
Attributes tab. The table in this tab is where the attribute values (and the corresponding strings)
for string attributes are declared. An example of this is shown in “Creating a string attribute” on
page 106. An example of a string attribute could be “CarType” and the corresponding string/
value combinations might be Ford/1, Toyota/2, and Volvo/3.

• Creating a new DB address attribute requires an existing ExtendSim database. In the Set dialog,
select an ExtendSim database from the popup list that appears. To create the DB address
attribute, click the popup menu in the Property Name column, choose New DB Address
Attribute, type the name of the new attribute in the dialog that appears, and click OK. For
example, a DB address attribute could be named “ProcessTime”.

With the three different types of attributes, the Set dialog could look like:

After attributes have been created, they must be attached to items in the model and they must have
unique values assigned to them.

Selecting attributes and attaching them to items
To allow an attribute to be used, define the attribute and assign a value to it. This is done using
one of the attribute-handling blocks, such as Set or Create.

The most common method for assigning attributes to an item is to select an attribute in the dialog
of a Set block, then pass the items through the block. The value of the attribute can be defined in
the Set’s dialog or through its value input connectors.

Another commonly used block is the Create block when it is in “Create items by schedule” mode.
This is a convenient way to initialize new items with a set of attributes as they are introduced into

Items, Properties, and Values 119
Item properties

D
iscrete Event
the model. In the Create’s schedule table, you can select an attribute from a popup menu in one of
the columns, then enter a value for that attribute for each Create Time row in the table. An item
generated at the specified times will have the attribute name and value indicated in the table.
Other blocks, like the Resource Item block, can also be used to attach attributes to items.

☞ The information that follows assumes that you are using the Set block to assign an attribute to an
item and that you have already created the attribute using a method described on page 117.

Value attribute
To set a value attribute, select an attribute in the Property Name
column’s popup menu. (Existing value attributes are listed below
the New Value Attribute divider.) Then enter a number in the
Value column. In the screenshot at right, the Size attribute has
been selected and 14 has been entered as the value.

String attribute
To set a string attribute, select an existing attribute (listed
below the New String Attribute divider) from the popup
menu in the Property Name column. Then click the cell
in the Value column to bring up a popup menu contain-
ing all the string values that have been defined for the
attribute. In the example at right, the selected string
attribute is CarType and the Value popup menu contains the strings Ford, Toyota, and Volvo. If
Toyota is selected, the corresponding value that gets stored on the item for the CarType attribute
will be the number 2.

Connecting a Random Number block (Value library) that uses an Empirical table to a Set block
that accesses a string attribute will cause the strings for that attribute to appear as a popup list in
the empirical table’s Value column. This is shown in “Checking the attribute” on page 107.

DB address attribute
Each Set block only points to one ExtendSim database, which becomes one element of the DB
address. To set a DB address attribute in a Set dialog:

Choose a database from the popup menu.

In the Property Name column of the Set block’s table, select a DB address attribute from the
popup menu or create a new one; existing attributes are listed below the New DB Address
Attribute divider.

Once the DB address attribute has been selected, the Set dialog’s table enlarges to display the other
elements of the address (Table, Field, and Record). The value for the DB address attribute is
defined by clicking the appropriate popup menus in the table, selecting whether that element’s
information should be selected from a list, entered as an index, or accessed from a connector. The
screenshot below is an example of the ProcessTime DB address attribute, which gets its value from
a record in the Times field of the Processing Time table in the Process database.

120 Items, Properties, and Values
Item properties

D
is

cr
et

e
Ev

en
t
☞ You don’t need to select every element for a DB address attribute. For example, you may only want
to specify the database, table and field indexes and ignore the record index.

For a DB address attribute, the Value column displays the database address, as determined by the
indexes of the settings in the Table, Field, and Record columns. In the screenshot above, the Value
notation is 2:1:1:2, where 2 is the index of the Process database, 1 is the table index for Processing
Time, 1 is the field index for Times, and 2 is the index for the selected record, which has a value of
5.04.

Once the attribute has been set, the attribute information indicated in the Set block’s dialog will be
assigned to each item as it arrives to the block. Attribute values may also be defined dynamically
using the Set block’s value input connectors to override values set in the dialog.

Every model has an internal list of all the attribute names that have been created for use by items in
that model. However, not all items in the model will make use of every attribute name. For an item
to use an attribute name, the value of the attribute must be explicitly set using an attribute modify-
ing block (such as a Set block).

Getting attribute values and reporting changes
In order to manipulate an item based on the attribute, usually to route it or process it, you need to
get the item's attribute value. The most common method for getting attributes is to select the
attribute by name from the list in the attribute popup menu in an attribute-reading block, such as
the Activity or Get block.

Activity or Workstation blocks
In the dialog of an Activity or Workstation block, you can specify that an item's attribute value be
used as its processing time, as shown below.

Get block
When items pass through the Get block, it accesses information about the attributes that have
been specified in the table in its dialog. It then reports the information in the table and on its value
output connectors. What the Get block reports and where, depends on the type of attribute:

• Value attributes. The value for the attribute is posted in the Value column of the attribute table
and on the value output connector that corresponds to the attribute.

• String attributes. The string text is displayed in the Value column of the attribute table and the
number that corresponds to the string is posted on the appropriate value output connector.

Items, Properties, and Values 121
Item properties

D
iscrete Event
☞ Connecting a Lookup Table block (Value library) that is set to Lookup the: input value to a Get
block that accesses a string attribute will cause the strings for that attribute to appear as a popup
list in the Lookup Table block’s leftmost column.

• DB Address attributes. You can get either an individual element of a database address or its
entire address. To do this, from the popup menu in the table’s “DB attrib reports” column, select
which of the 5 components will be retrieved (db index, table index, field index, record index, or
db address). The first 4 choices provide individual elements of the address; the “db address”
choice provides the entire address. The information will be reported in the Value column and on
the value output connector for that attribute.

☞ To access all five elements of a DB address attribute, add five rows to the table. Each row should
have the same DB address attribute listed in the Property Name column, but different selections
for the “DB attrib reports” column. This comes in handy when the Get block is working in con-
junction with the Read or Write blocks (Value library). It allows the read or write location to vary
based on what information is traveling on the item.

In addition to value outputs for reporting an attribute’s value, the Get block has a Δ (delta) con-
nector for reporting when an attribute’s value changes. The Δ connector outputs a 1 when an
item's attribute value (for the first attribute specified in the dialog) differs from the previous item's
attribute value. Otherwise it outputs 0. This is useful for determining when there is a new type of
item or when an attribute value used for processing time has changed. For example, you can have
an attribute called “Type” with values that specify the type of item. When the value of Type
changes, indicating a new type of item, the Δ connector outputs 1. This is shown in “Adding setup
time” on page 172.

Modifying attribute values
The most flexible way to modify the value of an item’s attribute or other property is with the Equa-
tion(I) block (Item library). This block can look up property information and modify it by apply-
ing some mathematical formula, then use the result as the new attribute value for the item. For
example, if an item arrives with a value of 5 for the attribute “nextRecord”, you could add a 1 to
the 5 and create a new attribute value of 6 for that item’s nextRecord attribute. The Air Freight
model discussed on page 213 is an example of this.

Another way to modify properties is to connect from a Get block’s value output to a Math or
Equation block (both from the Value library). Then have that block apply some mathematical for-
mula and output the results to a value input on a Set block. The property must be selected in the
dialogs of the Get and Set blocks, and the value connectors must be for that property.

Attribute arrays
Attribute names and values are stored in a pair of dynamic global arrays:

• The one-dimensional Names array stores the name of each attribute currently used in the
model. Attribute names can be up to 15 characters long. You will receive an error message if you
attempt to give an attribute a name greater than 15 characters. Attribute names are not case-sen-
sitive.

• The two-dimensional Values array stores the value of each attribute for each item in the form of
real numbers.

122 Items, Properties, and Values
Item properties

D
is

cr
et

e
Ev

en
t
The following picture represents the attribute arrays:

As new attribute names are added to the model, new cells (array elements) are appended to the
Names array and new columns are appended to the Values arrays, up to a maximum of 500.

As new items are created during the simulation run, new rows are added to the Values array. The
number of rows in the Values array is unlimited and will be the same as the number of items in the
model. As shown in the above picture, item A has an attribute named “type” that has an attribute
value of 2 and item B has an attribute named “size” with a value of 6.01.

Note that each attribute named in the model causes a cell to be reserved in the Values array for
every item. However, not every item uses every attribute. To allow an item to use an attribute, you
must assign a value to the attribute using one of the attribute-handling blocks (such as the Set
block). If there is no value assigned, the attribute is not used by that item. This is shown in the fig-
ure above, where item B has no assigned value for the attribute name “color” and item C does not
have a value for the attribute “size”.

Priority
Like attributes, a priority is a
type of item property that
can be assigned to an item.
Priorities signify the impor-
tance of items. Using the
_Item priority property, you
can assign priorities to items
and manipulate them based
on their priorities.

Priorities are particularly
useful when you want to
examine a population of
waiting items and deter-
mine their processing order.
For example, you might have
a step in a manufacturing
process where a worker examines the pending job orders and chooses the one that is the most
urgent.

☞ Items can only have one priority. If you need multiple levels of priorities, use attribute values
instead.

Setting an item’s priority

Items, Properties, and Values 123
Item properties

D
iscrete Event
When a new priority is added to an item that already has a priority, the new priority prevails.
When items are batched, the highest priority of the items prevails in the resulting batched item.

☞ The lowest value (including negative values) represents the top priority.

Setting, getting, and using priorities
The following table lists some common priority-based modeling activities and the blocks that are
usually used to facilitate them. All blocks are from the Item library.

☞ The Select Item Out block does not assign or use items’ priorities. Instead its output connectors
can be prioritized so that an item will be routed to the first available connector that has the highest
priority. As shown in “Explicit ordering” on page 155, the Select Item Out block prioritizes the
path an item will take rather than the item itself.

Priorities model
In the example, a Random Number block (Value library) outputs values to a Set block, as follows:

• 10% of the time it outputs a 1

• 40% it outputs a 2

• For the remaining 50% it outputs a 3.

To Do This: Use Block(s)

Initialize newly created items with priorities Create (when “Create items by schedule” is
the selected behavior)

Define default priorities for resource items Resource Item

Set, modify, or check priorities on existing items Set, Get, Equation(I)

Select incoming items based on priorities Select Item In (when “Select input based on
item priority” is chosen)

Sort and release items based on priorities Queue (when it sorts by priority)

Sort items based on priority and conditionally release
them based on an equation

Queue Equation

View an item’s priority Get, History

Allocate resource pool units to the highest ranked item
first

Resource Pool

Priorities model

124 Items, Properties, and Values
Item properties

D
is

cr
et

e
Ev

en
t
The table in the dialog of the Set block indicates it will assign priorities to incoming items. Con-
necting from the Random Number block’s output to the Set block’s ItemPriority value input con-
nector causes the priorities to be set according to the values from the Random Number block.
Since the lowest number is the highest priority, 10% of the time items will be assigned the highest
priority.

The Queue block is set to sort by priority. This means that the highest priority items held in the
block will be made available to the Activity block before other items. A History block, added to the
model by right-clicking on the Queue’s output connector, shows that only top priority items are
processed; the Activity cannot keep up with the demand.

The section “Interrupting processing” on page 177 shows how priority values are used to deter-
mine if one item should preempt another.

☞ For an item to be ranked by priority, there must be other items in the group at the same time. For
example, items will only be sorted by priority in a Queue block if they have to wait there with
other items.

Quantities
Quantity is another type of property that can be assigned to items. Each item can be a single entity
or a group of duplicates. As is true for priority, an item can only have one quantity assigned to it at
a time; the default quantity is 1. If the quantity property for an item is 1, it represents one item. If
the quantity is other than 1, it represents a group. Item quantities are typically set in the Create
and Set blocks.

☞ An item’s quantity can be any number, including a negative number. An item with a quantity of 0
or less disappears when it reaches a queue.

For most purposes you would not want to change the quantity of an item from its default value of
1. However, to model a change of shift consisting of five workers going off duty at the same time,
to simulate the delivery of a box of 300 pieces of mail to a mail room, or for similar situations, set
the quantity of the item to be other than 1.

How blocks treat items with quantities other than 1
Items with quantities other then 1 are treated differently depending on the nature of the block pro-
cessing them. They will travel together as a unit, being processed essentially as one item, until they
reach an Exit, a Queue, a Batch, or a Resource Item block, or are sent into a universal connector
(such as Change, Demand, Select, or Start.)

• When an item with a quantity other then 1 reaches an Exit, Queue, Batch, or Resource Item
block, it is decomposed into separate identical items. For example, when it enters a Queue, an
item with a quantity of 10 will become 10 distinct items, each with a quantity of 1 and each
with the same properties (attributes, priority, and so on) of the original item. An item with a
quantity of 0 will disappear when it reaches a Queue.

• When items with quantities other than 1 are sent into a universal connector (such as demand or
select), they are treated as one item, but the quantity of the item may be used by the block as
control information. See below for more information on how universal connectors deal with the
incoming items that have quantities other than 1.

All the other blocks deal with items that have quantities other than 1 as a single item, ignoring the
quantity associated with it.

Items, Properties, and Values 125
Item properties

D
iscrete Event
☞ The Activity block accepts an item with a quantity greater than 1 as a single item and process it as
one unit. To have the items be processed separately, precede the Activity block with a queue, since
queues decompose items with quantities greater than 1.

Setting an item’s quantity
A quantity can be assigned to an item in the Create, Set, or Equation(I) blocks.

Set block
In the table in the Set block’s dialog, select _Item quantity in the Property Name column and
enter the quantity in the Property Value column or input a value to the Block’s _Item Quantity
value input connector. Each item that passes through the Set block will be assigned that quantity.

Create block
The default setting in the Create block is that one item is input to the model at each arrival event;
this is the most common case when building models. How you specify that a multiple number of
items be released at each event depends on which behavior is selected for the Create block:

• Create block is set to “Create items randomly”. Change Item quantity (Q) in the Options to an
integer number other than 1. Or input a value to the Create block’s ItemQuantity (Q) value
input connector.

• Create block is set to “Create items by schedule”. Enter values in the table’s Item Quantity col-
umn for each Create Time field that has arrival times.

For example, assume you want to show that one item arrives randomly approximately every 4 min-
utes. To do this, use the same settings as in the Car Wash model from the discrete event tutorial: in
the Create block select the Exponential distribution and enter Mean: 4; in its Options tab leave
Item quantity (Q): 1. To show that 2 car/items arrive every 4 minutes, keep the settings at Expo-
nential with a mean of 4, but enter Item quantity (Q): 2. The block will now output one item
with a quantity of 2 approximately every 4 minutes.

As discussed in “How blocks treat items with quantities other than 1” on page 124, the blocks that
follow the Create block determine how an item with a quantity greater than 1 is treated. For
instance, if an item with a quantity of 2 goes directly into a Queue or Resource Item block, it will
be split into two items each with a quantity of 1. However, if the item goes directly into an Activity
block, it will be treated as a single item with a quantity of 2. In most cases, you will want to follow
the Create block with a Queue, which will decompose the item into two separate items.

☞ In most cases, you probably will not want to generate more than one item at each event. For exam-
ple, rather than inputting 2 items every 4 minutes as discussed above, you would probably want to
generate 1 item every 2 minutes. This is because, unless they are inside a container of some sort, it
is not common to see two items arrive at exactly the same time; items are more likely to arrive at
slightly different times.

Quantities model
For example, assume you will receive 500 items a week, but that almost all of them are received on
Wednesday. In this case, there are five arrival events (one event each on days 1 through 5), each
with an item quantity of either 50 or 300.

This Quantities model is similar to the Scheduled Intervals model from page 114, except each
item the Create block generates has a quantity greater than 1 and the Activity processes 5 items at
a time.

126 Items, Properties, and Values
Item properties

D
is

cr
et

e
Ev

en
t
The dialog of the Create block is set to Create items by schedule. The arrival times (Create
Time) and the number of items arriving at the scheduled time (Item Quantity) are entered in the
table, which has been cloned onto the model worksheet.

The table indicates that on the third day (Wednesday) 300 items arrive but that 50 items arrive on
each of the other days.

The Create block outputs an item with a quantity greater than 1 as if it were a group of items all
arriving at the same time. When the item goes to a Queue block, it becomes multiple copies of
itself. In this example, as each item is sent from the Create block to the Queue block, it will
become either 50 or 300 units, depending on its quantity.

Running the model shows that the Create block creates 5 items, but that 500 items have arrived to
the Queue.

Other item properties
In addition to the item properties discussed above, such as the item quantity or user-defined
attributes, ExtendSim can assign properties to items. As shown in the property popup menu below,
these system properties are preceded by the “_” character and include:

• _Item index. This property is available in the Get, Equation(I), and
History blocks and points to where the item is located in the item
arrays stored in the Executive block. It is used by block developers
for debugging.

• _3D object ID. When you select a 3D animation object to repre-
sent an item, this property stores the index of the object.

• _Cost or _Rate. If there is an entry for cost somewhere in the
model, ExtendSim will add the _Cost and _Rate attributes to
property popup menus. For more information, see “Working with
cost data” on page 231 and “Combining multiple cost accumula-
tors” on page 236.

Quantities model

History block Properties menu

Discrete Event Modeling

Queueing
Storing items in buffers or waiting lines

128 Queueing
Blocks of interest

D
is

cr
et

e
Ev

en
t
A queue provides a buffer or waiting line to store items awaiting further processing. Queues can
have simple behavior, such as holding items in first in. first out (FIFO) order, or more complex
behavior, such that items are held and released in groups based on their attributes. You can also set
an option in the Queue block’s dialog to specify how long an item will wait until it reneges, or pre-
maturely leaves.

This chapter covers:

• Queueing disciplines: LIFO, FIFO, Priority, Attribute, and User-Defined

• Queue/server systems

• Blocking, balking, and reneging

• Sorting items using the Queue Equation block

• Least dynamic slack, minimizing setup, and maximizing service levels

• Using the Queue Matching block to match items into groups based on their attributes

• Viewing and initializing queues with the Queue Tools block

• Displaying queue contents through animating

☞ This chapter’s examples are located in the folder Examples/Discrete Event/Queueing.

Blocks of interest
The following blocks are the main focus of this chapter. Each block’s library and category appears
in parentheses after its name.

Queue (Item > Queues)
Stores items until there is downstream capacity. As a sorted queue, holds items in FIFO or
LIFO order, or sorted by their priority or attribute value. As a resource pool queue, holds
items in FIFO order.

Queue Equation (Item > Queues)
Stores items. Calculates an equation when it receives an item or when it is triggered by a
value connection. When there is downstream capacity, releases items based on the results of
the equation.

Queue Matching (Item > Queues)
Has a specified number of internal queues for holding items in separate groups. Releases a
group when there is downstream capacity and the group requirements have been met. This
block is useful for matching one type of item with another.

Queue Tools (Utilities > Discrete Event Tools)
When connected to the L (length) output of a queue, views and initializes the queue’s con-
tents. Displays information about item properties in a table. Can add an initial number of
items, with specified properties, to a queue.

☞ In this chapter the focus is on using a Queue block to represent a sorted queue. For information
about using the Queue block as a resource pool queue see “Resource pool blocks” on page 208.

Queueing disciplines
ExtendSim supports several scheduling algorithms, also known as queueing disciplines, through the
queue blocks.

Queueing 129
Queue/server systems

D
iscrete Event
• FIFO. When set to be a sorted queue, the Queue block can represent a first in, first out (FIFO)
queue, also known as a first come, first served queue. When set as a resource pool queue, the
Queue block represents a FIFO queue for resource pool units. The “MM1 model” on page 130
is an example of a FIFO queue and most of the models in the Discrete Event module use a
Queue block in FIFO mode. For more information about resource pools and how the Queue is
used as a resource pool queue, see “Resource pool blocks” on page 208.

• LIFO. When set to be a sorted queue, the Queue block can represent a last in, first out queue.
As is true when the Queue is set to FIFO mode, the Queue block automatically takes care of
LIFO sorting.

• Priority. As a sorted queue, the Queue block can read priorities and pass items with the highest
priority (lowest number) out first. For this to happen, the arriving items must have a priority.
Items that have not been assigned a priority in the model have a default priority with a Blank
value; they get relegated to the end of the waiting line. To see a Queue sorting items based on
priorities, see “Priority queues” on page 130 or “Animating queue contents” on page 140.

• Attribute. As a sorted queue, the Queue block can use attribute values to sort items in the
queue. In addition, the Queue Matching block allows you to define custom scheduling algo-
rithms based on item attributes. It groups items based on certain attributes and releases them as
a group once requirements are met. For this sorting rule, items must have attributes assigned to
them before entering the Queue. Items that have not been assigned an attribute in the model
have a default attribute with a Blank value; they get routed to the end of the waiting line. The
process for having a Queue sort items based on attributes is similar to the process for sorting
using priorities.

• User-Defined. The Queue Equation block allows a user-defined equation to decide the sorting
order for items it holds. This can be used to specify any user-defined criteria for sorting, includ-
ing Least Dynamic Slack, Minimize Setup, Maximize Service Level, and any other combination
of sorting rules. A discussion of these ranking rules and example models start on page 133.

☞ It is important to remember that, except for a FIFO queue, there must be other items in a queue at
the same time to allow the queueing disciplines to work appropriately and affect the order of the
items. For example, if you set a Queue block to sort by priority, and there is never more than one
item in the block at a time, the effect of queueing based on priority is negated.

Queue/server systems
Queue/server systems involve the creation of items which then wait in a queue until they can be
processed by one or more servers. The following blocks in the Item library are used to represent
queue/server systems:

• The Create block is used to provide items at exponential interarrival times (and many other
interarrival times as well).

• A Queue block, set to sort in FIFO, LIFO, or some other order, holds the items and releases
them in the designated order. It can have a maximum queue length specified in its dialog.

• The Activity block represents servers: you can specify an exponential or other distributional ser-
vice time within its dialog or by connecting a Random Number block (Value library) to its D
(delay) connector.

130 Queueing
Queue/server systems

D
is

cr
et

e
Ev

en
t
M/M/1 queues
A standard notation often seen in queueing theory is M/M/1. This is a basic construct, represent-
ing a single server queue. The notation translates to: exponential interarrival times/ exponential ser-
vice times/ single server. It is also common to see the designation M/M/1/×, where the × translates to
unlimited queue length, or the designation
M/M/1: ×/×/FIFO, which translates to exponential interarrival times/ exponential service times/ sin-
gle server: unlimited queue length/ infinite population/ first in, first out service.

MM1 model
A typical M/M/1 system expressed using ExtendSim blocks, with the addition of a plotter and an
Exit block, would look like the screenshot below.

Priority queues
As is true when any other sorting rule is used, a Queue block that sorts by priority will hold items
until there is downstream capacity. Once the downstream block can accept an item, the Queue
searches through the contents of the queue and releases the item with the highest priority. For the
Queue to work properly in this mode, items that enter should already have their priority set; items
without a priority are assigned a default Blank priority and get sent to the end of the waiting line.

Priority model
In the Priority exam-
ple, items enter the
model and immedi-
ately have their priority
set to 2. They then
enter a Queue block set
to Sort by: priority.
After the machining
processes, each item is
inspected for flaws. If
the item does not pass
inspection, its priority
is re-set to 1 and it is sent back to the Queue block where it waits to be re-machined. When the
machine can accept a new item, the Queue block will release the item with the highest priority. In
this case, any item waiting to be re-machined will be released first.

Run the model with animation turned on to watch the items with a priority of 1 (red circles)
bypass items with a priority of 2 (green circles) while waiting in the Queue.

MM1 model

Priority model

Queueing 131
Queueing considerations

D
iscrete Event
Queueing considerations
Once items are generated for the model, it is common that they will be held in a queue, typically a
Queue block. In addition to the queueing disciplines discussed above, queues and the items in
them can exhibit other behaviors.

Blocking
Blocking occurs when an item is prevented from leaving a block because there is a downstream
capacity constraint. Blocking is common in serial operations where there are several activities in a
row without queues in between; each activity has the potential for blocking arriving items. It also
occurs when activities are preceded by queues with finite capacity, causing backups in the preced-
ing activity. Blocking increases the waiting time for items in queues and is added to the calculation
of their utilization.

The examples in the sections “Processing in series” on page 165, “Sequential ordering” on
page 154, and “Machines that can only process certain types of items” on page 161 illustrate
potential blocking situations.

Balking
Sometimes customers enter a facility, look at the long line, and immediately leave. This is an exam-
ple of balking. Balking is typically represented by having a Decision block (Value library) look at a
queue’s length or wait time. If the line meets certain conditions (is too long, takes too long to
move, etc.), a Select Item Out block routes the item out of the model before it enters the queue.

In the Balking model, the Decision block (Value library) monitors the length of a Queue. If the
queue length is less than or equal to the threshold defined in the dialog of the Decision block (10
items), its Y connector will output a 1. This instructs the Select Item Out block to route the item
through its bottom output connector. If the queue length is greater than the threshold, the Deci-
sion block’s N connector will output a 0 and the Select Item Out block will route the item out its
top connector to the Exit block.

Reneging
Reneging occurs when an item, having entered a queue, leaves before it reaches the output. An
example of this is telephone callers who, after being put on hold, will hang up without getting help
if they feel they have waited too long for assistance.

To simulate reneging, select an option in a Queue block’s Options tab. The choices are:

Balking model

132 Queueing
Queueing considerations

D
is

cr
et

e
Ev

en
t
• Renege items after a specified number of time units. The number of time units can be set in the
block’s dialog or through its R (renege) connector.

• Renege items immediately when the R (renege) connector gets a true value (0.5 or greater).

When either of these choices is checked, an alternate item output appears on the right of the
Queue block. Items that renege leave through that Renege output. They can be routed back to the
original line (as in the example below), routed elsewhere in the model, or they can exit the model.

Reneging model
In the Reneging model, parts wait in the first buffering queue until they can be heated by a fur-
nace, then wait for processing in a second buffer. If too much time passes before a part is processed
(such that it cools down), the part is sent back to the first buffer to wait for reheating.

The Options tab of the Queue that represents Buffer 2 specifies that a part will wait 5 minutes
before it must be returned for reheating. The relevant information has been cloned onto the model
worksheet. As seen in its Results tab, the Queue block automatically counts and reports how many
items have reneged.

Jockeying
Jockeying is when items move from one waiting line to another in an attempt to gain some advan-
tage. To see a good example of jockeying, go to any supermarket and watch as people leave the end
of a slow moving cashier’s line to try and get onto a faster line.

The reneging feature on the Options tab of a Queue block is useful for building a model of this
type of behavior. Normally, items renege if they have spent too much time in a queue. But the
Queue block has a connector that can force reneging of the last item in the line. The Jockey.mox
model is a good example of this.

Reneging model

Queueing 133
Sorting items using the Queue Equation block

D
iscrete Event
Jockey model
In this model customers arrive from the Create block and are routed through the Select Item Out
block to the shortest of three possible queues.

As customers wait in the queues it is possible for the lines to move at different speeds. The last cus-
tomer in each queue has the option to move to another queue if a shorter line opens up.

Sorting items using the Queue Equation block
The Queue Equation block uses its equation to determine each item's position in the queue. So
that item positioning can be properly determined, every time there is a potential change in the
ordering the equation gets evaluated once for each item currently in the queue. Consequently, this
calculation takes place every time an item enters or leaves the queue, or when one of the block's
value input connectors get a new value.

The equation in this block has several different types of output variables; they are listed in the table
on page 134. One of the output variables, “Queue rank”, is used to assign a position to each item
in the queue.

☞ At least one Queue rank output variable must be defined for this block to function properly.

Once each item has been assigned a ranking, the items are sorted in the queue according to the
“ranking rule” that has been selected in the block’s Options tab; the ranking rules are listed on
page 135. The block’s internal data structure keeps track of the ranking assigned to each item and
items with the “best” rank are placed towards the front of the queue.

☞ If an item has been given a Blank ranking, the item is never allowed to leave the queue.

While only one Queue rank output variable is required to be defined, you may also define addi-
tional (“secondary”) Queue rank variables. They are useful if you are concerned with tie breaking
for two or more items that have the same rank. What constitutes a tie can also be defined on the
Options tab with the +/- parameter. For an example of how a secondary Queue ranking variable is
used, see “Combined rules” on page 137.

As shown in the example models later in this section, the Queue Equation block is useful for calcu-
lating sorting rules for least dynamic slack, setup minimization, service level maximization, and
other complex queueing situations.

Jockey model

134 Queueing
Sorting items using the Queue Equation block

D
is

cr
et

e
Ev

en
t
Variables and rules
The Queue Equation block has several types of input and output variables as well as some prede-
termined ranking rules.

Input variables
As seen in the popup menu of the block’s input variables table, a number of input variables can be
used to determine the ordering.

Output variables
Once the block has determined which item will be the next one to be released, a number of output
variables can be calculated for that item. They are shown in a popup menu in the Queue Equation
block’s output variables table and described below.

Input Variable Uses

Attribute An attribute on the item currently being evaluated

Last item to exit Provides the chosen attribute value on the last item to exit the block

Item quantity The quantity of the item currently being evaluated

Item priority The priority of the item evaluated

Item index The current item’s index value

3D object ID The ID of the object used to represent the item in the 3D window

DB value Access a value from an ExtendSim database table

DB address The address of a specific location in an ExtendSim database

DB index The index of an ExtendSim database, table, field, or record

Static variables Variables that maintain their value from one equation calculation to
the next

Arrival time The time that the item arrived to the queue

Best result The best (highest or lowest) equation result (ranking) so far

Connector A variable number of input value connectors are available

Output Variable Uses

Attribute Store attribute information on the released item

Item priority Change the priority of the released item

3D object ID Change the released item’s 3D ID

DB Value Write information to the ExtendSim database

Queue rank Defines each item’s rank (position) in the queue. At least one of the
output variables must be of this type.

Connector A variable number of output value connectors are available

Queueing 135
Sorting items using the Queue Equation block

D
iscrete Event
As mentioned earlier, you can select one or more output variables but at least one of the output
variables has to be of the type “Queue rank”. You can also have more than one ranking variable;
the secondary ranking variable will be used to arbitrate in the case of tied ranking.

☞ These variables are only available for the item that is currently being released.

Ranking rules
The Queue Equation block’s Options tab provides the following selections to determine which
items should be released first:

• Items with the highest rank value

• Items with the lowest rank value

• Items with the first TRUE rank value

Each item’s rank value is calculated by the equation using the input variables. The items with the
best rank will be released first.

Least dynamic slack
Least dynamic slack is a ranking rule for queues that tends to reduce the “lateness” of a sequence of
orders. Slack is defined as the due date minus the remaining processing time. In essence, it is the
“float” that is available before the item is due to be completed. When using slack to sort items, pri-
ority is given to those items that are closest to being late. In a model that represents orders for ser-
vices or goods, choosing the order with the least dynamic slack tends to minimize the number of
late orders.

Least Dynamic Slack model
The example model Least Dynamic Slack illustrates the improvement in on-time performance that
can be achieved by sequencing orders by least dynamic slack instead of first in, first out ordering.

Select con Designed to be connected to the Select connector on the Select Item
Out block, this connector is used to route the released item

Output Variable Uses

Least Dynamic Slack model

136 Queueing
Sorting items using the Queue Equation block

D
is

cr
et

e
Ev

en
t
The two models are identical, except the top model uses Queue Equation blocks with least
dynamic slack calculations and the bottom model uses Queue blocks and typical FIFO ordering.
In the model, the equations in the Queue Equation blocks calculate the dynamic slack for each
item. The item with the smallest dynamic slack (least amount of time before being late) will be
selected first. As seen on the plot which has been cloned onto the model worksheet, on-time per-
formance is higher using least dynamic slack (top line) compared to FIFO (bottom line).

Minimizing setup
In some systems, setup time (the changeover from one product to another) can add significant
delay to the processing of items. If this is the case, it may be useful to process the same item type
until there is no longer any of that item type in the queue. Only when a particular type of item has
been exhausted will another type of item be processed. Giving priority ranking in a queue to the
same type of product that has just exited the queue reduces the number of setups or changeovers
between products. Like least dynamic slack, minimizing setup time is another type of queue rank-
ing rule.

Minimize Setup model
The model Minimize Setup compares the Product attribute for each item in the Queue Equation
block to the Product attribute on the last item to leave the queue. The first item with its Product
attribute value equal to the item that has just exited is released first. If no item in the queue can be
found with an attribute value that matches the last exited item, the first item in the queue is
selected. The plot shows the effects of this rule: the queue builds up initially until it can combine
enough batches together to gain an efficiency from minimizing the setup time. (The example
includes a second model, with a FIFO queue instead of a Queue Equation block, for comparison
purposes.)

Maximizing service levels
In a service system, the service level can be defined as the number of customers served within a cer-
tain time period. For instance, technicians might be rated on the percentage of customer requests
fulfilled within a certain time period. To maximize this, a queue that applies the maximize service
level rule gives priority to those customers who waited less than the service level time, leading to
dramatic improvement in the service level. However, this type of system might not be popular with

Minimize Setup model

Queueing 137
Sorting items using the Queue Equation block

D
iscrete Event
real-life customers since some of them may have to wait a very long time while other customers
who arrived later would wait a much shorter time.

Maximize Service Level model
The top section of the Maximize Service Level model uses a Queue Equation block to sort the
queue into two priority levels:

• The service priority is the customer who has spent the longest time (but less than 10 minutes) in
the queue

• Customers who have waited longer than 10 minutes are placed at the back of the line

The lower section of the model is exactly the same as the top, except it uses a Queue block in FIFO
sorted queue mode. As the model is run, two plotters show the effect on service level and wait
time. Comparing the service level of the upper model to the bottom model, it is obvious that there
is a dramatic improvement if the sorting rule is used. However, the second plotter makes it equally
as obvious that some customers have a much longer wait when the service level is maximized.

Combined rules
Because of its tie-breaking capabilities, the Queue Equation block can be used to model situations
where two items are considered equal using the primary sorting rule but a secondary rule is used to
determine the item with the higher priority.

Maximize Service Level model

138 Queueing
Matching items using the Queue Matching block

D
is

cr
et

e
Ev

en
t
Combined Rule model
The Combined Rule model uses the least dynamic slack as the primary rule. However, if the least
dynamic slack is within 2 time units, the rank (order of the items in the queue) is used.

Matching items using the Queue Matching block
The Queue Matching block has a variable number of item connectors where each connector repre-
sents a separate internal queue. Within each queue, the block sorts items into different groups
based on each item's match attribute value. Items are released from a group only when the required
number of items are present in each group in each queue.

This block is especially useful for making sure that items have a particular characteristic at a spe-
cific time. For instance, you would use this queue to reassemble parts in the correct order or to
insure that subassemblies are correctly matched with each other.

Queue Matching model
In the following example, electronic systems arrive from the field, are separated into their individ-
ual components for refurbishing, and are reassembled. In this operation, all of the components but
only 40% of the housings need to be reworked. In addition, it is important that the housings for
each system be reassembled with their original (refurbished) component set.

The Information block counts each electronic system as it arrives and outputs the total number
that have passed through the block. The Set block uses this value to set a Serial Number attribute
for each electronic system. After refurbishment, the system is reassembled using its original parts.

Other models that use the Queue Matching block
The folder Examples\Discrete Event\Queue Matching contains additional models that use the
Queue Matching block. Those models explore more advanced topics such as modeling fixed and
variable requirements for specific items.

Combined Rule model

Queue Matching model

Queueing 139
Advanced queue topics

D
iscrete Event
Advanced queue topics
This section discusses viewing, initializing, and animating the contents of a queue. These tech-
niques are useful in creating a more exact model as well as for debugging and/or validating a
model.

Viewing and manipulating queue contents
A powerful ExtendSim feature is the ability to manipulate the contents of a queue. The Queue
Tools block (Utilities library) allows you to view items in a queue, manually manipulate the order-
ing of those items, and initialize the queue’s contents. To use this block, connect from the L
(length) output of a Queue or Queue Equation block to the value input connector of a Queue
Tools block. The block has two tabs, View and Options, as discussed in the following sections.

View tab of Queue Tools block
The Queue Tools block’s View tab is used to manipulate items in a Queue or Queue Equation
block and display information about the items. When the model is run, every item in the attached
queue will have an entry in the table.

Popup menus at the top of the columns are
for selecting which of the item’s properties
(attribute, quantity, priority, and so forth)
to view. There are also buttons (Up, Down,
Destroy) on the View tab that can change
the rank of an item in the queue or delete
an item from the queue. For instance, in
the screenshot to the right an item with a
priority of 4 has been moved in front of
other items with priorities of 1.

To manipulate the items in a queue, run
the model, pause the simulation at the desired point, select an item, and use the buttons in the dia-
log to move or destroy it. (To pause a simulation run, click on any cell in the Queue Tools table or
use the Pause button in the ExtendSim toolbar or the Pause menu command.) Leaving this block
open (or having a clone on the model worksheet) while the simulation is running will slow the
model down; it is best to close it when not needed.

The View tab of a Queue Tools block is cloned onto the worksheet of the Initializing and Viewing
model, discussed in the next topic.

Initializing a queue
Sometimes it is useful to introduce items into the model at the start of the simulation run. The
Options tab in a Queue Tools block (Utilities library) can be used to preload a queue with items at
start time. Situations where queues might be initialized with items include:

• Reducing start-up bias. By placing items in queues at the start of a simulation, the model begins
in a state that is closer to steady-state.

• Importing current system status in a scheduling model. When using simulation to model a
detailed schedule, it is necessary to start the simulated system with the same work-in-progress as
the real system.

To use this block, connect from the L (length) output on a queue to the value input connector on
a Queue Tools block. The block’s Options tab has three choices:

Manipulating a queue

140 Queueing
Animating queue contents

D
is

cr
et

e
Ev

en
t
• No queue initialization: Items are not added to the queue at the start of the simulation.

• Initialize queue: The queue is initialized with the number of items entered in the number field
and property values as specified in the Properties table.

• Initialize from global array: The number of items and property values are read in from a spec-
ified global array. Because global arrays can themselves be initialized from a number of sources
including Excel, a database, or the Internet, this is a very useful way to import the contents of a
queue from an external source.

Initializing and Viewing model
The Initializing and Viewing example uses the Options tab of a Queue Tools block to introduce
items into a Queue block at the start of the simulation. A clone of the block’s View tab has been
placed on the model worksheet.

In this model, ten items are added to the queue at time 0. As seen in the Properties table in the
Queue Tools’s Options tab, these initial items have their item priority set to 1, their item quantity
set to 1, their Type attribute set to 1, and their Arrival attribute set to 0. The tab also indicates that
those items are represented by a cyan circle for animation. After the initial 10 items, items from the
four processes are animated as circles with the same color as the arrows.

Animating queue contents
By default, the number of items in a Queue block are displayed on its icon. However, a more
detailed animation showing an animation picture for each item can be obtained by putting the
Queue inside a hierarchical block and animating the hierarchical block's icon. To add this type of
animation to a model:

Encapsulate a Queue inside a hierarchical block (right-click the Queue block and select Make
Hierarchical.)

Open the hierarchical block's structure (right-click the hierarchical block and select Open
Structure) and add a number of identically sized animation objects from the icon tools in the
toolbar.

On the Item Animation tab of the Queue block, enter the first and last animation object num-
bers in the Animate H-block objects fields.

Initializing and Viewing model

Queueing 141
Animating queue contents

D
iscrete Event
Animating Queue Contents model
This example model animates a priority queue. There are four possible priorities, as indicated by
the colored arrows on the left. Green circles represent items with a priority of 1, yellow circles indi-
cate an item has a priority of 2, and so forth.

Items with a lower number for their priority (a higher priority) will move to the front of the queue.
The animation shows this happening as new items with lower priorities will pass other items.

In this model, there are four rows and six animation objects per row on the icon of the hierarchical
block to the right of the arrows. The Item Animation tab of the Queue block inside that hierarchi-
cal block is set to Animate H-block objects: 1 to 24. This causes all 24 objects on the hierarchical
block’s icon to be animated, based on what is happening in the Queue.

For more detailed information about animating hierarchical blocks, see “Animating a hierarchical
block’s icon” on page 554.

Animating Queue Contents model

142 Queueing
Animating queue contents

D
is

cr
et

e
Ev

en
t

Discrete Event Modeling

Routing
Handling items from several sources;
sending items to multiple destinations

144 Routing
Commonly used blocks

D
is

cr
et

e
Ev

en
t
When building models, you will frequently encounter situations where you want to manipulate
items coming from several sources or send items to several possible destinations. Depending on the
purpose, there are several methods for accomplishing this. This chapter will cover:

• Items arriving from multiple sources

• Merging items from several streams into one stream

• Balancing waiting line lengths

• Using the Throw Item and Catch Item blocks

• Items going to several destinations

• Simple routing to one of several streams

• Scrap generation

• Successive, explicit, and conditional ordering of routes

• Routing based on item properties

☞ The models illustrated in this chapter are located in the folder \Examples\Discrete Event\Routing.

Commonly used blocks
The following blocks will be the main focus of this chapter. The block’s library and category
appear in parentheses after the block name.

Blocks that route items

Catch Item (Item > Routing)
Receives items sent remotely by a Throw Item block.

Select Item In (Item > Routing)
Selects an input and outputs its item.

Select Item Out (Item > Routing)
Sends each item it gets to a selected output.

Throw Item (Item > Routing)
Sends items remotely to a Catch Item block

Blocks that affect the flow of items

Decision (Value > Math)
Can be used with Item library blocks to control the flow of items in a portion of the model.

Gate (Item > Routing)
Controls the flow of items in a portion of the model (area gating) or based on model condi-
tions (conditional gating).

Routing 145
Items from several sources

D
iscrete Event
Math (Value > Math)
Performs a mathematical operation, such as addition or subtraction, that can be used with
Item library blocks to control the flow of items in a portion of the model.

Max & Min (Value > Math)
Outputs the minimum or maximum value found among its input connectors. Can be used
with Item library blocks to control the flow of items in a portion of the model.

Items from several sources
Depending on your modeling needs, you may want to merge different streams of items into one
stream of individual items, select one item from several for routing or processing, or join separate
items into a single item.

• To merge streams of items from several sources into one stream, where each item remains sepa-
rate and retains its unique identity, use the Select Item In or Throw Item and Catch Item blocks.
You then typically direct the single stream into a queue. For example, you can use this to repre-
sent traffic merging into one lane or people accessing one hallway from several offices. A Select
Item In block is used to:

• Merge streams of items in the “Merging Inputs model” on page 147.

• Direct items requiring more processing in “Cumulative processing time: time sharing” on
page 171.

• Reroute preempted items in “Preemption” on page 178.

Those models use the Select Item In block to route items. The section “Throw Item and Catch
Item blocks for merging item streams” on page 148 illustrates using a Catch Item block to merge
multiple streams of parts into one stream.

• To select an item for processing from several sources based on some decision, use the Select Item
In block. The decision can be a logical decision (choose every other item to route to the top
waiting line) or it can be based on some characteristic of the item (get the item with the highest
priority). The specifications for the decision are determined by the entries you make in the dia-
log of the Select Item In block and are modified by blocks connected to its “select” input con-
nectors. Using the Select Item In block to choose specific items is shown in “Balancing multiple
input lines” on page 147.

• To join items from various sources and process them as one unit, use a Batch block, as described
in “Batching” on page 194. This is most common when modeling manufacturing processes or
packaging operations where subassemblies are joined together. It is also used when two or more
items need to be temporarily associated with each other for processing or routing, such as a clerk
processing an order. Note that batching differs from using the Select Item In and Select Value In
blocks, which only merge streams of items so that items remain separate and are processed sepa-
rately.

☞ To merge streams of items from one hierarchical layer into one stream at a different hierarchical
layer, you can add connectors to the hierarchical block or use the Throw Item and Catch Item
blocks, at shown on page 148.

146 Routing
Items from several sources

D
is

cr
et

e
Ev

en
t
Select Item In dialog
The Select Item In block chooses an item from one of its input connectors and sends that item to
its output connector. The selection is based on settings and options in the block’s dialog.

Selection options
The Select Item In block has several rules for selecting an item from its input connectors:

• Item priority. Selects the input connector that has an available item with the highest priority
(the lowest numerical value for its priority.) For example, you could use this option to select
from a group of queues to a single activity. The queue with the item that has the highest priority
will be selected. This option always starts and restarts its selection search at the top input.

• Random. The inputs are selected randomly based on probabilities entered in the block’s selec-
tion table. Enter probabilities in decimal format. For example, enter 0.75 for 75%. If the
entered numbers do not equal 1.00, the actual sum will appear in red in the bar below the Prob-
ability column. If Select from: all inputs is chosen, an input will be randomly selected whether
or not an item is available at that input. This situation can potentially cause starving, as dis-
cussed below. If Select from: only inputs with available items is chosen, the block will only
select from inputs with available items.

• Select connector. The value received at the select connector determines which input is chosen.
The block’s dialog has an option for setting which value chooses the top input; the default is 0.
The lower connectors will be numbered sequentially after the top connector. That is, if the top
input is chosen by a select value of 1, the second input will be numbered 2, the next lower input
would be numbered 3, and so forth. In that case, a value of 3 at select would cause the item from
the third connector from the top to be selected. Note that, even if items are available at the other
inputs, the block will wait for an item at input 3, potentially causing starving as discussed below.

☞ See “Item library blocks” on page 255 for some precautions when using this option with a Get
block.

• Sequential. Selects the inputs in strict sequential order starting at the top; this is also known as a
“round robin” selection. This option could cause starving (discussed below), since the block will
wait for an item to become available at each selected input.

• Merge. Items are taken as they become available through any input. Generally, this option is
used to combine the flows of items where there is no blocking of items arriving at the Select
Item In block. Inputs are selected in a “round robin” fashion starting from the top; once a selec-
tion has been made the selection search will resume at the next lower input.

Starving conditions
If an item is not available from the selected input of a Select Item In block, the following options
will cause a starving condition:

• Random (if Select from: all inputs is chosen)

• Select

• Sequential

Merging several item flows into one stream
The Select Item In block can combine the inputs from any number of sources into one stream of
output items.

Routing 147
Items from several sources

D
iscrete Event
Merging Inputs model
In the Merging Inputs example model, the Select Item In block will accept items from any of the
three inputs. Its dialog is set to Select input based on: merge. If the Select Item In’s output is
blocked, the block will force items to wait in the Queues (labeled Buffers 1-3). When the Select
Item In becomes unblocked, it will check each input in turn to try to pull an item through for pro-
cessing by the Activity. As you can see in the table that has been cloned from the Select Item In
block, when it is ready to process items, the Activity gets whichever item is available. This can
cause some queues to have longer waiting lines than others, as you can tell from their Results tabs.

Balancing multiple input lines
To even out the queue lengths of multiple input lines, use a Select Item In block controlled by a
Max & Min block (Value library), which checks the length of each queue. An example of this
would be three loading docks that fill up as trucks unload, and you want items to come first from
the dock that is most full.

Input Line Balancing model
The Input Line Balancing model is the same as the Merging Inputs model, except a Max & Min
block looks at the length for each of the queues and sends that information to the Select Item In
block.

On the Max & Min block, the con output connector tells which of the inputs has the largest value,
in this case it indicates the longest queue. This tells the Select Item In block which queue to

Merging Inputs model

Input Line Balancing model

148 Routing
Items from several sources

D
is

cr
et

e
Ev

en
t
retrieve the next item from. In the dialog of the Select Item In block, Select input based on: select
connector and Top input is chosen by Select value: 1 have been selected. As you can see from the
cloned Throughput table, items are drawn in a balanced manner from each line, and the queue
lengths are almost equal, as opposed to what happened in the Merging Inputs model, earlier.

Throw Item and Catch Item blocks for merging item streams
The previous examples discussed routing items using connections to blocks that are nearby and at
the same level of hierarchy. Sometimes, especially in large models, it is necessary to send an item to
a different hierarchical layer. The Throw Item and Catch Item blocks are especially useful when
there are items from various locations in a model (even from various hierarchical levels) that need
to be sent to one place. Note that these blocks are used as an adjunct to routing, not a replacement
for the methods described previously.

Throw Item and Catch Item blocks pass items without connections and can even be used deep
within nested hierarchical blocks to send items to other hierarchical blocks. For that reason, they
are sometimes used instead of the Select Item In and Select Item Out blocks.

☞ Throw and Catch blocks should only be used when named connections will not be sufficient. For
instance, to pass items through different levels of hierarchy or to use the routing features on the
Throw and Catch blocks.

Throw & Catch model
The Throw Item and Catch Item blocks can also be used to merge several item flows into one
stream. In the following example, three Throw Item blocks route items to Shipping, which is a
hierarchical block containing two blocks, a Catch Item and an Exit. The Catch Item block is
labeled To Shipping and is designated as belonging to Catch group 1.

A popup menu in the Throw Item
block’s dialog displays the labels of
the possible Catch Item blocks. You
have the option of routing all items
to the Catch Item block specified in
the popup menu (as shown to the right) or routing items to different Catch Item blocks depending

Throw & Catch model

Selecting Catch Item block labeled “To Shipping”

Routing 149
Items going to several paths

D
iscrete Event
on the value of a specified attribute or priority (see “Throw and Catch Attributes model” on
page 156).

☞ You must enter text in the label field at the lower left corner of each Catch Item block’s dialog.
Only labeled Catch Item blocks will appear in a Throw Item block’s popup menu.

Catch Item groups
If you are working with a large number
of Catch Item blocks, you may want to
organize them into groups. To do this,
select or create a group name using the
Catch Item group popup menu in the
Catch Item block, shown at right. Then use the Catch Item group popup menu in a Throw Item
block to select the desired group. Once a group is selected in the Throw Item block, the block’s
Specify Catch Item by: Label popup menu will only contain the labels for the Catch Item blocks
in the selected group.

☞ Groups can only be defined in a Catch Item block.

Items going to several paths
In many cases, you will need to route items from one stream to one of many different streams:

• Taking a stream of items and routing them to different activities or operations is called parallel
processing. In parallel processing, each item is handed off to one of several activities, such as an
Activity block. The logic that determines which operation the item is routed to can be simple
(the part is machined at the first available station) or it can be complex (bottle type A is filled at
Machine 3). Different methods of routing items to parallel processes are described in detail
throughout this chapter. See also “Processing in parallel” on page 166.

• For situations where one item is unbatched or separated into its component items, use the
Unbatch blocks. For example, you might receive a shipment of furniture consisting of 8 desks,
20 chairs, and 7 typewriter returns, or a mail cart with 1000 pieces of mail. You use an Unbatch
block to disassemble that item into its individual components, then route the items to appropri-
ate destinations, as described in “Unbatching” on page 201.

• To select the path an item should go on, use the Select Item Out or Throw Item blocks. The
Select Item Out block is useful for routing a stream of items to several paths based on some deci-
sion. For instance, you can send all the parts that need rework to a rework station, and ship the
remaining parts. Or direct patients requiring immunizations to the Injection Clinic. The use of
these blocks is described in “Sequential ordering” on page 154, “Explicit ordering” on page 155,
“Routing decisions based on properties” on page 155, and “Select Item Out dialog” below.

Select Item Out dialog
The Select Item Out block is appropriate for routing items onto one path or another. Its dialog
contains several options for determining which route an item should take.

Selection options
The logic in the dialog of the Select Item Out block chooses which output connector an input
item should be routed to. The selection options are:

Catch Item group popup menu

150 Routing
Items going to several paths

D
is

cr
et

e
Ev

en
t
• Property. The appropriate output is determined using the item’s property–its attribute or prior-
ity. Values to represent the outputs are entered in the table’s Select Output column; the default is
that 0 selects the top output. For each item, the block finds the value of the specified property in
the table’s second column (which is named for that property), and determines the corresponding
output connector for that value in the Select Output column. Since the block will hold the item
until there is downstream capacity, this option can cause blocking.

• Connector priority. An attempt is made to send the item out each connector, in the order of the
connector’s priority, until the item is accepted by a connected block. The priority for each con-
nector is entered in a table in the block’s dialog. The top priority is the lowest number, such that
an output with a priority value of 1 has a higher priority than an output with a priority value of
3.

☞ Note that this is different from assigning a priority to an item and selecting the output based on the
item’s priority, as can be done with the block’s Property option. With the Connector priority
option, the Select Item Out block essentially prioritizes the output path, not the item.

• Random. Outputs are selected randomly based on settings in the block’s probability table. Enter
probabilities in decimal format. For example, enter 0.75 for 75%. If the entered numbers do not
equal 1.00, the actual sum will appear in red in the bar below the Probability column. When the
option If output is blocked: item will try unblocked outputs is chosen, the block will randomly
try to find an output that can accept the item. When If output is blocked: item will wait for
blocked output is used, the block will select an output and the item will wait until that output is
able to accept the item; this can cause blocking.

• Select connector. The value received at the select connector determines which output is chosen.
The block’s dialog has an option for setting which value chooses the top output; the default is 0.
The lower connectors will be numbered sequentially after the top connector. That is, if the top
output is chosen by a select value of 1, the second output will be numbered 2, the next lower
one would be numbered 3, and so forth. In that case, a value of 3 at select would cause the item
to go to the third connector from the top. Since the block will hold the item until there is capac-
ity downstream from connector 3, this option can cause blocking.

☞ See “Item library blocks” on page 255 for some precautions when using this option with a Get
block.

• Sequential. Outputs are selected one after the other in sequential order starting from the top;
this is also known as a “round robin” selection. When the option If output is blocked: item will
try unblocked outputs is chosen, the block will try the next connectors sequentially. When If
output is blocked: item will wait for blocked output is used, the block will select an output and
the item will wait until that output is able to accept the item; this can cause blocking.

☞ The Select Item Out block expects integer values for comparison and will truncate non-integer val-
ues. For example, if select connector is chosen as the selection condition, the numbers 0.001 and
0.999 received at the SelectIn input would both be truncated to a 0.

Blocking conditions
The Select Item Out block is a decision-type of block; its default is to pull in the item and then
determine the path that the item will take. In some situations, the selected output path may be
blocked and the selected item will have to wait to leave. Some selection conditions can cause the
items behind a selected item to be blocked:

Routing 151
Items going to several paths

D
iscrete Event
• Property

• Random (when If output is blocked: item will wait for unblocked output is chosen)

• Select

• Sequential (when If output is blocked: item will wait for unblocked output is chosen)

For the random and sequential selection conditions, the ability to choose what happens if the out-
put is blocked is useful for certain modeling problems. For instance, in the Simple Routing model
shown below, if the top Queue block is designated to get the item, but it is blocked, the Select Item
Out block will route the item to an unblocked Queue.

Predicting the path of the item before it enters the block
As mentioned above, an item can be pulled into a Select Item Out block but not be able to proceed
because the downstream path is blocked. An alternative to this situation is to cause the item to wait
in an upstream queue, rather than in the Select Item Out block. This is accomplished by checking
Predict the path of the item before it enters this block. When this is enabled, the Select Item Out
block will query upstream to determine the properties of the next item to arrive. It then checks to
see if the appropriate downstream path is clear. Only if the item can be sent out the desired output
will the item be pulled in. This guarantees that the item will not get “stuck” in the Select Item Out
block.

☞ This setting requires that any properties used to make the selection have to be set before the item
begins to move into the Select Item Out block. For example, a Queue is necessary between a Set
block and a Select Item Out block.

Implicit routing
The simplest, but not necessarily the best, way to route items is by creating connections between
the output of the collection point and the inputs of each activity-type block. This causes
ExtendSim to pass items to the first available activity.

However, if more than one activity-type block is free when an item is ready, it is not obvious which
block will get the item. For instance, a Queue that holds items for three Activity blocks would look
like the model below.

If two or more machines are free when an item comes out of the queue, the machine that was first
connected will get the item. With these types of simple parallel connections, even just disconnect-
ing and then reconnecting a connection line could change the order of activities getting items.
This implied routing may not be reflective of the actual system and is usually not want you would
want.

Simple Connections model

152 Routing
Items going to several paths

D
is

cr
et

e
Ev

en
t
 Unless it is completely unimportant in the model, you should always use the Select Item In and
Select Item Out blocks to explicitly state how items should be routed.Otherwise, the order in
which their connections were made will dictate the routing.

Simple routing
It is most common to route a random number of items to one section of the model, while the rest
are routed to another. An example of this is an intersection where a number of cars will turn to the
left, some will go straight, and some will turn right.

Simple Routing model
In this model, items are routed randomly to one of three machines, as indicated by the setting
Select output based on: random. The probability table in the dialog of the Select Item Out block
indicates that 0.50 (50%) of the items will go to the top Queue while the remainder will be dis-
tributed equally between the remaining two Queues.

Notice that there are queues in front of the machines. If you omitted the queues, there is a possibil-
ity that items arriving from the Create block could be blocked. For example, if the second item
were destined for the top machine, but that machine was still processing the first item, the other
machines would have to wait for items until the top machine finished processing and pulled in its
item.

☞ The previous model routed items based on probabilities. To distribute an input item to any avail-
able output, in the Select Item Out dialog choose Select output based on: sequential and If
output is blocked: item will try unblocked outputs.

Simple Routing One Queue model
A model similar to Simple Routing would be if there were only one queue and it was placed before
the Select Item Out block. As mentioned above, however, if two sequential items are destined for
the same activity they will block items that arrive behind them. The option If output is blocked:

Simple Routing model

Routing 153
Items going to several paths

D
iscrete Event
item will try unblocked outputs allows the Select Item Out block to try other outputs if the first
choice is unable to accept the item.

As seen in the model, even though 50% of the items should be going to the top machine, item dis-
tribution is almost even. Because all the machines process items for the same amount of time, the
top machine is often busy and, rather than cause the system to be blocked, its intended item is
routed to a different machine.

Scrap generation
An important aspect of some systems is modeling the generation of scrap or simulating a yield rate.
For instance, many manufacturing processes create an expected but irregular quantity of waste or
bad items. This can be accomplished in ExtendSim by randomly routing some items out of the
normal processing stream.

Scrap Generation model
This example is similar to the model that is described in “Simple unbatching” on page 202, except
it has a Select Item Out block that determines whether items coming from the Unbatch block
should continue for processing or be discarded, and the Activity block processes two items at a
time. The Select Item Out block is set to Select output based on: random. By setting a probability

Simple Routing One Queue model

154 Routing
Items going to several paths

D
is

cr
et

e
Ev

en
t
that 0.90 of the items will exit through the top connector and 0.10 through the bottom (scrap)
connector, the Select Item Out block causes one out of every ten items to become scrap.

As an alternative, you can also set and check attributes to represent items that need to be scrapped.
This will be shown later in this chapter.

Sequential ordering
To hand items to operations in successive order regardless of whether another operation is free, use
the Select Item Out block set to Select output based on: sequential.

Sequential Ordering model
With the sequential setting, the Select Item Out block will choose outputs in successive order start-
ing from the top output. The block’s dialog is set to If output is blocked: item will wait for
blocked output.

The first two activities are set to process for 1 time unit while the third activity takes only 0.5 time
units. For this model, even if the third activity is the first one ready to accept an item, it will only
get an item after the first and second activities have pulled in an item. Also note that an item is
only pulled from the Queue block when an activity has finished processing, potentially causing
blocking in the system. The example “Balancing multiple output lines” on page 158 shows a solu-
tion for this.

☞ To distribute an input item to any available output, choose Select output based on: sequential
and set the block to If output is blocked: item will try unblocked outputs.

Scrap Generation model

Sequential Ordering model

Routing 155
Items going to several paths

D
iscrete Event
Explicit ordering
If there are several operations, and you prefer certain ones to be active more than others, you can
explicitly state which operations have a higher priority for items. This is common when you want
to avoid using an operation because it is not as efficient (such as an older piece of equipment) or
because it is an uneconomical use of a resource (having a supervisor wait on customers.)

Choosing the selection condition connector priority in its dialog allows the Select Item Out block
to be used to specify the priority of each output.

☞ Note that this is different from assigning a priority to an item, since the Select Item Out block
essentially prioritizes the output path, not the item.

Explicit Ordering model
For example, assume you want Machines 1 and 3 to get most of the items for processing, and
Machine 2 to only get items if Machine 1 and 3 are busy. The model is:

The dialog of the Select Item Out block is set to Select output based on: connector priority. In the
table, the highest priorities (which are the lowest numbers) are assigned to the top and bottom out-
puts, and the next lowest priority is assigned to the middle output. In this case, Activity 1 has first
priority on items. If Activity 1 is busy, Activity 3 will get the item. Only if Activity 1 and 3 are busy
will Activity 2 get the item.

☞ As seen in this model, multiple outputs can have the same priority. However, the item will go to
the topmost output that has the highest priority and is free. If that output is not free, the next
lower output with the same priority will be checked to see if it is free, and so forth. If this is not
what you want, set the priority values explicitly. For instance, you could set the output priorities to
1, 2, and 3 rather than to 1, 2, and 1 as was done in the example model.

Routing decisions based on properties
You may want to route items based on some characteristic of the item, such as its priority, size,
quality, age, or state. To do this, assign an attribute or priority to the item and read that property
value to route the item.

Explicit Ordering model

156 Routing
Items going to several paths

D
is

cr
et

e
Ev

en
t
Attributes for Routing model
To specify whether or not an item must have a process performed on it, set an item’s attribute to a
yes-or-no value using the Random Number block (Value library) as shown in the Attributes for
Routing model, below:

The Empirical distribution in the Random Number block specifies that 75% of the items do not
require checking (0 value for the CheckItem attribute) and 25% do (1 for attribute value). The
Select Item Out block, set to Select output based on: property, reads the attribute value to deter-
mine which of two routes the item will take, one through the checking line (value = 1) and the
other around it (value = 0). The Select Item In block is used to combine both lines into one
stream, exiting the simulation.

This method is especially useful if the checking process takes more than one step. For instance, you
may need to transport the item to the checking station using transportation blocks, but only if
checking is needed. All those steps would be between the Select Item Out block and the Select
Item In block.

With this model, an item that needs to be checked can be pulled into the Select Item Out block
but not be able to advance because there is already an item in the Activity. To prevent this, you can
cause the block to predict the path of an item before it enters, as discussed page 151.

☞ An item that requires checking that is blocked in the Select Item Out block will also block other
items that arrive after it, even if they do not need to be checked. If this is not how your process
works, insert a Queue before the Activity to hold items that need checking.

The example “Machines that can only process certain types of items” on page 161 is another
instance of using attributes to route items. For a very different approach, the DB Job Shop model
located in the folder Examples\Discrete Event\Routing uses information from the ExtendSim
database to route items.

Throw and Catch Attributes model
As described in “Throw Item and Catch Item blocks for merging item streams” on page 148, the
Throw Item block can be used to route items to a specific Catch Item block that is identified by its
label. Throw Item blocks can also be used to route items to different Catch Item blocks depending
on the value of an item’s attribute or priority. A modification of the Attributes for Routing exam-

Attributes for Routing model

Routing 157
Items going to several paths

D
iscrete Event
ple, built using Throw Item and Catch Item blocks rather than the Select Item Out block, is
shown below.

In this example, The Throw Item block is set to Specify Catch block by: Property: Machine Type,
where Machine Type is a value attribute. The Throw Item block reads the Machine Type attribute
and routes the items to the appropriate Catch Item block according to the table in the throwing
block’s dialog, which is cloned onto the model worksheet.

To cause an attribute or priority value to be associated with a specific Catch Item block, type the
value into the “Property Value” column and select the appropriate Catch Item block using the
popup menu in the “[Catch Block]” column.

State Action model
Another routing example is the State Action model where items are routed to operations depend-
ing on their state. For complete information, see “State/Action models” on page 49.

Conditional routing
Sometimes you will want to route items based on the current conditions of the model. For exam-
ple, monitoring queue lengths to determine whether or not an activity will be brought on-line or
balancing the use of parallel waiting lines.

Bringing a system on-line
Most of the examples in this manual show items being passed to operations where all the opera-
tions are on-line and running. In many situations, particular operations are only started when they
are needed. You can bring another system on-line based on the time of day (such as in “Scheduling
activities” on page 173) or based on some other factor such as the backlog of work.

Throw & Catch Attributes model

158 Routing
Items going to several paths

D
is

cr
et

e
Ev

en
t
Conditional Routing model
For example, you might have a
factory where most of the pro-
cessing is done by two machines
but excess work is handled by a
third machine. ExtendSim can
simulate this easily using the
Decision block (Value library)
and the Activity block (Item
library).

The L output of a queue that is
feeding one or more machines
outputs the number of items
waiting to be processed. If this
value is greater than a certain
threshold, you can route some of the items to another machine or activate another process.

In the model, the dialog of the Decision block specifies that the Y connector outputs a true value
(1) when the value at the A input is greater than 5. This activates the Gate block’s demand connec-
tor so that it lets items through to the third machine (until then, it will not accept items). When
the Queue holds 5 or fewer items, the Gate closes.

You can also model this situation in the opposite manner, by having all the operation blocks pro-
cess items and then shut one or more of them down under certain conditions. If you do this, items
may be trapped in the shutdown operation until processing resumes.

When you bring a system on line, it may cycle on and off too frequently. See “Bringing an activity
on-line” on page 173 for some methods for avoiding this.

Balancing multiple output lines
Operations are often preceded by queues before each operation, such as a staging area for each
machine (as compared to the single staging area for all machines as in the “Explicit Ordering
model” on page 155.) The location and ordering of placement of queues in a model can affect how
the model performs.

Conditional Routing model

Routing 159
Items going to several paths

D
iscrete Event
Buffering Operations model
A model with queues before each operation could look like:

In the model, the queues have a maximum queue length of 30 each. The first queue that was con-
nected will receive all the items until that queue reaches its maximum, then the next queue will
start to fill (unless the first machine kept up with the flow of items, in which case the next queue
will never receive any items). In the Buffering Operations model, for example, most of the items
go to the top queue and get processed by Machine 1 and none of the items go to the bottom queue
to be processed by Machine 3. This is rarely what you want.

To even out the use of the machines, use a Select Item Out block set to select machines sequen-
tially, as shown in the “Sequential Ordering model” on page 154, and place a queue before each
machine. Note however, that if the machines work at different speeds, this will cause the queue of
the slowest machine to fill more rapidly than the other queues.

☞ A green bar across its top indicates that a Queue is set to something other than infinite capacity.
For instance, the Queues in this model are set to hold a maximum of 30 items and therefore have
green bars across their tops.

Output Line Balancing model
A better method than the Buffering Operations example would be to check the length of the wait-
ing line in each queue and give the next item to the queue that is shortest, causing the queue lines

Buffering Operations model: Parallel processing with buffering

160 Routing
Items going to several paths

D
is

cr
et

e
Ev

en
t
to be balanced. The Max & Min block (Value library) connected to a Select Item Out block is
excellent for this.

In the model, the Max & Min block tells the Select Item Out block which queue line is shortest
and thus which queue to hand the next item to. The Min & Max block is set to Output the: min-
imum value and Top input connector # is: 1. With these settings the block’s top input (L1) is
number 1 and the con output reports which of the inputs (L1, L2, or L3) has the lowest value,
indicating the shortest queue. The dialog of the Select Item Out block is set to Select output based
on: select connector and Top output is selected by select value: 1.

Compared to the Buffering Operations model shown earlier, in this model the number of items in
the queues tend to be more balanced. However, the system is not as efficient as it could be since an
item often goes to the queue for Machine 1 even though Machine 3 is idle. This happens because
if all the queue lengths are equal, the Max & Min block will report the first connector as having
the shortest queue length. In this case, Queue 1 has first priority for items and the Max & Min
block is just looking at the queue lengths and is not considering whether or not the Activity is
occupied.

Line Balance with Activities model
The previous model showed how to balance the queues. A more useful model would be to include
information about the items being processed when selecting the shortest queue. You can do this by
adding the value of an Activity’s F (full) connector to the queue length. The full connector is 1
when the activity is at capacity and 0 otherwise. The resulting model, Line Balance with Activities,

Output Line Balancing model: Choosing the shortest queue

Routing 161
Items going to several paths

D
iscrete Event
prevents items from going to a queue followed by an occupied activity when other activities are
idle.

As in the previous model, the queue lines tend to be more balanced than the Buffering Operations
model; but this method makes more efficient use of the Machines.

☞ Yet another option would be to use a Workstation block to replace the Queue and Activity blocks.
The Workstation can report all of the items in its internal queue and activity through its Length
connector.

Machines that can only process certain types of items
A typical assembly line can handle more than one type of item at a time. For example, you may
have three stereo models being assembled on a single line. Most of the assembly is identical, but a
few different parts are used at different points. Unfortunately, some machines in such a heteroge-
neous assembly line cannot work on particular models being assembled. The method for accom-
plishing this is a combination of splitting items into different paths to establish the different
“types” of items, then recombining the paths appropriately for the different machines. The Select
Item Out block and the Select Item In block are handy in such situations.

Processing by Type model
Assume there is an assembly line where each item has an attribute called Type that is either 1, 2, or
3, depending on the type of item it will be. At one step of the assembly process, there are four
machines. Two of the machines can work on all three types, but one of the machines is old and can

Line Balance with Activities model

162 Routing
Items going to several paths

D
is

cr
et

e
Ev

en
t
only work on types 1 and 2, and the other machine can only work on type 3. The model is shown
below:

A Set block assigns a Type attribute to each item. The empirical table in the Random Number
block (Value library) indicates that there is a 50% probability that the item will be Type 2, and
25% probability that it will be either Type 1 or 3.

The Select Item Out block is set to Select
output based on: property. It looks up
the value of the Type attribute (1, 2, or 3)
and selects the appropriate output (1, 2,
or 3) based on entries in the block’s
options table, shown at right.

Notice the use of the queues as buffers in the above model. They are used to store the items by
type, with the top queue for Type 1, etc. Without the queues, the whole line could be blocked,
depending on the order in which items arrive. For example, if the first three machines are all pro-
cessing a Type 1 item, and a Type 1 item is the next to exit the Select Item Out block, blocking
occurs until one of the machines is finished with its item. The fourth machine will not be able to
pull in an item until one of the other machines finishes processing and pulls in the new Type 1
item. Even then, it will have to wait until a Type 3 item is output before it can process anything.

☞ Named connections are used to simplify the look of this model. Without these, there would be a
spaghetti of connection lines connecting the Queue blocks to the Select Item In blocks. Another
option for organizing the model would be to use Throw Item and Catch Item blocks to route the
items to the appropriate machines.

Processing by Type model

Options table in Select Item Out block

Discrete Event Modeling

Processing
Using activity-type blocks to cause and control processing

164 Processing
Commonly used blocks

D
is

cr
et

e
Ev

en
t
This chapter will discuss different ways to use activity-type blocks and how to control processing
time and the availability of items and resources. It will cover:

• Processing in series and in parallel

• Setting the processing time

• Bringing an activity on-line

• Interrupting processes: preemption and shutdowns

• Multitasking

• Kanban systems

• Material handling and transportation blocks

☞ The models discussed in this chapter can be found in the folder Examples\ Discrete Event\Process-
ing. That folder also contains some subfolders, as indicated in the relevant sections of this chapter.

Commonly used blocks
The following blocks will be the main focus of this chapter. The block’s library and category
appear in parentheses after the block name.

Activity (Item > Activities)
Processes one or more items simultaneously; outputs each item as soon as it is finished. Can
also be used for multitasking.

Convey Item (Item > Activities)
Moves items on a conveyor from one block to another. Has dialog settings to define
whether the conveyor is accumulating or not, what the length of the item is, and how far
and how fast the item moves.

Create (Item > Routing)
Creates items or values randomly or by scheduled. Can be used to control shutdowns for
the Activity block.

Shutdown (Item > Resources)
Used to control shutdowns for an Activity (Item library) or Valve (Rate library). Useful for
setting random or constant time-between-failures (TBF) and/or time-to-repair (TTR).

Transport (Item > Activities)
Moves items from one block to another. Has dialog settings for defining how fast and how
far the item moves.

Workstation (Item > Activities)
Acts as a FIFO queue combined with an Activity block, holding and processing items.
Takes in one or more items at a time, holds them in FIFO order, processes them simulta-
neously, then outputs each item as soon as it is finished.

Systems and processes
Systems encompass one or more processes, which are a series of activities that achieve an outcome
based on the inputs. Some examples of processes, the events that might drive them, and the items
that flow through or are consumed by the process are:

Processing 165
Processing in series

D
iscrete Event
☞ The following discussions most often refer to the Activity block for processing. However, the
Workstation block can often be used instead of a Queue and an Activity, and the Convey Item and
Transport blocks are also useful for simulating processing.

Processing in series
Serial processing occurs when items flow from one activity to another, where each activity per-
forms one required task on the item, out of a series of required tasks. This is most common in
manufacturing activities, order entry, or service-intensive situations. A simple example of serial

Process Event Item(s) Activity

Planning strategic direc-
tions

Plan implementation Decisions Planning meetings

Developing a new prod-
uct

Employee has a new
product idea

A prototype Document the specifi-
cations

Manufacturing a prod-
uct

Receipt of raw materials Parts, labor Assemble the parts

Sales fulfillment Customer orders goods An order, or the goods
themselves

Process the order, ship
the goods

Call center support Customer calls on tele-
phone

Telephone call Route call to technical
support

Processing an insurance
claim

Claim is received (or
accident occurs)

Claim Review the claim

Emergency room
admitting

Accident Patients, medical per-
sonnel

Assess incoming
patients (triage)

Regulating traffic Traffic light changes Cars, pedestrians Cross the street

Computer network Packet is transmitted Packet of data Communication

Material handling Arrival of AGV Parts, AGVs Load part onto AGV

Hiring employees Company wins contract Employees Interview potential can-
didates

Completing an expense
report

Employee finishes trip Report Prepare and file report

Writing a contract pro-
posal

Request for proposal is
issued

Proposal Research the require-
ments

Approving a loan Customer submits
application

Application Review credit history

166 Processing
Processing in parallel

D
is

cr
et

e
Ev

en
t
processing is an assembly line, where several processes are performed on one part prior to ship-
ment.

Since there are many machines in series without buffering queues between them, it is possible that
items will be not be able to leave one machine because the next machine will still be busy; this is
known as blocking (as discussed in “Blocking” on page 131. Serial processes can cause the entire
operation to be slowed to the speed of the slowest activity. This will cause utilization to increase by
the amount of time that the item is blocked. If this doesn’t accurately represent your process, put a
queue in front of each machine to represent a holding area, as shown in “Select Item Out dialog”
on page 149.

Processing in parallel
It is common in industrial and commercial systems for there to be multiple activities working in
parallel, each representing the same task being performed. For example, you might have five
machines that can each process parts arriving from the stockroom. Or three bank tellers who are
available to wait on customers. With the blocks in the Item library, there are many ways to route
items to parallel activities.

Remember that, unless items are purposefully duplicated in the model, they can only follow one
path at a time.

Parallel processing using one block
When you do not need to show each activity as a separate block, you can choose that the Activity
block represent several operations that occur in parallel. This is accomplished by entering a num-
ber greater than one for the Maximum items in activity field in the block’s Process tab.

The Activity block can take in items (up to the specified maximum) and process them for a speci-
fied time starting from when they arrive. The item with the shortest time in the block (based on
the item’s arrival time and how long it takes to process) is passed out first. For example, you could
use the Activity block to represent a supermarket where customers arrive at different times and take
varying amounts of time to shop. Customers who arrive early or who only shop a little will leave
first; customers who arrive later or shop a long time will leave later.

Simple parallel connections
You can also use multiple Activity blocks in a model, each of which represents a process that can
accept items in parallel with the other Activity blocks. The simplest way to hand out items to sep-
arate parallel activities is by creating connections between the output of the collection point and
the inputs of each Activity. This causes ExtendSim to pass items to the first available Activity
block. However, if more than one block is free when an item is ready, it is not obvious which block

Serial Processing model

Processing 167
Setting the processing time

D
iscrete Event
will get the item. For instance, a Queue that holds items for three Activity blocks would look like
the model below.

☞ If two machines are free when an item comes out of the queue, the machine that was first con-
nected will get the item. With simple parallel connections, even just disconnecting and then recon-
necting a connection could change the order of activities getting items.

 Unless it is completely unimportant in the model, you should always explicitly state the ordering
for parallel activities using the Select Item In and Select Item Out blocks. See “Items going to sev-
eral paths” on page 149 for examples of how to control the flow of items to parallel processes.

Setting the processing time
Activities involve a processing time or delay that is the amount of time it takes to perform a task.
Processing time can be static or can vary dynamically depending on model conditions. It can be
random, scheduled based on the time of day, customized depending on the item that is being pro-
cessed, or any combination of these.

You model the processing or delay time explicitly using the Activity or Workstation blocks or
implicitly by specifying the length and speed in the Transport or Convey Item blocks. The Activity
block is most frequently used to represent a process or operation, and is illustrated in most of the
examples for this module

☞ The models discussed in this section can be found in the Examples\Discrete Event\Process-
ing\Time folder.

Processing time for an Activity
In the Process tab of the Activity block you can select that the delay is:

• A constant. This uses whichever number is entered in the Delay (D) field. See also the discus-
sion of “Fixed processing time” on page 168.

• From the D connector. The processing time is the value at the D input, overriding any value ini-
tially entered in the Delay (D) field. For example, see “Fixed processing time” on page 168 and
“Scheduled processing time” on page 168.

• An item’s attribute value. With this option, you can select an attribute to control the processing
time. This is illustrated in “Custom processing time” on page 170.

• Specified by a distribution. This choice provides a random processing time, based on the distri-
bution and its arguments selected in the dialog. An example of this is shown in “Random pro-
cessing time” on page 169.

Simple Connections model

168 Processing
Setting the processing time

D
is

cr
et

e
Ev

en
t
• From a lookup table. This choice allows you to use an attribute value to specify the parameters
of a random distribution. With this option, two popup menus and a table appear. The first
popup is for choosing a distribution; the second is for selecting an attribute. The table is where
the processing time for each type of item is characterized. with each row containing a different
set of arguments for the selected distribution. As each item enters the block, its attribute value
identifies which row in the table the item is associated with, and thus what its processing time is
based on. This option is illustrated in the “Simulate Multitasking Activity model” on page 184.

Processing time for other activity blocks
The Workstation block works much like a Queue combined with an Activity block. It has most of
the same options (shown above) for setting the processing time as the Activity. (Because of its
internal queue, the Workstation does not have a D input connector.) The Convey Item and Trans-
port blocks calculate an implicit processing time based on the settings for speed and length entered
in their dialogs. They are discussed in “Transportation and material handling” on page 185.

Fixed processing time
Set the delay in the Activity dialog if the delay doesn’t change and you know how long it is. For
example, if Machine A always takes 5 minutes to process parts, enter the value 5 as the processing
time in the Activity’s dialog. This is most common in the early stages of model building when you
use constant parameters to get repeatable results.

Another method for having a fixed or constant processing time is to con-
nect to the D input of the Activity block. For instance, you can connect
from a Constant block (Value library) or a Slider control, as shown at
right. If you use the Slider, you can manipulate it with each simulation
run, or within a simulation run, to see the effect of various processing
times.

Connecting to the Activity’s D connector overrides any manual entry in
the Delay (D) field.

Scheduled processing time
If a process takes a specific amount of time under most conditions, but
takes another amount of time if the conditions are different, you can schedule the processing time.
This is common when simulating worker performance, where output could be a factor of time.

Slider control used to
set Activity’s processing
time

Processing 169
Setting the processing time

D
iscrete Event
Scheduled Time model
For example, assume that a worker normally takes 5 minutes to perform a task, but takes 5.25
minutes to do the task after doing it for 6 hours. To do this, connect a Lookup Table block (Value
library) to the D input of the Activity block as shown in the following model.

The Lookup Table block is set to Lookup the: time. Data that represents the worker’s day is
entered in the Hours column; the time to perform the task is entered in the Task Time column. As
indicated in the Lookup Table’s dialog, a portion of which is cloned onto the model worksheet, the
time to perform the task changes at hour 6.

Lookup Table block’s time units
Notice that the time unit for the Hours column in the Lookup Table’s dialog is hours and that the
time the worker takes to perform the task (Task Time column) is in minutes. The time units for
the model are hours, so the first column must be in hours. However, since the output of the
Lookup Table block is connected to the D connector of the Activity block, the Task Time column
should be defined in the same time units (minutes) that are used for the Activity’s Delay parameter.
For this model, at a particular hour of the day (Hour column) an activity will take a specified num-
ber of minutes to perform the task (Task Time column). Time unit consistency is discussed in
“Choosing time units for the columns” on page 113.

Random processing time
A common requirement for activities is to set a random processing or delay time. This is easily
accomplished by selecting a distribution in an Activity block.

Random Activity model
In the dialog of the Activity block, select the appropriate distribution, for example Normal, and
specify the value of the parameters, such as a mean of 2 and a standard deviation of 0.2. The pro-

Scheduled Time model

170 Processing
Setting the processing time

D
is

cr
et

e
Ev

en
t
cessing time will then be normally distributed and the Activity block will process each item for
approximately 2 time units.

For more information, see “Constant values and random variables” on page 57, “Random num-
bers” on page 604, and “Probability distributions” on page 606.

Custom processing time
Attributes can be used to specify how long a specific item will be processed. This is a very powerful
feature since the Activity block can recognize each item’s processing time and behave accordingly.

Custom Time model
In the simplest case, set an item’s attribute value to the desired amount of processing time, then use
the Activity block to read the attribute value and process the item for that period of time.

The Custom Time model uses the Set block to set
the value of an attribute called CheckTime to the
amount of time it takes to check the item. Items
that need a final check have a CheckTime attribute
value of 5, for instance, and items that ship
unchecked have an attribute value of 0. That value
(0 or 5) is provided by the Random Number block
(Value library) using an Empirical distribution
where 25% of the items have a value of 0 and 75%
have a value of 5.

All items then go through the checking step, easily represented by an Activity block. In its dialog,
this block indicates that the Delay is: an item’s attribute value and the attribute is CheckTime.

☞ Although items with a CheckTime value of 0 will not be processed by the Activity block, they may
be delayed in the Queue (which is set to FIFO order) while a preceding item undergoes checking.

Random Activity model

Custom Time model

Custom processing time

Processing 171
Setting the processing time

D
iscrete Event
Implied processing time
Some ExtendSim blocks allow you to specify distance, speed, or other factors that indirectly result
in a processing time. For example, the Convey Item block allows you to enter an item length and
the length (in feet or meters) and speed (in feet or meters per time unit) for an accumulating or
non-accumulating conveyor.

These settings in Convey Item and Transport blocks result in delay times for items. For example, if
you set the Transport to be 10 feet long with a speed of 1 foot per time unit, it will take 10 time
units for an item to travel to the next block.

For more information about using the Convey Item and Transport blocks, see “Transportation and
material handling” on page 185.

☞ If the Metric distance units preference is selected in the Edit > Options dialog, length units in
these blocks are set by default to meters. Otherwise, their length units are in feet.

Cumulative processing time: time sharing
The prior section discussed setting an item’s attribute to the time required by a specific activity.
You can also set its attribute value to the total processing time required, then route the item to a
series of activities, each of which performs one part of the processing, until the attribute value is
reduced to zero and the item is fully processed. This is common when there are several stations
with different processing times, any of which can process the item. Or when there is one machine
that processes each item for a specified time, then passes the item to another section for further
processing, and the item must be returned to the original machine for finishing.

You can do this using an activity block, building the model such that the attribute value is
decreased by the amount of processing time. In this situation, each activity subtracts its processing
time from the attribute value, so that the value represents the remaining processing time. Use a Get
block after each activity to determine if the item was fully processed or not, and therefore whether
it should proceed to the next activity or be routed out of the line.

Time sharing occurs when an activity processes an item, sends it back to a queue for a short period,
then processes it again until the required processing time is completed. This is common for com-
puter networks and telephone communication systems. In these systems, time is specified in small
fractions of a second, there are a lot of jobs that must be processed at the same time, and there are
only a limited number of processors to do the work. In time sharing, instead of each job being pro-
cessed sequentially, all jobs are processed at what appears to be the same time. However, each job is
processed a small bit at a time, and a given job may have periods in between where nothing is hap-
pening to it. Since the time units are so small, the periods when there is no processing of a specific
job are typically not noticed, and each job appears to be processed continuously.

172 Processing
Setting the processing time

D
is

cr
et

e
Ev

en
t
Cumulative Time model
A simple time-sharing model has one activity that processes each job for a short period of time,
then sends the job back to the queue so it can be processed again, until the total required process-
ing time for that job has elapsed.

In the model, items (jobs) are generated randomly and the Set block attaches a RemainingTime
attribute to each job generated. The Random Number block determines the initial value of that
attribute, 1, 2 or 3 milliseconds, which represents the total processing time required for each job.
The Activity block processes the job for a fixed time (1 millisecond). An Equation(I) block then
subtracts the amount of time spent processing (Process Time, or PT) from the RemainingTime
attribute.

Once the remaining processing time has been
calculated, the decision to route the item back to
the Queue or to the Exit is made in the Select
Item Out block. Jobs with a RemainingTime of
0 are routed through the top output and exit the
simulation; items that have 1 or more millisec-
ond of processing time left are routed back to the Queue for further processing. Notice that the
table in the Select Item Out block (shown above) only indicates explicitly what happens if the
remaining time is 0 or 1. However, the block’s dialog is set to Invalid Select value: chooses bottom
output. With these settings, an item with a RemainingTime value of 0 will exit the top output. If
the value is 1 the item will exit the bottom output. And any value other than 0 or 1 will also exit
from the bottom output.

☞ The time units for this model are integers representing milliseconds, because the Select blocks
expect integer values for comparison and will truncate non-integer values. (For example, the value
0.003 would be truncated to a zero.) When using non-integer values for the processing time, con-
vert the attribute values to integers before they go to the Select Item Out block. You can do this
with a Lookup Table block (Value library).

Adding setup time
Every process is not 100% efficient. For instance, it is common in manufacturing for a machine to
be reconfigured when the type of item it is processing changes. This reconfiguration usually takes
additional time beyond the normal processing time. In the example below, the processing time
(and the part type) is determined by the attribute values, similar to what was shown in “Custom
processing time” on page 170. However, this model requires an additional setup time whenever
the type of item changes.

☞ Setup time can add significant delay to the processing of items. For an example showing how to
minimize setup time, see “Minimizing setup” on page 136.

Cumulative Time model

Table in Select Item Out block

Processing 173
Bringing an activity on-line

D
iscrete Event
Setup Time 1 model
In the Setup Time 1 model, a Process attribute is assigned to each item. The attribute value repre-
sents how long items should be processed for – either 1, 3, or 5 minutes, depending on probabili-
ties entered in the Random Number block (Value library). The Δ (delta) output connector on the
right of the Get block signals when the value of the Process attribute has changed, indicating that
the current item is of a different type than the previous item. This information is used to add a
setup time to that item’s processing time, resulting in a longer total delay time for the first item of
a new type, each time the type changes.

The Δ (delta) connector outputs 0 (for False) as long as the value of the Process attribute stays the
same and outputs 1 (for True) when the attribute value changes, indicating the arrival of a new
type of item. The Constant block (Value library) specifies a setup time of 3 minutes. As long as the
attribute value does not change, the Constant block is multiplied by 0, adding nothing to the nor-
mal processing time. When the attribute value changes, the Constant value is multiplied by 1, and
the 3 minute setup time is added to the value of the Process attribute to determine the processing
time for that new item. You can see this if you run the simulation – the processing time is cloned
onto the worksheet and will be 1, 3, or 5 minutes for most items but 4, 6, or 8 minutes for the first
item that is of a new type.

Notice that each item still has its original attribute value. You do not change the attribute value in
this model, it is only used to determine whether the item type has changed and thus whether the
item requires a setup time. The processing time (whether equal to the attribute value or equal to
the attribute value plus the setup time) is input at the D connector. The Activity block processes
based on the value at the D connector, not directly based on the attribute value.

☞ While the model above shows the mathematics explicitly, the Equation block (Value library) can
also be used to specify the setup time. This is illustrated in the model Setup Time 2.

Bringing an activity on-line
As discussed in the following sections, many systems, activities, or operations can be brought on
and off-line based on a schedule or on the current conditions of the system.

☞ The models discussed in this section can be found in the Examples\Discrete Event\Process-
ing\Bring On-Line folder. The Shift block is discussed starting on page 218 and models using the
Shift block are located in the folder Examples\Discrete Event\Resources.

Scheduling activities
Activities don’t always occur randomly; they can be scheduled. This is common when you bring an
activity on-line based on the time of day. This could be represented by a schedule in the Create

Setup Time 1 model

174 Processing
Bringing an activity on-line

D
is

cr
et

e
Ev

en
t
(Item library) or Lookup Table (Value library) block connected to and controlling a Gate block
(Item library), by using a Create block to schedule the capacity of an Activity, or by using a Shift
block to control an Activity. As seen below, the Scheduling Activities 1 model uses a Gate block
and the Scheduling Activities 2 model schedules an Activity’s capacity. Shift blocks are discussed in
“The Shift block” on page 218.

☞ So that you can compare both the Scheduling Activities 1 and Scheduling Activities 2 models, they
have the same random seed, as seen in their Run > Simulation Setup > Random Number tabs.

Scheduling Activities 1 model
The following example shows how to schedule the availability of a portion of an operation using a
Gate block. The Scheduling Activities 1 model represents a diner that opens at 10 AM and closes
eight hours later. Customers arrive exponentially throughout the day, with most customers arriving
during the lunch period, which is from 11 AM until 2 PM (from hour 1 to hour 4). There is 1
dining section that can service 5 people at a time throughout the day. A second dining section that
can also service 5 people at a time is available only for the lunch shift.

The scheduling of random customer arrivals is accomplished by
entering values in a Lookup Table block (Value library), set to
Lookup the: time. The output of the Lookup Table block is
connected to the mean input of a Create block, which generates
customers exponentially. As seen in the table to the right, the
Lookup Table outputs a smaller value from time 1 to time 4.
The output represents the average time between arrivals, so
arrivals will occur more frequently from time 1 to time 4.

Opening the second dining section is accomplished by connecting a Create block to a Gate block,
allowing customers access only during certain hours.

The Gate block is set to set to Mode: conditional gating with values, so that it only allows items
through when its demand connector is activated by a value. This is accomplished by connecting a
value connector, such as the one on the Create block when it is in Create values by schedule mode,
to the demand connector. As long as the value connector is true (outputs 1), the Gate stays open;
when the value is 0, for false, it closes. Running the model with animation on shows that, even
though the queue length is increasing, the Gate shuts down after three hours.

Scheduling Activities 1 model

Customer arrivals

Processing 175
Controlling the flow of items to an activity

D
iscrete Event
Scheduling Activities 2 model
As an alternative to the preceding example, you could have used the C connector on the Activity
block to control its capacity, simulating the opening of the second dining section.

Each dining section has the capacity to serve five customers at once. By doubling the capacity of
one Activity block during the period between 11 AM and 2 PM you can model both dining sec-
tions being open. This is accomplished by connecting the value output of a Create block, set to
Create values by schedule, to the C input on the Activity. In the model, the portion of the Create
block that controls the capacity of the Activity is cloned onto the model worksheet.

Shift block used to schedule
Yet another approach to scheduling an Activity would be to use a Shift block to control it. For
instance, the Shift block could contain the same information as the Create block that is connected
to the C input on the Activity in the Scheduling Activities 2 model, above.

For more information, see the section titled “The Shift block” on page 218.

Controlling the flow of items to an activity
As discussed in “Scheduling activities” on page 173 you can have an activity start based on the time
of day. Some methods of adding an additional activity to a model can cause the new activity to
cycle on and off frequently. You may not want this to occur, as it can result in higher start up costs,
increased machine wear and scrap production, and excess energy consumption. Instead, you can
add some hysteresis and have the activity stay on to process a number of items, or stay on for a
period of time.

When bringing a system on-line, there are two main ways to control the flow of items to an activ-
ity:

• Specify the number of items that will be processed

• Specify the amount of time the activity will be on-line

Fixed number of items
Instead of having a system cycle on and off, you may want to keep the optional activity running.
For instance, you can keep a machine on to process a particular number of items, even if the wait-
ing line for the other machines is below the threshold that originally activated it. This reduces the
number of times the machine turns on and off.

Fixed Items model
To keep an activity running until it has processed a fixed number of items, add a Create block
between the Decision and Gate blocks to the model discussed in “Conditional routing” on

Scheduling Activities 2 model

176 Processing
Controlling the flow of items to an activity

D
is

cr
et

e
Ev

en
t
page 157. (The Conditional Routing model is located in the Examples\Discrete Event\Routing
folder.) The resulting model is named Fixed Items, and is shown here.

In this model, the optional machine will be brought
online if/when the queue exceeds five items. The Y
output of the Decision block (Value library) is con-
nected to the start connector of a Create block, which
is set to Create items by schedule; the schedule is
shown at right. The Decision block outputs a true
value (1) at Y if the queue length is 5. When that hap-
pens, the Create block (Control the Gate) starts its
schedule and puts out a single item with a quantity of
10 to the demand input on the Gate block. This causes
the Gate to stay open until 10 items pass through the
block.

There are two items of special note in this model: how
the start and demand connectors are activated.

• Since the Create block’s start connector is connected, and since the block is in Create items by
schedule mode, the block’s schedule runs in relative simulation time (begins its schedule relative
to when start is activated), as explained in the section “The Start connector” on page 114. Once
start is activated (gets an value ≥ 0.5) it causes the entire schedule to happen; messages from the
Decision block to the start connector are ignored until the schedule is complete. The second line
of the schedule means that the Create block will also ignore any start messages for 5 time units
after the schedule has been completed. This provides hysteresis and allows the machine to pro-
cess items (and hopefully reduce the buffer length) before the sequence is activated again. If the
schedule did not include this pause, the Activity block could be activated constantly.

• The demand connector is activated when it gets an item, causing the Gate to open and allow
items through. The number of items allowed through before the Gate closes is determined by
the quantity of the item at demand. For instance, each item with a quantity of 10 creates a
demand for 10 items before the Gate will close.

Fixed Items model

Activating “demand” with an item

Processing 177
Interrupting processing

D
iscrete Event
Fixed period of time
You may want to keep the optional machine on for a particular length of time instead of for a cer-
tain number of items.

Fixed Time model
To do this, use the Create block, set to Create values by schedule, to output values to the demand
connector on the Gate block.

In the table in the Create block’s dialog, the first line
has 0 for the output time and a value of 1. The second
line has the time you want to turn off the optional
machine, and a 0 for the value. For example, to keep
the optional machine on for five minutes, you enter
the values as shown at right.

Once start is activated, the demand connector will
receive a value of 1 (True). After 5 time units have
passed, the value at demand will change to 0 (False).
Because you are connecting a value output to demand,
the Gate block will stay activated as long as the value
the demand connector receives is greater than or equal
to 0.5, which in this example is for 5 time units.

Interrupting processing
In discrete processes, it is common for interruptions to occur. This could happen for any number
of reasons, such as the arrival of an item that has a higher priority for processing, random machine
failures, planned shutdowns, the occurrence of a higher priority event, and so forth. Interruptions
are of two kinds, preemption and shutdown.

• Preemption occurs when an Activity block is told to prematurely end one or more items’ pro-
cessing. When this occurs, the Activity immediately sends the preempted items out of the block
through an alternate item output connector.

• Shutdown occurs when processing is suspended for one or more items currently in an Activity
block. Items that have been shut down may or may not have their processing completed when
the shutdown ends. In any case, they are either discarded or leave through the normal item out-
put connector.

Fixed Time model

Activating “demand” with a value

178 Processing
Interrupting processing

D
is

cr
et

e
Ev

en
t
The Activity block has a Preempt tab for specifying what to do when there is preemption and a
Shutdown tab for controlling what happens when the block gets a message to shutdown. The
Convey Item block can be shutdown by reducing its speed to zero. The Shutdown block is most
commonly used for shutting down an activity.

☞ Preemption and shutdown are discussed in the following two sections. The models for those sec-
tions are located in Examples\Discrete Event\Processing\Preemption and Shutdown folder.

Preemption
Preemption occurs when a signal is received at an Activity block's PE (preempt) input, prematurely
ending an item's processing by forcing it to leave through an alternate output.

In the Preempt tab you can specify that preemption occurs only if the block is already processing
its maximum number of items and that the preempted item's remaining processing time be stored
as an attribute for subsequent processing. Once preempted, the item’s processing can be finished
by another Activity, finished later by the original block, or never finished at all, depending on how
the item is routed in the model.

PE input connector
Once preemption is enabled in the Preempt tab, the PE (preempt) universal input connector and
an alternate item output connector appear on the Activity’s icon. The connection to the PE con-
nector can either be a value input or an item input, depending on what is selected in the Preempt
tab. The type of connection to the PE input determines how preemption is controlled:

• Value connection. Based on which of the first four preemption options (discussed below) is cho-
sen, the selected item or items will be preempted whenever a true (0.5 or greater) value is
received at the PE input.

• Item connection. When a “preemption item” arrives at the PE connector, the Activity looks up
the specified attribute value on the preemption item. The Activity then searches all items cur-
rently in processing, and any of those items with an attribute value equal to the one on the pre-
emption item will be required to leave the block.

Preemption options
As discussed above, preemption occurs when a signal is received at an Activity block’s PE (pre-
empt) input. Settings in the block’s Preempt tab determine which item or items must leave.
Depending on whether the preempt signal is sent by a value or an item connector, the preemption
options are:

• The item that is closest to finishing

• The item that is furthest from finishing

• The item with the lowest priority

• All items currently being processed

• Only items with a particular attribute value

The first four options are only available when a value connection is made to PE; the last option is
only available, and is the only choice, if an item output is connected to PE.

Preempting model
For instance, an Activity and Queue (set to Sort by: priority) can be used in conjunction with a
Decision block (Value library) in such a way that lower priority items being processed may be pre-
empted to make room for higher priority items as they arrive at the Queue. Note that it is not

Processing 179
Interrupting processing

D
iscrete Event
guaranteed that a lower priority item will be preempted. If “Preempt only if block is full” is
checked, items will be preempted only if the Activity block is full.

In the Preempting model, the Queue reports the priority of the item that is about to leave and the
Activity reports its lowest priority item; this information is sent to the Decision block. If it is deter-
mined that there is a higher priority item in the Queue than is being processed by the Activity, a
True signal (a value greater than 0.5) is sent to the Activity’s PE input. Notice that the Activity’s
dialog is set to When signal is received at PE input, preempt... the item with the lowest priority
and to Preempt only if block is full.

Unless they are preempted, items arriving to the Activity block are processed for the time indicated
in the block’s dialog. In block’s Preempt tab, Store remaining time in attribute: remainingTime
is selected. If an item is preempted, the Activity attaches the remaining processing time to the item
as an attribute named remainingTime. Since the Activity also has Use this attribute as delay
checked, when the preempted item returns to the Activity block it will process only for the time
indicated by the remainingTime attribute.

Shutting down
Employee breaks, equipment maintenance, inventory-taking closings, and tool failures all involve
interruptions in activities for a period of time called downtime. If interruptions are significant,
models should include provisions for shutting down activities to avoid overly optimistic predic-
tions.

Shutdowns involve a temporary or permanent halting to the processing of items currently in the
Activity block. The block’s Shutdown tab has settings to determine which items should have their
processing shut down, how long to interrupt the processing, and what to do with the items in an
Activity when the shutdown occurs.

You can shut down activities at a scheduled time, such as for vacations or machine maintenance, or
it can be a random occurrence, such as for equipment failures or emergency leaves. Activities can
also be shut down based on some factor in the model, for instance when a downstream Queue is
full. Like shutdown occurrences, the duration of the downtime can be a constant value or a ran-
dom number. A shutdown can also be used to block the entry of additional items while the shut-
down is in effect.

SD input connector
Once shutdown is enabled in the Shutdown tab, the SD universal input connector appears on the
Activity’s icon. It is common to connect from a Create or Shutdown block to the SD input but
connections can be made from other blocks as well. The input to the SD connector can either be a

Preempting model

180 Processing
Interrupting processing

D
is

cr
et

e
Ev

en
t
value connection or an item connection, depending on what is selected in the Shutdown tab. The
type of connection to the SD input determines both which items are shut down and for how long:

• Value connection. This acts like an on/off signal. The entire block will be shutdown whenever a
true (0.5 or greater) value is received at the SD input. This suspends the processing of all items
in the block and stops new items from entering it. The Activity will stay shut down until the SD
input gets a false (less than 0.5) value.

• Item connection. When a “shutdown item” arrives at the SD connector, the Activity will shut
down the item or items currently being processed, as specified by the shutdown options dis-
cussed below. The duration of the shutdown is determined by an item’s attribute or quantity as
specified in the Shutdown tab; the value of that property on the shutdown item determines how
long the shutdown will be in effect.

The Create block is used to schedule the shutdown for the “Scheduled Shutdown model” on
page 181; the Shutdown block provides random shutdowns for random durations for the “Ran-
dom Shutdown model” on page 182.

Shutdown options
As discussed above, shutdown occurs when a signal is received at an Activity block’s SD (shut-
down) input. Settings in the block’s Shutdown tab determine which items currently in processing
will be shut down. Depending on whether the shutdown signal is sent by a value or an item con-
nector, the shutdown options are:

• All items currently in processing

• A randomly chosen item

• Items whose attribute matches the attribute at SD

• Entire block

The first three choices are only available if an item connector is connected to SD; “Entire block” is
only available, and is the only option, if a value output is connected to SD. If “Items whose
attribute matches the attribute at SD” is selected, the Activity looks up the specified attribute value
on the shutdown item. The Activity then searches all items currently in processing, and any of
those items with an attribute value equal to the one on the shutdown item will be shutdown.

Item options
Once a shutdown is in affect, the shutdown items are handled in one of four ways, as specified in
the Shutdown tab of the Activity’s dialog:

• The item can be discarded, such as when food is spoiled by the machine going down.

• The Activity can resume processing the item after the shutdown ends.

• An Activity can restart processing the item after the shutdown ends.

• The Activity can finish processing the item prior to shutting down, such as when the shutdown
is part of scheduled maintenance and can wait until the item is finished.

Items that are not discarded leave through the Activity’s normal item output.

SD output connector
The Activity block’s variable output connection contains an SD connector that can be used to relay
shutdown status. Depending on how the Activity has been configured, this connector either out-
puts a 1 (one) while the Activity is down and a 0 (zero) when it is up, or it outputs the number of

Processing 181
Interrupting processing

D
iscrete Event
items that are currently shutdown. If a value connection has been made to the SD input, the SD
output connector is set to 1 or 0; if an item connection has been made to the SD input, the SD
output connector reports the number of items currently shutdown.

Scheduled Shutdown model
The Create block is often used to schedule an Activity to shut down. For example, the Scheduled
Shutdown model schedules downtime for a machine by connecting a Create block’s item output to
the SD input on an Activity.

The “Shutdown Schedule” from the Cre-
ate block’s Shutdown tab is cloned onto
the model worksheet and shown at right.
It indicates that two items will be created,
one at time 2 and one at time 7. Each
item has a downTime attribute as seen at
the top of the fourth column; the attribute’s value is 2.5 for the first item and 1 for the second
item. In the Create block’s dialog, this maintenance schedule has been set to repeat every 10 time
units.

The Activity block is set to
process one item at a time. Its
Shutdown tab, shown at
right, indicates that all items
currently in processing will be
shutdown when a “shutdown
item” is received at SD,
downTime is the name of the
attribute that determines the
duration of the shutdown
event, and the block will keep
items, resume process after
shutdown.

☞ With this information and the settings in the Activity’s Shutdown tab, processing will shut down
for any item that is already in the Activity at time 2 and that item will not resume processing until
time 4.5. Likewise, any item in the Activity at time 7 will be shut down and not resume processing
until time 8, and so forth.

 When shutdown is triggered by an item connection to SD, the selected items being processed by
the Activity block will be shut down at the time and for the duration specified. However, because

Scheduled Shutdown model

Schedule in Create block

Settings in Activity block

182 Processing
Interrupting processing

D
is

cr
et

e
Ev

en
t
the block supports parallel processing, if items arrive to the block after the shutdown has been trig-
gered, those items will be processed normally. For complete shutdown of the block, use a value
connection instead of an item connection.

When the model is run, the plotter will show both the number of items processed (obtained from
the Exit block) and the timing and duration of the shutdowns (obtained from the SD output on
the Activity.) The SD output gives a value of 1 while an item is shutdown and a value of 0 while it
is not.

The Shutdown block
Time between failures (TBF) and time to repair (TTR) are common ways of determining how fre-
quently shutdowns occur and how long they last, respectively. You can use the Shutdown block to
specify a fixed or random TBF and/or a fixed or random TTR.

The Shutdown block has been specifically designed to work with the SD input on the Activity
block and it is capable of generating value or item-based shutdowns according to TBF and TTR
distributions you select.

• When set to Send a value to signal shutdown, the Shutdown block generates values that repre-
sent a down or up (off or on) state.

• When set to Send an item to signal shutdown, the Shutdown block randomly generates one
item for every shutdown event. The item contains attributes that indicate to the Activity both
which items will be shut down and for how long that will happen.

Random Shutdown model
While the Scheduled Shutdown model on page 181 used a Create block to schedule when an
Activity would be down, the Random Shutdown model uses the Shutdown block to halt process-
ing on a random basis for a random amount of time. It does this by connecting the Shutdown
block to an Activity block’s SD input.

In this model the dialog of the Shutdown block is set to:

• Send a value to signal shutdown

• Output a Down value: 1 and an Up value: 0

• Use an Exponential distribution with a Mean: 9 for the Set time between failures (TBF)
parameter

• Use a Triangular distribution with the settings Minimum: 1, Maximum: 3, and Mostly likely:
2 for the Set time to repair (TTR) parameter.

Random Shutdown model

Processing 183
Multitasking

D
iscrete Event
With these settings both the TBF and TTR are random. A true signal (a value of 1) from the Shut-
down block will cause the Activity block to shut down the entire block, halting all items currently
in processing and blocking any new items from entering. It is only when the signal switches from
true to false (a value of 0) that the block will resume processing. In this case, the Activity will
remain down for approximately 2 hours before coming back online.

Model-related shutdown
The Scheduled Shutdown and Random Shutdown examples presented earlier showed how to shut
down a process in isolation from other events in the model. You can also shut down activities based
on model factors such as the length of a waiting line or whether another activity is in process.

Explicit Shutdown model
The Explicit Shutdown model represents a buffer downstream from a machine that reaches a limit.
So that the queue length will control shutdown events, the F connector from the Queue block is
connected to the SD input connector on the Activity block.

For this model the Queue’s limit is specified in its dialog; whenever the Queue is full, the F con-
nector outputs 1. The Activity’s Shutdown tab indicates that the SD (shutdown) is: value input
connection and that therefore the Activity stays down until SD value < 0.5. This causes the
Activity to stay shut down for as long as the Queue is full.

This is an example of how to have downstream factors affect upstream activities. If you examine
the model closely, you see that the last machine is processing so slowly that Queue 3 quickly
reaches its limit of 5 items. Since a Queue cannot take in any more items while it is full, the middle
Activity is blocked (cannot process a new item until an item is removed from Queue 3). However,
the first Activity continues to process items, filling Queue 2. By explicitly shutting down the first
Activity, you affect where items are stockpiled and which Activities are shut down when one of
them is blocked.

☞ Please also see “The Shift block” on page 218 for examples of activity and resource allocation that
are tied together and scheduled as “Shifts.”

Multitasking
The Activity block has a checkbox in its Process tab that
allows the block to simulate multitasking. Choosing
this option means that the block’s available time to pro-
cess items (its Delay time) must be divided between
each of the items in the block. This causes each item to
take longer to finish processing and leave. Examples of
multitasking include computer processors or a person
who is working on multiple tasks at the same time.

Explicit Shutdown model

Choosing multitasking in an Activity

184 Processing
Multitasking

D
is

cr
et

e
Ev

en
t
With multitasking, if only one item is in the block the actual processing time will be exactly the
same as the original delay time specified by the block. If two items are in the block, each item will
take twice as long as the original specified processing time. If three items are in the block, their
processing times will be multiplied by three, and so forth. This is equivalent to situations where a
single server or operator has to divide their available time between multiple customers or tasks.

The changes to the processing time occur dynamically as items enter and leave the block. When
new items enter the Activity, the remaining delay times for all of the items in the block will become
progressively longer. As processed items leave the block, the delays for the remaining items will
become shorter.

Simulate Multitasking Activity model
In this example model, there are three kinds of jobs that are being processed on a computer. The
computer must share its time between all the jobs it is simultaneously working on.

The Simulating Multitasking Activity creates a random number of each type of job (small medium
and large), as determined by probabilities entered in the Random Number block (Value library).
Each job has a Job Size attribute with the string value small, medium, or large. The job’s processing
time is defined by a distribution and entries in a table in the dialog of the Activity block, which is
set to Delay is: from a lookup table. (For a description of this setting, see “Processing time for an
Activity” on page 167.)

Running the model shows that the moving average processing time increases as the number of
items in the Activity increases.

☞ Changing the capacity of the Activity changes the number of items allowed in the block, but it
does not change the calculation for the delay time. Thus, if “Simulate multitasking activity” is

Simulate Multitasking Activity model

Processing 185
Kanban system

D
iscrete Event
enabled, increasing the capacity will not necessarily increase the throughput rate of the Activity
block.

Kanban system
A kanban just-in-time (JIT) inventory system limits the amount of inventory between processing
stations with a controlling “kanban” card. In this type of system, a station is only authorized for
processing if a kanban for that part is available. When processing is complete, the kanban moves
with the part to the next station. As the next station consumes parts, it returns the kanbans to the
previous station to authorize additional processing.

Kanban model
A Kanban system is modeled in ExtendSim by monitoring the queues between machines and hav-
ing that information regulate processing. To do this, set the Queue block capacity to the number
of kanbans and connect the F (full) output from the block back to the preceding Activity’s SD
(shutdown) output connector. When the queue has remaining capacity, its F connector will output
0 (zero) and the preceding Activity block will be authorized to produce parts. If the Queue block is
full, its F connector will output 1 and the preceding machine will be shut down until the queue
length is reduced.

If you run this model with animation on, the Activity blocks will be struck through in red while
they are shut down.

Transportation and material handling
The following Item library blocks are used to represent transportation and material handling:

• Transport

• Convey Item

• Resource Item

The Convey Item and Transport blocks represent ovens, conveyors, and so forth to provide fixed-
path routes with a specified travel time for items. The Resource Item and Transport blocks are used
with the Batch and Unbatch blocks to simulate AGVs and other independently moving vehicles.

☞ The models discussed in this section can be found in the Examples\Discrete Event\Process-
ing\Material Handling and Transportation folder.

Travel time
In a discrete event model, items move from block to block as dictated by the connections. These
connections indicate the direction of movement, but they don’t provide any delay for the items. If
travel time is significant, it is common to either:

Kanban model

186 Processing
Transportation and material handling

D
is

cr
et

e
Ev

en
t
• Increase the delay time of destination blocks to compensate for the travel time.

• Specify a minimum wait time in a Queue block’s Options tab to simulate travel time.

• Set an explicit travel time in a Convey Item or Transport block, as shown below.

Transport blocks
Transport blocks (Item library) move items from the
start of a path to the end based on distance and
speed information. When the model is animated,
they can display multiple items travelling a certain
distance simultaneously.

☞ While you can choose either feet or meters as the dis-
tance unit in the block’s dialog, the default is feet. If
Metric distance units has been selected in the
Edit > Options command, the default will be meters.

Travel time options
The block’s Behavior tab has options that specify how to calculate travel time – the time it will take
an item to travel from the starting point to the ending point. Travel time can be based on:

• Move time. Each item will take the amount of simulation time that is entered in the Move time
field or received at the D input connector. This acts just like a delay in an Activity block; length
and speed are ignored.

• Speed and distance. How fast the item is traveling, and how far the item must travel to reach its
destination, are entered in the fields in the Behavior tab or received at input connectors. The cal-
culated move time is displayed in the dialog. This option is most often used if the transportation
pathway is centered around the block.

• Speed and calculated distance. The item’s speed is entered in the Item speed field or received at
an input connector. The distance is determined from information entered in the frame labeled
“Select From and To locations for calculated distance”, as discussed below. This travel time
option is most commonly used for 3D animation when you want the location of the transporta-
tion pathway to be independent from the block.

☞ If Speed and calculated distance is selected, the starting and ending locations (which deter-
mine the distance) must be defined in the tab.

Calculated distance
If Speed and calculated
distance has been selected
as the travel time, a frame
appears at the bottom of
the dialog for entering the
distance information. If
the from and/or to loca-
tions are set to anything
other than Entered X and
Y location, the relative

Transport block: Behavior tab

Frame for entering information to be used to determine the distance

Processing 187
Transportation and material handling

D
iscrete Event
positions of the blocks in the model, and their connections, determine the distance.

The factors considered in the calculation are: the “from” location, the “to” location, how the dis-
tance is calculated, and the distance ratio.

From location options
• Previous non-passing block (the default)

• Entered X and Y location

• Block location

• Enclosing hierarchical block

• Previous block

(See explanations following the To location options.)

To location options
• Next non-passing block (the default)

• Entered X and Y location

• Block location

• Enclosing hierarchical block for next block

• Next block

Note: In the Item library non-passing blocks are either residence or decision types of blocks, as
described in “Types of item handling blocks” on page 96. If Entered X and Y location is
selected, the numbers can either be entered in the dialog or defined by the location of block in
the model; remember that the 3D coordinates are expressed in meters. The block location
option means the current block; this choice is especially helpful when the from location is a pre-
vious block (non-passing or not).

☞ If the selected from and/or to locations are blocks, the distance starts at the from block’s output
connector and ends at the to block’s input connector.

Calculate distance options
The popup menu provides two methods for calculating the distance from the
start to the end of the path:

• Along the connections between the from and the to locations

• In a straight line between the from and the to locations

More options are available if the E3D window is open and you
have created custom paths for 3D animation. In this case, the
paths will appear at the bottom of the popup menu as shown.
The block’s Transport Animation tab has a button, shown at
right, that will calculate the length of the currently selected custom 3D path. It then puts that
length into the distance parameter field on the block’s Behavior tab.

Notice that the shape of the conveyor will not visually change with these choices, but the informa-
tion is included in the calculation of the conveyor’s length. For instance, if there is a series of right-
angle connections between the from and the to locations, the conveyor’s length will be longer than
if the straight line option had been selected.

Button on Transport Animation tab

188 Processing
Transportation and material handling

D
is

cr
et

e
Ev

en
t
Distance ratio option
This popup menu is for specifying the ratio between pixels in the 2D model and meters in the
E3D window. It will control how the distances defined in the Behavior tab affect 2D or 3D anima-
tion. The choices are:

• Use speed and distance directly. Specifies a ratio of 1 pixel to 1 meter.

• Use 3D distance ratio. Uses the distance ratio defined in the Run > Simulation Setup > 3D tab;
the default is 20 pixels per meter.

• Use distance ratio of: This is for entering the ratio directly. A value of “x” means a ratio of “x”
pixels to “x” meters or feet.

☞ These options are explained more in the comprehensive example discussed in “How the length is
calculated” on page 189.

Convey Item blocks
The Convey Item block (Item
library) moves items along a
conveyor, oven, cooling unit,
moving walkway, or any other
type of moving path. The items
travel along the length of the
conveyor, from its start to its
end. The Behavior tab is similar
to that for a Transport block,
discussed above. The differ-
ences are:

• The Convey Item block can
be:

• Accumulating. If the block’s ability to pass items through exceeds downstream demand,
any items delayed from exiting will begin piling up at the outflow end of the block, up to
the Capacity setting.

• Non-accumulating. If downstream demand exceeds the block’s ability to pass items
through, the conveyor will stop until the item at the end moves into the next block.

• Instead of the Transport block’s reference to the distance from one point to another, the Convey
Item block is concerned with its length.

• If Travel time: move time is selected, a length entry is also required. In combination with the
item length (discussed below), the conveyor’s length determines how quickly items can move
onto the conveyor.

• The length of the items that pass through this block must be defined. They can be defined as:

• A constant

• From an attribute

• Based on length and capacity. (For instance, if the conveyor’s capacity is 1,000 units and its
length is 50 units, the length of each item will be 50/1000, or 0.05 units.)

Convey Item block: Behavior tab

Processing 189
Transportation and material handling

D
iscrete Event
Item length does not visually change the item picture or object but it is included in calculations
for accumulation, capacity, and the timing of when items are pulled onto and released from the
block.

How the length is calculated
When Travel time: speed and calculated length is selected in a Convey Item block, the relative
positions of blocks in the model, and their connections, determine the path’s length. The following
example explains how the length is determined.

The bottom potion of the
Behavior tab for a Convey
Item block is seen at right. In
this frame:

• The 2D From x location is
211 pixels (the position of
the previous non-passing
block) and the To x loca-
tion is 344 pixels (the posi-
tion of the next non-passing
block).

• By default, the length is calculated in a straight line between the from location and the to loca-
tion. (The alternative is to calculate the distance along the connections.) The shape of the
block’s object will not visually change with either choice, but the choice affects the determina-
tion of the path’s distance. For instance, if there were a series of right-angle connections between
the from and the to locations, and along connections was selected, the distance would be longer
than if the straight line option had been selected.

• The Distance ratio (pixels per meter) is based on the 3D
distance ratio set in the command Run > Simulation
Setup > 3D Animation tab. The default is 20 pixels per
meter, as shown at right.

In addition, the block’s Block Animation tab is set by default
to stretch the object to the conveyor’s length. This will cause
the Conveyor object in the E3D window to automatically
resize to reflect the calculated length.

How the settings affect the length
The distance between the previous non-passing block (the from location) and the next non-pass-
ing block (the to location) is calculated in a straight line between the output connector of the from
block and the input connector of the to block. This is 133 pixels (344 pixels - 211 pixels).

The distance ratio of 20 pixels per meter is used to convert the 133 pixels into meters. The result is
the length of the conveyor: 6.65 meters. as can be seen in the block’s Behavior tab. (This is also
reflected in the 3D information, where the From x location is 10.55 meters and the To x location
is 17.2 meters, a difference of 6.65 meters.)

☞ If the from and/or to locations are blocks, the determination of the length starts at one block’s
output connector and ends at the other block’s input connector.

Length calculations for Convey Item block

Distance conversion ratio

Setting in Block Animation tab

190 Processing
Transportation and material handling

D
is

cr
et

e
Ev

en
t
Moving this Convey Item block along the connection line between the from and the to blocks will
not have any affect on the conveyor length. This is because the distance between the from and to
locations stays the same. However, moving the from block away from the Convey Item will change
the length of the conveyor. This is because the Next non-passing block is now further away from
the Previous non-passing block.

☞ For information about how these blocks are used for 3D animation, see “Adding 3D behavior to an
existing model” on page 406 and “Animating a bank line” on page 416.

Transportation models
The following models use Convey Item, Resource Item, and Transport blocks to simulate item
movement along fixed paths and material handling using AGVs.

Transportation 1 model
To model vehicles such as AGVs in ExtendSim, use a Resource Item block to provide items that
represent the vehicles, a Batch block to attach the vehicle with whatever it is transporting, one or
more Transport blocks to provide the transportation delay, and an Unbatch block to separate the
vehicle from its load at the end of the route.

The Transportation 1 model shows how two parts are assembled, inserted into a computer, then
moved to a loading dock. Part A is moved by a Convey Item block to the assembly machine while
Part B is moved there by a Transport block. The two parts are joined by a Batch block for process-
ing. After assembly, they move by a Transport block to the machine that will put them into the
computer. Since the computer is heavy, it is moved to the final assembly machine by a Transport
block that represents a small crane.

To simulate movement, AGVs from a Resource Item block are batched to the parts/items and then
moved via the Transport block. If the AGV is released at the end of each route, as it is in the model
above, the part is left behind where it can then be processed before moving on to another section
of the model. To model a situation where the Resource Item transports the item to an activity, then
waits there to continue transporting the item again, don’t release the Resource Item until the last
stop in the route.

Transportation 1 model

Processing 191
Transportation and material handling

D
iscrete Event
Transportation 2 model
In the Transportation 1 model there is no time associ-
ated with the return of the AGVs to the Resource Item
block. To model how long the return path takes, insert
Transport blocks after the Unbatch blocks and enter a
distance and speed for the AGV return trip. This is
shown in the model segment shown at right.

Adding time for AGVs to return

192 Processing
Transportation and material handling

D
is

cr
et

e
Ev

en
t

Discrete Event Modeling

Batching and Unbatching
Joining items or separating them

194 Batching and Unbatching
Blocks of interest

D
is

cr
et

e
Ev

en
t
In a discrete event model, items pass through the system and something is done to or with them.
The process often involves temporarily or permanently joining, or batching, resources or other
items with the original item. For instance, in a manufacturing plant, precursors of the final prod-
ucts come into the process as raw materials, subassemblies, and packaging that are joined in vari-
ous combinations. During the manufacturing process they are often batched with other precursors
and require additional resources such as pallets and workers for processing. These batched items
move through the process together.

These same concepts apply to other discrete processes. For example, in an emergency room model,
doctors are temporarily batched with their patients during medical diagnosis. In the same model, a
technician, a diagnostic machine, and a patient would be batched for the duration of x-ray treat-
ment. In a communication system, multiple packets might be batched together to create a single
message. For a retail store model, customers could be shown arriving and selecting merchandise,
then be temporarily batched with a sales person to make the purchase.

This chapter discusses:

• Blocks for batching and unbatching

• How to batch and unbatch items

• Dealing with item properties when items are batched or unbatched

• Delaying the batching of items until all requirements are present

• Preserving unique item properties as items are batched and unbatched

☞ The models discussed in this chapter can be found in the folder \Examples\Discrete Event\Batch-
ing.

Blocks of interest
The following blocks will be the main focus of this chapter. The block’s library and category
appear in parentheses after the block name.

Batch (Item > Batching)
Joins multiple items into a single item for use in the model. This causes the original input
items to be destroyed and replaced by one output item. A batched item may be unbatched
at a later point in the model, but that is not required.

Unbatch (Item > Batching)
Outputs multiple items for each input item. Depending on selections in the dialog, this
block can separate items that were previously batched or make duplicates of items that were
never batched.

Batching
Batching allows multiple items from different sources to be joined as one new item for simulation
purposes (processing, routing, and so on). The Batch block accumulates items from each source up
to a specified count, then releases a single item that represents the batch. In this process, the origi-
nal input items are destroyed and replaced by one new output item.

☞ Items may have properties, such as attributes, before they are batched. To specify what will happen
to the properties of items that have been replaced by a new batch item, see “Properties when items
are unbatched” on page 204.

Batching and Unbatching 195
Batching

D
iscrete Event
The number of items required for a batch is called the batch size. In some situations you know in
advance how many of each item is required to make one item; in other situations the number of
items batched depends on model factors and changes dynamically.

Items can be permanently batched together as one new item that flows through and exits the
model, or they can be temporarily joined for some specific purpose and unbatched at a later point
in the process. For example, two manuals could be batched with three promotional pieces and one
CD to make a software package that is shipped as one product. Or a ship attempting to dock
might be temporarily batched with two tugboats resources to guide it through the docking process,
after which the tugboats and the ship are sent on separate paths.

Batch dialog
The Batch block has three tabs for determining
when items should be batched, how many items
to include in a batch, and what to do with the
properties of items that are batched. The Batch
and Options tabs are discussed below; options in
the Properties tab are described on page 199.

Batch tab
The top of the Batch block’s Batch tab has a
popup menu with two options that determine
how the block behaves. These are summarized
below and illustrated in models later in this
chapter.

• Batch items into a single item creates a batch
using items on a first-in, first-used basis as
they arrive at the item input connectors. The
quantity of items required from each input is entered in a table or (if this choice is selected on
the Options tab) determined by the value at a BatchQuantityIn connector.

• Match items into a single item creates a batch of items that have a common attribute value. For
instance this could represent a process where items were combined together based on a serial or
order number. For this choice, it doesn’t matter which input connector the items arrive from.

The table in the Batch dialog is for entering the number of items from each input that are required
to make a batched item; the size of the batch can also be set using value input connectors as dis-
cussed later in this chapter. The first column shows the block label or name the input is connected
to. The Quantity column is for specifying the number of items required from the input and the
next column reports the number of items available. Checking the fourth column determines if
Delay Kit is activated; as discussed on “Delaying kits” on page 201, this causes the specified item
or items to not be pulled into the block until certain conditions are met.

Options tab
Among other choices, this tab has options for setting the size of a batch through value input con-
nectors and determining when to start a batch.

BatchQuantityIn connectors
Checking Use quantity input connectors on the Batch block’s Options tab enables the
BatchQuantityIn variable connector. Each BatchQuantityIn value input connector corresponds to
an item input connector and controls the batch size for that item connector. If a value input con-

Batch tab in Batch block

196 Batching and Unbatching
Batching

D
is

cr
et

e
Ev

en
t
nector has been connected, it will set the number of items required at its adjacent item input con-
nector. If a value input connector is not connected, the number of items for the adjacent item
connector will be set by the value in the Batch dialog.

When Use quantity input connectors is checked, there are two options that affect the batch size.
With either option, the initial size of the batch is the value at the BatchQuantityIn connector
when the first item on its corresponding item input connector arrives to the Batch block. The
options determine what happens if the input value changes:

• Dynamically as batch is created. If the value at a BatchQuantityIn connector changes before
that item connector’s batch is released, the number of items required for that batch will change
as well. This enables the size of a batch to be changed dynamically.

☞ The number of items to be batched from each input connector can never be less than the number
of items that have already arrived to the block from that input. That is, if 10 items have already
been pulled in through an item input connector, and the BatchQuantityIn connector changes to 8,
the batch size for that item input connector will be set to 10, not 8.

• By first item at each connector. The size of the batch does not change after the first item for
the batch has arrived, even if the value of the BatchQuantityIn connector changes. Once that
batch is released, a new batch size can be set.

The demand connector
To enable the demand connector, check the Show demand connector box in the Batch block’s
Options tab. Then choose one of the following options:

• Start batch when value at demand ≥ 0.5. No items are brought into the Batch block until the
value of the demand connector equals or exceeds 0.5. For instance, while the Batch block sees a
0 at demand, no items will enter for batching. When it sees a 1 at demand, the required items
currently available will enter the Batch block to be joined together. Depending on how the
model is constructed, selecting this behavior can cause blocking of upstream items.

• Create batch when value at demand ≥ 0.5. Items are allowed into the Batch block as they are
available, up to the required number. However, the batched item will not leave the block as long
as the demand connector has a value < 0.5. When the demand connector becomes ≥ 0.5, the
batched item leaves the block. With this option, a batch can consist of fewer items than the
number in the Quantity Needed column, because the batched item will have been created by
joining whichever items were available when the demand connector got a value ≥ 0.5.

A value output connected to the Batch block’s demand input is used as a true/false indicator, trig-
gering batching. The actual value from the value connector is ignored; what is considered is
whether or not it equals or exceeds 0.5.

Simple batching
The simplest batching method is to cause multiple items to be joined as one new item, replacing
the original items in the model. The batched item may or may not be unbatched at a later point,
depending on model requirements.

Batching and Unbatching 197
Batching

D
iscrete Event
Simple Batching model
The model shown at right joins one
“Open Box” with three “Bottles”;
they then travel as one item to be
shipped. For this model, the Batch
block’s behavior is set to Batch items
into a single item. The items are
joined by the Batch block according
to settings in the table in its dialog.
The Batch block will not release the
batched item until it has received one
item (a box) from the top input and
three items (bottles) from the bottom
input.

Batching by matching items
Selecting the Match items into a single item option in the Batch dialog allows you to specify an
attribute the items must match and a different attribute that determines the batch size. With this
option, each batch will be composed of items whose matching attribute value is the same; the
batch size attribute of the first item in the batch determines how many items are in the batch.
With this option, it does not matter which input connector the items arrive at. As items arrive to
the Batch block they are segregated based on their matching attribute value until the total number
of items in that group equals the batch size attribute. When this occurs a batch is created and the
item representing the batch leaves the block.

Matching Items model
The Matching Items model shown below simulates a refurbishment process for police cars. As the
cars arrive, they are assigned a consecutive “serial number” by the Information and Set blocks. The
Information block counts each car in order and outputs that number to the Set block, which
assigns the count number as the value of the Serial Number attribute. For instance, this causes the
Serial Number attribute for the second car to be assigned a value of 2.

The engine is then separated from the car by an Unbatch
block. (When items are unbatched, you can specify what
the block should do with their properties. This is accom-
plished by selecting an Action for item properties in the
Unbatch block’s Properties tab, as shown at right. Actions
are discussed in “Properties when items are unbatched”
on page 204.)

These two components (the engine and the car) are refur-
bished individually. When both components are finished being refurbished, the engine is reassem-
bled into its original car by matching them together in a Batch block set to Match items into a

Simple Batching model

Properties tab of Unbatch block

198 Batching and Unbatching
Batching

D
is

cr
et

e
Ev

en
t
single item, Match on attribute: Serial Number, and Get batch size from attribute: Compo-
nents.

For a similar model that uses the Queue Matching block to match items based on an attribute
value, see “Matching items using the Queue Matching block” on page 138.

Batching a variable number of items
Sometimes the number of items required to create a batch changes during the course of the simu-
lation. For instance, outside factors could determine how many items go into each batch, or you
may want batches to be made in a time-dependent fashion. As shown in the following two models,
the Batch block’s Options tab allows you to manipulate the size of batches through quantity input
connectors or through a demand connector.

☞ For additional examples of dynamically setting batch size, see also the “Batch and Unbatch Variable
model” on page 203 and the advanced batching models “Equation(I) Controls Batch” and “Queue
Eqn Controls Batch” that are located in the folder \Examples\Discrete Event\Batching.

Batching Variable model
This example model uses a Batch block’s quantity input connector to determine the size of a batch.
A Random Number block (Value library) sets random batch sizes of two to five items. In the Batch
block’s Options tab, Use quantity input connectors is checked to enable the BatchQuantityIn
connector and Set batch size: dynamically as batch is created is selected. The output of the Ran-
dom Number block is connected to the BatchQuantityIn connector on the Batch block. These set-
tings cause batches to be created that require a variable number of items. The information about
the size of the batch can be saved on an attribute specified in the block’s Options tab.

☞ The BatchQuantityIn connectors will not be visible on the Batch block’s icon unless Use quan-
tity input connectors has been checked in the block’s Options tab.

Matching Items model

Batching Variable model

Batching and Unbatching 199
Batching

D
iscrete Event
Batch on Demand model
You may want batches to be made in a time-dependent fashion, such as based on the time of day or
on a periodic basis. The Batch block’s demand connector can be used to control when items are
pulled into or sent out of the block. For example, if the model represents filling a truck with boxes,
you can signal the demand connector to stop the batching at the end of the day or when another
truck arrives at the loading dock. The batched item (the truckload of boxes) is then created and
released. In this example model:

• The top Create block sends a value that triggers the Batch block’s demand connector at sched-
uled times, every 5 seconds.

• The Options tab of the Batch block is set to Use quantity input connectors. Set batch size: by
first item at each connector and Start batch when value at demand ≥ 0.5.

• The Batch block’s quantity input (BatchQuantityIn), is connected to the L (length) output on
the Queue block.

With these settings and connections, the Batch block will create a batch every 5 seconds, the size of
the batch is dependent on how many items are available to the Batch block when it creates the
batch, and items will be allowed into the block only when demand is triggered.

The information about when items arrive and the size of the batch is recorded by the History
block and displayed in its cloned table.

☞ By default the History block clears its information each time the model is saved. A choice on the
block’s dialog allows you to Save item history with model, but that option can cause the model
to become quite large.

Properties when items are batched
As described in “Item properties” on page 110, items can have properties such as attributes and
priorities. When items are combined into a batch, their properties need to be combined as well.

Batch on Demand model

200 Batching and Unbatching
Batching

D
is

cr
et

e
Ev

en
t
Property options
A table in the Batch block’s Properties tab allows
you to define what happens to item attributes
and priorities. The table’s first column lists every
property for the items in the model. The second
column, Action, gives potential options that can
be taken for that property’s values. This allows
you to select how properties get transferred from
the original items to the batched item.

The Properties tab for the Batch block in the
Matching Items model looks like the screenshot
at right. It shows two user-defined attributes
(Components and Serial Number) and the item
properties _Animation and _Item Priority.

Attributes and priorities
The options that can appear in the Action column for attributes and priorities are:

• Maximum. Sets the value of the property to the largest number found on any of the items that
formed the batch.

• Minimum. Sets the value of the property to the smallest number found on any of the items that
formed the batch.

• Average. Sets the value of the property to the average value of that property for all of the items
that are part of this batch.

• Sum. Sets the value of the property to the sum of that property’s values for all of the items that
are in this batch.

• First at con X (the default). Sets the value of the property to the value of that property of the first
item that entered on connector X. Con 1 is the topmost item connector.

• Last at con X. Sets the value of the property to the value of that property of the last item that
entered on connector X. Con 1 is the topmost item connector.

• Count at con X. Sets the value of the property to the number of items that entered on connector
X. Con 1 is the topmost item connector.

Other item properties
An Item's quantity property (_Item quantity) determines its count toward the batch size. For
example, if an item arrives with a quantity of 2 and two items are required at that input, then that
input is full and no further items are required for that batch from that input. In most cases, the
item quantity of the items going into the batch will be 1.

Some models have an animation attribute (_Animation) that stores the indexes of the 2D and
3Danimation pictures for the items moving through the model. Note that the animation attribute
can only be set to First at con X or Last at con X.

Batch size attribute
By creating a new attribute or selecting an existing attribute for Store number of items in batch in
attribute: in the Batch block’s Properties tab, an attribute can be set to the total number of items
in the batch as it is released.

Action options for properties

Batching and Unbatching 201
Unbatching

D
iscrete Event
Delaying kits
You might not want to begin forming a batch until some or all of the items required for each part
of the batch are available. This is most common when you do not want a resource item from the
Resource Item block to flow into the Batch block until all the items requiring that resource are
available. A good example is a manager who does not want to wait for everyone else to arrive at a
meeting.

The Batch block’s Delay Kit feature restricts specified items from entering the block until all of the
other input connectors have the items they need. Delay Kit is enabled through checkboxes in the
fourth column of the table in the Batch dialog. Each item input for which Delay Kit is checked
will have its items wait outside until all required items for the unselected inputs are in the block.

☞ Delay Kit is only available when the Batch block’s behavior is set to “Batch items into a single
item.”

When the kitting starts
If the number of items required at a Delay Kit input is one, and all the other required items have
been pulled into the block from their input connectors, the batched item will be created as soon as
the Delay Kit item is available. If the number of items required at a Delay Kit input is greater than
one, the block will start a kit as soon as all the other required items are available and there is at least
one of the Delay Kit items available. This causes items with Delay Kit to be pulled into the block
as they become available; the batched item will not be created until all the items with Delay Kit are
available.

Unbatching
Unbatching can be used to separate items that
were previously batched or to duplicate items
that have not been batched. Some examples of
when you would use unbatching are:

• Returning an item resource to the Resource
Item block

• Ungrouping items that had been temporarily
grouped so that they could be processed at the
same time

• Creating items based on a single “seed” item

• Creating a logical item to trigger some action
in the model while allowing an item that rep-
resents the physical part to continue process-
ing

If items were previously batched with Preserve
uniqueness enabled in the Batch block’s Options tab, the Unbatch block can be used to restore the
items that formed the batch with their original properties. This is accomplished if Preserve
uniqueness is also checked in the Unbatch block’s dialog. For information about this feature, see
“Preserving the items used to create a batch” on page 204.

 Be careful when using any property-setting blocks in the path between a Batch and an Unbatch
block. Those property modifications could be lost, depending on selections in the Unbatch block’s
Properties tab, as discussed on page 204.

Unbatch dialog

202 Batching and Unbatching
Unbatching

D
is

cr
et

e
Ev

en
t
The top section of the Unbatch tab in the Unbatch block has two options that determine how the
block behaves when costing is involved. Each option causes the block to output a number of items,
specified in the dialog, for each item that is input. The options are:

• Create multiple items. This is the default choice. If the model has costing, costing attribute val-
ues are distributed to the output items as specified by settings in the table in the Unbatch block’s
Properties tab. The section “Simple unbatching” on page 202 shows how to use the block to
separate batched items.

• Release cost resources. Resources can have a cost associated with them. If an item is batched with
a resource, cost information is maintained with it. If the model has costing and the Release cost
resources option is selected, the block releases the resources out of the same connector that they
were originally batched and updates costing information for the items accordingly. For more
information, see“Combining resources with cost accumulators” on page 234.

☞ The Unbatch block will not behave differently when either of these two options are selected unless
the model calculates costs.

The Unbatch tab also has a table for specifying the number of items that will be sent through each
output connector. The first column displays which blocks the Batch’s output connectors are con-
nected to. The Quantity column is for entering the number of items that will be output for each
input item the Batch block gets, while the next column displays the number of items present.

 When preserving items that have been batched or when releasing cost resources, it is important to
physically match where items enter a Batch block with where they leave an Unbatch block. For
instance, items that arrived to the Batch block on the top input should be released from the top
output of an Unbatch block.

Simple unbatching
The Batching and Unbatching model is an extension of the example “Simple batching” on
page 196, with the addition of laborers and unbatching. Since there is no costing in this model,
the Unbatch dialog is set to Create multiple items (the default option).

In this model, the packaging process must be performed by a laborer. There are 10 laborers avail-
able and each is represented by an item in the Resource Item block. Each worker item is tempo-
rarily batched with the bottles and cartons to represent the requirements of the packaging process.

Batching and Unbatching model

Batching and Unbatching 203
Unbatching

D
iscrete Event
The dialog of the Batch block (shown at
right) indicates that one laborer is needed
for each package assembly. Since Delay
Kit is checked for that row, the labor
resource will not be drawn into the Batch
block until the other items required for
the batch (1 box and 3 bottles) have
arrived.

The worker is returned to the pool when the task is finished,
while the boxed bottles exit the simulation. This is modeled
by the Unbatch block, which takes a single item (the output
from the Activity) and creates two items, as shown on the
right. One item represents the worker who is sent back to the
Resource Item block through the top output and the other
represents the assembled package that is shipped.

Variable batching and unbatching
The previous model showed how to batch and unbatch a fixed number of items from each input.
This example shows how to batch a variable number of items and unbatch that same number of
items.

To keep track of the number of items a batch is composed of, select an attribute in the Batch
block’s Properties tab to store the number of items in the batch. When the batch is created this
attribute's value will be the number of items that arrived to create the batch.

☞ As discussed later in this chapter, if both the Batch and Unbatch blocks are set to preserve the
uniqueness of items, batch size does not need to be saved in an attribute. Instead, just check Use
preserved items to determine unbatch quantities in the Unbatch block’s dialog.

Batch and Unbatch Variable model
An example of batching a variable number of items and unbatching that same number, is shown in
the model below.

In this model, the Batch block’s Options tab indicates that the size of each batch is stored on an
attribute named batchsize, which is accessed by a Get block. Attaching the Get block’s value out-
put to the Unbatch block’s UnbatchQuantityIn connector sends information about the size of the
batch to the Unbatch block, causing each batch to separate into its original number of items.

☞ Since the Batch block is set to Set batch size by first item at each connector:, the size of the
batch is locked when the first item for that batch arrives in the Batch block.

Binding a worker

Unbatching 1 worker and 1 package

Batch and Unbatch Variable model

204 Batching and Unbatching
Preserving the items used to create a batch

D
is

cr
et

e
Ev

en
t
Properties when items are unbatched
As happens when items are batched, when items are unbatched you can specify what the block
should do with their properties. This is accomplished by selecting an Action for item properties in
the Unbatch block’s Properties tab.

For example, assume a Batch block combines six
bottles that have a Weight attribute, and that the
bottles are then filled with liquid such that the
batch weighs 12 pounds. When these bottles are
subsequently unbatched, you can select one of the
following actions for the Weight attribute:

• Preserved value. This option causes the bottles
to retrieve their preserved value, if preserve uniqueness is turned on. (See the following topic for
more information about preserving uniqueness.) In this case the weight of each bottle will be
what it was before batching and the 12 pounds of weight acquired after batching is discarded.

• Batched value. With this choice, the 12 pounds of weight will be copied to each of the resulting
bottles.

• Distribute. The 12 pounds of weight will be divided among each item equally, 2 pounds to each
bottle.

Preserving the items used to create a batch
Before items are batched they may have properties such as attributes attached to them. By default,
a reduced set of those properties is transferred to the new batched item, according to actions
selected in the Properties tab of the Batch block. (For more information, see “Property options” on
page 200.)

If it is important in your models to retain the attributes and priorities of the items that were
batched, select Preserve uniqueness in the Batch block and in the Unbatch block. This marks the
items in the batch as unique so that an Unbatch block can restore all of the items’ properties.

☞ For those properties that you want to retain, select the Preserved Value action in the Properties tab
of the Unbatch block, as discussed in “Properties when items are unbatched” on page 204.

 Do not select Preserve uniqueness unless the items have unique information attached to them,
the items are not just temporarily batched, and you need to restore the items and their properties
at a later point. Preserving uniqueness requires a lot more memory and slows processing time.

Both blocks choose to preserve uniqueness
The consequences of selecting, or not selecting, Preserve uniqueness in both the Batch and
Unbatch blocks are:

• If the Preserve uniqueness option is checked, the batch is temporary. The original members of
the batch are stored when the batch is created and they can be restored when the item represent-
ing the batch is unbatched. Examples include batching a group of parts together to process them
as a group and later unbatching them to continue processing individually, or batching an item
with a resource and later returning the resource item with an Unbatch block.

• If the Preserve uniqueness option is not checked, the items used to make up the batch are
destroyed when the batch is created. The batch, represented by a new item, is permanent and

Unbatch block property actions

Batching and Unbatching 205
Additional models

D
iscrete Event
the original items cannot be restored. Examples include batching items together into a box for
final shipping, or batching an order with the required inventory.

☞ If a Batch block is set to preserve uniqueness, the unique identity of the items will only be restored
upon unbatching. While batched, the attributes of the unique items will be combined into one set
of attributes, as specified by settings in the Batch block’s Properties dialog.

Either block chooses to preserve uniqueness
To restore the items with their properties intact, the option to “Preserve uniqueness” must be
selected in both the Batch and Unbatch blocks. There are special outcomes if “Preserve unique-
ness” is selected in either the Batch or the Unbatch block, but not in both blocks:

• If Preserve uniqueness is selected in the Batch block but not in the Unbatch block, the preserved
items travel with the first item that leaves the Unbatch block’s top output connector. All the
other items leaving the Unbatch block will be identical and not contain any information about
the preserved items.

• If Preserve uniqueness is not selected in the Batch block but is selected in the Unbatch block, it
is the same as if preserve uniqueness is not checked at all. Because the original information about
the batched items was lost when they were batched, the Unbatch block will unbatch identical
copies of the items that arrive to it.

Neither of these conditions is typically desirable.

Additional models
The folder located at \Examples\Discrete Event\Batching contains additional batching models not
discussed in this chapter:

• Equation(I) Controls Batch

• Queue Eqn Controls Batch

Both models show advanced concepts for dynamically changing the size of batches.

206 Batching and Unbatching
Additional models

D
is

cr
et

e
Ev

en
t

Discrete Event Modeling

Resources and Shifts
Modeling resources and controlling them with shifts

208 Resources and Shifts
Blocks of interest

D
is

cr
et

e
Ev

en
t
Items will sometimes require resources before they can proceed to the next step in a process. For
example, a car might need an attendant to drive it through the car wash, a vendor’s invoice could
require a receiving report before payment is made, or parts might need to be assembled by a
worker. Resources provide a service to the items in a model; their availability or lack thereof can
cause constraints on the flow of items.

One of the main reasons to model a process is to analyze resource availability and utilization and to
determine the impact of resource constraints on the system’s capacity. This tells how efficiently
current resources are being used and what happens if they will not be available or when there is a
wait for them to become available. Often the objective is to try to improve resource utilization
without causing overly long waiting lines or to determine how to reduce waiting lines without add-
ing more resources.

This chapter discusses:

• Modeling resources with the Resource Pool block

• Modeling resources using the Resource Item block

• Other methods for modeling resources

• Closed and open systems

• Ways in which resources can be scheduled

• Controlling resources and activities with the Shift block

☞ The models illustrated in this chapter are located in the folder \Examples\Discrete Event\Resources
and Shifts.

Blocks of interest
The following blocks are the main focus of this chapter. Each block’s library and category appears
in parentheses after its name.

Resource pool blocks

Resource Pool (Item > Resources)
Stores a count of resources for the model. The resources are taken by the Queue block (in
“resource pool queue” mode) and released by the Resource Pool Release block at some later
point in the model.

Queue (Item > Queues)
When the Queue type is set to “resource pool queue”, items wait here for required resource
pool units from the Resource Pool block. Once the needed resource units are available, the
block checks for downstream capacity before releasing items.

Resource Pool Release (Item > Resources)
Releases the specified number of resource pool units, making them available for re-use and
causing the count in the Resource Pool block to increase.

Resources and Shifts 209
Modeling resources

D
iscrete Event
Other resource blocks

Resource Item (Item > Resources)
Unlike the resource pool method, this block stores resources as items for use in the model.
Resource items are usually batched with items that require them; they may or may not be
unbatched at some later point in the process.

Shift (Item > Resources)
Generates a shift schedule that can be used to change the capacity or stop the activity of
other blocks in the model.

Modeling resources
Resources are the means by which process activities and operations are performed. Different parts
of a model can share the same resource, just not at the same time. While a particular resource is
being used in one place in a model, it is not available for any other part of the model. Thus the
availability or lack of availability of resources causes constraints in a model.

How to model resources
As seen in the following sections, there are many ways to model resources when building models.
Resources can be modeled explicitly using specialized resource management blocks; this has the
advantage of direct access to features like automatic costing and utilization calculations. In some
situations, however, it could be simpler or provide more control to model resources just as any
other item in the model or by limiting block capacity.

ExtendSim’s discrete event architecture supports two explicit ways to model resources:

• Resource Pool method. As a count of the resources that are available in a pool. By keeping track
of the available resource pool units, this method controls the flow of items that require the
resources. This is accomplished using the resource pool blocks (Resource Pool, Queue [in
resource pool queue mode], and Resource Pool Release), as shown in “Resource Pool method”
on page 209.

• Resource Item method. As one or more resource items that are available to another item. This
method involves batching resource items from the Resource Item block with the items that
require them and, typically, unbatching the resource when it is no longer needed, as described in
“Resource Item method” on page 213.

☞ Resource-type blocks should only be used in a model if their presence is required for the system. In
addition to the two explicit methods listed above, ExtendSim provides additional ways to model
resources, as discussed in “Other methods for modeling resources” on page 215.

Resource Pool method
The resource pool blocks in the Item library (Resource Pool, Queue, and Resource Pool Release)
cause restraints to be placed on the flow of items in the model based on the availability or lack of
resources. The Resource Pool block maintains a count of the number of resources that are cur-
rently available for use. When an item enters a Queue block that is in resource pool queue mode,
the Queue will query the resource pools to determine if the required number of specified resources
are available. If so, the number of resources currently available will be decremented in the appro-
priate Resource Pool block, and the item that requires the resource will be released from the

210 Resources and Shifts
Modeling resources

D
is

cr
et

e
Ev

en
t
Queue. If the required number of resources are not available, the item will wait in the Queue until
resources become available.

In a closed system, the resources are returned to the Resource Pool block by passing the
“resourced” item through a Resource Pool Release block. In an open system, such as for a con-
sumed resource, the resource is not returned to the pool but is removed from the system when the
item exits. Closed and open systems are discussed on page 216.

☞ Since resources are not returned to the originating block in an open system, statistical calculations
such as utilization cannot be accurately determined.

Advantages and disadvantages of using resource pools

Advantages
• The Resource Pool block does not require any connections to other blocks in a model. Because

of this, using resource pools to model resources (as opposed to using the resource item/batching
method that will be described later) is more flexible when the same resource can be used in many
different places or when an item can use any one of a group of resources.

• The resource pool method does not require complex routing of resource items because the
resources are not actual items but merely constraints on the flow of items through the model.

• When items wait for resource pool units, they can be ranked by priority or FIFO order. The
Resource Pool block is able to globally allocate the resource pool unit to the highest ranked item.

Disadvantages
• The resource pool method does not allow the use of attributes to track information about the

individual resources. To use attributes, you must use resource items; this is shown in “Resource
Item method” on page 213.

• It is more difficult to control the complex scheduling of competing resources across a number of
different queues using resource pools.

Simple Resource Pool model
The discrete event tutorial on page 105 showed how to use and release resources from resource
pools, as does the following example:

Simple Resource Pool model

Resources and Shifts 211
Modeling resources

D
iscrete Event
The Simple Resource Pool model represents a flow of
material where each piece requires one laborer for pro-
cessing. In the dialog of the Resource Pool block (labelled
Labor Pool), the pool of resources is called Labor and the
initial number of Labor units is 3, as shown at the right.
One piece of material is generated by the Create block
about every two minutes. Since this model uses resource
pool units, the Queue block’s type is set to resource pool
queue. This causes generated material to wait in the
Queue until the required Labor is available.

In the Activity block, processing takes 5 minutes and the
capacity is infinite, so any number of pieces can be
worked on at a time. Within the Queue and Resource
Pool Release blocks, the quantity of resources required/
released is 1 and the name of the resource pool (Labor) is listed.

Running the model shows that the amount of processing that can occur is constrained by the
number of laborers available. Although the Activity has an infinite capacity, the cloned plotter
graph shows that there are not enough workers available for much of the simulation.

☞ So that the focus is on the constraining effect of labor resources, the Activity block is set to infinite
capacity. This causes the availability of labor, but not the processing of material, to affect the flow
of items in the model.

Resources required from different pools
In the Multiple Pools example, there are three Resource Pool blocks, each with their own labor
resource. Items require either Labor 1, Labor 2, or Labor 3.

Resource Pool dialog

Multiple Pools model: One laborer per piece required from
any of the three pools

212 Resources and Shifts
Modeling resources

D
is

cr
et

e
Ev

en
t
Because it will hold items that require resource
pool units, the Queue’s type is set to resource pool
queue. As shown in the Queue’s dialog, the three
resource pools have been selected from popup
menus in the table and the block is instructed to
take the resource from any one of those pools.
When an item enters the Queue, it will query
each of the resource pools in the order that they
are listed in the table (from top to bottom). In
other words, if no resources are available in Pool
1, the Queue block will try Pool 2, and then Pool
3. If a resource is still not found, the material will
be held in the Queue until the resource require-
ment is met by whichever pool first has an avail-
able resource.

Note that the Queue block (Options tab) stores
the information about which pool the resource came from, and how many resources were used, in
an attribute that attaches to the items processed. In this model, the information is stored in the
attribute “Resource Name.” This attribute is used by the Resource Pool Release block to inform
the appropriate pool when a resource is no longer in use.

The Multiple Pools model is similar to the Simple Resource Pool model in that each piece of mate-
rial requires 1 laborer. However, in this model the laborer can come from one of three pools rather
than from a pool of three laborers. As in the earlier example, modeling this process using the
resource item/batching method would require complex logic to correctly route the resources.

Same resource used in multiple places
The Multiple Uses model has two parallel processes, each requiring laborers. Items waiting in both
Queues (set to resource pool queue) require a labor resource from the same Resource Pool block,
which has 3 laborers initially available. When an item enters one of the queues, a request is sent to
the Resource Pool block for a labor resource. The requests are satisfied in the order in which they
were received (or in order of the requesting item’s ranking as specified in the Resource Pool dialog).

Queue block dialog

Multiple Uses model

Resources and Shifts 213
Modeling resources

D
iscrete Event
Resource Item method
Another method for explicitly modeling resources is by using the Resource Item block. With this
method, each resource is represented by an item whose purpose is to provide a service for other
items in the model. The number of resources that are initially available are entered in the dialog of
a Resource Item block. For an item in the model to use this type of resource, the item must be
batched with the resource (see also “Batching and Unbatching” on page 193.) While the resource
is batched with an item, it cannot be used elsewhere in the model. If a resource is not available, the
batch will not be able to be completed, and the item will have to wait until a resource becomes
available. As with the resource pool method, the movement of items in the model is restrained
based on the availability or lack of resources.

If you are modeling a closed system, the resource must be unbatched from the item when it is no
longer being used. Once it is unbatched, it should be routed back to the resource-type block so
that it may used again. In an open system, for example where the resource is a consumable prod-
uct, the resource can stay batched with the item. Closed and open systems are discussed on
page 216.

Advantages and disadvantages of using resource items
A resource item can have properties such as attributes, a priority, and a quantity like any other
item. For this reason, this method of modeling resources is preferred if you need to track informa-
tion about resources.

☞ See “Items, Properties, and Values” on page 109 for a complete explanation of attributes and other
item properties.

Some limitations of using resource items are:

• The Resource Item block must be connected in the model and the connection must be such that
the resources it outputs can be batched with the items that require them.

• The resource item cannot “see” the items waiting for it. You must use routing blocks to direct
the resource item to the correct Batch or Unbatch block.

Air Freight model
An example of using the attributes of resource items to track information is shown in the following
model of an air freight company. An airplane receives orders for flights, but regulations require that
airplanes must undergo maintenance after every 50 hours of flight time. Thus the model needs to
track the airplane’s accumulated flight time (hours). Once an airplane accumulates 50 hours of

214 Resources and Shifts
Modeling resources

D
is

cr
et

e
Ev

en
t
flight time, it is sent for maintenance and the accumulated hours are reset to 0. The model looks
like:

The Create block generates orders which are batched with an airplane from a Resource Item block.
While the airplane is batched with a flight order, it is not available for other flight orders; the order
will wait in the Queue (set to type: sorted queue, and Sort by: first in, first out) until the plane
becomes available.

The Resource Item block attaches an Hours attribute to the air-
plane. Settings in the Batch block’s Properties tab, shown at right,
cause the airplane’s Hours attribute (the first attribute from the
item arriving at the second connector) to be attached to the
batched item.

☞ For more information about item attributes, see “Attributes” on
page 115.

An Activity block (labelled Flight) uses a random distribution to determine how long each flight
will take, then outputs the flight time to its Process Time (PT) connector. The Equation block gets
the airplane’s flight time and adds it to the plane’s Hours attribute.

After the flight, the airplane is unbatched from the order; the airplane returns to the Resource Item
block for reuse and the order exits the simulation. The Get block reads the value of the airplane’s
Hours attribute and the Decision block determines if the accumulated flight time is greater than
50 hours. If it is, the airplane will be routed to the maintenance group for processing. After main-
tenance the Set block re-initializes the Hours attribute to zero. If accumulated time is not greater
than 50, the airplane is returned to the Resource Item block where it will wait for another flight
order.

When the simulation is run, a clone of the output from the Equation block’s dialog shows the
value of the airplane’s Hours attribute. With animation on, it is easy to see that once the airplane
has an Hours value greater than 50, it routed to the maintenance group.

For this model it is essential to be able to track information about the airplane’s flight time. There-
fore the ability to assign attributes to the airplane resource is critical.

Stripping attributes from resource items
As described in “Properties when items are unbatched” on page 204, an item returning to a
Resource Item block after batching may have many attributes that are irrelevant to the returning
item. The Resource Item block provides the option of stripping attributes or keeping them with

Air Freight model

Batch block properties

Resources and Shifts 215
Modeling resources

D
iscrete Event
resources that are recycled; the default is to strip them. When tracking resource information using
attributes (as in the above model), you will not want to strip the attributes, so the block is
unchecked. However, in cases where you are not concerned with attribute values after the item has
been recycled, you may want to strip the attributes so that the item will be “clean” when it comes
out of the Resource Item block again.

☞ The Queue Matching block (Item library) holds different types of items until the requirements for
each type have been met. This can be useful when modeling the release of resources and items into
a Batch block. For more information, see “Matching items using the Queue Matching block” on
page 138.

Other methods for modeling resources
The Resource Pool and Resource Item methods described earlier in this chapter use specialized
blocks to explicitly represent resources. The ExtendSim architecture provides many additional
methods for modeling resources. For example, it might be simpler or provide more control to
imply a lack of resources by limiting capacity in some blocks or to model resources just like any
other item in the model.

Implicit resources
A resource can be implied in a model by restricting or scheduling the capacity of residence type
blocks like the Activity and Queue. These blocks are useful for implicitly modeling resources.

For instance, the “Simple Resource Pool model” on page 210 illustrates how to model resources
using the resource pool blocks. A simpler method would be to use the Activity block to represent a
limited resource, without using explicit resource blocks. In this case, you would remove the
Resource Pool and Resource Pool Release blocks from the model, set the Queue as a FIFO sorted
queue, and set the maximum items in the Activity block to three. The Activity’s capacity limitation
would have the same constraining effect as the Resource Pool block in the original Simple
Resource Pool model.

Another advantage of modeling resources implicitly is that the Activity block can be shutdown and
brought back online using the Shutdown block, as shown in “Shutting down” on page 179. This is
common when modeling random failure.

Conceptual resources
The concept of what is a resource is not limited to the explicit (resource pool and resource item) or
implicit (capacity-constrained) methods of representing resources. Theoretically, a resource is any-
thing where its availability can restrict items flowing from point A to point B. Some examples are:

• Any item can conceptually represent a resource. For example, batching a “bus” item with “peo-
ple” items, where the bus is required before the batched bus/people item can be released from a
Queue (see “Delaying kits” on page 201). Note that the bus is created as any other item, not as a
resource item from the Resource Item block.

• Using the ExtendSim database or global arrays to track resource availability, limiting the flow of
items in a model. For example, item availability would be regulated by how data in the database
changes during the course of a run.

• Using block combinations to control item movement as model status changes over time, such as
a Queue followed by a Gate that is connected to a Read block.

Your cleverness and knowledge of ExtendSim can probably lead to even more ideas.

216 Resources and Shifts
Closed and open systems

D
is

cr
et

e
Ev

en
t
Closed and open systems
As discussed on page 95, blocks that provide a finite number of resources can be part of closed or
open systems. In a closed system, resources are recycled back to the originating block. In an open
system, resources are not recycled but instead exit the system. Systems can also be partially closed,
for example when some of the resources are recycled back and others are not.

The following model uses three Resource Item blocks to illustrate a closed system (Technicians), an
open system (Stock), and a partially closed system (Fixtures).

The model assumes that about one third of the fixtures are consumed in the process; they are
restocked at periodic intervals by the Create block.

Scheduling resources
To accurately characterize the impact of resources in a simulation model it is common to model
resource scheduling logic, both in terms of where and when a resource should be assigned. For
example, if one resource item is required in multiple places, such as an item that could be routed to
two or more Batch blocks, then scheduling logic needs to be added to the model.

There are several ways resources can be scheduled. Some methods apply to using either resource
pools or resource items and some apply only to scheduling resource items.

Scheduling resource pools and resource items
As discussed in the following sections, there are two systems available to schedule resource pools
and resource items:

• Use the TR (total resources) connector on individual resource blocks, as described in the follow-
ing section.

• Use Shift blocks to control aspects of one or more resource blocks. This is discussed in
“Resources model” on page 221.

Using the TR (Total resources) connectors
Blocks that provide resources (whether as items or as resource pool constraints on items) have value
connectors labeled TR (total resources). You use the TR input connector to change the total num-
ber of resources available. This change can be scheduled, such as when workers take breaks, or
unscheduled, such as an equipment failure.

Closed and Open Systems model

Resources and Shifts 217
Scheduling resources

D
iscrete Event
The value at the TR connector determines how many resources the block has and can result in an
increase or a decrease in resource availability. For example, if the initial number in a Resource Item
block is 10, and the block gets a value of 3 at its TR input connector, the block will eliminate 7
resources from its availability list. If the block doesn't have enough resources to dispose at the time
of the change, it will dispose of them as they return.

Scheduling Resources model
It is common to schedule the avail-
ability of resources based on some
factor in the model, typically time.
For example, in the model discussed
in “Scheduling activities” on
page 173, you could have scheduled
workers in the diner depending on
the time of day using the Resource
Item and Create blocks.

The new model is shown at right. It
assumes there are three workers ini-
tially available when the coffee shop
opens at 6am. Two additional work-
ers arrive after 5 hours and remain
just for the lunch period, from 11am
to 2pm (1400 hours). The coffee
shop closes after 10 hours.

The schedule for workers is entered in
the dialog of the Create block, as shown
at right. The block is set to Create values
by schedule, and its value output is
attached to the TR (Total resources)
input of a Resource Item block.

☞ This model is set to use Calendar dates.
The Simulation Setup dialog and block
options (such as selecting calendar for-
mat when a Create block is set to sched-
ule its outputs) facilitate the display of
times and dates in Calendar format. For
more information, see “Calendar dates”
on page 528.

In this model the workers are part of a
partially closed system. Some are recy-
cled back to the Resource Item block
through its item input connector, while
other workers are added to or removed
from the block through its TR connector.

Scheduling resource items
There are at least four additional ways to schedule resource items in ExtendSim:

1) A Resource Item block followed by a Gate can control when resource items are released.

Scheduling Resources model

Arrival times for workers

218 Resources and Shifts
The Shift block

D
is

cr
et

e
Ev

en
t
2) A Resource Item followed by a Select Item Out block controls where resource items are routed.

3) A combination of the Gate and Select Item Out blocks can be used to control both where and
when items are scheduled.

4) The Queue Equation block is useful for controlling both where and when items are scheduled
for use when the scheduling logic is more complex. With this block, ModL logic statements
can intelligently control the scheduling of items based on their properties, information in the
ExtendSim database, or even the status of other sections of the model. For more information,
see “Sorting items using the Queue Equation block” on page 133.

The Shift block
The Shift block is used to schedule both the magnitude and availability of capacity in other blocks
in a model. This is useful for simulating situations where a system’s resources follow a pattern of
coming on and off line over time. For example, the Shift block could be used to model workers in
a factory following a repeated daily pattern of reporting to work in the morning, taking a break for
lunch and going home at some point in the evening.

Each Shift block represents a named shift and its schedule that can be referenced by other Item
library blocks. The Shift controls the capacity of the blocks that reference it, based on the schedule
that is defined in its dialog table. If a shift schedule is changed, all blocks using that named shift
will receive the same modified shift pattern. In addition, shifts may be repeated at regular intervals
if the Repeat schedule every checkbox is selected. This is useful for modeling repeated shift pat-
terns, e.g., an eight-hour workday each day of the week or breaks that occur every four hours.

☞ It would be quite easy to define a complex shift schedule that includes all breaks, holidays, week-
ends, and so forth. However, before adding such complexity to a model, carefully consider whether
such detail adds to the validity of the model. If, for example, nothing at all happens during the
weekend, a better solution would be to simply assume one week is 5 days long (or specify that in
the Simulation Setup dialog) rather than adding a Shift block to model the weekends. Shifts
should only be used when they will make a significant difference in the results of the simulation.

Shift types and what they control
A Shift can schedule capacity in a number of Item and Rate library blocks. For example, it can turn
an Activity on or off, or specify a maximum number of items the block can process at a time. The
schedule depends on whether the selected Shift type is On/Off or Number.

• An On/Off type of shift acts like a binary switch that turns associated blocks on or off at specific
points in time. For example, an On/Off shift might be used to shut down an Activity block dur-
ing lunch and evening hours, to open or close a Gate block, or to turn a Valve (Rate library) on
and off according to a schedule.

• The Number shift type explicitly defines the size of a block’s capacity over time. For instance, it
might set the size of a Resource Pool to 3 items for the morning shift, 0 over lunch, 5 for the
afternoon shift, and 0 overnight.

Resources and Shifts 219
The Shift block

D
iscrete Event
The following table shows which Item library blocks can be controlled by a Shift block, which
types of shifts those blocks support, and what aspect of a block, if any, the Number type of shift
controls:

In the Rate library, the Convey Flow, Interchange, Tanker, and Valve blocks can use a Shift set to
On/Off type. See the Rate module for more information about using the Rate library.

☞ If a Shift block is used in a model, statistics in the Queue blocks will probably not accurately reflect
utilization, etc.

Status connectors
The Shift block’s value input connector (StatusIn) can be used to override the shift schedule. If the
input connector is less than 0.5, the Shift is considered off shift; this will override any value found
in the Shift block’s dialog table. If the input connector is greater than 0.5, the shift schedule from
the dialog table is used.

The Shift’s value output connector (StatusOut) reports the current shift status (ON = 1 or OFF =
0 for On/Off type Shifts, or the number for Number type Shifts).

Shift models
The following models show how to use the Shift block in typical modeling situations. They also
illustrate how the two types of Shift, On/Off and Number, are used in simulations.

☞ The models are located in the \Examples\Discrete Event\Resources and Shifts folder.

Item Blocks That
Can Use Shifts

Shift Type: On/
Off or Number

Number Type Setting on Shift Controls This
Aspect of Item Library Block

Activity Both Maximum number of items in the Activity at a
time.

Convey Items On/Off N/A

Create On/Off N/A

Gate Both In “area gating” mode, the number of items
allowed in the gated area at a time.

Resource Item Both Total number of resources available, per the TR
(Total resources) connector.

Resource Pool Both The total count of resources available, per the TR
(Total resources) connector.

Transport Both Block capacity.

Workstation Both Maximum number of items in process.

220 Resources and Shifts
The Shift block

D
is

cr
et

e
Ev

en
t
On/Off type example
In the “Shift On and Off” model at
right, an On/Off type of shift turns
the Activity block on for 4 hours in
the morning, off for 1 hour at
lunch, back on for 4 hours in the
afternoon, and off again in the
evening until the next morning. The
schedule, named “Day Shift”, is set
in the Shift block; the dialog of the
Activity block is set to Use Shift:
Day Shift, which causes the Activity
to go on or off according to that
schedule.

The model contains a cloned graph
from the plotter. On the graph the
upper (blue) line reflects this 24-
hour shift cycle for seven days, a
total of 168 hours. Observe how the
lower (red) line, which is plotted against the Y2 axis, reflects the queue length’s dynamics during
the various on and off shift periods.

Number type examples

Shift Capacity Change model
In the model “Day Shift
Capacity Change”, shown at
right, a Number type of shift
is used to control the maxi-
mum number of items in the
Activity block. As deter-
mined by the Shift block, the
Activity is limited to 2 items
during the morning shift, 0
during lunch, 3 items during
the afternoon shift, and 0
overnight. The schedule,
named “Day Shift”, is set in
the Shift block; the dialog of
the Activity block is set to Use
Shift: Day Shift. Since this
model uses a number type
shift, the Shift block’s table
controls the maximum number that can be allowed in the Activity at one time. When the model is
run, the cloned Activity dialog item “Maximum items in activity” reflects the Shift table’s schedule
of allowed items. Shift behavior over the course of seven days (168 hours) is reflected in the plotted
upper line of the graph. The lower graph line reflects the queue length’s growth when activities are
limited.

Shift On and Off model

Shift Capacity Change model

Resources and Shifts 221
The Shift block

D
iscrete Event
Resources model
The next example also
uses a Number type of
shift. It illustrates a Shift
block controlling
Resource Pool availabil-
ity so that workers start
their shift, work 4 hours,
take a lunch break, work
4 more hours, and then
leave for the day.

When workers are not
available, the backlog
starts building up in the
Queue.

Complex patterns
Shift blocks may be con-
figured serially, controlled
by other blocks, or used
in other patterns to create more complex shift patterns.

Weekly and Daily Shifts model
In the “Weekly and Daily
Shifts” model, shown at right,
a 40-hour work week with
two days off during weekends
is modeled by feeding a Week
Shift (set to On/Off) into a
Day Shift (set to Number).

The Week Shift is On for the
five weekdays and Off dur-
ing weekends. Consequently,
during weekdays, the Week
Shift block sends a value of 1
to the StatusIn connector of
the Day Shift block, allowing
it to observe its own daily
schedule. However, during
weekends, the Week Shift
block overrides the Day Shift
schedule by sending it a value
of 0. The plotted line in the cloned graph shows two work weeks (336 hours); the first and second
weeks are separated by a weekend.

The cloned dialog item shows the same daily schedule as in the preceding model, with activity
halted during lunch and at night.

Resources model

Weekly and Daily Shifts model

222 Resources and Shifts
The Shift block

D
is

cr
et

e
Ev

en
t
Controlling Shifts model
Another example of a more
complex shift structure is
the Controlling Shifts
model where a Math block
(Value library) monitors the
processing at the Activity 1
block. While Activity 1 is
processing, the shift is
turned off, stopping any
processing in Activity 2. An
example of this would be if
a worker is required to
monitor two processes, but
can only monitor one pro-
cess at a time and must stop
the second process while the
first process is active.

Arrivals and Activity model

The Arrivals and
Activity model illus-
trates how Shift blocks
can shut down por-
tions of a model with-
out connections. This
example shows the
day shift dynamically
setting the maximum
capacity of an Activ-
ity to either 1 or 5
items and the Arrival
shift turning the top-
most Create block on
and off at specified
times.

Controlling Shifts model

Arrivals and Activity model

Discrete Event Modeling

Activity-Based Costing
Identifying and tracking fixed and variable costs

to determine operating costs

“The cost of a thing is often more
than the sum of the cost of its parts.”

— The Rev. P.N. Wallis

224 Activity-Based Costing
Blocks of interest

D
is

cr
et

e
Ev

en
t
Activity-based costing (ABC) is a method of identifying and tracking the operating costs directly
associated with processing items. It is the practice of focusing on some unit of output, such as a
purchase order or an assembled automobile, and attempting to determine as precisely as possible
its total cost based on the fixed and variable costs of the inputs. ABC helps identify, quantify, and
analyze the various cost drivers (such as labor, materials, administrative overhead, rework, etc.) and
determine which ones are candidates for reduction.

Once a model has been built, the dis-
crete outputs of the system, as well as
the processes and resources that are
involved in creating those outputs,
have already been identified. To add
ABC to models, you enter costing
information into dialogs of blocks in
the model. Blocks that generate items
or provide resources, and blocks that
process items, have fields and Cost tabs
for specifying costing data. Enter vari-
able cost rates per time unit and fixed
costs per item or use. After the cost
information has been defined, costs will automatically be tracked as the items in the model change
state.

This chapter covers:

• Identifying cost accumulators and resources

• Defining fixed and variable costs

• How ExtendSim tracks costs

☞ The models illustrated in this chapter are located in the folder \Examples\Discrete Event\ABC.

Blocks of interest
The following blocks are the main focus of this chapter. Each block’s library and category appears
in parentheses after its name.

Cost by Item (Item > Information)
Calculates the cost of every item in the model, as well as the average and total cost of the
process.

Cost Stats (Item > Information)
Records the input costs and total cost generated in each costing-based block. Determines
total model cost based on a specified confidence interval.

In addition to the two Cost blocks, many of the Item library blocks have cost fields or a
Cost tab for entering and reporting cost information, or have cost-handling capabilities, as shown
in the table below:

Blocks with Cost tabs or fields Blocks with cost-handling capability

Activity Batch

Convey Item Get

Cost tab of Activity block

Activity-Based Costing 225
Modeling with activity-based costing

D
iscrete Event
The Interchange block (Rate library) can also define costing information for items in discrete rate
models.

Modeling with activity-based costing
To include activity-based costing in models, you need to know how to define cost rates, how to
properly combine cost resources with items, and how to gather and work with cost information.
Although an understanding of ABC is important, most of the work will be done by the ExtendSim
architecture.

Item types
For purposes of costing, every item in a model can be categorized as either a cost accumulator or a
resource. Understanding the difference between cost accumulators and resources is important,
because ExtendSim treats them differently, as you will see in “Combining multiple cost accumula-
tors” on page 236.

☞ As is true of items that are resources, non-item resources from the Resource Pool block do not
accumulate their own costs.

Cost accumulators
You perform ABC to determine the costs associated with storing or processing an item. The item
being stored or processed is called the cost accumulator and will accumulate costs as it waits, gets
processed, or uses resources. Cost accumulating items can be introduced into a model using the
Create and Resource Item blocks, as you will see in “Costs for cost accumulators” on page 227.
The following example shows how costs are assigned to cost accumulating items.

Create Equation(I)

Queue Set

Resource Item Unbatch

Resource Pool

Transport

Workstation

Blocks with Cost tabs or fields Blocks with cost-handling capability

226 Activity-Based Costing
Modeling with activity-based costing

D
is

cr
et

e
Ev

en
t
Receive Inventory model

Assume you want to determine the cost associated with receiving crated inventory at a warehouse.
There is a one-time docking fee of $3.00 for every shipment that is received, and it costs $0.15 an
hour any time the crate waits for processing (such as in the receiving area.)

As each shipment arrives, a labor resource takes an average of 30 minutes to unpack the crate and
stock the contents on the appropriate shelves. In this case, the crate is being processed and is there-
fore the cost accumulator. The half-hour processing time and the hourly wage of the laborer is
used to automatically calculate the cost of unpacking and shelving. That cost is then added to the
accumulated cost being tracked with the crate. As the crate progresses through the steps of being
received and unpacked, ExtendSim will add the cost incurred at each step to the accumulated cost.

Resources
As discussed in “Modeling resources” on page 209, resources can be modeled using resource pool
blocks or by batching resources from a Resource Item block with other items. In the resource pool
method, resource units act as constraints on the flow of items throughout the model. In the batch-
ing method, resource items are required to be batched with other items before the items can pro-
ceed to the next process.

Whether resource pool units or resource items, resources provide a service for the items in a model;
they do not accumulate their own costs. Whenever a cost accumulator uses a resource, the
resource’s cost rates are used to calculate costs which are then added to the total cost of the cost
accumulator. (Cost rates are discussed on page 228.) For instance, in the Receive Inventory model
described above, the laborer is a resource item that is batched with the crate. Since the laborer is a
resource, it will not accumulate its own cost. Rather, the cost rate of the laborer (the hourly wage),
and the time it takes the laborer to unload the crate, is used to automatically calculate the cost of
unpacking the crate.

☞ The default is that the Resource Item block outputs resource items. However, you can select in the
block’s Cost tab to output items as cost accumulators. This is discussed at “Resource Item block”
on page 228.

Defining costs and cost rates
To include ABC in a model, simply enter information in the costing section of the dialogs of cost-
aware blocks. There are two types of cost information:

• A direct or fixed cost, which is entered as the Cost per item or Cost per use in block dialogs.

Receive Inventory model

Activity-Based Costing 227
Modeling with activity-based costing

D
iscrete Event
• The variable cost rate, entered in block dialogs as the waiting cost/time unit or processing cost/
time unit.

You do not need to define all cost information in order to perform ABC. However, if even one cost
field is defined as a positive, non-zero number, ExtendSim will automatically track costs when the
simulation is run.

Cost accumulating items have their own fixed costs and variable cost rates. As they use resources,
wait for processing, and are processed, they acquire additional costs from resources, queues, and
activities.

The following information describes how and where to define costs.

Costs for cost accumulators
You specify costing information for a cost accumulator in the cost section or tab of the block that
originates the item. Each cost accumulator can have a fixed cost per item, such as its direct materi-
als cost, and a variable waiting or processing cost rate, which causes it to accumulate costs as it is
stored or waits for processing.

Cost accumulators are usually generated by the Create block. They can also be provided by a
Resource Item block, depending on a setting in its Cost tab.

Create block
Costing information is entered differently in the Create block depending on whether the block is
set to Create items randomly or to Create items by schedule.

• In the Receive Inventory
model described on
page 226 the Create
block generates crates
randomly. The Waiting
cost/hour and the Cost
per item for each crate
are defined in the cost
section of the block’s
Options tab, as shown above.

• When the Create block generates items by schedule, you must explicitly set _cost and _rate sys-
tem attributes (discussed in “Working with cost data” on page 231) for each cost accumulating
item. The value of the _cost attribute should be set to the cost accumulator's fixed cost. The

Cost section of Options tab; block set to “Create items randomly”

228 Activity-Based Costing
Modeling with activity-based costing

D
is

cr
et

e
Ev

en
t
value of the _rate attribute should be set to the cost accumulator's variable cost rate (waiting cost
per time unit), as shown below.

☞ The _rate attribute must be defined using the same time unit as the model’s default global time
unit. In the example, the time unit is hours, so the _rate attribute is the hourly rate.

Resource Item block
Cost accumulators can
also be provided for a
model using the
Resource Item block.
To do this, you must
choose that the block
Provide items that cal-
culate costing as: cost
accumulators in the
block’s Cost tab, a por-
tion of which is shown at right.

Costs of resources
The costs that will be assigned to items that require resources are defined in the Resource Pool and
Resource Item blocks. The Cost tab in those blocks has fields for entering the following informa-
tion:

• The cost per time unit rate, used to calculate and assign a time-based cost to the cost accumula-
tor while it uses the resource.

• The cost per use is a one-time cost assigned to the cost accumulator for the use of that resource,
such as a fixed service charge.

Create tab; block set to “Create items by schedule”

 Cost tab of Resource Item block, providing cost accumulators

Activity-Based Costing 229
Modeling with activity-based costing

D
iscrete Event
In the Receive Inven-
tory model described
earlier, cost rates for the
laborer are defined in
the Resource Item’s
Cost tab. The block’s
dialog indicates that
items stored in the
block are resources, as
seen at right.

☞ For the Resource Item block to provide resources, the Cost tab must be set to Items are:
resources, the default choice. Otherwise the items will be cost accumulators, as discussed earlier.

Activities
You can also define cost information in activity-type blocks; those costs are accumulated by each
item the block processes. The activity-type blocks are the Activity, Convey Item, Transport, and
Workstation. Within the Cost tab of these blocks, enter a cost per time unit and a cost per item:

• The processing cost per time unit is used to calculate the time-based processing cost of each item
that passes through the block.

• The cost per item is a fixed cost added to every item that passes through the block.

Combining resources with cost accumulators
As discussed in “Modeling resources” on page 209, there are two ways that items can use resources.
One method is to batch a resource item with another item. While batched, the resource item is in
use and cannot be used by another item until it is unbatched and returned to the Resource Item
block. The second method is to use the resource pool blocks, which act as a constraint on the flow
of items throughout the model. This section discusses how to properly use these two methods
when performing ABC.

Batching and unbatching resources with cost accumulators
The Resource Item block holds resources for use in the model. When batching a resource item
with a cost accumulator, the resource’s cost rates are automatically stored with the cost accumula-
tor and used in any subsequent cost calculations.

☞ A maximum of two separate types of resource items can be combined with a cost accumulator at a
time. For instance, one or more worker resources from a Resource Item block and one or more cart
resources from a different Resource Item block.

To unbatch a resource and remove its cost rate information from the cost accumulator, you must
select Release cost resources as the Unbatch block’s behavior. This choice tells the block to modify
the information stored with the cost accumulator to indicate that the resource has been released.

☞ If the Unbatch block’s behavior is set to Create multiple items, the items released by the block
will be identical to the item which entered the block. In other words, there would be multiple cop-
ies of the cost accumulator, and each copy would still be joined with the resource.

 Cost tab of Resource Item block, providing resources

230 Activity-Based Costing
Modeling with activity-based costing

D
is

cr
et

e
Ev

en
t
Multiple Resources model

In the example model, the cost accumulator is initially batched with 2 of Resource A and 2 of
Resource C. When multiple resources are batched with a cost accumulator, they may be released all
at once (as with Resource A), released incrementally (as with Resource C), or remain with the cost
accumulator. Whenever a resource is batched or released, the cost array of the cost accumulator is
updated to reflect the current number of resources in use. (The cost array is described in “Combin-
ing resources with cost accumulators” on page 234.)

There are three things to remember when batching resource items with cost accumulators:

1) A resource will be released from the output connector that corresponds to the input connector
originally used to batch it to the cost accumulator. For example, if the resource entered the
Batch block through the “ItemsIn(2)” connector, it will be released through the Unbatch
block’s “ItemsOut(2)” connector.

☞ As in the Multiple Resources model, this could mean that one or more of the Unbatch block’s out-
puts will be unconnected and you will need to define that there will be zero items output through
that connector.

2) If an item is simultaneously batched with different types of resources, you must use different
connectors for each resource type when creating the batch. In the Multiple Resources model
above, Resource A uses connector “ItemsIn” and Resource C uses connector “ItemsIn(2)”.

3) When performing ABC, you are limited to two different types of resource items batched with a
cost accumulator item at one time. This limitation is not true, however, when modeling
resources using the resource pool blocks, as you will see below.

Cost accumulators and the resource pool blocks
As described in “Resource Pool method” on page 209, as cost accumulating items pass through a
Queue block in Resource Pool mode, resources are allocated to the items. When this happens, the
cost rate of the resource pool unit is automatically stored with the cost accumulator and used in
any subsequent cost calculations.

When a resource pool unit is released using the Resource Pool Release block, the information
stored with the cost accumulator is modified to indicate that the resource has been released.

Multiple Resources model

Activity-Based Costing 231
Modeling with activity-based costing

D
iscrete Event
Unlike what happens where resource items are batched with other items, there is no limit to the
number of different types of resources a cost accumulator can use when using the resource pool
blocks. Furthermore, the two methods of modeling resources (batching resource items and
resource pools) may be used in conjunction with each other.

Combining cost accumulators
The Batch block can be used to combine cost accumulators arriving from one or more paths. This
may be used in conjunction with an Unbatch block, for instance to combine cost accumulators for
processing and separate them after processing has been completed. In the Properties tab of both
the Batch and Unbatch blocks you can specify what the block should do with the cost values. This
is accomplished by selecting an Action for the _cost and _rate attributes.

Costing attributes when items are unbatched
For example, assume a Batch block combines three cost accumulators together and that while
batched, these items accumulate an additional $9.00 due to processing. When these cost accumu-
lators are unbatched, you can select one of the following actions for the _cost and _rate attributes
in the Properties tab of the Unbatch block:

• Preserved value. This option causes the cost accumulators to retrieve their preserved value, if
“preserve uniqueness” is turned on. In this case, the $9.00 is discarded.

• Batched value. With this choice, the $9.00 will be copied
to each of the resulting cost accumulators.

• Distribute. The value will be divided among each item
equally. In this case, $3.00 to each.

☞ For more information, see “Preserving the items used to cre-
ate a batch” on page 204 and “Properties when items are
batched” on page 199.

Working with cost data
To provide access to cost information, ExtendSim creates two attributes (_cost and _rate) for every
item in models that have costing. Since these are automatically created, they are considered system
attributes. If a cost is defined somewhere in the model, these attributes will appear in attribute
popup menus, shown below:

The information that is stored in these attributes depends on whether the item is a cost accumula-
tor or a resource, as described in the following table:

Attribute popup menu

232 Activity-Based Costing
Modeling with activity-based costing

D
is

cr
et

e
Ev

en
t
The attribute handling blocks in the Item library (Get, Set, and Equation(I)) can be used to read,
set, or manipulate these attributes. In addition, two statistics blocks in the Item library (Cost By
Item and Costs Stats) can be used to gather cost data.

Viewing Cost Data
You can use a Get block to read the _cost and _rate attributes of any item, then plot the data or use
the attribute value to perform additional calculations. For example, you can use a Get block to
read the _cost attribute of cost accumulators and connect the Get block’s _cost output connector
to a Plotter Discrete Event to plot the accumulated cost of each item that passes through. This is
shown in the model discussed in the following section.

Changing Cost Data
In most cases, it is sufficient to define the cost rates of the various cost drivers in a model and allow
ExtendSim to automatically calculate and track costs. However, there may be times when you need
to manipulate the cost values generated. The attribute handling blocks in the Item library (Get,
Set, and Equation(I)) can be used to accomplish this.

Change Rate model
For example, suppose the cost rates of a resource vary throughout the day. During peak times the
demand for the resource is high and the cost per time unit increases. This can be modeled using

Item type _cost attribute _rate attribute

Cost accumulator The accumulated cost of the item The item’s waiting or storage cost
(cost per time unit defined using the
model’s global time unit)

Resource The cost per use of the resource The resource’s cost per time unit
(defined using the model’s global time
unit)

Activity-Based Costing 233
Modeling with activity-based costing

D
iscrete Event
the Set block (Item library) and the Lookup Table block (Value library) to explicitly set the _rate
attribute of the resource as it exits a Resource Item block, as shown in the model below:

The table in the Lookup Table block has a different rates for the period between hour 4 and hour
6.

☞ A change in the rate will only affect resources as they exit the Resource Item block. Resources cur-
rently in use will not be affected until they are recycled back through the Resource Item and Set
blocks.

In the above model, a Get block reads the _cost attribute before the items exit the model. The
accumulated cost of each cost accumulator is then plotted. The plot (cloned onto the worksheet),
shows that the cost of the items increases during the period of time that the resources’ cost rates are
higher.

Gathering and Analyzing Cost Data
The Create, Resource Item, and Resource Pool blocks, as well as queue and activity-type blocks,
are capable of generating costs that get tracked with cost accumulating items. Additionally, each
cost-generating block displays the total cost it generated in its Total Cost dialog item.

You can also use the Cost By Item and Cost Stats blocks (both in the Item library) to gather sum-
marized cost information. The Cost By Item block reads and stores the _cost and _rate attributes
of all the cost accumulating items that pass through it. The Cost Stats block collects and displays
the total cost for each cost-generating block in a model.

Cost By Item block
Depending on selections in its dialog, the Cost By Item block lists the accumulated cost of each
item that passes through it, the time the item passed through the block, and the total and average
cost of all the items that have passed through. This block can also be used to list the cost of the
items sorted by type.

In the Sort By Type model (shown below) three different item types are generated by randomly
assigning a Type attribute of 1, 2, or 3. It costs $5.00 per hour to run the machine. The machine’s
processing time for, and therefore the cost of, each item varies by type. The Cost By Item block

Change Rate model

234 Activity-Based Costing
How ExtendSim tracks costs

D
is

cr
et

e
Ev

en
t
lists the costs of the items sorted by the Type attribute. As an item passes through the block, the
row corresponding to the value of the Type attribute (1, 2, or 3) is updated.

Cost Stats block
The Cost Stats block is useful to determine which blocks are contributing the most to the total
cost of the items being processed. See the help text of the block for a detailed description of how to
use the Cost Stats block.

How ExtendSim tracks costs
☞ The previous sections discussed how to perform ABC in ExtendSim. This section provides a more

detailed look at how ExtendSim tracks costs and is included mainly for informational purposes.

Setting the _cost and _rate attributes
When you define the cost or cost rate for a cost accumulator or resource (as discussed in “Defining
costs and cost rates” on page 226), ExtendSim will assign the value to the appropriate costing sys-
tem variable for that item. The fixed cost of the item is assigned to the _cost attribute and the vari-
able cost rate is assigned to the _rate attribute.

Combining resources with cost accumulators
Whether you use the resource item and batching method or the resource pools method to model
resources, two things happen when a resource is attached to a cost accumulator:

1) The value of the resource’s fixed cost is automatically added to the cost accumulator’s _cost
attribute.

If using the batching method, the resource’s fixed cost comes from the resource’s _cost attribute. If
using resource pools, the resource’s fixed cost comes from the Cost per use dialog item of the corre-
sponding Resource Pool block.

2) The resource’s variable cost rate and the number of resources used are stored in an internal pro-
gram structure called the cost array.

The cost array stores costing information for each cost accumulator in the model. ExtendSim uses
the data in the cost array to calculate the time-based cost contributed by any resources that are
combined with the cost accumulator. If using the batching method, the resource’s variable cost rate
comes from the resources _rate attribute. If using resource pools, the resource’s variable cost rate
comes from the Cost per time unit dialog item of the corresponding Resource Pool block.

Sort by Type model

Activity-Based Costing 235
How ExtendSim tracks costs

D
iscrete Event
When a resource is released by an Unbatch or Resource Pool Release block, the information stored
in the cost array is updated to indicate that the resource is no longer combined with the cost accu-
mulator.

Calculating costs
As previously mentioned, the Create block and activity, queue, and resource-type blocks are all
capable of generating costs. As these blocks process cost accumulators, they will automatically cal-
culate the cost and add it to the item’s _cost attribute. In addition, each cost-generating block will
update its Total Cost information. This dialog item displays the total cost contributed by that par-
ticular block only. The following sections briefly discuss how these calculations are performed.

In the Create block
When a cost accumulator is generated, ExtendSim will add the fixed cost (Cost per use) of the Cre-
ate block to the cost accumulator’s _cost attribute.

For each cost accumulator generated, ExtendSim also will add the fixed cost of the Create block to
its Total cost dialog item.

In activity-type blocks
When a cost accumulator enters an activity-type block, ExtendSim will add the activity’s fixed cost
(cost per item) to the cost accumulator’s _cost attribute. In addition, it will calculate the variable
time-based cost (the processing or transportation cost of the activity and the waiting cost of any
resources currently combined with the cost accumulator), and add it to the _cost attribute of the
cost accumulator.

For each cost accumulator that passes through the block, ExtendSim also will add the fixed and
variable cost contributed by that activity-type block (not including costs contributed by any
resources combined with the cost accumulator) to that block’s Total cost dialog.

In queue-type blocks
Queue-type blocks have a checkbox labelled “Calculate waiting costs”. If that checkbox is selected
when a cost accumulator enters a queue-type block, ExtendSim will calculate the time-based cost.
This is composed of the waiting or storage cost of the cost accumulator as calculated from the cost
accumulator’s _rate attribute and the variable cost of any resources currently combined with cost
accumulator. The time-based cost is added to the _cost attribute of the cost accumulator.

For each cost accumulator that passes through a queue-type block, ExtendSim also will add the
waiting cost calculated from the cost accumulator’s _rate attribute (not including costs contributed
by any resources combined with the cost accumulator) to that block’s Total cost dialog item.

In resource-type blocks
The Resource Item block is capable of provid-
ing items that are either cost accumulators or
resources, depending on selections in its Cost
tab, as shown at right.

If the block is providing cost accumulators, it
will generate costs similar to a queue-type
block.

If the block is providing resources, the total
cost of using the resources is calculated and displayed in the block’s Total cost dialog item. The cal-
culations are based on the resource’s utilization rate and cost rates defined in the block’s Cost tab.

Cost options in Resource Item block

236 Activity-Based Costing
How ExtendSim tracks costs

D
is

cr
et

e
Ev

en
t
Combining multiple cost accumulators
In manufacturing processes, different parts of the product may be worked on in parallel, then com-
bined later to form the final product. In these cases, multiple cost accumulators will contribute to
the cost of the final product.

Multiple Cost Accumulators model
For example, when a computer manufacturer prepares a system for an end user, the CPU and the
monitor must each be assembled then combined into one shipment. The CPU and monitor may
be worked on in parallel, then combined using a Batch block, as shown in the model below:

When the two cost accumulators, the CPU and the monitor, are batched together, two things will
happen:

• The _cost and _rate attributes of the input items are added together. The resulting cost accumu-
lator will have an accumulated cost equal to the combined accumulated cost of the input items
and a waiting cost rate equal to the combined waiting cost rates of the input items.

• Any resources, whether from batching or from a resource pool, that are combined with the input
cost accumulators will be combined with the cost accumulator that is output from the batching
block. Note that any rules or limitations associated with batching resources with items will apply
to the resulting cost accumulator (see “Batching and unbatching resources with cost accumula-
tors” on page 229).

Multiple Cost Accumulators model

Discrete Event Modeling

Statistics and Model Metrics
Statistically analyzing discrete event models

238 Statistics and Model Metrics
Commonly used blocks

D
is

cr
et

e
Ev

en
t
Remember that, by itself, simulation does not provide exact answers or optimize a system. Instead,
a well-built model will capture important data and report statistical results. These metrics should
provide the information needed for the analysis and decision-making process.

This chapter discusses specific methods for statistically analyzing discrete event models, such as:

• Gathering statistics for specific types of blocks

• Clearing statistical accumulators after a warm-up period

• Using the History block to get item information

• Using attributes to accumulate information about items

• Determining cycle time by timing the flow of items

• When to use time weighted statistics

For a more generalized discussions of statistical analysis, see also the following chapters:

• “Math and Statistical Distributions” starting on page 599

• “Analysis” starting on page 563

☞ The models illustrated in this chapter are located in the folder \Examples\Discrete Event\Statistics.

Commonly used blocks
The following blocks will be the main focus of this chapter. The block’s library and category
appear in parentheses after the block name.

Clear Statistics (Value > Statistics)
Clears statistics in other blocks, eliminating the statistical bias of the warm-up period.

Display Value (Value > Outputs)
Displays and outputs the value that is input.

History (Item > Information)
Records information about items and their properties, such as the value of an attribute, the
item’s arrival time, its priority, and so forth.

Information (Item > Information)
Reports item statistics such as a count of the number of items, the throughput rate, cycle
time, and the time between item arrivals.

Mean & Variance (Value > Statistics)
Calculates a mean, variance, standard deviation, and confidence interval.

Statistics (Value > Statistics)
Summarizes statistics for a particular type of block, such as activities or queues. Reports
results in a table. Information is calculated using a specified statistical method, which can
be customized.

Gathering statistics
The Statistics block (Value library) accumulates data and calculates statistics for a particular type of
block using a specified statistical method. In addition to the block number, block name, and the

Statistics and Model Metrics 239
Clearing statistics

D
iscrete Event
time the information was observed, this block displays metrics that are specific to the block type,
such as utilization or average wait time for activity-type blocks or the mean, variance, and standard
deviation of all the Mean & Variance blocks in the model.

The Queue Statistics model, located in the folder \Examples\Discrete Event\Statistics, uses the Sta-
tistics block to gather information about queues.

Since the Statistics block is used to gather information in continuous, discrete event, and discrete
rate models, it is discussed fully in “Statistics” on page 564.

Clearing statistics
At the start of a simulation run the queues are often empty and operations have nothing to process.
After the model has been running for a while, it gets to the point where it is functioning more like
the real system at normal operating levels. The interval from when the model starts to when it is
functioning in a steady or normal state is called the warm-up period.

The Clear Statistics block (Value library) is used to reset statistical accumulators for the blocks
specified in its dialog, eliminating the statistical bias of the warm-up period. For more information
about this block, see “Clear Statistics” on page 566.

Clearing Statistics model

In the Clearing Statistics model, statistics are cleared after 40 seconds, removing the warm-up
period for the model. This is seen by the utilization of 1 for Activity B when the model is run.
Unchecking the Clear activity statistics checkbox on the model worksheet causes the utilization of
Activity B to approach, but never actually reach, 1. This is due to the effect of the initial idleness of
the Activity B block at the start of the simulation run.

Using the History block to get item information
When building a model, it is important to start small, verify that the section you have built is
working as expected, then enhance that model section. The History block is particularly useful for
verifying model data because it provides important information about each item as the simulation
runs.

There are two ways to add a History block to a model:

• Connect it in series by dragging a History block from the Item library and connecting it
between other blocks so that items pass through it.

Clearing Statistics model

240 Statistics and Model Metrics
Using the History block to get item information

D
is

cr
et

e
Ev

en
t
• Connect it in parallel by right-clicking an item output connector and selecting Add History
block. This automatically connects a History block to the original block’s item output connec-
tor. If a History block is added in this manner, only its input connector is used. (Caution: Be
sure there is an Item library block connected to the original block’s item output connector, oth-
erwise its item will have no place to go.)

Each item that passes through the block (if it is connected in series) or is viewed by the block (if it
is connected in parallel) is allocated a row in the History block’s table. The table’s first column dis-
plays the item’s arrival time. Popup menus at the top of the other columns are for selecting addi-
tional information to display, such as the value of an attribute, an item’s property, and so forth. You
can choose to save item history with the model, show string attributes, and display Calendar dates.

☞ Since the History block can use a lot of memory, put it in the model during testing, then remove it
when you have verified that the section is working as expected. To automatically remove all of the
blocks that have been added by right-clicking, right click one of them and select “Delete all auto-
created History blocks”.

History model
The History model shows two
History blocks: one has been
physically placed in series between
a Queue and an Activity and one
has been auto-created and placed
in parallel to the Queue block.

Both blocks report the same infor-
mation (the item’s arrival time and
the value of an attribute called
Item arrival), as shown in the
cloned table in the model window.

☞ If a History block has been auto-
created and placed in parallel to
another block, there must be subsequent blocks that can pull the items in. This is discussed at
“Pulling and viewing” on page 247.

Verifying Information model
The example shown at the right
illustrates the use of the History
block to verify that batches are cre-
ated at the correct time with the
correct number of items.

The topmost Create block (labeled
Schedule Batches) schedules when
the batch is created and the Queue’s
length (L) output determines the
batch size. This causes all items
within the Queue to be batched.

History model

Verifying Information model

Statistics and Model Metrics 241
Accumulating data

D
iscrete Event
Accumulating data
There are various methods you can use to accumulate data. Attributes can be used to hold cumula-
tive values, such as the total weight of an assembly or the number of parts in a box. And the Hold-
ing Tank block (Value library) can accumulate total processing time to determine equipment
refurbishment schedules. Data can be accumulated at any step in the model, even when the item is
not being processed.

 It is important to not make the error of assuming that you can combine attribute values and then
accumulate them. See “Using the Holding Tank block to accumulate values” on page 252 for more
information.

Non-Processing model
In the Non-Processing model, one part from Stock and another from Manufacturing are com-
bined into an assembly. The stock part weighs 10 pounds and the manufactured part weighs
between 1 and 3 pounds. The model uses an attribute called Weight to track the weights of the
separate parts.

The Properties tab of the Batch block is set to sum the values of the Weight attribute for the com-
pleted assembly. After the parts are batched, an Equation(I) block increments the Weight attribute
by 0.5 pounds. At the loading dock, the weight of the current item is displayed as it leaves.

Processing model
If the data to be accumulated is dependent on processing, you can accumulate values using a Hold-
ing Tank block (Value library) connected to the PT (process time) connector on an Activity block.
For example, to accumulate the total amount of processing time parts required, as an indication of
when the processing equipment needs to be refurbished.

Non-Processing Model

Processing model

242 Statistics and Model Metrics
Time weighted versus observed statistics

D
is

cr
et

e
Ev

en
t
In this model, each time an item leaves the Activity, its processing time will be added to the value
in the Holding Tank.

Time weighted versus observed statistics
The Mean & Variance block (Value library) can calculate either a time weighted or observed statis-
tic:

• If Use time weighted statistics is checked in the Mean & Variance block, the mean, variance,
and standard deviation are calculated by weighting the input value based on the simulation time.
This is derived by dividing the input value by the duration of that input value and then sum-
ming these over the course of the simulation.

• If Use time weighted statistics is not checked, the sum of the input values will be divided by the
total number of input values received, resulting in an observed statistic.

When using the Mean & Variance block, carefully consider the type of statistics that you want to
calculate. Some guidelines for whether or not to select the time weighted statistics option are:

• If the value that you are collecting statistics on has a value at every point in the simulation,
enable time weighed statistics. A good example of this is the number of items in a block
(reported by the L connector). At any point in the simulation, there are a certain number of
items in a block. To determine the average value, weight it over time.

• If the value that you are collecting statistics on only has a value at specific events, do not use time
weighted statistics. An example of this is the W or wait time connector. This connector only has
a value when an item leaves the block, which is a specific event. In that case, time weighted sta-
tistics should not be used.

Time Weighted Statistics model
The Time Weighted Statistics example shows the difference between the two methods of calculat-
ing statistics and how they are calculated.

Comparing the weighted and un-weighted approaches to the average queue length reported in the
Queue block’s Results tab, it is clear that not using time weighted statistics would give an incorrect
answer for this model.

Time Weighted Statistics model

Statistics and Model Metrics 243
Timing the flow of items in a portion of the model

D
iscrete Event
Timing the flow of items in a portion of the model
In addition to performance information that is directly available in a model, you may want to
determine cycle time – how long it takes an item to go from one part of the model to another. For
example, you may want to know how long a customer waits in line to place an order, or how long
it takes that customer to get served once the order is placed.

To see how to determine cycle time in a model, see “Cycle timing” on page 254.

244 Statistics and Model Metrics
Timing the flow of items in a portion of the model

D
is

cr
et

e
Ev

en
t

Discrete Event Modeling

Tips and Techniques
Helpful information for when you build discrete event models

246 Tips and Techniques
Moving items through the simulation

D
is

cr
et

e
Ev

en
t
This chapter provides some tips, techniques, and information you may find helpful when building
discrete event models. The chapter covers:

• Moving items through a simulation

• How items move: holding and pushing. viewing and pulling

• Implications of connecting to multiple item inputs

• An item’s travel time

• Using scaling for a large number of items

• Preprocessing

• Restricting items in a system

• Connecting to the select connector

• Issues for continuous blocks in discrete event models

• Setting time-based parameters using a Random Number or Lookup Table block

• Varying a distribution’s arguments for the Create block

• Accumulating values using a Holding Tank block

• Cycle timing

• Item library blocks

• The Executive

• Types of blocks: residence, passing, decision, and non-item

• Common connectors on Item library blocks

• Event scheduling

• Messaging in discrete event models

☞ The models for this chapter are located in the folder \Examples\Discrete Event\Tips.

Moving items through the simulation
In general, item input connectors on discrete event blocks will pull an item in, do something with
it, wait for the block connected to the item output connector to pull the item out, then pull in
another item. For example, the Activity block will pull items from preceding blocks, process those
items, and hold them to be picked up by another block.

It is important that you understand the ExtendSim discrete event behavior so you can avoid mak-
ing modeling errors.

How items move through the simulation
It is important to understand how items move through specific blocks so that you can avoid two
rare but possible pitfalls: losing items from the simulation and having items stop moving in the
simulation.

To avoid the problems discussed below, you should probably connect Create blocks to queues so
that items do not get lost and connect the History block in parallel with other blocks that will
actually pull in the items.

Holding and pushing
Item library blocks treat their output items in one of two ways:

Tips and Techniques 247
Moving items through the simulation

D
iscrete Event
• Most blocks hold the item and it leaves only when another block pulls it in.

• When set to create items randomly, by schedule, or infinitely, the Create block pushes the item
from the block when it is generated, regardless of whether it will be picked up by another block.
The Create block has to push items out, because those items are created within the block and are
arrival time related.

Avoid this pitfall
When a Create block pushes an item and
it is not picked up, the item disappears
from the simulation. Generally this
would only be used in certain very spe-
cific types of models. In most situations
where the Create block is set to create
items randomly, by schedule, or infi-
nitely, follow the block with a queue to
collect the items and hold them, so that
all the items generated are available for
the rest of the model.

Of course, if the Activity has an infinite capacity, it is not necessary to place a queue after the Cre-
ate block.

 A Create block set to Create items infinitely should never be connected to an infinite capacity
queue, since generating an infinite supply of items would overwhelm the system.

Pulling and viewing
There are two ways a block’s item input connector can have access to an item: it can pull an item
from the preceding block (as most connectors do), or it can simply view an item that is waiting at
the item output of the preceding block. If an item input connector pulls an item in, it has access to
the item for processing. However, if an item input connector only views items, it does not have
direct access to them, it can only sense their presence at the preceding output connector.

The particular connectors that only view items (not pull them) are:

• The Gate block’s sensor connector when it is set to Type: area gating or its demand connector
when the block is set to Type: conditional gating with items.

• The item input connector on the History block, if the block has been added in parallel to
another block. This is shown below and described in “Using the History block to get item infor-
mation” on page 239.

Unwise:

Wise:

248 Tips and Techniques
Moving items through the simulation

D
is

cr
et

e
Ev

en
t
Avoid this pitfall
When one block holds an item and that
item is only viewed by another block,
the item does not move through the
simulation and is blocked. This is never
desired.

For example, both screenshots to the
right show a History block that has
been auto-created and is viewing items
in an Activity block. In the top (error)
screenshot, after the Activity block has
finished processing its first item, the
item will have nowhere to go since it is
blocked.

Connections to multiple item input connectors
You can connect from one item output connector to as many item input connectors as you want.
However, since items can only be in one place at a time, the first connector to pull in the passed
item gets it and the other connectors do not.

Furthermore:

• If more than one input on a single block is free, the item will arbitrarily go to any available
input. (Note that the selection is arbitrary – not random.)

• If more than one block is free to accept the item, the item will go to the block that was first con-
nected in the model. This is shown in “Implicit routing” on page 151 and “Simple parallel con-
nections” on page 166.

It is more typical that you would want to specify which input connector, or which block, would
get an item. For more information, see “Items going to several paths” on page 149.

 Unless it is completely unimportant in the model, you should always use the Select Item In and
Select Item Out blocks to explicitly state how items should be routed. Otherwise, the order in
which their connections were made will dictate the routing.

An item’s travel time
In a discrete event model items travel from block to block as dictated by the connection lines. The
lines between blocks indicate the path of the movement, but they don’t provide any delay to the
items.

In most cases, travel time is insignificant and can be safely ignored. Where an item’s travel time is
significant to the model, you can:

• Increase the delay time of destination blocks to compensate for the travel time

• Specify a minimum wait time in a Queue block’s Options tab

• Explicitly set a travel time in a Transport or Convey Item block, as discussed in “Transportation
and material handling” on page 185. (You can easily add a Transport block between two blocks
by right-clicking the leftmost block’s output connector and selecting “Add transport block”.)

Error:

OK:

Tips and Techniques 249
Moving items through the simulation

D
iscrete Event
Using scaling for large numbers of items
In discrete event modeling problems, the number of items that need to be processed through the
simulation may be quite large. This will slow down the execution of the model and increase the
amount of memory required. It is often possible (and non-destructive to the validity of your
results) to scale down the number of items passing through the model. For example, if there is one
item representing a single log in a simulation of a lumber mill, the same model could quite possi-
bly run faster, and equally well, with one item representing ten logs.

When you make scaling changes to a model of this nature, it is very important to reflect the
changes everywhere in the model. Thus, if an activity that represented a saw in the lumber mill was
set to take one time unit to process an item (one log) before, it must now take ten time units to
process the same item (ten logs) after the scaling.

☞ While scaling can sometimes be a useful approach, the Rate library is specifically designed to
model high volume and/or high speed systems. In most cases, using the Rate library is superior to
item scaling. The Rate library is available with the ExtendSim AT and Suite products.

Preprocessing
You sometimes want to have all the items available at the beginning of a simulation instead of gen-
erating them as the simulation proceeds. For instance, if you need some random orders presented
to the model in sorted order, you might want to sort them before the simulation starts. This is dif-
ficult under normal circumstances since the first order would begin traveling through the simula-
tion as the second one was being created. There is an easy method that will cause ExtendSim to
create lots of items, store them in a queue, and release them.

Set the initial value in a Resource Item block to the num-
ber of items you want to generate. Connect the Resource
Item block to a Set block where you attach item proper-
ties (priority, attribute, etc.). Then connect to a Queue
that sorts based on the desired item property.

When the model is run, all the items will travel from the
Resource Item block to the Queue on step zero. This
makes the items, with all their properties, available to the rest of the model at the start of the sim-
ulation.

☞ If there are many items in the Resource Item block, the status bar may show the phrase Initializ-
ing Data. As soon as the preprocessing is done, the timer will settle into a more useful number.

Restricting items in a system
As part of a model you may want to have a section composed of a group of blocks in which only
one item (or a limited number of items) can be anywhere in the section at a time. For example,
assume you are modeling a manufacturing process with a paint room. There are many blocks that
represent the steps in the paint room but only two items are allowed in the entire paint room at a
time. New items must be restricted from entering the room until one or more items leave.

When set to Type: area gating, the Gate block is perfect for this because its sensor connector tells it
each time an item has reached the end of a system. The number of items allowed are set in the
Gate block’s dialog; in this case, two. Put the Gate block at the beginning of a system; at the end of
the system, run a parallel connection from the output of the last block to the Gate block’s sensor
connector.

Preprocessing

250 Tips and Techniques
Continuous blocks in discrete event models

D
is

cr
et

e
Ev

en
t
In this example, the paint room
is represented by two Activity
blocks. The Gate block will
pass the first two items it
receives into the paint room,
then only let a new item pass
when it sees the first item at its
sensor connector. As each item
leaves the paint room, a new
item can enter. Note that the sensor connector doesn’t accept any items; it only views them as an
indicator of their position in the model.

☞ Another, more flexible, approach is to use a Resource Pool block to restrict items in a section of the
model. This is useful when you need to track statistics on utilization, or if you have multiple flows
of items accessing the same physical space.

Connecting to the select connector
The select connector is used to
control the behavior of the Select
Item In and Select Item Out
blocks. If the select connector gets
its value from a Get block, you
should avoid putting Set blocks,
activities, and queues between the
Get block and the Select block.
These blocks can alter the value sent to the select connector or delay the item so that the Select
block routes the wrong item.

For instance, the model segment shown at the left of the above screenshot will work properly. The
one shown to its right may not work correctly, because the item to be routed may still be in the
Activity block.

Continuous blocks in discrete event models
Value library blocks can be considered passive blocks in discrete event models. In most cases,
blocks from the Value library will not recalculate unless told to do so by an Item library block. This
has important ramifications for the behavior of Value library and other continuous blocks in dis-
crete event models.

When an Item library block needs a new value at one of its value input connectors, it will send a
message out that connector to the connected Value library block, requesting a new value. Likewise,
when an Item library block has calculated a new value at one of its value output connectors, it will
send a message to the connected Value library block notifying it of the change. Typically these
messages will cause the Value library blocks to recalculate. The messages are then propagated to all
other connected Value library blocks.

In discrete event models, most blocks from the Value library typically neither post events to the
Executive nor receive event messages from the Executive. Furthermore, Value library blocks do not
recalculate on each time step in discrete event models as they do in continuous models. Rather,
they are only alerted to recalculate if they receive a message from an Item library block. And most
Item library blocks are triggered to action only by the arrival of an item. Complications can arise if
a Value library block does not get a message from an Item library block when you expect or want it
to recalculate.

Restricting items

Safe and unsafe connections to the select connector

Tips and Techniques 251
Continuous blocks in discrete event models

D
iscrete Event
☞ Some Value library blocks, such as the Clear Statistics and the Lookup Table, do generate events in
a discrete event model because they need to perform a specific action at a scheduled time.

To prevent modeling errors, it is helpful to understand this relationship between Item and Value
library blocks. Common situations where this is important include:

1) Setting time-based parameters using connections from a Random Number or Lookup table
block. This is described on page 251.

2) Varying an argument for a Create block’s distribution with a Lookup Table where there is the
possibility of a message being ignored. This can cause a lot fewer items to be created than
expected, as discussed on page 252.

3) Using a Holding Tank block to accumulate the result of a calculation performed on two or
more values coming from Item library blocks. If not modeled properly, the Holding Tank can
get duplicate messages and will have incorrect results. This is described on page 252.

☞ For a detailed discussion about messaging between discrete event and continuous blocks, see
“Value input and output connector messages” on page 261.

Setting time-based parameters using connectors
Some time-based parameters can be set using a connector value. In these situations, the value sent
to the input connector must be defined in the time unit specified in the receiving block. The fol-
lowing examples illustrate issues you should be aware of.

Random Number block
Assume you want the delay for an Activity block to be approximately 30 minutes and you connect
a Random Number block to the Activity’s D input connector. If the local unit of time for the
Activity is minutes, you would set the Random Number block to generate numbers with a mean of
30. However, if the Activity block used hours as its local time unit, the Random Number block
should be set to generate numbers with a mean of 0.5.

☞ It is a modeling error to expect the Random Number block to create random values at each event
in a discrete event model. The only time this Value library block will be activated to output a new
value is when it receives a message on one of its connectors. In the above example, the Random
Number block will get a message each time an item arrives to the Activity block, so each item will
get a random delay time. For more information, see “Value input and output connector messages”
on page 261.

Lookup Table block
It is possible that the numbers in one column of a block are based on the time unit for that block,
and the numbers in another of its columns are based on the time unit for a second block. An
example of this is described in “Choosing time units for the columns” on page 113.

Varying a distribution’s arguments
It is common to use another block to specify the arrival intervals by varying the argument (such as
the mean) of a distribution in the Create block. To avoid unexpected results, it is important to
understand what happens in the Create block when you do this. The Create block’s default behav-
ior is to send a message to the Executive block giving an arrival time, called “nextTime”, for the
next item based on the current input parameters. When simulation time reaches nextTime, the
Executive block sends a message to the Create block. The Create then releases the item and gener-
ates a new nextTime based on the current values of the input parameters. For the period of time

252 Tips and Techniques
Continuous blocks in discrete event models

D
is

cr
et

e
Ev

en
t
between releasing items, the Create block will not react to changes in the input parameters. If the
inputs change drastically, this can cause unexpected results as shown in the following example.

Lookup Table example
Assume you connect a Lookup Table block to the mean
input connector of a Create bock, varying the interarrival
mean according to the schedule in the table at right.

For this example, both the Time and Output 1 columns
of the Lookup Table block are defined using hours as the
time unit. The mean for the interarrival time is 12 hours
except for the period between hours 6 and 14 where the
mean is 0.5 hours. Because the mean is only an average,
it is possible for the Create block to generate an item at time 0 with an arrival time of 14 or more.
If that happens, the Create block will get the message that the mean should have changed to 0.5
between hours 6 and 14, but it will ignore it. In this case, the number of arrivals will be much less
than expected.

The Options tab of the Create block has a check box labeled Interarrival time changes occur
immediately. When checked, it will cause the Create block to immediately respond to changes to
any input parameter. In the case of the above example, the Create block would recognize that the
mean had changed from 12 to 0.5 at time 6. It would then generate a new random number for the
arrival time using the new input values.

Using the Holding Tank block to accumulate values
When accumulating data in a model, it is important to not make the error of assuming that you
can add attribute values and then accumulate them.

Incorrect approaches
Assume you want to accumulate the sum of two attribute
values. Your first intuition might be to add the two
attribute values together and send the result to a Holding
Tank block (Value library).

Two incorrect approaches to do this are shown at right.
In the first case the attribute values are obtained from
two Get blocks; in the second case the attribute values
are captured from one Get block. In both cases the Hold-
ing Tank will give incorrect results.

Each time an item passes through a Get block, a message is sent
out each value output connector. The way this been constructed,
the passing of one item will result in two additions being con-
tributed to the Holding Tank block.

Attributes Error model
The Attributes Error model illustrates the modeling problem
and some potential solutions. The problem with this model is
clear if you look at the numbers, 11 and 42 respectively, displayed by the Exit and Display Value
blocks. Since the values of attribute A and attribute B are both 1, the accumulated total displayed

Lookup Table’s table

Incorrect approach #1

Incorrect approach #2

Tips and Techniques 253
Continuous blocks in discrete event models

D
iscrete Event
on the Display Value block should only be twice the value displayed in the Exit block; clearly this
is not the case in this model.

The reason for the modeling problem shown above involves the message passing system in discrete
event models. Individual items travel through the Get blocks sequentially. As an item passes
through the first Get block, the block sends a message and the value of the attribute to the Math
block (Value library). The Math block then recalculates and sends a message and the value to the
Holding Tank block (Value library). When the item moves to the second Get block, it will send a
message to the Math block again. This causes the Holding Tank block to get two messages and two
values for each item that passes through the system. This kind of problem will occur in any discrete
event system where there are multiple connections to a Holding Tank block (either directly, or
indirectly as shown above) or if one Get block was used with two outputs.

The Attributes Error model includes four examples: the problem and the three solutions discussed
below.

Solution #1: two Holding Tank blocks
One way to solve this problem is to accumulate the
attributes’ values separately using two Holding Tank
blocks. The contents of the Holding Tanks are then
added together. This prevents the “double counting”
of the previous example, because each Holding Tank
block receives only one message and value per item
that passes through the Get block it is attached to.

Solution #2: the Equation(I) block
Another solutions is to perform the calculation in the Equation(I)
block (Item library). The Equation(I) sums up and accumulates the
attributes in one step, so it avoids the double messaging problem alto-
gether. The equation entered is:

Accumulate = Accumulate + a + b;
Result = Accumulate;

where accumulate is a static variable and a and b are the two attribute values from the item entering
the Equation(I) block. The equation adds the two attribute values to the accumulated value, then
sets the output to the accumulated value.

As an alternative, instead of both summing the attributes and accumulating, the Equation(I) could
just sum the attributes and output that value to a connected Holding Tank.

Attributes Error model: Problem

254 Tips and Techniques
Cycle timing

D
is

cr
et

e
Ev

en
t
Solution #3: the Stop Message block
You can also use the Stop Message block (Utilities
library) to prevent the Math and Holding Tank blocks
from receiving two messages for every one item. This
block stops messages from being passed through a
value connection; it is designed to solve problems of
this nature.

The Stop Message block is connected between the
value output of Get 1 and the value input on the Math
block. This will prevent the first message from reaching the Math block but will allow the value to
be passed.

Cycle timing
The amount of time one block takes to process an item is known as the delay or processing time.
Cycle time is the time an item takes to travel through a group of blocks. If there is no blocking in a
model (that is, if all items leave their blocks exactly at the end of their delay time), the cycle time is
the sum of the delay times for the section being measured. In most situations, this would rarely
occur, and cycle time is usually more than the sum of the processing times. For instance, it is com-
mon that an item cannot leave a block because the next block is still processing its item.

To track an item’s cycle time, use either the Timing attribute feature (if the item is being tracked
from its origin) or a Set or Equation(I) block with an Information block (if the item is being
tracked from some place other than its origin).

These methods are discussed below. In each case,
the Information block reads the attribute and cal-
culates the difference between when the item
started the cycle and when it ended. The dialog of
the Information block displays the current, aver-
age, minimum, and maximum cycle time for all
items with the specified attribute. Its output con-
nectors report the count of items, the time
between items, their cycle time, and the throughput rate.

Using the Timing attribute feature
If you are tracking the item from its origin, use the Timing attribute feature in the Create block’s
Options tab to create a new value attribute and assign it to all items that are generated by the Cre-
ate block. Then place the Information block at the end of the section you want to observe and
select the name of the attribute as the Timing attribute in its dialog.

In the example shown at
right, a value attribute
named CycleTime has
been created in the Cre-
ate block, and the block’s
Options tab is set to
Timing: CycleTime.
The Information block is
placed after the Primer activity and is set to Calculate TBI and Cycle Time statistics, and its Timing
attribute: is also set to CycleTime. For this model, the Information block calculates the time

Cycle time portion of Information dialog

Cycle Time 1

Tips and Techniques 255
Item library blocks

D
iscrete Event
from when items were first created to when they finish being primed. This includes the time items
wait in the Queue.

Using a Set or Equation(I) and Information blocks
If you are tracking the item from some place other than its creation point, put a Set or Equation(I)
block at the beginning of the section you want to observe, create a new value attribute in that
block, and set the attribute to the current time. Then place an Information block at the end of the
section and enter the name of that attribute as the Timing attribute in its dialog.

In the example at right, an
attribute named CycleTime2
has been created in the Set
block. The Simulation Vari-
able block (Value library)
outputs current time and is
attached to the Set block’s
value input connector. For
this model, the Information
block calculates just the time
that the items take to go
through the priming and
drying processes.

Item library blocks

Executive block
The Executive block controls and performs event scheduling for discrete event and discrete rate
models. An Executive block must be placed to the left of all other blocks in a discrete event or dis-
crete rate model. Using it in a model changes the timing from continuous to discrete, and simula-
tion time advances when events occur, rather than periodically.

This block can be used to:

• Manually control when the simulation stops. The default is that a simulation stops at the end
time set in the Run > Simulation Setup dialog. You can also choose to stop the simulation when
the number at the Executive’s count input reaches a specified value.

• Allocate item availability. To conserve memory, this number should be something close to and
less than the maximum number of items that you expect to see in the simulation. The default is
that 10,000 items are initially available and additional items are made available in batches of
10,000.

• Declare string values for string attributes. A table in the Executive’s Attributes tab is used to
enter a descriptive text label (string) for each potential attribute value for a selected string
attribute. For more information, see “Creating a string attribute” on page 106 and “Attribute
types” on page 116.

• Manage all attributes. Tables in the Attributes tab allow you to select an attribute for renaming
or deleting, and display blocks that use the selected attribute.

• Manage flow units and select global and advanced options for discrete rate models. For more
information, see “Global and advanced options in the Executive” on page 364.

Cycle Time 2

256 Tips and Techniques
Item library blocks

D
is

cr
et

e
Ev

en
t
• Set information for the LP solver used in discrete rate models. For more information, see “LP
technology” on page 376.

☞ Unless you use string attributes, it is rare that you would need to make any changes in the Execu-
tive’s dialog. Most of its options are for advanced users.

Block types
As discussed on “Item connector messages” on page 262, Item library blocks pass messages
through item connectors. There are three types of item-based blocks that determine how the item
connector messages are handled:

• Residence-type blocks are able to contain or hold items for some duration of simulation time.
Some residence blocks post events and some do not.

• Passing-type blocks pass item through without holding them for any length of simulation time.
These blocks implement modeling operations that are not time-based; they usually do not post
future events.

• Decision-type blocks route the items through the model. These blocks choose a route based on
an item property, a random value, a sequence, or an input from a connector. Depending on
what options are selected in the block, a decision-type block may or may not be able to hold
onto items.

Why block types matter
Knowing these categories of blocks and how they relate to the processing of items will help you to
build better models. For example an item will not enter a passing block before it has been deter-
mined that there is space in the next downstream residence block. And when you debug models it
is useful to understand where the items can reside for any amount of time, as well as the time
required for an item to move from one residence block in the model to another. In addition, some
of the options in the blocks refer to specific block types. An example of this is the Transport block
where you can specify that the distance to the next block is from the Transport block to the next
non-passing (residence or decision) type block.

Table of block types
Not all of the blocks in the Item library fit neatly into these categories, but it is helpful to use the
categories as a framework for thinking about the messaging architecture. Following is a table of the
blocks in the Item library and their associated type.

Block Type Block Type

Activity Residence Queue Matching Residence

Batch Residence Read(I) Passing

Catch Item Passing Resource Item Residence

Convey Item Residence Resource Pool N/A

Cost By Item Passing Resource Pool Release Passing

Cost Stats N/A Select Item In Decision

Create Residence Select Item Out Decision/Residence*

Equation(I) Passing Set Passing

Tips and Techniques 257
Item library blocks

D
iscrete Event
* If an item is allowed into the Select Item Out block before the decision is made (see the dialog
check box), then it is a residence-type block. If the decision is made before the item enters the
block, then it is a decision-type block.

Common connectors on discrete event blocks
Many blocks use abbreviations or acronyms to indicate a connector’s purpose. Some of these repre-
sent more than one purpose and are context sensitive. The following connector labels appear on
many Item library blocks:

Executive N/A Shift N/A

Exit Residence Shutdown Residence

Gate Decision Throw Item Passing

Get Passing Transport Residence

History Passing Unbatch Residence

Information Passing Workstation Residence

Queue Residence Write(I) Passing

Queue Equation Residence

Connector Meaning

Δ Delta

Count

A Average cost (Cost By Item)

AD Accumulated demand (Gate)

AS Activity status

BT Blocked time

C Capacity (Activity, Workstation)
Current cost (Cost By Item)

CI Confidence interval

CT Cycle time

D Delay (Activity)

DB ExtendSim database

DT Down time (Activity)

DV Down value (Shutdown)

F Full (Activity, Queue)
Field of a database table (Read Item, Write Item)

I Interval between items

L Length of waiting line (Queue, Activity, Workstation)
Length of line (Information - will be 0 or 1)

Block Type Block Type

258 Tips and Techniques
Event scheduling

D
is

cr
et

e
Ev

en
t
Event scheduling
ExtendSim moves items in a discrete event model only when an event happens. Events are con-
trolled by the Executive block and only occur when particular blocks specify that they should.
Blocks that depend on time cause events to happen at the appropriate time. For instance, an Activ-
ity block holding an item until a particular time will cause an event to be posted to the ExtendSim
internal event calendar. When the time is reached, the event occurs and the model recalculates its
data.

Blocks that do not generate events allow the blocks after them to pull items during a single event.
Thus a single event can cause an item to pass through many blocks if those blocks do not stop
them. For instance, a Set block could set the item’s attribute and pass the item to the next block in
the same event.

Discrete event and discrete rate simulations use the same method for updating the simulation
clock. Simulation models of this type are driven forward by event and the state of the model
changes only at event times.

At each event, blocks that have posted an event to the event calendar for the current time receive a
message notifying them that the time has arrived. Once all of the blocks have received their mes-
sages, the time for the next event is determined. Through this event scheduling mechanism the
simulation clock jumps from one event to the next.

LO Length out (Queue Matching)

MG Match group (Queue Matching)

NB Number blocked

P Priority

PE Preempt

PT Process time

Q Quantity

R Renege time (Queue)
Row (Cost By Item)
Record (Read Item, Write Item when ExtendSim database is selected)

RS Reset

SD Shut down

T Total cost (Cost By Item)

TBF Time between failures (Shutdown)

TP Throughput rate (Information)

TTR Time to repair (Shutdown)

U Utilization

UV Up value (Shutdown)

W Wait time for items leaving the queue

Connector Meaning

Tips and Techniques 259
Event scheduling

D
iscrete Event
Event calendars
ExtendSim utilizes a two-stage event calendaring method – the Executive block maintains a list of
all events for the model and time-delay blocks maintain their own event calendars.

☞ This two-stage event calendar is very efficient and flexible. Unlike single stage event calendars, rel-
atively little time is spent by the Executive in maintaining and searching the event list.

The Executive
The Executive block maintains a list of all event times for the model in its event calendar. At the
beginning of each simulation event, the Executive locates the next future event and sends a mes-
sage to each of the blocks in sequence that posted an event for that time. Once a block has com-
pleted processing its event, it will post its next event time to the Executive. If the block does not
have a future event time, it will post a very large value as its next event time, effectively removing it
from the list of pending events.

Blocks may have two or more entries on the Executive’s event calendar. This is because they have
different types of events that need to be processed. For example the Convey Item block has an
event that occurs when an item is able to enter the block and an event for when the item leaves the
block.

For more information about the Executive block, see page 255.

Internal event calendars
Each block that has a time delay associated with it (for example the Create, Activity, Pulse, and
Shutdown blocks in the Item library) maintains its own, independent next event time.

Blocks such as the Activity, Convey, or Shutdown block can have multiple future events (one event
for each item in the block) ongoing simultaneously. In this case, the blocks maintain their own
internal event calendar, posting only the earliest of these events to the Executive's event calendar.

Zero time events
As the simulation progresses, there are many times when it is useful to generate a zero time event.
This is done to allow an item to complete the process of moving into a block before the block
attempts to perform additional actions on the item. For this purpose, the Executive contains a cur-
rent events list. This is a short list of the blocks in the model that need to receive a message before
the simulation clock advances.

A prime example of this is the Queue block. When an item arrives to a Queue, a zero time event is
posted so that the Queue can return control to the upstream block that sent the item. The Queue
receives another message before the clock advances so that an attempt can be made to send the
item to the next downstream block. This feature enhances the efficiency and predictability of dis-
crete event models.

Event Scheduling model
A discrete event model is helpful in
understanding how event scheduling
works. For this example: items arrive,
wait at the first queue, are processed at
the first activity, wait at the second
queue, are processed at the second
activity, and leave through an exit.

In this model, there are three blocks that post events:

Event Scheduling model

260 Tips and Techniques
Messaging in discrete event models

D
is

cr
et

e
Ev

en
t
• The Create block posts an event for the creation of each item. The time between item arrivals is
0.6.

• The Activity 1 block posts an event for the earliest completion time of an item in the block. The
duration of this activity is 1.0.

• The Activity 2 block posts an event for the earliest completion time of an item in the block. The
duration of this activity is 0.5

As the simulation progresses through time, the event calendar in the Executive might look like this:

Notice how the next event time is always the lowest of all of the event times for all the blocks; this
is how a discrete event simulation works. Also, the table illustrates the concept of event scheduling
but does not show all of the detail of what is happening as the items move through the blocks. For
example, the Queue schedules a zero time current event as it moves the item through, but this is
not shown in the table.

Messaging in discrete event models
As discussed in “How ExtendSim passes messages in models” on page 533, the ExtendSim archi-
tecture allows application messages to be sent from ExtendSim to a model’s blocks and block mes-
sages to be passed between blocks.

Discrete event models use the same application messages as do continuous and discrete rate mod-
els. The block messages sent between Item library blocks are discussed below.

Block messages
Discrete event blocks have a sophisticated messaging structure for communicating with each other
and with blocks in the Value and Rate libraries. These messages can be categorized as:

• Event
• Value connector
• Item connector
• Block-to-block

Time
Create posts next
event time

Activity 1 posts
next event time

Activity 2 posts
next event time

Events

0.0 0.0 Infinity Infinity Item #1 is created

0.0 0.6 1.0 Infinity Item #1 begins service at Activity 1

0.6 1.2 1.0 Infinity Item #2 is created

1.0 1.2 2.0 1.5 Item #1 completes service at Activity 1
Item #1 begins service at Activity 2
Item #2 begins service at Activity 1

1.2 1.8 2.0 1.5 Item #3 is created

1.5 1.8 2.0 Infinity Item #1 completes service at Activity 2

1.8 2.4 2.0 Infinity Item #4 is created

2.0 2.4 3.0 2.5 Item #2 completes service at Activity 1
Item #2 begins service at Activity 2
Item #3 begins service at Activity 1

2.4 3.0 3.0 2.5 Item #5 is created

Tips and Techniques 261
Messaging in discrete event models

D
iscrete Event
Event messages
Event messages communicate between the Executive block and Item library blocks in a model. In a
discrete event model the simulation clock advances from one event to another. Each time the clock
advances, the Executive block sends event messages to the Item library blocks that have associated
themselves with that event. There are two types of events: future and current.

• A future event message occurs when the simulation clock reaches a time posted by a block. For
example, when an item enters an activity, the activity will post a future event to the Executive
corresponding to the item’s “finished time”. Once the simulation clock has advanced to this
future event, the Executive sends an event message to the activity, alerting it that the item has
finished processing.

• A current event message occurs when a block wants to be activated before the simulation clock
advances, but after it has completed its response to another message. For example, a queue will
post a current event message to the Executive as it is pulling in items. After all the items have
arrived to the queue, the Executive sends a current event message to the queue. This signals the
queue to try and push all the items out of the block.

☞ The only blocks in the Value library that post future events are the ones that provide values or per-
form actions at specific times. Examples are the Clear Statistics block that resets the simulation sta-
tistics at a scheduled time and the Lookup Table block that provides values at scheduled times.
Other Value library blocks lie dormant during a discrete event simulation unless they receive an
activating message (either directly or indirectly through another block) from an Item library block.

Value input and output connector messages
Blocks in a discrete event model send value connector messages either because a new number is
needed by an input connector or because the value of an output connector has changed. These
messages either request updated information for the input connectors or notify connected blocks
that the output value has changed.

• When a message is sent from an input value connector, the sending block requests an updated
connector value from the receiving blocks. Messages sent out the input connectors go only to
the outputs of the directly connected blocks.

• Whenever an output connector changes, messages are sent to all of the inputs of the directly
connected blocks. In this case, the sending block alerts the receiving blocks of a connector value
change. Blocks that receive messages at their input connectors may, if appropriate, propagate
messages:

• Out other input connectors to make sure that all input values are current

• To their output connectors to notify other blocks of the change in value

Through this mechanism, a single value change may cause any number of connected blocks to
recalculate, ensuring that any system dependencies are automatically evaluated. For example, if the
value of an input connector on an equation-type block changes, messages are first sent out the
other input value connectors if they are connected (ensuring the equation will have up-to-date
inputs prior to calculation.) Then, with updated inputs, the block recalculates its equation and
posts the new results on its output value connectors. Once the new results have been posted, mes-
sages are sent out the output connectors, alerting any connected blocks that the results have
changed.

262 Tips and Techniques
Messaging in discrete event models

D
is

cr
et

e
Ev

en
t
Example of value connector messaging
The sample model shown below illustrates how value connector messages work. In this example,
items arrive, an attribute is set to a random number, and the items are then processed at two work
areas (Queue and Activity blocks) in series. Three Value library blocks (Random Number, Math,
and Display Value) provide a random number for the attribute value, add the two queue lengths,
and display the sum of the lengths, respectively.

When an item arrives to the Set block a message is sent out its value input
connector. The Random Number block responds by providing a new random
number each time it receives a message. This simple messaging example is
shown at the right.

 In a discrete event or discrete rate model, the only time most Value library
blocks (such as the Random Number block) are alerted to do something is
when they receive a message on one of their value connectors. For instance, do
not expect the Random Number block to continuously output a stream of
random numbers in discrete event or discrete rate models.

In the more complex messaging case that
is shown to the right, when an item
arrives at the first queue its length will
increase by 1. Since this changes the
block’s L (length) output connector,
Queue 1 sends a message to all inputs
connected to L (in this case the Math
block). When the Math block receives
this message, it sends a message to the L
connector at Queue 2, ensuring that
both inputs are up-to-date before any calculation is made. The values of the two length connectors
are then added together and a third message is sent to the Display Value block, which then updates
its animation and dialog.

Item connector messages
Item connector messages (primarily wants, needs, and rejects) propel items through the model.
These messages use a conversation of messages to move items from one block to another. This
mechanism allows for items to be both pushed and pulled from one block to the next. How these
messages are handled depends on whether the block is a passing, residence, or decision block (see
“Cycle timing” on page 254.)

Pushing items
In the case of pushing, the upstream block first sends a wants message.

• If the downstream block is a passing block, it forwards the message to the next downstream
block through its output connector.

Example of value connector messages

One message sent

Three messages sent

Tips and Techniques 263
Messaging in discrete event models

D
iscrete Event
• If the downstream block is a residence block, it responds with either a needs message (if it can
accept an item) or a rejects message (if it is unable to accept an item based on its status).

• If the downstream block is a decision block, it determines the status of the decision and any
downstream blocks. It often does this by sending additional item or value messages and then
responding with a needs or rejects.

Pulling items
To pull an item, a residence block sends the wants message upstream. This wants message is passed
through the passing and decision blocks until it reaches a residence block. If the residence block
has an item that is ready to leave, then a needs message is returned. If no item is available, then the
residence block rejects the wants message.

Following is an example of pulling an item from an upstream block to a downstream block:

This is only the first step in the process of moving an item. A number of messages follow that pro-
pel the item through the network of blocks. More details about those messages can be found in the
Developer Reference.

Create sends
“wants” to

downstream block
Passing Block

Send wants to
next downstream

block

No

Yes

Do I need an
item?

Reject Item

Need Item

Flowchart for how items are pushed

Activity completes
processing and
sends a “wants”

upstream

Passing or
decision block

Send wants to
next upstream

block

No

Yes

Do I have an
item?

No item,
“ reject” wants

Item “needs” to
be taken

Flowchart for how items are pulled

264 Tips and Techniques
Messaging in discrete event models

D
is

cr
et

e
Ev

en
t
Block-to-block messages
Block-to-block messages update the status of other blocks in the model. Sometimes a block needs
to communicate with another block in the model, but there is no direct connection between them.
For example, if a change in the shift status occurs, a Shift block needs to notify all of the blocks
that reference that shift. These messages are sent ‘through the air’ to the blocks. In most cases, you
will not even be aware that these messages are being passed back and forth. The actual operation
and context of the message depends on the blocks involved in the conversation.

Discrete Rate Modeling

Introduction
Some things to know before you start

modeling discrete rate systems

“The question of doubt and uncertainty is what is necessary to begin;
for if you already know the answer, there is no reason to gather any evidence about it.”

— Richard P. Feynman

266 Introduction
What this chapter covers

D
is

cr
et

e
R

at
e

Discrete rate modeling is based on rates of flow that change when events occur. In a discrete rate
system, quantities of “flow” (material, product, data, etc.) are located in one or more parts of the
model. During the simulation run, the flow moves from one location to another at a certain speed,
called the effective rate. The movement between blocks that hold or route the flow follows paths,
rules, and constraints that are set in the model.

As discussed in “Modeling methodologies” on page 43, the primary modeling approaches are con-
tinuous, discrete event, and discrete rate. In some situations (listed later in this chapter), simulat-
ing a system using discrete rate modeling is a more natural fit compared to using continuous or
discrete event modeling. Processes that are event driven, rather than time driven, do not lend
themselves to continuous simulation. Systems where there is no “item” that can be identified, or
when there are so many items that identification is meaningless, can be more naturally represented
using a rate-based approach rather than discrete event modeling. Furthermore, rate-based models
run faster than discrete event models and are applicable to thinking in terms of flows, tanks, rates,
and so forth.

☞ Any system or process that involves a quantity of something that is stored at one place, then moves
to another place at a rate per time unit, can be simulated using discrete rate modeling.

Like continuous and discrete event modeling, rate-based modeling can help you perfect processes
and products. It is useful for planning resource capacity by determining the rate at which products
are being processed or sold. It is helpful for testing various schedules to maximize process effi-
ciency. And it can be used to analyze the effect of processes on the internal and external environ-
ment.

☞ For information about discrete rate modeling in general, including how it differs from continuous
and discrete event modeling, see “Modeling methodologies” on page 43.

What this chapter covers
• Discrete rate application areas

• Simulating discrete rate systems

• Blocks for doing rate-based modeling

• An introduction to some important discrete rate concepts:

• LP technology

• Layout of a discrete rate model

• The Executive block

• Connectors and connections

• Flow units and unit groups

• Flow rates: constraining, effective, infinite, and potential

• How the Discrete Rate module is organized

Discrete rate application areas
Discrete rate simulation is used in two diverse areas:

• To model commodities that would normally be considered “stuff ” rather than “things”, for
example powders or liquids, gases and other fluids in the following areas:

• Petrochemical

• Manufacturing

Introduction 267
Simulating discrete rate systems

D
iscrete R

ate
• Mining

• Water Treatment

• Pharmaceutical

• Metallurgy

• Electric power transmissions

• Any other industry that processes commodities in bulk or batches

• To model “things” that are so numerous that it would be inconvenient or overwhelming to
model them individually:

• Food and beverages (tea bags, cereals, soda cans, cheese)

• Drugs, cosmetics, and biotech (pills, bottles of lotion)

• Milling (carpet and paper)

• Data storage and manipulation (samples, messages, packets)

• Any other industry that mixes, fills, or packages products on high-volume or high-speed
lines

Thus discrete rate models simulate flows that are either homogeneous (identical goods that are the
same throughout and do not vary in essential characteristics) or heterogeneous (numerous items
that are clearly distinct, but cannot be easily sorted or separated).

☞ As will be seen in the Discrete Rate Tutorial, it is common for discrete rate models to also include
portions that are discrete event processes.

Simulating discrete rate systems
Discrete rate modeling takes a very different approach compared to continuous or discrete event
modeling.

Comparison to discrete event and continuous modeling
The Value library blocks in continuous models and the Item library blocks in discrete event mod-
els act individually and independently to calculate values or move items. They may send messages
and communicate with each other, but there is no overall global connection between the blocks in
those types of models.

By comparison, Rate library blocks are dependent on each other and have an effect on one another.
Discrete rate models are divided into areas where the included blocks are not independent but
instead are part of a global system. The blocks within each area communicate through an internal
linear program (LP) that provides the global oversight for that area. Each block in an LP area con-
tributes a part of the LP equation for the area; the result of the LP calculation is the effective rate
for that part of the model. This system is optimized such that, if a particular area does not need to
recalculate, it won’t.

Another major difference is how items move in a discrete event model compared to how flow
moves in a discrete rate model.

• In a discrete event model, items move from one block to another instantaneously. An Item
library block might hold an item for some simulated period of time, but there is no constraint
on the movement of items between blocks and that movement is instantaneous.

• By contrast, the movement of flow in a discrete rate model must take some time. In the absence
of any constraints, the rate of flow would approach infinity and the flow would move instanta-

268 Introduction
Simulating discrete rate systems

D
is

cr
et

e
R

at
e

neously from one point in the model to another; this is never correct. For this reason, flow
movement must be constrained by rates and conditions that are built into the model, and a lack
of appropriate constraints is a modeling error that will stop the simulation run.

Discrete rate models
Discrete rate models are concerned with flows, constraints, rates, events, storage capacity, and rout-
ing.

• Flow is what is stored in and moves through a discrete rate system. Flow can be almost anything,
as long as it is not important that specific properties of each part of it be directly identified. For
instance, liquids, electronic transactions, and cereal can all flow in a model. Flow is expressed
and measured in flow units – either generic units or defined units such as packets, gallons, trans-
actions, boxes, etc.

• Flow moves through flow connections in one direction, from one block’s outflow connector to
another block’s inflow connector. It moves at a rate that is expressed as a quantity of flow per
time unit – the number of packets per second, gallons per minute, boxes per hour, and so forth.

• The discrete rate architecture maximizes the movement of flow. Unless limited in some manner,
flow would approach infinity and overwhelm the system. Because the discrete rate architecture
maximizes the movement of flow, every model must contain one or more constraints (typically a
Valve) to limit the rate of flow to something less than infinity. Some examples of constraints
include the presence or absence of flow in a Tank, the maximum flow rate defined by a Valve
block, and the rule chosen to distribute flow in a Diverge block.

• While constraints determine the maximum rate that flow can move, the effective rate is the
actual rate of movement. The effective rate for each section of the model is determined using
linear programming (LP), given the set of constraints that has been defined by the model's struc-
ture. The model’s set of effective rates define how fast flow actually moves from one section of
the model to another. As the simulation clock advances from one event to the next, the quantity
of flow which has moved is updated.

• The state of a discrete rate model changes only when an event occurs. An event might be a Tank
that becomes empty or full, a maximum rate that changes during the run, a block that changes
its output proportions, and so forth. Each time an event occurs, ExtendSim makes a calculation
to determine, at that moment, what the effective rates are in each part of the model. Any portion
of the model that can potentially be impacted by the new event has its effective rates recalcu-
lated. This takes into consideration the constraints put on the rates, the location of the flow, and
storage capacity in the system.

• Each discrete rate model is conceptually divided into unit groups, rate sections, and LP areas.
These divisions are handled automatically and internally, and are determined by the type of
blocks used in a model, how the blocks are connected, the settings in the blocks, and so forth.
Unit groups are introduced on page 271, rate sections are described on page 303, and LP areas
are discussed on page 306.

A connection between two rate-based blocks can thus be viewed as an infinitely small pipe that is
always full of something at a constant pressure – as soon as the effective rate is more than 0, the
pipe’s contents move at the highest rate possible based on all the constraints given by the system.
When the effective rate is 0, the pipe is still full but the flow instantly stops.

Introduction 269
Blocks for building discrete rate models

D
iscrete R

ate
☞ While the ExtendSim discrete rate architecture preserves mass balance in the system, no explicit
consideration is given to pressure, energy, momentum, or temperature, since these are beyond its
scope.

Blocks for building discrete rate models
The blocks in the Rate library are optimized for creating discrete rate models. In addition, you can
build custom discrete rate blocks using the ExtendSim development environment.

Rate library
The Rate library allows you to simulate a wide range of flow systems by
connecting blocks together and entering parameters. The complexity of cal-
culating the effective flow rate and the generation of events that dictate a
new rate calculation are handled within the blocks, alleviating the need to
do any programming in the ModL language.

The blocks in the Rate library can be categorized as follows:

• Some blocks hold and provide flow

• Other blocks impact the effective rate of the flow

• The remaining blocks are for routing flow

These blocks are optimized for modeling anything flowing through a sys-
tem. They incorporate concepts like constraints, goals, flow prioritization,
mixing, batching, unbatching, level indicators, and so forth. The blocks
have been designed to meet most rate-based flow needs so you can quickly
and easily perform complex high-volume/high-speed modeling tasks.

As mentioned in the Tutorial module, discrete rate models can use continuous blocks from the
Value library for data management and model-specific tasks. Using Value blocks with Rate library
blocks does not change the fundamental architecture of discrete rate models; they will still be
event-based rather than use the time-based architecture of continuous models. Discrete event
blocks from the Item library can also be used in discrete rate models; they are helpful for represent-
ing entities such as tankers, airplanes, people, and so forth that interface with flow.

☞ See “Rate Library Blocks” on page 731, “Item Library Blocks” on page 723, and “Value Library
Blocks” on page 715 for a listing and brief description of the blocks in those libraries.

Creating custom discrete rate blocks
Because of the Rate library’s extensive capability, it is not likely that you would need to program
your own discrete rate blocks. If you do want to do this, it is important to note that discrete rate
blocks use different data structures and programming methods than continuous or discrete event
blocks. It is suggested that you start with an existing discrete rate block as a base, using a copy of a
Rate library block similar to the one you want to build. Read the Developer Reference before mod-
ifying discrete rate blocks so you have a better understanding of how those blocks work internally.

Terminology and architecture
Before building a discrete rate model, it is helpful to understand the terminology that will be used
and to have an overview of ExtendSim discrete rate architecture.

LP technology
To provide global oversight to calculate the effective rates in a discrete rate model, ExtendSim uses
linear programming (LP) technology. The purpose of the LP calculation is to determine the maxi-

Rate library blocks

270 Introduction
Terminology and architecture

D
is

cr
et

e
R

at
e

mum effective flow rates in the system given the constraints defined by block settings and the
structure of the model. After all the rules for storage capacity and movement have been declared in
the model, ExtendSim uses the LP calculation to cause as much flow as possible to move through
the system. This calculation is handled automatically and internally. For more information, see the
advanced topic “LP technology” on page 376.

Layout of a discrete rate model
A discrete rate model can combine continuous blocks (such as those in the Value library), and dis-
crete event blocks (typically from the Item library), with discrete rate blocks from the Rate library.
If you use any discrete rate blocks in a model, the model will require the Executive block (Item
library).

Other than the Executive block, you can place the blocks in a model anywhere you want, remem-
bering that ExtendSim evaluates discrete rate blocks along the path of the connections.

☞ Since ExtendSim will always try to maximize the flow, causing the rate of flow to approach infinity
in the absence of any constraints, it is important to place upper limits on the flow at strategic loca-
tions throughout the model. Otherwise, the flow would move instantaneously from one part of the
model to another; this would be a modeling error.

Executive block
The Executive block (Item library) does event scheduling and makes the LP calcula-
tion for rate-based models. It must be present in every discrete rate model and it must
be placed to the left of all the other blocks in the model.

In addition to the information discussed on page 93, the Executive plays a special role
in discrete rate simulations. The block’s Discrete Rate tab allows you to set global
options for discrete rate models, manage quantity units, and select advanced options
for specific Merge and Diverge modes. Its LP Solver tab has information about the linear program
(LP) that provides global oversight for discrete rate models.

The settings in the Discrete Rate tab are explained fully on page 364.

☞ For most purposes you will not need to change the settings in the Executive block.

Connectors and connections
The Rate library provides blocks for simulating rate-based flows. Most of the blocks in the Rate
library have flow connectors and value connectors; the Interchange block also has item connec-
tors.:

• In a discrete rate model, flow connectors report the effective rate of the flow at each event. The
flow moves in one direction, from one block’s flow output (“outflow”) connector to another
block’s flow input (“inflow”) connector.

Connector type Line type

Flow

Value

Item

Executive

Introduction 271
Terminology and architecture

D
iscrete R

ate
• Value connectors provide information about the quantity of flow and a block’s capacity, as well
as information about the effects that the flow has in the model.

• The item connectors on the Interchange block provide an interface between portions of the
model that are discrete rate and portions that are discrete event.

When combining discrete rate blocks with blocks from other libraries, you will only be able to
connect compatible connectors. To represent the flow from one block to another, an outflow con-
nector has to be connected to an inflow connector. Each flow connector can have one and only one
flow connection. However, it is possible to connect an outflow connector to both an inflow and a
value input connector. In this case the value connector reads the effective rate from the connection.
A flow connection cannot be made with an item connector. For more information, see “Connector
types” on page 498.

Units and unit groups
There are four types of units in the Rate library:

• Flow units indicate what is flowing
from one flow connector to
another. For instance, gallons, bot-
tles, and transactions are all types of
flow units. Each discrete rate block
in a discrete rate model has a flow
unit. The flow units are identical for all the blocks within a unit group (defined below).

• Time units define how time is measured as the model run progresses. Like other ExtendSim
blocks, blocks in the Rate library can use the default global time unit or a local time unit. Hours,
minutes, and seconds are all examples of time units.

 Calendar dates are not available if months or years have been selected as the specific global time
unit for a discrete rate model. Furthermore, if Calendar dates has been selected, Rate library blocks
will not be able to select Months or Years as their local time unit.

• Length units specify how long something is; they are usually entered as feet, meters, and so
forth. The Convey Flow block has a length unit.

• Block units are an internal unit of volume specific to the Tank and Interchange blocks. If you
select a block unit that differs from the flow units that come into and out of a block, you must
enter a conversion factor. The conversion factor represents the ratio of the block unit to the flow
unit.

A unit group is a collection of blocks connected together
through flow connections and sharing one flow unit. To see
the unit group, click the grey square to the right of a block’s
flow units popup menu. All the blocks in that block’s unit
group will be highlighted on the model worksheet.

For more information, see “Units and unit groups” on page 297.

Rates
One of the most important aspects of a discrete rate model is the rate of flow. A rate is the ratio of
the flow units to the model’s time units. This is displayed in block dialogs as units/time, gallons/
minute, transactions/second, boxes/hour, and so forth.

Flow units

Unit group selector to right of popup

272 Introduction
How the Discrete Rate module is organized

D
is

cr
et

e
R

at
e

Several different types of rates are considered during the model building process:

• Maximum rate – the upper limit of the rate of flow, as described on page 303.

• Effective rate – the actual rate of flow. See page 303 for more information.

• Upstream supply and downstream demand – potential rates. See page 382.

• Infinite rate – any value equal to or greater than a large specified number. See page 304 for more
information.

How the Discrete Rate module is organized
The discrete rate portion of the User Guide shows how to build models to simulate rate-based
flows moving through a system at a certain speed. It will show you how to design and document a
rate-based model, run the simulation, test different scenarios, and analyze the results. The Discrete
Rate module is divided into several chapters:

• Introduction

• Tutorial

• Chapters that discuss specific discrete rate modeling concepts and techniques:

• Flow sources, storage, and units

• Flow movement: rates and constraints

• Routing flow directly and remotely

• Delaying flow using goals, hysteresis, and the Convey Flow block

• Mixing flow and items

• Bias, animation, and other miscellaneous concepts and features

• Advanced topics such as LP technology, upstream supply and downstream demand, and messag-
ing in discrete rate models.

 It is important that you complete the chapters in the main ExtendSim Tutorial module that starts
on page 14 before you proceed to the Discrete Rate Tutorial. If you will use any item-based blocks
in your discrete rate models, it is also suggested that you complete the Discrete Event Tutorial that
starts on page 100.

Discrete Rate Modeling

Tutorial for Discrete Rate Systems
How to build a discrete rate model

274 Tutorial for Discrete Rate Systems
A basic discrete rate model

D
is

cr
et

e
R

at
e

The key to discrete rate modeling is constructing a flow diagram using blocks from the Rate library
to represent flows through the system. The Rate library is designed specifically for building discrete
rate models. Blocks from other ExtendSim libraries, especially the Item, Plotter, and Value librar-
ies, are often used with the Rate library to create discrete rate models.

The example in this chapter shows how to build a discrete rate model of a yogurt process; it will
use many of the blocks from the Rate library. Starting with a simple model, then adding complex-
ity and features, this chapter will show how to:

• Build a model of a simple rate-based process

• Add a maximum flow rate that varies with the time of day

• Add a second supply of product that is occasionally shut down for maintenance

• Mix the two supplies according to a proportion

• Create a filling operation that puts the liquid yogurt into containers

• Add a conveyor to simulate a cooling process

• Package the containers into cartons

• Create a palletization area where the cartons are stored

• Add a second palletization area in parallel to the first

While this example model simulates a mixing, filling, and packaging process, the Rate library is
useful for simulating many diverse concepts and processes.

This tutorial assumes you have completed the chapters in the main Tutorial module that starts on
page 14 and that you have read the Discrete Rate Introduction that starts on page 266. It is also
suggested that you complete the Discrete Event Tutorial that starts on page 100.

A basic discrete rate model
Rate-based models are mainly concerned with how quickly the flow moves in different sections of
the model, and what the yields will be, given the constraints and configurations of the model. A
common rate-based model involves a flow of product moving from one holding area to another,
with a valve that determines how quickly the flow moves.

About the model
The Yogurt Production model represents a process that takes a supply of liquids, converts it into
plain yogurt, then mixes the yogurt with fruit. The fruited yogurt mixture is poured into individ-
ual yogurt containers and cooled and the containers are then packaged into cartons. The final step
is to place the cartons on pallets for storage.

The assumptions for the final model are:

• The supply of liquid to make the yogurt comes from one location and the fruit comes from
another location. Both locations have an infinite supply.

• For most of the day, the liquid is processed into yogurt at a rate of 100 gallons/minute. Since
fewer workers are available during lunch, the processing rate decreases to 60 gallons/minute for
that hour.

• After processing, the yogurt is routed to the mixing area.

• The fruit is processed and delivered to a mixing area at a rate of 8 gallons per minute when
equipment is not undergoing maintenance, and a rate of 2 gallons per minute when it is.

• Each 10 gallons of mix is composed of 1 gallon of fruit and 9 gallons of plain yogurt.

Tutorial for Discrete Rate Systems 275
A basic discrete rate model

D
iscrete R

ate
• The packaging process yields 12 containers of yogurt per gallon of mix.

• The cooling cycle occurs on a 100 foot long refrigeration unit. The yogurt must be cooled for at
least 20 minutes before the containers can be packaged into cartons.

• Each carton holds 48 containers of yogurt

• There are two palletizing areas, one of which has a higher priority than the other.

• Pallets arrive every 2 minutes and can hold 24 cartons.

• Time units are in minutes and the simulation duration is 480 minutes.

• The blocks come from the Rate, Item, and Plotter libraries.

☞ The final Yogurt Production model, and the models that illustrate the steps described in this chap-
ter, are located in the folder \Examples\Tutorials\Discrete Rate. To get the maximum benefit of
this tutorial, it is recommended that you build the models yourself.

Starting a model and setting simulation parameters
The following steps are typical when starting any discrete rate model:

Open a new model worksheet

Give the command Run > Simulation Setup. In the Setup tab enter the simulation parameters:

End time: 480

Global time units: minutes

If they aren't already open, open the Rate, Item, Plotter, and Value libraries

Place an Executive block (Item library) on the top left corner of the model worksheet

As mentioned in the Introduction to this module, the Executive block does event scheduling and
manages discrete rate and discrete event simulations. It must be present in every discrete rate and
discrete event model.

Start small
In building any simulation model, it is easiest to start
with a simplified subset of the process and add detail
until you arrive at a completed representation of the
system that's being modeled. This allows you to test at
various stages while making the model building pro-
cess more manageable.

The first step is to model a single line of production,
where one Tank holds product that moves to another
Tank at a constant rate. When you have finished this
portion of the tutorial, your model should look like the one shown above.

Basic yogurt production line

276 Tutorial for Discrete Rate Systems
A basic discrete rate model

D
is

cr
et

e
R

at
e

Creating a model of the simple yogurt production process
The following table lists the blocks that will be added to the worksheet and their use in the model.
Except for the plotter from the Plotter library, the blocks in the table are from the Rate library.

Starting at the right of the Executive block, place the blocks on the model worksheet in a line
from left to right, based on their order in the above table.

Label the blocks as indicated in the table.

☞ An easy method for placing blocks on a model worksheet is to access an open library using the
Navigator as discussed in “Library Window mode” on page 671.

Making connections
To indicate the flow of product, connect the blocks’ flow connectors as follows:

Connect from the outflow connector on the first Tank (labeled Liquid Supply) to the Valve’s
inflow connector.

Connect from the Valve’s outflow connector to the second Tank (labeled Yogurt).

To gather information about the amount of yogurt processed:

Connect from the Yogurt tank’s inflow connector to the top input on the plotter.

Connect from the Yogurt tank’s LE (level of contents) value output connector to the plotter’s
second input.

When you are finished, the model should look like the one shown on page 275.

Name (Label) Block Function Purpose in Model

Tank
(Liquid Supply)

Acts as a source, intermediate storage,
or sink for the stuff of the model.

Contains an unlimited amount of liq-
uids that can be processed into yogurt.

Valve
(Yogurt Process)

Acts as a constraint on flow. Controls,
monitors, and transfers the flow at a
specified rate.

Regulates the flow of liquid at 100 gal-
lons per minute. (A constraint is
required; otherwise, the flow would
approach infinity!)

Tank
(Yogurt)

Acts as a source, intermediate storage,
or sink for the stuff of the model.

Can hold an unlimited amount of
processed yogurt.

Plotter,
Discrete Event

(Plotter)

Displays information about the flow
and about model values.

Reports how many gallons of yogurt
per minute are processed (the effective
rate) and the total amount of yogurt
produced.

Tutorial for Discrete Rate Systems 277
A basic discrete rate model

D
iscrete R

ate
Entering dialog parameters and settings
To reflect the basic assumptions for this model, the flow units and the constraints need to be
defined.

 Each model must contain one or more blocks (typically a Valve with a non-blank maximum rate)
to restrict flow. The ExtendSim discrete rate architecture attempts to move flow through the model
as fast as possible. In the absence of any constraints, the flow rate would theoretically approach
infinity and flow would move from one part of a model to another instantaneously. This condition
would cause ExtendSim to stop the simulation and display an error message.

For the Liquid Supply tank:

In its Tank tab, check the ∞ (infi-
nite) checkbox for the field labeled
Initial contents. This places the
word “infinite” in the initial con-
tents field, as seen at right.

In the block’s Options tab, select
New Unit in the popup menu for Flow group unit: and enter gallons as the flow unit.

In the dialog of the Valve block, enter Maximum rate: 100 gallons/minute.

There are no entries to make for the Yogurt tank. Its default settings indicate that it has no ini-
tial contents and its maximum capacity is infinite, which is what you want.

In this model, the plotter will display the Valve’s maximum rate on its top input and the number of
gallons of yogurt processed on the second input. Since the scaling for these numbers is so different,
the plotter’s graph needs to be adjusted. To do this:

In the plotter dialog’s toolbar, open the Trace Properties dialog.

Choose that the second input (Values) is plotted against the Y2 axis.

Change the style of the line for that second input to interpolated.

(For information on how to change the properties of lines, see “Trace properties tool” on
page 590.)

Save the model and run the simulation.

Initial contents set to “infinite”

278 Tutorial for Discrete Rate Systems
A basic discrete rate model

D
is

cr
et

e
R

at
e

Verifying results
This is a good opportunity to verify the
results. There is never any change to the
rate of flow, so there is no need for the
model to recalculate the effective rate. This
means that the simulation is finished in two
events: the start event and the end event.
The plotter indicates that the effective rate
is 100 and a total of 48,000 gallons of
product (shown on the Y2 axis) have been
produced in the process. This makes sense
because the assumptions were that 100 gal-
lons of yogurt would be produced per
minute and the simulation time is 480
minutes.

Add a dynamic constraint
While the preceding model used a constant
maximum rate, a more common situation is for a Valve’s maximum rate to change with time. The
model assumptions are that the liquid is processed into yogurt at a rate of 100 gallons per minute
for most of the day, but that during the lunch period the rate is reduced to 60 gallons per minute.
To show this in the model:

Add a Lookup Table block (Value library) to the model.

Connect the Lookup Table block’s output to the R (maximum rate) input connector on the
Valve.

In the Lookup Table block’s dialog, select Lookup the: time.

In the block’s Options tab, enter the column labels Minute;Gallons/Minute.

In the block’s Table tab, enter the values shown at the
right for the Minute and Gallons/Minute columns.
This will cause the Valve’s maximum rate to be 100
gallons/minute for the entire model except for the
period from time 240 to time 300, when it will be 60
gallons/minute.

Label the block Variable Constraint Rate.

The model should now look like the screenshot at
the right. When the simulation is run, the plot
shows that the Valve’s maximum rate (from the
Lookup Table block) is 100 gallons/minute for
most of the day, but changes to 60 gallons/
minute for 60 minutes, as expected. It also shows
that the yogurt output is reduced from the
48,000 gallons achieved in the previous model.
This occurs because the Valve’s maximum rate
reduced from the constant 100 gallons/minute in
the previous model.

Plot of simulation

Values for Lookup Table’s dialog

Adding a variable constraint

Tutorial for Discrete Rate Systems 279
A basic discrete rate model

D
iscrete R

ate
☞ The Lookup Table block will actively output values at each specified time, based on entries in the
table in its dialog, and does not need to be prompted for output. This is discussed in “Polling con-
straints” on page 309.

Add a fruit processing line
So far you have created a yogurt processing line. The specification for the final model indicates
that fruit is mixed with the yogurt, requiring a second processing line:

Delete the connection from the Valve to the Yogurt tank and move the tank to the right.

Below the Lookup Table block of the yogurt processing line, add another Tank block to the
model.

In the block’s Tank tab, check the checkbox in the field labeled Initial contents, causing
the initial contents to be infinite.

In the block’s Options tab, select Flow group unit: gallons.

Label the block Fruit Supply.

Add a Valve to the right of the Fruit Supply tank.

Connect from the Fruit Supply tank’s outflow connector to the Valve’s inflow connector.

In the Valve tab, enter Maximum rate: 8 gallons/minute.

Label the block Fruit Process.

Notice that gallons have automatically been selected as the flow units for the Valve. This is
because it is connected to the Tank. (If you had not first connected the Tank to the Valve, you
could select gallons as the units in the Options tab.)

To merge the two flows, add a
Merge block to the model and place
it to the right and between the
Yogurt Process and the Fruit Process
blocks.

Connect from the outflow con-
nector of the Yogurt Process
Valve to the top inflow connec-
tor on the Merge.

Connect from the outflow con-
nector of the Fruit Process
Valve to the second inflow con-
nector on the Merge.

In the Merge tab of the block’s dialog, select Converge mode: proportional from the
popup menu.

In the Proportion column of the Merge block’s dialog table, enter 9 for the Yogurt Process
and 1 for the Fruit Process.

Label the Merge block Mixing.

Connect the Merge block’s outflow connector to the Yogurt tank’s inflow connector.

When finished, the model should look similar to the one above.

Fruit process line added

280 Tutorial for Discrete Rate Systems
A basic discrete rate model

D
is

cr
et

e
R

at
e

When you run the model, the mixing process should output 80 gallons per minute and the entire
process will yield about 37,600 gallons of yogurt. This is an interesting model to run with anima-
tion on. (Be sure to have animation set to the slowest speed.) When you do this, the rate displayed
at the top of the Yogurt Process icon is sometimes displayed as the fraction 72/100. This is the
ratio of the effective rate to the Valve’s maximum rate. In this model, there is sometimes not
enough fruit and the entire process becomes constrained, so the effective rate can be less than the
specified maximum rate.

In validating the model, notice that the effective rate for the yogurt part of the process can never be
higher than 72. Since the maximum output of the fruit process is 8 gallons per minute, and the
mixing process requires a ratio of 9 portions of plain yogurt to 1 portion of fruit, the maximum
amount of plain yogurt that can be required is 72 (8*9) gallons per minute.

☞ A complete description of the animation information shown on the icons for Rate library blocks is
given on “Animation” on page 370.

Add maintenance
A common situation is for a process to have a slow production rate when some of the equipment is
down for maintenance and a faster rate the rest of the time.

The fruit process has a slow rate of 2 gallons per minute during equipment maintenance and a
normal rate of 8 gallons per minute. Maintenance occurs approximately every 60 minutes with a
random duration of a minimum of 5 minutes, a maximum of 20 minutes, and a mostly likely time
of 15 minutes. To reflect this:

Add a Shutdown block (Item library) to the model. There are two
ways to do this:

Click the Add Shutdown button in the Valve’s dialog. This auto-
matically connects a Shutdown block to the Valve’s R (maximum
rate) input connector and opens the Shutdown’s dialog.

Place the Shutdown block on the worksheet from the Rate library.
If you do this, connect the output of the Shutdown block to the
Fruit Process Valve’s R (maximum rate) value input connector.

In the Shutdown block’s dialog:

For the shutdown configuration, enter Down value: 2 and Up Value: 8

For the time between failures (TBF) choose an Exponential distribution with a Mean: 60

For the time to repair (TTR) select a Triangular distribution with a Minimum: 5, Maxi-
mum: 20, and Most likely: 15

Label the block Maintenance Shutdown.

☞ Like the Lookup Table block, the Shutdown block outputs its information without being
prompted. Thus the Valve does not need to ask it for data and it should not be set to poll con-
straints. Polling constraints is discussed more on page 309.

When you run the model with animation on, notice that the Valve is partially shut down for main-
tenance a random amount of time and that its maximum rate is reduced to 2 gallons/minute dur-
ing maintenance. Also notice that fewer gallons of yogurt are produced during the process than
before the Shutdown block was added.

Shutdown block added

Tutorial for Discrete Rate Systems 281
A basic discrete rate model

D
iscrete R

ate
Change the flow unit to containers for the filling process
It would be difficult to ship the processed yogurt without putting it into containers. The model
assumptions state that the yogurt mix is packaged into containers at a ratio of 12 containers per
gallon of liquid. To represent this:

Delete the connection
between the Merge block and
the Yogurt tank.

Add a Change Units block to
the model and connect it
between the Merge and the
Yogurt tank. Label the block
Change Unit 1.

The model should now look like
the screenshot to the right.

In the dialog of the Change
Units block:

Do not change the first
setting (Change units
from: gallons)

In the popup for the second unit setting (to: gallons), select New Unit and name the new
flow unit containers.

So that each gallon will result in 12 containers, enter Conversion factor: 12 containers/
gallons. (Be sure to select containers/gallons from the popup menu.)

If you check the box for Show unit change on icon in the Change Units dialog, the area
above the icon will display the text gallons=>containers.

After the settings have been entered, the dialog of the Change Units block should look like the fol-
lowing:

When the model is run, the number of yogurt containers produced each minute, and thus the
total number of containers processed, will vary depending on the Valve’s maximum rate and the
flow restrictions caused when there is not enough fruit for the mix. Although it may vary from the
example model, the plotter should indicate that approximately 370,000 containers of yogurt were
produced. This makes sense because, as the Results tab in the Merge block shows, the process pro-
duced about 30,000 gallons of yogurt.

At the end of the simulation run, holding the cursor over each outflow connector will show the
final rate at that connector. For example, when the Yogurt Process has an effective rate of 72 gal-
lons per minute, the Fruit Process will have a rate of 8 gallons per minute, the Mixing block will

Changing the flow unit

Dialog of Change Units block with user entries

282 Tutorial for Discrete Rate Systems
A basic discrete rate model

D
is

cr
et

e
R

at
e

indicate that 80 gallons of mix were produced that minute, and the Change Units block’s output
will show that 960 (80 * 12) containers of yogurt were packaged.

☞ This model assumes that the process of pouring yogurt into containers occurs at the same rate as
the process of mixing the plain yogurt with the fruit. In this case, the packaging process does not
slow down the rest of the process. To model a packaging process that would have an impact on the
rest of the process, connect a Valve between the Merge and Change Units blocks and enter the
appropriate packaging rate.

Cool the mixture
The yogurt process includes a 20 minute cooling phase on a 100-foot long refrigeration unit
before the yogurt containers can be packaged into cartons. The Convey Flow block is designed to
represent a delay in the movement of flow.

Delete the flow connection from the Change Units block to the Yogurt tank.

Add a Convey Flow block to the model and connect it between the Change Units block and the
Yogurt tank.

Notice that if you make these connections first, the correct flow unit (containers) is automati-
cally selected in the new block’s Options tab.

In the Options tab of the Convey Flow block:

Select New Unit from the Length unit: length unit popup menu. In the dialog that
appears, enter feet.

In the Convey tab of the Convey Flow block:

Notice that the block is already set to Accumulating-maximum density by default.

From the popup menu to the right of that popup, select the behavior Delay determines
travel time.

Enter Delay: 20 minute*.

Enter Maximum density: 500 containers/feet.

Label the block Cooling Cycle.

The model should now look like the following:

Cooling phase represented by Convey Flow block

Tutorial for Discrete Rate Systems 283
A basic discrete rate model

D
iscrete R

ate
When you run this model, notice that there is no product flowing into the Yogurt tank for the first
20 minutes. This happens because it takes that long for the first containers to leave the refrigera-
tion unit represented by the Convey Flow block. This causes starving in the downstream portion
of the model that follows the Convey Flow block. Because it takes longer to get the finished prod-
uct, fewer containers get produced than in the previous model.

☞ Although it doesn’t happen in this model, if the Convey Flow block were full, it could slow down
the upstream processes that feed into it. This is known as blocking.

☞ While the use of the Convey Flow block is appropriate for this model, be careful about placing too
many Convey Flow blocks in a model as they are computationally intensive. The Convey Flow
block should only be used if the system requires precise tracking of flow movement. A Valve and a
Tank can often be used instead, with less impact on simulation speed. For more information, see
“When to avoid using the Convey Flow block” on page 346.

Package the containers
The next step of the process involves packaging the yogurt containers into cartons. This is repre-
sented using another Change Units block.

Delete the flow connection between the Cooling Cycle and the Yogurt tank.

Add a second Change Units block to the model;

Connect it between the block labeled Cooling Cycle and the block labeled Yogurt.

In the block’s
dialog, do
not change
the first set-
ting (Change
units from:
containers).

In the popup
for the sec-
ond unit setting (to: containers), select New Unit and name the new flow unit cartons.

So that each carton will hold 48 containers, enter Conversion factor: 48 containers/car-
tons.

If you check the box for Show unit change on icon, the area above the icon will display
the text containers=>cartons.

Label the new block Change Unit 2.

Dialog of second Change Units block

284 Tutorial for Discrete Rate Systems
A basic discrete rate model

D
is

cr
et

e
R

at
e

If you clone the plot pane onto the model worksheet, your model should be similar to the follow-
ing:

Although the amounts will vary depending on the yogurt process’s constraint rate and the potential
unavailability of fruit due to maintenance, when you run the model it should result in approxi-
mately 8,000 cartons. (Each carton holds 48 containers and the process should have produced
about 390,000 containers of yogurt.)

Add a palletizing area
The model’s assumptions state that there is a palletizing area where cartons are stored for shipment.
One empty pallet arrives every 2 minutes and each pallet can hold 24 cartons. If there is no empty
pallet to replace it, the flow of yogurt stops when a full pallet leaves. As discussed below, this is eas-
ily represented using the Rate library’s Interchange block and discrete event blocks from the Item
library.

Interchange block
The Interchange block represents a tank, or holding area, where the flow of discrete rate blocks can
interact with items from discrete event blocks. The block can only get one item at a time. In its
default behavior (Tank only exists while item is in it), the block behaves similar to an on/off
switch. When it has an item, it has a capacity for flow; in the absence of an item, the block has no
flow capacity. (In the block’s alternate behavior, the tank has capacity and items that come to it can
contribute flow to the block and/or remove flow from it.)

In this model, empty item/pallets are generated randomly. The arrival of an item/pallet causes the
Interchange block to have flow capacity; the maximum capacity of 24 cartons is entered in the
block’s dialog. Once the maximum capacity is reached, the full item/pallet leaves the block. The
Interchange block then has no capacity until another empty pallet arrives.

☞ The Interchange block is discussed more fully in “Using the Interchange block to mix items with
flow” on page 352.

Adding a palletizing area to the model
Delete the Yogurt tank.

Packaging containers into cartons

Tutorial for Discrete Rate Systems 285
A basic discrete rate model

D
iscrete R

ate
Place the following blocks in the model and connect
their item connectors as shown at right:

Create (Item library)

Queue (Item library)

Interchange (Rate library)

Exit (Item library)

Label the 4 new blocks as indicated in the screen shot above.

Connect from the outflow connector of Change Unit 2 to the plotter’s top input connector.

Connect from the outflow connector of Change Unit 2 to the inflow connector on the Inter-
change 1 block.

In its dialog, set the behavior of the Create block to Create items randomly, choose the Con-
stant distribution, and enter constant: 2. This causes one item/pallet to be available every 2
minutes.

There are no changes required for the Queue block. It is already set to hold items in a first in,
first out manner.

In the Item/Flow tab of the Interchange block, define item behavior (Item is Tank) by making
the following entries:

On arrival, Item/Tank capacity is: a constant 24 cartons. (Be sure to enter the number
24.)

Release item: when tank contents ≥ Level (load process).

Define Level: full.

With these settings, the Interchange block has a capacity of 24 cartons each time it gets a new
item, which represents an empty pallet. Once 24 cartons of yogurt have arrived through its flow
connector, the block’s Level will be full and the item (now representing a full pallet with 24 car-
tons) will be released. The Interchange block will then try to access another empty pallet; the
yogurt process will stop until an empty pallet is available.

There are no dialog changes required for the Exit block.

First palletizing area

286 Tutorial for Discrete Rate Systems
A basic discrete rate model

D
is

cr
et

e
R

at
e

When you are finished with this section, the model should look like:

When you run this model, you should see an almost solid block of color on the plotter’s plot pane.
This is caused by the plot line being repeatedly redrawn as the effective rate goes from a high of
about 52 cartons per minute to 0 and back again. To see this, stretch the plot wider until you can
see some white areas between the colored areas. These white areas occur when the effective rate is
0. In this model, pallets aren’t arriving quickly enough and the process is slowed from what it could
be and frequently stops. One way to solve this would be to have two palletizing areas.

Add a second palletizing area
The easiest way to add a second palletizing area is to duplicate the blocks in the first palletizing
area to another part of the model.

Select the 4 blocks in the palletizing area and give the Edit > Duplicate command. This creates
a second set of blocks.

Move the 4 blocks that comprise the second palletizing area below the first area.

Label the new blocks Create 2, Queue 2, Interchange 2, and Exit 2.

Add a Diverge block to the right of the Change Unit 2 block:

Connect from the Change Unit 2 block to the Diverge.

Connect from the Diverge block’s top outflow connector to the inflow connector on the
Interchange 1 block

Connect from the Diverge’s second outflow connector to the inflow connector on the
Interchange 2 block.

In the dialog of the Diverge, notice that by default the block is set to Diverge mode: prior-
ity of outputs and that a priority of 1 is assigned to the top Interchange block and a priority
of 2 to the bottom Interchange block. Do not change these settings, since this is what you
want.

First palletizing area

Tutorial for Discrete Rate Systems 287
Further exploration

D
iscrete R

ate
The model should now look like:

In this model, the top palletizing area has first priority for the cartons and the lower palletizing area
only receives product if the top area is busy. Unlike the previous model, the plotter indicates that
the effective rate of the process is hardly ever 0 cartons per minute.

☞ The final model, named Yogurt Production, and the models for all the intermediate steps, are
located in the folder Examples\Tutorial\Discrete Rate.

Further exploration
Additional ways to enhance and explore this model include:

• Verify that the model is working as you expected by running it with animation on or by adding
a Pause Sim block (Utilities library) to the model and pausing each step. (Animating a discrete
rate model is described in “Animation” on page 370. The Pause Sim block is discussed in
“Blocks that control or monitor simulation runs” on page 525.) The final Yogurt Production
model located at Examples\Tutorials\Discrete Rate is animated and includes a Pause Sim block
so you can step through each event.

• A Shift block could be added to the Convey Flow block, stopping the process at the end of the
day and causing the Convey Flow block to be emptied of product.

• The palletization areas could include the time it takes to unload a full pallet and load an empty
pallet. Adding this type of changeover is shown in the “Yogurt Changeover model” on page 355.

• The filling processes could be enhanced by adding delays for the filling, cleaning the equipment
and other maintenance.

Two palletizing areas

288 Tutorial for Discrete Rate Systems
Further exploration

D
is

cr
et

e
R

at
e

Discrete Rate Modeling

Sources, Storage, and Units
Providing and storing flow and the use of flow units

290 Sources, Storage, and Units
Blocks of interest

D
is

cr
et

e
R

at
e

As discussed in “Simulating discrete rate systems” on page 267, quantities of flow are located in
one or more parts of a discrete rate model. During the simulation run, the flow moves from one
location to another at the effective rate. In order for the flow to move, one or more of the model’s
blocks need to have the capacity to hold flow as time advances.

The Convey Flow, Interchange, and Tank blocks are residence type blocks – they have capacity
and can hold defined amounts of flow. They can also be “pre-loaded” with an initial amount, serv-
ing as a source of flow for the system.

Flow units describe what is flowing from one Rate library block to another. Blocks that are con-
nected together through flow connections and share the same flow unit are part of the same unit
group. The Change Units block is used to create a new unit group. This causes the blocks down-
stream of the Change Units block to be in a unit group different from its upstream blocks.

This chapter discusses providing and storing flow and the use of flow units in a discrete rate model.
It will cover:

• Defining a block’s flow capacity

• Setting an initial contents of flow

• Indicators that provide information about a block’s level of flow

• Defining and selecting time, flow, and length units

• Using the Change Units blocks to create a different flow unit group

This chapter focuses on setting capacity and initial contents for the Convey Flow, Interchange, and
Tank blocks. Other aspects of those blocks are covered in different chapters:

• The Convey Flow block is most often used for delaying flow and will be discussed more fully on
page page 342.

• The Interchange block is mainly used for interacting with items from discrete event portions of
the model and will be discussed more completely starting on page 352.

• Setting maximum inflow and outflow rates for the Tank and Interchange blocks is described in
page 310.

☞ The Tank Flow Unit model is located in the folder \Examples\Discrete Rate\Sources and Storage.
The Yogurt Production model is located at \Examples\Tutorials\Discrete Rate.

Blocks of interest
The following blocks from the Rate library will be the main focus of this chapter.

Residence blocks for holding flow

Convey Flow
Delays the movement of flow from one point to another. Can accumulate flow to a max-
imum density, accumulate flow to fill empty sections, or act as a non-accumulating con-
veyor.

Interchange
Represents a Tank that can interact with discrete event items. The block has two behav-
iors: the Tank only exists while an item is in it; the Tank is separate from the item.

Sources, Storage, and Units 291
Capacity

D
iscrete R

ate
Tank
Acts as a source, intermediate storage, or final storage (sink). The block has a capacity and
can have an initial quantity of flow for the simulation.

Changing the flow unit group

Change Units
Changes the flow unit from one unit to another, resulting in a new flow unit group. The
dialog has a field for entering the conversion factor and a popup menu for indicating the
direction of the change.

Capacity
The Tank, Interchange, and Convey Flow blocks are considered residence blocks. This means that
they have capacity and can hold defined amounts of flow as time advances.

A residence block's maximum capacity can be a specific number or, in the case of the Tank or
Interchange blocks, it can be set to infinite.

Full and not-full
When a residence block’s capacity is finite, its status can alternate between the full and not-full
states. This change of state has an impact on the model's set of effective rates:

• If a residence block with finite capacity is not full, there is room for the flow level to rise. Conse-
quently, the effective inflow rate can be greater than the effective outflow rate.

• If a residence block with finite capacity is full, the flow level is not permitted to rise; the effective
inflow rate will be less than or equal to the effective outflow rate.

Any time a residence block with a finite capacity changes state between full and not-full,
ExtendSim will calculate a new set of effective rates.

☞ A residence block with infinite capacity can never be full during the simulation run. In this situa-
tion, it is similar to a residence block with finite capacity that is not full; its effective inflow rate can
be greater than its effective outflow rate.

Tank block’s capacity
A Tank can be a source of flow, an intermedi-
ate storage for flow, or a final storage for flow
(sink). A Tank’s capacity can be infinite, a
finite but non-zero number, or zero.

• By default, the Tank has an infinite capacity to hold flow, as indicated by the Maximum capac-
ity: infinite ∞ setting in its dialog. In this state it will never be full.

☞ A blank is the same as checking the infinite setting.

• A Tank’s maximum capacity can be changed in the block’s dialog by entering an amount in the
Maximum capacity field (which unselects the ∞ checkbox). It can also be changed dynamically
through the block’s C (capacity) value input connector. If the C connector is used, it overrides
any entries made in the dialog. With a non-zero finite capacity, the Tank can be in either the full
or not-full state at any point in time.

Default setting for Tank’s capacity

292 Sources, Storage, and Units
Capacity

D
is

cr
et

e
R

at
e

• If a Tank's capacity is set to zero, flow can still move through the block but the flow will not stay
in the block for any length of time. In this case, the Tank is neither full nor not-full, and the
effective inflow rate will equal the effective outflow rate.

☞ If a Tank has no outflow connection, by definition it is being used as a sink. If at some point the
sink reaches the full state, its effective inflow rate will be set to zero for the remainder of the simu-
lation run.

Interchange block’s capacity
The Interchange block represents a tank, or holding area, where flow can interact with items gen-
erated by discrete event blocks. Flow can enter the Interchange block not only through its inflow
connector but also through the arrival of an item. Conversely, flow can exit the block through its
outflow connector or through the exiting of an item.

The Interchange block has two options that affect how the block’s initial contents and maximum
capacity are set:

• Tank only exists while item is in it. This behavior is analogous to a truck (an item) that arrives
at a loading dock (a tank) where the loading or unloading of product can take place at a certain
rate. The truck arrives with a capacity and perhaps some quantity of product already in it. As
long as the truck is in the dock, loading or unloading is possible and occurs at the specified rate.
When the truck leaves, the dock’s ability to load and unload product disappears (the inflow and
outflow effective rates are set to zero).

• Tank is separate from item. This behavior is similar to a truck (an item) that brings product to
a holding area (a tank) that may nor may not contain product. The truck empties its load and
perhaps takes some of the holding area’s product with it when it leaves. This process occurs
instantaneously. Whether the truck is at the holding area or not, both the truck and the holding
area can have product. The holding area can receive or deliver flow to the system even if there is
no truck (the inflow and outflow effective rates can be greater than zero).

Setting the maximum capacity with these options is described below.

Tank only exists while item is in it
This is the default behavior. With this setting the Interchange block has a capacity to hold flow
only while an item resides in the block. With an item present, the block acts like a tank and there-
fore has a definable capacity, either finite or infinite. If the capacity is finite, as along as an item is
present in the block, the block can alternate between the full and not-full states.

The block’s capacity is fixed at the moment the item enters the block; it remains fixed until the
item leaves. When the item leaves, the Interchange's capacity automatically goes back to zero.
Therefore, at the time of item departure any flow currently in the block is loaded onto the item.
The timing of when the item leaves the Interchange depends on logic set in the Interchange block.
For more information, see “Item release conditions” on page 353.

To define the capacity for an
Interchange block when it is set
to this behavior, choose one of
the options from the dialog’s
popup menu, shown at right.

• A constant. Enter a number in the field; the default is infinite.

• Value at IC. The value at this input connector will control the block’s capacity.

Maximum capacity; default behavior

Sources, Storage, and Units 293
Setting an initial contents

D
iscrete R

ate
• Value of attribute. Select an attribute in the dialog. When an item arrives, the tank’s capacity
will equal the item’s attribute value.

In the Yogurt Production model of the Discrete Rate Tutorial, the Interchange blocks are set to
Tank only exists when item is in it and their capacity is set to the constant value 24.

Tank is separate from item
With this option, the Interchange block’s behavior is similar to a Tank block – it receives flow from
its inflow connector, it holds flow, and it releases flow from its outflow connector. The difference is
that an item’s arrival can contribute flow to the existing contents and an item’s departure can
remove flow from the existing contents. The item’s impact on the block’s contents is entered in the
Define Item behavior section of the block’s Item/Flow tab.

To set the capacity for the block when this
behavior has been selected, enter a number in
the Maximum capacity field or leave it set to
the default value of infinite.

Convey Flow block’s capacity
The maximum capacity for a Convey Flow block is a combination of two factors:

1) The block’s length and maximum density deter-
mine the maximized capacity. By default,
ExtendSim calculates a maximized capacity for
the Convey Flow block by multiplying its length
by its maximum density. This is indicated in the
Capacity field by the “maximized” capacity
checkbox shown above. In this case, the block’s maximum capacity will equal its maximized
capacity.

2) A number in the Capacity field in the Options tab can reduce the capacity below the maxi-
mized amount. In some cases, it may be necessary to define a capacity smaller than the maxi-
mized capacity determined by the length*density calculation. For instance, the Convey Flow
block could have structural properties limiting how much weight it can safely support. To do
this, uncheck the checkbox in the Capacity field of the Options tab and enter the desired num-
ber. In this case, the block’s maximum capacity will be less than or equal to its maximized
capacity.

☞ A Convey Flow block’s maximum capacity can never exceed its maximized capacity, no matter
what number is entered in the Capacity field.

For example, if the Convey Flow block’s length is 100 and maximum density is 10, the block’s
maximized capacity will be 1,000. To reduce the capacity to something less than 1,000, enter a
number (for instance 300), in the Capacity field. The block will then only be able to contain 300
units of flow, even though its calculated maximized capacity was 1,000.

Setting an initial contents
All three residence blocks (Convey Flow, Interchange, and Tank) can be preloaded with starting
amounts of flow. A residence block’s initial contents can be a specific number or, in the case of the
Tank and Interchange blocks, it can be set to infinite.

Maximum capacity; alternate behavior

Maximized capacity

294 Sources, Storage, and Units
Setting an initial contents

D
is

cr
et

e
R

at
e

Once an initial contents is set, it cannot change during the simulation. The exception is the Inter-
change block when it is set to Tank only exists while item is in it. In this case, each arriving item
can establish the initial contents.

☞ If the initial contents of a Tank or Interchange block is set to infinite, its capacity will automatically
be set to infinite.

Empty and not-empty
If a Tank or Interchange block’s initial contents is finite, its status can alternate between the empty
and not-empty states. This change of state has an impact on the effective rate calculations:

• If the Tank or Interchange block is not empty, its flow level can fall. Consequently, the effective
outflow rate could be higher than the effective inflow rate.

• If the block is empty, it cannot provide more flow than what it concurrently receives. In this
case, the effective outflow rate has to be less than or equal to the effective inflow rate.

When a Tank or Interchange block changes state between empty and not empty, ExtendSim will
calculate a new set of effective rates.

☞ The Convey Flow block has a different mechanism for calculating a change of state between empty
and not-empty. For more information, see the “Delaying Flow” chapter.

Tank initialization
As seen to the right, a Tank’s initial contents
can be:

• 0 (the default)

• An entered number

• Infinite

To cause the Tank to have an infinite amount of initial contents, check the ∞ (infinite) checkbox
in the Initial contents field. For example, in the Yogurt Production model from the Discrete Rate
Tutorial, the Tank blocks that represented Liquid Supply and Fruit Supply had infinite initial con-
tents, while the Tank that stored the Yogurt product had no initial contents.

☞ If a Tank has no inflow connections, by definition it is being used as a source. If at some point the
source reaches the empty state, the effective outflow rate will remain at zero for the remainder of
the simulation run.

Interchange initialization
As discussed in “Interchange block’s capacity” on page 292, the Interchange block has two options
for behavior that affect how its initial contents are set. These are discussed below.

Tank only exists while item is in it
This choice allows the block to
have an initial contents only
when an item arrives. To set an
initial contents for this block,
choose one of the options from
the dialog’s popup menu,
shown above:

Default settings for initial contents

Interchange initial contents, default behavior

Sources, Storage, and Units 295
Indicators

D
iscrete R

ate
• A constant. Enter a number in the field; the default is 0. To cause the initial contents to be infi-
nite, check the field’s ∞ (infinite) checkbox or set the field to blank.

• Value at ICO. The value at this connector will control the initial contents.

• Value of attribute. Select an attribute in the dialog. When an item arrives, the initial contents
will equal that attribute’s value.

In the Yogurt Production model from the Discrete Rate tutorial, the Interchange blocks were set to
Tank only exists when item is in it and Initial contents (on item arrival): 0.

Tank is separate from item
To set the initial contents for the Interchange
block when this behavior has been selected,
leave the Initial contents field set to the default
infinite amount or enter a number.

Convey Flow initialization
The initial contents for the
Convey Flow block are set in
its Initialize tab. The table
allows you to customize a
number of segments for the
conveyor, each with its own
initial contents. Each row in the table represents an individual segment of the conveyor possessing
a uniform density that differs from the adjacent segments.

The Initialize tab has a Show Example button that places example settings in the table. These are
helpful for understanding how to make the entries you want; they can also be used as a starting
point for entries. Shown above is the example setting for a 100 foot long accumulating-density
conveyor that transports containers. The table indicates that the block would have an initial den-
sity of 10 containers per foot for the segment from 75 to 100 feet (a total of 250 containers) and 5
containers per foot for the segment from 25 to 50 feet (a total of 125 containers).

☞ In this example, the sections between 0 and 25 feet and between 50 and 75 feet do not hold any
product.

Indicators
As the simulation runs, the level of flow in the residence blocks (Convey Flow, Interchange, and
Tank) will vary over time.

You might want an indication when a block’s flow level is within a certain range of values. This is
common when monitoring a block to determine if its contents are approaching or have reached
one or more important benchmarks. For instance, some emergency procedures might need to take
place if a Tank’s level reaches the “high” range; they can be discontinued when the contents return
to a “normal” range.

For residence blocks, indicators are a method of reporting what category or range the current level
of flow falls into. With this feature, each range is assigned a name, a lower limit, and an upper
limit. When the level of flow reaches a value that falls within a different range, the block reports
the change on its I (indicator) value output connector and alerts any connected blocks to the
change in status.

☞ While the Tank and Interchange blocks report information about the current level of flow from
their I (indicator) connectors, the Convey Flow block reports how far (the accumulation

Interchange initial contents, alternate behavior

Example initial contents for Convey Flow block

296 Sources, Storage, and Units
Indicators

D
is

cr
et

e
R

at
e

length) the accumulation point is from the end of the conveyor. (When the amount of product
ready to leave exceeds the amount that can be received downstream, flow begins to accumulate
from the end of the conveyor. For more information, see “Distribution of flow” on page 345.

Setting indicators
The Indicators tabs on all
three residence blocks have
similar interfaces. Each
Indicators tab has a table
(shown on the right with
example settings) for speci-
fying an indicator name for
each range of values, enter-
ing the low limits, and
defining values (an ID number for each indicator) to output when the block's flow level falls
within a particular range.

To create indicators, enter your own information or click the Show Example button to populate
the table with some example indicator names and settings. In either case, ExtendSim will calculate
the High Limit values based on the Low Limit entries.

☞ The top row has to have the highest range; the bottom row must have the lowest range.

☞ To add or delete table rows, use the +/- button in the table's lower right corner. For instance, to
delete the example settings, change the number of rows to 0.

The screenshot above shows a Tank’s names, limits, and ID values to output after the Show Exam-
ple button has been clicked. Each indicator name corresponds to a range of flow contents defined
by the Low and High Limits for that row. (The High Limit column is presented for clarity only,
since those numbers are calculated using the values entered for the Low Limits.)

Unless the block has infinite capacity, the indicator limits can be expressed in absolute numbers
(shown above) or as percentages.

See “Bucket Elevator 2 model” on page 357 for an example of how indicators are used in an Inter-
change block to control a Valve’s effective rate.

☞ If the block has infinite capacity, the limits must be expressed as absolute numbers. If the block's
initial contents are set to infinity, the indicators are disabled.

Getting information about levels
There are two types of
events that will cause a new
indicator to be reported:

• When the level is increas-
ing and the block’s con-
tents reach the next
indicator’s Low Limit.

• When the level is decreasing and the block’s contents reach the next indicator’s High Limit.

In each case, the new output ID is used to update the I value output connector, and any connected
blocks are alerted to the change.

Example indicators in Tank block

Example indicators in a Tank

Sources, Storage, and Units 297
Units and unit groups

D
iscrete R

ate
Using the above table as an example, if the level in the Tank increases from 120,000 to 175,000
containers, the block will compare that level to the Low Limit and send the value 3 to its I (indica-
tor) output connector. However, if the level of the Tank instead decreases from 230,000 to
175,000 containers, the block will compare that value to its High Limit and output the value 2.

☞ The value that is output at the I (indicator) connector depends on whether the level of flow is
increasing or decreasing, and where in the range the new indicator level falls. The Tank block has a
S (status direction) output connector that reports if the level is going up or down when the event
occurs.

Tank Flow Units model
The Yogurt tank in the Tank Flow Units model outputs values that indicate the level of flow in the
Tank; those values are displayed on the third line on the plotter.

☞ For more information about the Convey Flow block, including the use of sensors, see the discrete
rate chapter on “Delaying Flow”.

Units and unit groups
This section focuses on defining, selecting, and changing flow units, discusses the effect of chang-
ing time units, and shows how to use the Change Units block to change the unit group.

Definitions
The following sections discuss flow, block, time, and length units. A unit group is two or more
blocks connected together through flow connections and sharing one flow unit.

Units and unit groups were introduced on page 271; they are described fully below.

Flow units
The flow unit indicates what is flow-
ing from one Rate library block to
another. As is true for ExtendSim time
units, flow units can be unspecified
generic units (in which case the block
dialog will just display the word
“units”) or they can be specifically
defined in the model. For instance, a defined flow unit could be a packet, gallon, transaction, box,
liter, and so forth. Existing flow units can be selected, and new units can be defined, in the
Options tabs of Rate library blocks. In addition, the Discrete Rate tab of an Executive block (Item
library) has a section for managing flow units. This provides a central location where units can be
added, deleted, or renamed.

☞ This chapter will be mostly concerned with flow units.

Block units
The Tank and Inter-
change blocks can have
an internal block unit
that is different than the
flow unit. This is an
internal representation
of volume that is specific
to the Tank or Inter-
change block, and does

Generic flow and time units in a Valve

Flow and block units in the Tank

298 Sources, Storage, and Units
Units and unit groups

D
is

cr
et

e
R

at
e

not affect the flow unit for the unit group. If you select a block unit that differs from the flow units
that come into and out of a block, you must enter a conversion factor. The conversion factor rep-
resents the ratio of the block unit to the flow unit. Block units are discussed fully in “Defining
block units” on page 299.

☞ Using block units is optional; the default block unit is the flow unit.

Time units
Time units can be generic, in which case the block will just say “time” or can
be specific. Each model can define specific time units, which become the
default for the model. You can change a discrete rate block’s time unit from the
model default time unit to any local time unit using a popup menu in the
block’s Options tab.

If a local time unit is selected in a discrete rate block, that local time applies to the entire block but
only to that block. Changing to a local time unit does not change the global time unit for the flow
group or for any blocks in the rest of the model. For complete information, see “Time units” on
page 526.

 Calendar dates are not available if months or years have been selected as the specific global time
unit for a discrete rate model. Furthermore, if Calendar dates has been selected, Rate library blocks
will not be able to select Months or Years as their local time unit.

Length units
For convenience, the Convey Flow block allows you to name a length unit. This is used internally
by the block with other settings to determine the block’s speed. You can use the default generic
unit “length unit” or declare a specific unit of length such as feet or meters.

Unit groups
A unit group is two or more blocks connected together through flow connections and sharing one
flow unit. Connecting the first block’s outflow connector to the second block’s inflow connector
creates a unit group. Unless the unit group is explicitly changed, all the blocks that are connected
through flow connectors use the same flow unit and are in the same unit group. If a flow unit is
changed in one of the blocks in a unit group, the unit group does not change but all the other
blocks in that group are updated automatically to the new flow unit.

To see the unit group, click the grey square to the right of a
block’s flow units popup menu, shown above. All the blocks
in that block’s unit group will be highlighted on the model
worksheet.

You can define multiple unit groups, which use different flow units, in portions of a discrete rate
model. For instance, one part of the model could be expressed in bottles and another could repre-
sent boxes of bottles. The Change Units block can create a different unit group.

Declaring and selecting flow units
As mentioned above, flow units indicate what is moving from one flow connector to another, and
a unit group is a collection of connected blocks that share the same flow unit. This section focuses
on defining, selecting, and changing flow units.

 To convert from one unit group to another in a model, use the Change Units block discussed on
page 300.

Default time unit

Unit group selector to right of popup

Sources, Storage, and Units 299
Units and unit groups

D
iscrete R

ate
Where to declare a flow unit
Each block in the Rate library has the ability to select an existing flow unit or create a new one.
This is done in the block’s Options tab, which has a popup menu for either selecting an existing
flow unit or creating a new one. Specifying a flow unit in one block causes that unit to be used by
every block within the same unit group, and automatically sets that flow unit for any blocks that
are subsequently added to that unit group.

To see the unit group, click the unit group
selector button to the right of a block's
flow units popup menu. All the blocks in
that block's unit group will be highlighted
on the model worksheet.

Declaring a flow unit
To declare a flow unit, select an existing unit or create a new unit from the popup menu in the
Options tab. The selected flow unit applies not only to the block but also to the entire flow unit
group and it will automatically be set in new blocks that are connected within the unit group. For
instance, page 277 of the discrete rate tutorial showed how to create a new flow unit named “gal-
lons”. When the fruit processing section was added, the popup menu for the Fruit Supply Tank
already included gallons selected as its flow unit.

Managing flow units in the Executive block
The Executive block’s Discrete Rate tab has a section
for managing flow units in a model. The table dis-
plays all the units for a given model and provides
buttons for adding, deleting, and renaming the
units.

To use this feature, select the flow unit you want to
change in the table, then click the appropriate but-
ton. ExtendSim will warn you and give options if
the unit is being used in the model.

Defining block units
As mentioned earlier, the Tank and Interchange blocks allow you to define a block unit that is dif-
ferent from flow units. This is an internal representation of volume only and is specific to the Tank
or Interchange block. It does not change the flow units or the unit group for the flow that has
entered or exited the block. If a block unit has been specified, a factor to convert the block unit
into flow units must also be entered.

To define a block unit, in the Options tab of the Tank or Interchange block, select Define a flow
unit for the group and a block unit for the block. In addition to providing fields for declaring a
flow unit, this option displays a field for entering an internal block unit. It also has a field for
entering the factor to convert between the flow unit and the block unit.

Unit group selector to the right of the popup menu

Flow units for Yogurt Production model

300 Sources, Storage, and Units
Changing the unit group

D
is

cr
et

e
R

at
e

Tank Flow Units model
The Tank Flow Units
model is the same as the
model described on
page 280. However, the
newer model has pints,
rather than gallons, as
the block units in the
Yogurt Tank, causing
the process’s output to
be displayed in the plot-
ter as pints. Clicking the unit group selector button in its Options tab shows that this Tank is still
part of the unit group that uses the flow unit “gallons”.

Time units
A popup menu in the Options tab allows a block’s time unit to be changed from the model default
time unit to any local time unit.

If a local time unit is selected in a discrete rate block, that local time applies to the entire block but
only to that block. Changing to a local time unit affects every parameter in the block, but it does
not change the model’s global time unit or the time units used in any other block in the model. For
more information, see “Time units” on page 526.

Changing the unit group
By default all the blocks connected to the same flow stream belong in the same unit group. How-
ever, the Change Units block has the ability to create a new unit group, causing connected blocks
in a portion of the model to have a different flow unit.

Change Units block
To change the flow units from
one part of a model to another,
use the Change Units block.
While changing a flow unit in
most blocks will change the flow
unit for the entire group, adding
a Change Units block to the
model causes a new unit group to
be created – the Change Units block’s inflow connector will be part of one unit group comprised
of those blocks upstream of the Change Units block; its outflow connector will be part of another
unit group comprised of those blocks downstream of the Change Units block.

The Change units from: popup menu defines the flow unit that is entering the block; the to:
popup menu is for selecting or creating the new flow unit. The block has a field for entering the
factor that converts the incoming flow unit into the outgoing unit, and a popup menu to select the
direction the conversion should take. You can also change the time units for this block in its dia-
log.

Yogurt Production model
An example of changing flow units is shown in the tutorial on page 281, where gallons of liquids
were converted into containers of yogurt.

Defining a block unit in the Tank

Dialog of Change Units block

Discrete Rate Modeling

Rates, Constraints, and Movement
Limiting the movement of flow through rates and constraints

302 Rates, Constraints, and Movement
Blocks of interest

D
is

cr
et

e
R

at
e

As discussed in the Introduction to this module, the movement of flow in a discrete rate model
must take some time. It is a modeling error if the flow moves instantaneously throughout a model.

ExtendSim's discrete rate system attempts to move flow through the model as fast as possible. In
the absence of any constraints, the effective rate of flow would approach infinity and the flow
would move instantaneously throughout the model; this is never correct. For this reason, flow
movement must be constrained by rates and conditions that are built into the model, and a lack of
appropriate constraints is a modeling error that will stop the simulation run

In order to restrict flow rates:

• Discrete rate blocks are required to define their own sets of constraining flow rules

• Each area of a model must have one or more critical constraint mechanisms

Critical constraint flow rules, such as a block’s maximum rate, place an upper bound on the rate of
flow, limiting it to a number less than infinite. The blocks’ aggregated set of flow rules ultimately
defines how fast flow is permitted to move over time throughout the model.

This chapter discusses rates, the blocks that constrain flow, and how model conditions impact the
rate of flow. It will cover:

• Rates, rate sections, and the LP area

• Flow rules for defining how a block permits flow to move through it

• The blocks that specify critical constraints

• How to meet the constraint requirement

• A comprehensive example of constraints and rate sections

☞ Most of the models illustrated in this chapter are located in the folder \Examples\Discrete
Rate\Rates and Constraints. The tutorial models mentioned are located at \Examples\Tutori-
als\Discrete Rate.

Blocks of interest
The following blocks from the Rate library will be the main focus of this chapter.

Convey Flow
Delays the movement of flow from one point to another. Can accumulate flow to a max-
imum density, accumulate flow to fill empty sections, or act as a non-accumulating con-
veyor.

Interchange
Used to mix flow with items, this block can also limit its maximum rate of inflow and
outflow.

Tank
The block most frequently used to store flow can also limit its maximum rate of inflow
and outflow.

Rates, Constraints, and Movement 303
Rates, rate sections, and the LP area

D
iscrete R

ate
Valve
Controls and monitors the flow, limiting the rate of flow passing through. This block
can also be used to set a goal for the duration or quantity of flow.

Rates, rate sections, and the LP area
One of the most important aspects of a discrete rate model is the rate of flow – the speed of flow
movement. The flow rate is represented as the ratio of flow units to the model’s time units. This is
displayed in block dialogs as units/time, gallons/minute, transactions/second, boxes/hour, and so
forth.

Discrete rate models can be thought of as being divided into rate sections and LP areas. The flow
connectors within each rate section have the same effective rate, which is the speed at which flow
moves through those blocks. The LP area is composed of one or more rate sections whose effective
rates might change during the simulation.

The types of rates considered during the model building process, rate sections, and the LP area, are
discussed below.

Types of rates
The following rates are taken into consideration by ExtendSim and by a block’s flow rules. (Flow
rules will be discussed on page 306.)

Maximum rate
ExtendSim's discrete rate architecture
attempts to move flow through the model as
fast as possible. In the absence of any con-
straints, the flow rate would theoretically
approach infinity and flow would move from one part of a model to another instantaneously; this
would be a modeling error.

The maximum rate puts an upper limit on the movement of flow through a block. Six Rate
library blocks have the ability to set a maximum rate. You can set an explicit maximum rate in the
Interchange, Tank, and Valve blocks. The maximum rate for the Convey Flow block is mathemat-
ically derived. Maximum rates may also be implicitly specified under certain conditions in the
Merge and Diverge blocks. In each case, the maximum rate is the highest rate of flow those blocks
will allow, and hence the highest potential rate of flow for that part of the model.

☞ An inflow connector for a Convey Flow, Interchange, or Tank block can have one maximum rate
while the block’s outflow connector can have a different maximum rate. The maximum rate for the
Convey Flow block’s inflow is derived from settings in its dialog; the maximum rate for its outflow
is derived from dialog settings and model conditions. The maximum inflow and maximum out-
flow rates for the Interchange and Tank blocks can be entered directly in their dialogs.

 In order to avoid an error condition, each area of a model must have some mechanism in place to
restrict the rate of flow to a number that is less than infinity. If the required minimum set of con-
straints is not present, ExtendSim stops the simulation and displays an error message.

Effective rate
One of the most important reasons for creat-
ing a discrete rate model is to determine the
actual rate of flow movement. The effective
rate is the calculated actual rate of flow

Default maximum rate for Valve

Effective rate (Valve’s Results tab)

304 Rates, Constraints, and Movement
Rates, rate sections, and the LP area

D
is

cr
et

e
R

at
e

between Rate library blocks during the simulation run. It is the result of an internal calculation
taking into account the maximum rates and all the constraints of the process. In some situations
the effective rate is the same as the maximum rate; in others it is lower. One effective rate is associ-
ated with each rate section in a model, as discussed “Rate sections” on page 305.

In a rate section, the effective rate of flow cannot be higher than the lowest maximum rate for all
the blocks in that section. In fact, it can be lower than the lowest maximum rate, and could even
be zero (0), depending on model conditions.

While each rate section can have only one effective rate, a section can have more than one block
that has a maximum rate. In fact, it is common to have several Valve blocks, each with their own
maximum rate, in a rate section.

Infinite rate
An infinite rate is a theoretical rate that would cause the flow to instantaneously move from one
location in the model to another.

The Executive block’s Discrete Rate tab
specifies that a rate equal to or greater
than some number is considered infi-
nite; the default is that a rate ≥ 1e10 is
considered infinite, as shown above.

You can change the infinite number to be anything that you want. However, because of the 12
digit precision limitation of the effective rates, the number should be set as close as possible to the
highest possible effective rate which would ever reach this limit. (Setting a correct infinite rate is
more critical in the case of potential upstream supply and potential downstream demand calcula-
tions, an advanced topic discussed on page 382.)

Infinite effective rate
Since instantaneous movement is not possible in the real world, the Rate library does not support
an infinite effective rate. The infinity number specified in the Executive establishes an upper limit
on the model’s allowable set of effective rates. If the simulation calculates an effective rate that
equals or exceeds that number, ExtendSim will stop the simulation and generate an error message.
This could happen, for instance, if a source tank is directly connected to a sink tank, without any
intervening constraint.

Infinite maximum rate
The Executive’s infinity number (by default, 1e10) can be used in a block's rule set when condi-
tions are such that it cannot in any way constrain the movement of flow. For example this would
be accomplished by checking the ∞ (infinite) checkbox for a Valve’s maximum rate. With an infi-
nite maximum rate, the Valve will not limit the speed of flow passing through it.

If you set the Valve’s maximum rate field to blank or to a number ≥ 1e10, the block would also not
limit the speed of flow passing through it.

Upstream supply/downstream demand
This potential rate is considered when using an advanced mode in the Diverge. Merge, and Sensor
blocks. It is described fully in “Upstream supply and downstream demand” on page 382.

From the Executive’s Discrete Rate tab

Rates, Constraints, and Movement 305
Rates, rate sections, and the LP area

D
iscrete R

ate
Rate sections
A rate section is defined as a network of con-
nected blocks, all possessing the same effective
rate. Each rate section can include a succession of
blocks and connections. A rate section always
starts with an outflow connector and ends some-
where downstream with an inflow connector.
Thus it will always contain at least two blocks
sharing at least one flow connection.

While some blocks always define the boundary between two rate sections, other blocks never
define a new rate section boundary:

• Because a residence block (Convey Item, Interchange, or Tank) can hold flow for some period of
time, its effective inflow rate can be different from its effective outflow rate. Since the bound-
aries between rate sections never change, residence blocks always define the boundary between
two different sections, even if their effective inflow rate is the same as their effective outflow rate.
For example, a Tank’s inflow connection ends one rate section and its outflow connection starts
another section.

• Some passing (non-residence) blocks define a new rate section and others don’t. While flow is
not permitted to be held in a passing block for any length of simulation time, some passing
blocks are capable of defining boundaries between sections. For example, a Valve is part of one,
and only one, rate section. On the other hand, the Change Units block's effective inflow rate
will always be different than its outflow rate because it performs a unit conversion. It therefore
defines the boundaries between two rate sections.

☞ All residence blocks, and certain passing blocks, always define the boundary between two different
rate sections. These boundaries are established internally by ExtendSim at the beginning of the
simulation run; they do not change.

The table below lists what role each block in the Discrete Rate library plays in defining the bound-
aries of a rate section:

Block Always defines a
new rate section? Comments

Bias No The inflow effective rate is the same as the outflow effec-
tive rate. The block influences the effective rate associated
with the section it is part of.

Catch Flow No The outflow effective rate is the same as the catch effec-
tive rate.

Change Units Yes The outflow effective rate is the inflow effective rate mul-
tiplied by the conversion factor.

Convey Flow Yes The outflow effective rate can be different than the out-
flow effective rate because it is a residence block.

Diverge Yes The effective rates can be different across all flow connec-
tors – the input and all the outputs.

Two rate sections in a model

306 Rates, Constraints, and Movement
Flow rules

D
is

cr
et

e
R

at
e

For an example of rate sections, see the “Comprehensive example” on page 315.

Rate precision
The mathematical precision for effective rates is limited to 12 digits. This can become an issue if
you separate any two effective rates in an area by more than 12 digits of precision. For more infor-
mation, see “Precision” on page 360.

LP area
While rate sections don’t change after the start of a run, the boundaries of the LP area change
dynamically during the simulation. An LP area is composed of one or more rate sections linked
together by the fact that their effective rates could change during the simulation run. When an
event occurs that causes the effective rate for one rate section to be reevaluated, ExtendSim deter-
mines which other rate sections might be impacted. The affected rate sections constitute the LP
area and become part of the LP calculation.

Since the LP area is computed internally, and because it is most important for the LP calculation,
it is discussed fully in “The LP area” on page 377.

Flow rules
Flow rules completely define how a block permits flow to move through during the simulation
run. When calculating rates of flow, ExtendSim's discrete rate architecture tries to maximize
throughput throughout the system, subject to a set of constraints. In order to restrict flow, discrete
rate blocks are required to define their own sets of flow rules. The aggregated set of these rules ulti-
mately defines how fast flow is permitted to move over time throughout the model.

A block’s particular set of flow rules is derived from four factors:

• The block’s fundamental behavior.

• How its dialog has been configured, such as setting a Tank’s maximum input rate or entering a
conversion factor in the Change Units dialog.

• How its value connections have been connected. For instance, the Valve block’s R (maximum
rate) input connector can be used to dynamically modify the block’s maximum flow rate.

• How its flow connections have been connected. A Tank is a source if only its outflow connector
is connected; it is a sink if only its inflow connector is connected.

These flow rules completely describe the events or conditions under which a particular block may
constrain the movement of flow through it. However, changes in a block’s constraints during a
simulation cause its effective rates to be reevaluated and can cause a connected block’s effective

Interchange Yes See Convey Flow comment

Merge Yes See Diverge comment

Sensor No The inflow and outflow effective rates are the same.

Tank Yes See Convey Flow comment

Throw Flow No The inflow effective rate is the same as the throw rate.

Valve No The inflow and outflow effective rates are the same.

Block Always defines a
new rate section? Comments

Rates, Constraints, and Movement 307
Flow rules

D
iscrete R

ate
rates to be reevaluated, propagating calculations throughout an LP area. When recalculation is
required, the Executive block (Item library) uses the aggregated set of flow rules from all the blocks
in the LP area to calculate a new set of effective rates for the area. Thus a particular block’s flow
rules can be superseded by the global calculations of the Executive.

Critical and relational constraints
There are two primary types of flow rules: critical constraints and relational constraints.

Critical constraints
While all flow rules cooperate to constrain the rate of flow,
some blocks provide special rules called critical constraints.
If a rate section contains one or more critical constraints, they
place an upper bound to the rate of flow for the blocks within that section. A critical constraint is
unconditional – no matter what happens in the simulation, the effective rate of flow cannot be
higher than the lowest critical constraint of any block in that rate section. For example, the Maxi-
mum rate field is a Valve's critical constraint; the entry in that field defines an upper limit on the
rate of flow through the block. If that entry is the lowest critical constraint in the rate section, the
effective rate for every block in that section cannot be higher.

The blocks with the potential to set a critical constraint for flow are the Convey Flow, Diverge,
Interchange, Merge, Tank, and Valve; of these, the Valve is most commonly used. As will be shown
in “Meeting the critical constraint requirement” on page 312, these blocks must be placed at criti-
cal locations in order for the model to run properly.

 ExtendSim's discrete rate system attempts to move flow through the model as fast as possible.
Without any mechanism to impede its progress, the effective rate would theoretically approach
infinity and the flow would move from one part of a model to another instantaneously. In order to
avoid this error condition, each LP area of the model must contain one or more constraints (typi-
cally a Valve) to restrict the flow to a number that is below infinity. If the required minimum set of
critical constraints is not present in a model, ExtendSim stops the simulation and displays an error
message.

Relational constraints
Relational constraints define the way the effective rates of different sections are related to each
other, creating dependencies between rate sections. For instance, the relational constraint between
one rate section (effective rate x) and another rate section (effective rate y), could be defined as x≥y,
x=y, 2x-3=y, or any other expression. Relational constraints get updated when the block reacts to
new parameters or to changes in its state, but they don’t affect a block’s critical constraints.

An example of a relational constraint is the
Change Units block, where the use of a con-
version factor causes the outflow effective rate
to be different than the inflow effective rate.
The Change Units block defines the bound-
aries between one rate section and another;
the conversion factor specifies the relationship of the two effective rates.

For another example of a relational constraint, see “Comprehensive example” on page 315. For an
advanced discussion of relational constraints, see “The relational constraint calculation” on
page 381.

☞ You don’t enter relational constraints, they are determined by the behavior of the blocks.

Critical constraint in a Valve

Different inflow and outflow rates

308 Rates, Constraints, and Movement
Defining a critical constraint

D
is

cr
et

e
R

at
e

Comparison of constraints
Some blocks can set a critical constraint, some can set a relational constraint, and some can do
both. Even for blocks that can set constraints, the block may in some situations place no constraint
on the flow.

• The blocks that can set a critical constraint are the Convey Flow, Diverge, Interchange, Merge,
Tank, and Valve.

• Relational constraints can be set by the Change Units, Convey Flow, Diverge, Interchange,
Merge, and Tank blocks.

For example, a Tank where both the Maximum inflow rate and Maximum outflow rate are
checked will set critical constraints for its inflow and outflow.

If neither Maximum inflow rate nor Maximum outflow rate is checked, the Tank will not have
any critical constraints but could have relational constraints. If the Tank has a finite capacity but is
neither full nor empty, it places no constraints on the flow. However, once the Tank reaches the full
state, its inflow rate is required to be less than or equal to its outflow rate; this is a relational con-
straint.

The effective rate for a rate section cannot be any higher than the lowest critical constraint set for
by any of the blocks in that section. Furthermore, because the aggregated set of flow rules also typ-
ically contains relational constraints, the effective rate for the section can vary anywhere between
zero and the smallest critical constraint.

☞ For a table that lists the blocks and which constraints they can provide, see “Types of information
provided to the Executive” on page 379.

Defining a critical constraint
As mentioned earlier, a critical constraint defines the upper limit to the rate of flow through a rate
section. While a particular rate section may or may not have a critical constraint, at least one of the
rate sections within the LP area must have a critical constraint mechanism to limit the flow rate to
a number that is less than infinity.

• You can explicitly set a critical constraint in the Valve, Tank, and Interchange blocks. You do this
by entering a maximum rate in the block's dialog, obtaining a value for the maximum rate from
the block’s input connector, or linking the maximum rate field to the value of a cell in a global
array or ExtendSim database.

• For the Convey Flow block, the critical constraint is derived from settings in its dialog and
sometimes other model values, rather than being entered directly.

• A critical constraint may also be implicitly specified under certain conditions by the Merge and
Diverge blocks.

The next sections describe how to set a critical constraint. See also “Meeting the critical constraint
requirement” on page 312 for examples of how to apply the constraint requirement in your mod-
els.

Rates, Constraints, and Movement 309
Defining a critical constraint

D
iscrete R

ate
Valve
The Valve is the block most often used for explicitly set-
ting a critical constraint. You can enter a value in the
maximum rate field in the block's dialog, link the field
to an ExtendSim database or global array, or connect the
block’s R (maximum rate) input connector to some
value output.

For an example of setting a fixed maximum rate for the
Valve, see “Entering dialog parameters and settings” on page 277.

Dynamically changing the maximum rate
There are two ways to change a Valve’s maximum rate during a simulation run:

• Connect to the block’s R (maximum rate) input connector

• Link the block’s Maximum rate field to an ExtendSim database or global array

Connecting to the Valve’s R input connector or linking its maximum rate field to a data source
overrides any values directly entered in the maximum rate field. Instead, that field will display the
current maximum rate as determined by the simulation run.

☞ The checkboxes for “Initial maximum rate” and “Poll constraint every”, discussed below, are only
used when the Valve's maximum rate is configured to change dynamically.

For an example of using the Valve’s R input connector to cause the maximum rate to change
dynamically, see “Add a dynamic constraint” on page 278.

☞ As you saw in “Add maintenance” on page 280, the “Add Shutdown” button in the Valve’s dialog
automatically connects a Shutdown block (Item library) to the Valve's R input connector. This can
be used to stop the flow, or reduce its rate of movement, for a period of time. See also “Shutting
down” on page 179 for a description of how to use the Shutdown block.

Initializing the maximum rate
When the Valve’s maximum rate is configured to change dynamically, the Initial maximum rate
checkbox serves an important role. This is because the first effective rate calculations for a simula-
tion occur just before simulation time starts moving forward. If the Valve’s R connector is con-
nected or if the maximum rate field has been dynamically linked, problems can arise at this stage
because neither the block connected to the R connector nor the linked data source has yet had a
chance to provide an initial value. The Initial maximum rate checkbox resolves this issue by ini-
tializing the maximum rate.

The initial value entered in the dialog will be used until the Valve gets a different value from its R
input connector or from the linked data source.

☞ For multiple runs, the Initial maximum rate checkbox prevents the Valve from using the last
maximum rate from the current run as the initial maximum rate for the next run.

Polling constraints
The checkbox to Poll constraint every... can be used when a Valve’s maximum rate is configured to
change dynamically. This option directs the Valve to request a new maximum rate value at fixed
intervals during the run. This causes the Valve to periodically query the block connected to its R
(maximum rate) input connector or the cell linked to its maximum rate field for the new values.
Any values received between the queries will be ignored.

Defining constraints for Valve

310 Rates, Constraints, and Movement
Defining a critical constraint

D
is

cr
et

e
R

at
e

This checkbox is optional when the maximum rate field is connected to a fixed number in a linked
cell in a data source. It is required if the linked cell contains a random number or if the R input
connector is connected to a passive block like the Random Number (Value library), since a passive
block won’t independently generate a new value for the maximum on its own. (The checkbox is
not needed if the R connector is connected to block that actively generates values, such as the
Lookup Table block set to output values at regular time intervals in the discrete rate tutorial.)

☞ Each time the maximum rate in a Valve changes, effective rates must be re-calculated across multi-
ple sections. If you are using the poll constraint feature in several Valves, consider having them
update at the same time. This will dramatically reduce the number of recalculations.

☞ While the polling feature can be handy during the early stages of the model building process, flow
rates in real world systems rarely change at fixed intervals. Use this feature judiciously and with
caution.

Controlling how and when the Valve applies its maximum rate
The Valve’s Control Flow tab has advanced options that allow you to manage how and when that
block applies its maximum rate. By setting a goal or using hysteresis, you can explicitly control
when the Valve’s constraining rate will be observed, when it will be ignored, and for how long
either of those will happen. These topics are discussed in the “Delaying Flow” chapter.

Tank and Interchange
The Tank and Interchange blocks have
dialog options for explicitly defining
their maximum inflow and outflow rates.
Unlike the maximum rate in a Valve,
these constraints do not change dynami-
cally during the simulation.

You can enter either a maximum inflow rate or a maximum outflow rate, or both of these.

Default maximum rates for Tank

Rates, Constraints, and Movement 311
Defining a critical constraint

D
iscrete R

ate
The Tank Constraint example shows two flow streams with identical behavior. In the bottom flow
stream, Tank 2 uses the options Maximum inflow rate and Maximum outflow rate to replace
the filling and emptying valves found in the upper flow stream.

☞ Instead of using a Valve block to constrain flow, setting maximum inflow and/or a maximum out-
flow rates in a Tank or Interchange block can be used to satisfy the model’s requirements for a con-
straint.

Convey Flow
The Convey Flow block calculates critical constraints for its inflow and outflow connectors sepa-
rately. The critical constraints are derived from model conditions and settings in the dialog.

• The critical constraint for the Convey Flow block’s inflow is calculated by multiplying the
block’s effective speed by its maximum density entry.

☞ The effective speed can be less than or equal to the speed set in the dialog. If the block is non-accu-
mulating, or if it is accumulating but cannot accumulate more, and the block’s ability to deliver
flow exceeds downstream demand, the effective speed will be lower than the entered speed.

• The critical constraint for the block’s outflow is the result of the multiplication of the block’s
speed setting by the density of flow present at the outflow end of the block.

☞ Setting the initial contents or capacity for a Convey Flow block is discussed in the chapter
“Sources, Storage, and Units”. The “Delaying Flow” chapter shows how to use the Convey Flow
block to delay the movement of flow in a model.

Merge and Diverge
The critical constraint for one or more of a Merge or Diverge block’s branches can be implicitly
specified under certain conditions. Most often, the result would be a rate of 0 (zero).

When a Merge or Diverge block is set to certain modes, flow can be blocked from moving through
one or more of its branches. For example, if one branch of a Diverge block in Distributional mode
has been assigned a blank value or a value <=0, flow through that branch is halted. Similarly, flow

Tank Constraint model. Top stream with two Valves to constrain flow; bottom
stream with maximum rates defined in Tank 2.

312 Rates, Constraints, and Movement
Meeting the critical constraint requirement

D
is

cr
et

e
R

at
e

through all but the selected branch is blocked when the Merge block is in Select mode. In both of
these cases, the maximum rate would be 0 for the affected branches.

The “Mode table” on page 319 lists each mode for the Merge and Diverge blocks. The column
labeled “Parameter values that always block the flow” indicates which conditions would always
cause a branch to have an implied constraint of 0.

Meeting the critical constraint requirement
As discussed earlier, while a particular rate section may or may not have a critical constraint, at
least one of the rate sections within the LP area must have a critical constraint mechanism to limit
the flow. Otherwise, the rate of flow would approach infinity.

☞ By definition, residence blocks always delineate the boundary between two rate sections. A general
rule is that there must be at least one critical constraint between every two residence blocks. (The
critical constraints can be provided by the Convey Flow, Diverge, Interchange, Merge, Tank, and
Valve blocks. The residence blocks are the Convey Flow, Interchange, or Tank.) The exceptions to
the general rule include certain situations where a Merge or Diverge block is between two resi-
dence blocks.

The following examples illustrate some ways the required critical constraint mechanism can be met
in discrete rate models.

Valve or Convey Flow
The No Merge or Diverge model illustrates two typical ways to provide a critical constraint to the
rate of flow between two residence blocks (in this case, Tanks) that don’t have a Merge or Diverge
block between them.

The example to the right uses a Valve to constrain the
flow between two Tanks. This is the most straight for-
ward and most common situation. In order for the
Valve’s maximum rate to provide the critical constraint
it must be:

• Greater than or equal to 0 (zero)

• Less than 1e10 (the defined infinite rate)

• Not a blank

The example to the left uses a Convey Flow block
to meet the requirement for a critical constraint.
A Convey Flow block derives the critical con-
straint for its inflow from its dialog settings and
the critical constraint for its outflow from its dia-
log settings and model conditions. Because it has

critical constraints at both its inflow and outflow connectors, the Convey Flow block limits the
rate of flow from the first Tank to the second to a number that is less than infinite.

Tank or Interchange
Instead of using a Valve to provide the critical constraint between two residence blocks, you can
specify maximum inflow and maximum outflow rates for an intervening Tank or Interchange
block. With these maximum rates, the Tank or Interchange will limit the rate of flow between the
two residence blocks to a number less than infinite. This is shown in the Tank Constraint example
discussed in “Tank and Interchange” on page 310.

Rates, Constraints, and Movement 313
Meeting the critical constraint requirement

D
iscrete R

ate
Merge or Diverge blocks
If a Merge or Diverge block is between two residence blocks, the inflow and outflow branches may
or may not require a critical constraint mechanism.

☞ For any Merge/Diverge mode, if a critical constraint has been placed on a Merge block’s outflow
branch, no critical constraints are required on its inflow branches. Likewise, a critical constraint on
a Diverge block’s inflow branch means that no critical constraints are required on its outflow
branches. If those constraints have not been placed, the critical constraint requirement depends on
the block’s mode.

The following table provides an overview of each mode’s requirements for critical constraints when
neither the Merge block’s outflow branch nor the Diverge block’s inflow branch has a critical con-
straint. (In this table, the word “variable branch” means an inflow branch for the Merge block or
an outflow branch for a Diverge block.)

Note: For the Proportional mode, the variable branch with the critical constraint should not have a
proportion <=0. Otherwise, that branch will be closed and the other variable branches will have
potentially infinite effective rates. This is an error condition.

☞ Merge and Diverge blocks, including their modes, are described fully in the chapter “Merging,
Diverging, and Routing Flow”.

The two examples that follow use the Minimum Valve model to illustrate some of the table’s con-
cepts.

Mode Critical constraint requirements if there is no critical constraint on
the non-variable branch

Batch/Unbatch Only on one of the variable branches

Distributional Each variable branch

Neutral Each variable branch

Priority Each variable branch

Proportional Only on one of the variable branches (See Note, below)

Select Each variable branch

Sensing Each variable branch

314 Rates, Constraints, and Movement
Meeting the critical constraint requirement

D
is

cr
et

e
R

at
e

Proportional mode
The top section of the Minimum Value model indi-
cates the critical constraint requirement when a Merge
or Diverge block is in Proportional mode. If the block
is located between two residence blocks, only one criti-
cal constraint is needed as long as the branch's propor-
tion is neither 0 nor blank. (This lower requirement for
constraints is an exception to the general rule described
on page 312.) The effective rates for the other branches
are deduced from the Valve's maximum rate.

In the Minimum Valve example shown on the right, a
Valve is placed on a Diverge block’s bottom outflow
branch, and that branch does not have a 0 or blank
proportion.

Priority mode
The lower section of the Minimum Value model indicates the critical constraint requirements
when a Merge or Diverge block is in Priority mode. In this case, the number of critical constraints
that must be placed on the branches between residence blocks depends on where those constraints
are placed. These situations are shown in the Minimum Valve model.

If a critical constraint is placed between a residence
block and a Diverge block’s inflow branch, you do not
need to place any other critical constraints on the
Diverge block’s outflows. Likewise, if you place a critical
constraint on a Merge block’s outflow branch, you do
not need to place any critical constraints on its inflow
branches. This is shown on the right, where a Valve with
a maximum rate greater than or equal to 0 but less than
1e10 (the infinite rate) is on a Diverge block’s inflow
branch and there are no critical constraints required on
its outflow branches.

If you don’t
place a critical constraint on a Diverge block’s inflow
branch, you must place at least one critical constraint
on each outflow branch. Likewise, if you don’t place a
critical constraint on a Merge block’s outflow branch,
you must place at least one critical constraint on each
inflow branch.

This is shown in the screenshot to the left, where there
is no critical constraint on the Diverge block’s inflow
branch. This means each outflow branch must have a
critical constraint, in this case a Valve with a maximum
rate greater than 0 but less than 1e10 (the infinite rate).

Only one constraint needed

No constraint on each outflow

Constraint on each outflow

Rates, Constraints, and Movement 315
Comprehensive example

D
iscrete R

ate
Comprehensive example
The following example illustrates many of the
concepts from this chapter. The top line of the
Tank Constraint model, shown on the right, has
two rate sections, two critical constraints, and one
relational constraint.

☞ The sections that follow use the abbreviation FPT
to indicate “flow units per time unit”.

Rate sections
Rate sections are determined internally by a communication between Rate library blocks and the
Executive (Item library). The boundaries between rate sections are established at the beginning of
the simulation run; they do not change during the run even if the effective rates change.

At the beginning of the simulation run:

• The Filling valve has a maximum rate of 10, gets its inflow from an infinite Source, and sends its
outflow to an empty Storage tank that has a capacity for 100 flow units. The system will thus
calculate an effective inflow and outflow rate of 10 FPT for the Filling valve at the start of the
simulation run. (This will change once the Tank fills.)

• The Storage tank has a a capacity for 100 flow units, gets its inflow from a valve with a maxi-
mum rate of 10 FPT and sends its outflow to a valve with a maximum rate of 5 FPT. At the
beginning of the simulation run, its effective inflow rate will thus be 10 FPT and its effective
outflow rate will be 5 FPT.

• The Emptying valve has a maximum rate of 5 FPT and sends its outflow to an infinite Sink. Its
effective inflow and outflow rate is 5 FPT.

At the start of the simulation run, the Storage tank’s effective inflow rate is different from its effec-
tive outflow rate. Thus the first rate section for the Tank Constraint model starts at the Source
block’s outflow connector and ends at the inflow connector on the Storage tank. The second rate
section starts at the Storage tank’s outflow connector and ends at the Sink’s inflow connector.

Critical constraints
There are two critical constraints in the top line of the Tank Constraint model. The first critical
constraint is the 10 FPT entered in the Filling valve’s maximum rate field. The second is the 5
FPT entered in the Emptying valve’s maximum rate field.

Relational constraint
Relational constraints define the way the effective rates of different sections are related to each
other. At the beginning of the simulation run there are no relational constraints – the effective
inflow rate is independent of the effective outflow rate. When the Tank (which has a finite capacity
of 100 flow units) becomes full, it applies one critical constraint: inflow rate must be less than or
equal to outflow rate.

Simulation’s impact on the effective rates
Since it is empty at the start of the run, the Storage tank's initial set of flow rules will not include
placing any restrictions on its inflow rate. Consequently, the initial effective rate of flow through
Rate Section 1 is limited only by the Filling valve's critical constraint of 10 FPT.

Tank Constraint model

316 Rates, Constraints, and Movement
Comprehensive example

D
is

cr
et

e
R

at
e

However, this initial effective rate for the first rate section is only temporary. Since the Storage
tank's capacity is finite and since Rate Section 2's effective rate is only 5 FPT, the Storage tank will
eventually become full. Once this happens, the effective rate of 10 FPT in Rate Section 1 can no
longer be maintained. Consequently, the Storage tank introduces a relational constraint that
requires its inflow effective rate (Rate Section 1) to be less than or equal to its outflow effective rate
(Rate Section 2). Once the Storage tank is full, its relational constraint causes the effective rate
through Rate Section 1 to be reduced to 5 FPT.

Discrete Rate Modeling

Merging, Diverging, and Routing Flow
Using the Merge, Diverge, Throw Flow and Catch Flow blocks

318 Merging, Diverging, and Routing Flow
Blocks of interest

D
is

cr
et

e
R

at
e

When building models, you will frequently encounter situations where you want to route the
streams of flow in a model. This is accomplished using the Catch Flow, Diverge, Merge, and
Throw Flow blocks.

The Merge and Diverge blocks have similar interface and capabilities. These two blocks send and
receive flow through a variable number of inflow and outflow connectors. Their dialogs provide
rule-based options to merge or diverge flow in a discrete rate environment.

The Throw Flow and Catch Flow blocks also have similar interfaces. These blocks route flow
remotely from point to point.

This chapter covers:

• Blocks for merging, diverging, and routing flow

• Merge and Diverge modes

• Additional features of the Merge and Diverge blocks

• Using the Throw Flow and Catch Flow blocks

☞ The models illustrated in this chapter are located in the folder \Examples\Discrete Rate\Merge and
Diverge.

Blocks of interest
The following blocks from the Rate library will be the main focus of this chapter.

Catch Flow
Receives flow sent from Throw Flow or Diverge blocks. Allows you to group blocks that
can send the flow into sets, so that the list of possible connections can be filtered.

Diverge
Distributes flow from one inflow branch to one or more outflow branches at a time. The
block has several modes for determining how the flow is distributed through the branches.

Merge
Merges flows from one or more inflow branches at a time into one outflow branch. The
block has several modes for determining how the inflows should be received.

Throw Flow
Sends flow to Catch Flow or Merge blocks. Allows you to group the blocks that can receive
the flow into sets, so that the list of possible connections can be filtered.

Merging and diverging flow
The systems modeled using discrete rate technology typically have multiple flow streams that need
to be merged into one stream or, conversely, one flow stream that needs to be diverged to multiple
streams. The Merge and Diverge blocks have been designed specifically to model this type of rout-
ing behavior.

The Merge and Diverge blocks have seven different rule-based options that determine how they
send and receive flow. These modes mostly behave as mirror images of each other in the two
blocks. The list of modes, and their similarities and differences, are summarized in the “Mode
table”, below. The examples that follow the table show how each of the modes can be applied.

Merging, Diverging, and Routing Flow 319
Merging and diverging flow

D
iscrete R

ate
☞ For the Merge block, each input connector is referred to as an inflow branch. For the Diverge
block, each output connector is referred to as an outflow branch. Collectively they are known as
the variable branches.

Mode table
The following table lists the Merge and Diverge modes in alphabetical order and summarizes their
main similarities and differences.

Characteristics
Explanations for the mode characteristics are:

• Some modes use a fixed flow rule to obtain or distribute the flow – no matter what happens in
the rest of the model, the fixed rule will be respected. For other modes, the flow rules express a
preference and are only invoked in specific situations depending on model conditions.

• Competing requests for flow amongst Merge and Diverge blocks that have been set to the Dis-
tributional, Priority, and Sensing modes require the use of bias ordering. This is discussed in
“Biasing flow” on page 360.

• While other parameter values may block the flow in certain circumstances (for instance, if a
number is out of range), for some modes a Blank or zero (0) will always cause the flow to be
stopped. Values that are out of range will cause an error message; a zero (0) or Blank will not
generate an error message.

• As discussed in their respective sections, incompatibilities can arise if an area of the model has
one or more blocks that use the Sensing mode and other blocks that use either the Distribu-
tional, Neutral, or Priority mode. These situations should be avoided whenever possible as they
can give inaccurate results.

Select mode
When the Merge or Diverge blocks are in Select mode, only one selected branch at a time is open.
A table in the block’s dialog allows you to assign a unique ID number to each inflow branch (for
the Merge block) or outflow branch (for the Diverge block). The ID connector on the block’s icon
is then used to select which branch to open.

Options in the block’s dialog allow you to specify what happens if the value at the ID connector
doesn’t match any of the branch IDs listed in the table:

Mode See page

Sum of
inputs =
sum of
outputs?

Fixed rule?
Bias order
required?

Parameter value at
each branch that
will always block
the flow

Compatible
with Sensing
mode?

Batch/Unbatch 321 No Yes No None Yes

Distributional 324 Yes No Yes Blank, <=0 Maybe

Neutral 326 Yes No No None Maybe

Priority 322 Yes No Yes Blank Maybe

Proportional 321 Yes Yes No Blank, <=0 Yes

Select 319 Yes Yes No None Yes

Sensing 325 Yes No Yes Blank, <=0 Yes

320 Merging, Diverging, and Routing Flow
Merging and diverging flow

D
is

cr
et

e
R

at
e

• Choose top connection

• Choose bottom connection

• Stop flow

• Generate error

A blank value received at the ID connector always stops the flow until the connector receives a
valid input.

☞ The Select mode uses a fixed flow rule to obtain the set of effective rates for each branch and to
determine which branch to route the flow to.

Select Mode Diverge model
In the Select Mode Diverge model, a Cre-
ate block is set to output a sequential
value (1, 2, 3, or 4) every 20 time units.
At its ID input connector, the Diverge
block receives the value from the Create
block, compares that value to entries in its
dialog table, and selects the appropriate
outflow connector. Three Tank blocks,
each with an infinite capacity for flow
units, are connected to the Diverge block.
The Tank blocks are identified by the ID
values entered in the Diverge block’s dia-
log. For example, an Output ID of 1 indi-
cates the Tank labeled “Infinite Sink 1”.

In this example the Create block is
responsible for controlling the Diverge
block. When the Create block sends a
value of 2 to the Diverge block’s ID con-
nector, the flow is routed to Infinite Sink 2, and so forth.

Notice that in this model 4 is an invalid number and the Diverge block is set to Invalid value at
ID: stop flow. When the Create block sends a value of 4, all flow through the Diverge block stops
and a red bar appears on the block's right side. This pause in the flow could be used for a specific
purpose, for instance to allow time to empty downstream Tanks.

☞ Try running the model after checking Pause each step (in the upper left corner of the model).
This will cause the simulation to pause so you can more easily see the effect of the Create block
sending values to the Diverge block. Clicking the Pause/Resume button in the toolbar will con-
tinue execution to each succeeding event. (There can be more than one event without time
advancing.) For more information, see “Stepping through a model” on page 522.

Select Mode Merge model
This model is the mirror image of the Select Mode Diverge model discussed above. While the
three source tanks provide an infinite supply of flow, it is the Merge block that controls which tank
flow is drawn from. Since the Merge block is in Select mode, the Create block controls the routing
of flow by providing different values (1, 2, 3, 4 sequentially every 20 minutes) at the Merge block’s
ID connector.

Select Mode Diverge model

Merging, Diverging, and Routing Flow 321
Merging and diverging flow

D
iscrete R

ate
In this model, the Merge block is set to Invalid value at ID: choose top connection. This means
that when the ID connector gets a value of 4 from the Create block, it will select the flow from its
top input connector.

Batch/Unbatch mode
The Batch and Unbatch modes are used to cause a different total amount of outflow than what
would be indicated by the total amount of inflow or to change the total amount of inflow into a
different total amount of outflow.

• When the Merge block is in Batch mode, each unit of flow from each inflow branch is com-
bined into one outflow unit. The effective rates of each inflow branch and the outflow connec-
tor are thus required to be equal. In this mode, the Merge block's behavior is similar to that of
the Batch block (Item library).

• When the Diverge block is in Unbatch mode, each unit of flow from its inflow branch is cloned
into one unit of flow for each outflow branch. The effective rates for the inflow connector and
each outflow branch are thus required to be equal. In this mode, the Diverge block's behavior is
similar to that of the Unbatch block (Item library).

☞ The Batch/Unbatch modes are different from all the other modes because the amount of total
inflow is never equal to the amount of total outflow.

Batch Mode Merge model
In the Batch Mode Merge example, the Merge
block is set to Merge mode: batch. Each time
unit the block takes one unit of flow from
Infinite Source 1 and one unit of flow from
Infinite Source 2. It then combines them to
make one unit of output flow per time unit.
Since the model runs for 1,000 time units, the
Infinite Source 1 and Infinite Source 2 blocks
each provide 1,000 units of flow.

Notice the amount of flow (1,000 units) that
has entered the Infinite Sink is half the total
amount of flow that has left the two source
tanks. This is because the effective rate for the
Merge block’s outflow connector is required to
be the same as the rate at each of its two inflow branches.

Unbatch Mode Diverge model
In this example, one unit of flow per time unit from the Infinite Source is unbatched into two flow
units per time unit – one for Infinite Sink 1 and the other for Infinite Sink 2. Notice the total
quantity of flow (2,000) in the two sink tanks is double the amount of flow (1,000) that exited the
source tank.

Proportional mode
With the Proportional mode, you define in a table what the proportion of flow through each
branch will be. The proportion for each branch is defined in the table relative to each of the other
branches. For instance, a value of 2 for the top outflow branch and 4 for the bottom outflow
branch would indicate that the bottom branch should have twice the amount of flow as the top

Batch Mode Merge model

322 Merging, Diverging, and Routing Flow
Merging and diverging flow

D
is

cr
et

e
R

at
e

branch. If a particular branch's proportion has been defined to be blank or <= 0, the effective rate
for that branch is set to 0 and the flow is stopped for that branch.

☞ See “Merge blocks in Proportional mode” on page 367 for options when a Merge block is part of
an empty loop.

 This mode uses a fixed flow rule where the effective rate at each branch is required to meet the
proportion defined by the table. Consequently, if the flow through one or more of the branches is
blocked or starved, the effective rates for all branches will be set to zero and all flow through the
block is halted.

Proportional Mode Diverge model
In this example, flow coming from the Infinite
Source is evenly distributed between the
Diverge block’s three outflow branches. This
occurs because the proportions in the table in
the Diverge block’s dialog have been set to
1:1:1. With this proportion, the effective rate
across all three branches is required to be the
same – an identical amount of flow must pass
through each branch.

The initial constraining rate for the three Valve
blocks is set to 100. However, the Shutdown
block forces Valve 1's constraining rate to alter-
nate between 0 and 100 as the model runs. This
has an impact on the effective rate for all three
branches. When the constraining rate for Valve
1 switches to 0, the outflow from all three branches goes to 0 even though the constraining rate for
Valves 2 and 3 is still equal to 100. This is because the Diverge block must enforce its ratio, which
is 1:1:1 in this example.

Proportional Mode Merge model
This model is the mirror image of the Proportional Mode Diverge model discussed above. While
all three Valve blocks limit the supply of flow from the source tanks at an initial constraining rate
of 100, the Shutdown block forces the constraining rate in Valve 1 to alternate between 0 and 100.
As in the previous model, when the constraining rate in Valve 1 switches to 0, the effective rates for
all three branches become 0 because the Merge block is in Proportional mode and must enforce
the 1:1:1 equality it is set to.

Priority mode
The Priority mode allows you to attach priorities to the inflow branches of the Merge block and
the outflow branches of the Diverge block. These priorities only impact the effective rates assigned
to the branches when discrepancies arise between the upstream flow supply and the downstream
flow demand; otherwise they are ignored.

• In the case of the Diverge block, when the upstream supply is greater than or equal to the down-
stream demand, the block passes as much flow through each branch as the downstream demand
will allow and the priorities are ignored. However, when the cumulative downstream demand
exceeds upstream supply, the priorities that have been assigned to each branch are used to calcu-
late the appropriate effective rates for the outflow branches.

Proportional Mode Diverge model

Merging, Diverging, and Routing Flow 323
Merging and diverging flow

D
iscrete R

ate
• In contrast, the Merge block passes as much flow as possible through each inflow branch when
downstream demand exceeds upstream supply, ignoring the priorities. However, when the
cumulative upstream supply exceeds downstream demand, the priorities assigned to each branch
are used to calculate the appropriate effective rates for the inflow branches.

Special cases apply to the use of the Priority mode in a Merge or Diverge block:

• If the priority for a particular branch has been set to blank, the effective rate for that branch will
be zero and the flow will stop for that branch.

• If the priorities of two or more branches are equal, the flow will be divided among them in a
“distributional” manner with equal proportions (see Distributional mode, below.)

☞ The priority entries in a Diverge block’s dialog are not fixed rules but instead are situational; they
are only used to resolve discrepancies when downstream demand exceeds upstream supply. For a
Merge block, the entries are used to resolve discrepancies when upstream supply is greater than
downstream demand.

 Merge/Diverge blocks in Priority mode are not always compatible with Merge/Diverge blocks in
Sensing mode. Consequently, an area of the model with some blocks in Sensing mode and others
in Priority mode are prone to error. See “Cautions when using potential rates” on page 383 for
more information.

Priority Mode Diverge model
In this example, the
constraining rates in
the valves have been set
such that the upstream
supply of 8 flow units
per time unit through
Valve 1 exceeds the
cumulative down-
stream demand of 6 set
by Valves 2, 3,and 4.
Because a large enough
supply of flow exists to
satisfy downstream
demand, the priorities
in this case are ignored
and have no impact on
the set of effective rates
defined for each outflow branch.

However, if a “supply scarcity” is introduced by changing the constraining rate in Valve 1 from 8 to
4, the Diverge block will calculate a set of effective rates that distributes the now limited supply of
flow according to the defined priorities. Since the priorities have been assigned in descending order
(top outflow branch has highest priority), the Diverge block will do its best to satisfy the down-
stream demand that has been placed on the top outflow branch first. After that, if supply is still
available, the Diverge block will attempt to service subsequent branches. This pattern is repeated
until every branch has been satisfied or until the upstream supply of flow runs out, whichever
comes first.

Priority Mode Diverge model

324 Merging, Diverging, and Routing Flow
Merging and diverging flow

D
is

cr
et

e
R

at
e

Priority Mode Merge model
When the blocks are in Priority mode, the difference between a Merge block and a Diverge block
(illustrated above) is that the priorities defined in the Merge block’s table impact the effective rates
for the inflow branches if there is a downstream “scarcity of demand”. The Priority Mode Merge
model illustrates the use of Priority mode when 1) the downstream demand exceeds upstream sup-
ply, and 2) downstream demand is less than upstream supply.

Distributional mode
Similar to the Proportional mode described on page 321, the Distributional mode allows you to
define a desired set of proportions for each branch. However, unlike the Proportional mode (but
similar to the Priority mode discussed on page 322), these proportions serve as the decision rule for
assigning effective rates to the branches only when discrepancies arise between the upstream flow
supply and the downstream flow demand.

• In the case of the Diverge block, when the upstream supply is greater than or equal to the down-
stream demand, the block passes as much flow through each branch as the downstream demand
will allow and the proportions are ignored. However, when downstream demand exceeds
upstream supply, the proportions assigned to each branch are used as a guide to determine how
the limited supply should be distributed across the outflow branches.

• In contrast, the Merge block passes as much flow as possible through each inflow branch when
downstream demand exceeds upstream supply, ignoring the proportions entered in the dialog’s
table. However, when upstream supply exceeds downstream demand, the proportions assigned
to each branch are used as guides to determine how the limited demand should be distributed
across the inflow branches.

☞ The distributional proportions entered in a Merge or Diverge block’s table are significant only in
certain situations; they are ignored otherwise. Proportions do not follow a fixed flow rule; they
only impact the effective rates assigned to the branches when discrepancies arise between the
upstream flow supply and the downstream flow demand.

 Merge/Diverge blocks in Distributional mode are not always compatible with Merge/Diverge
blocks in Sensing mode. Consequently, an area of the model with some blocks in Sensing mode
and others in Distributional mode are prone to error. See “Cautions when using potential rates” on
page 383 for more information.

Distributional Mode Diverge model
In this example, the pro-
portions for the Diverge
block’s two branches are
set to 1:1. The constrain-
ing rates in the valves are
defined such that the
upstream supply of 10
flow units per time unit
through Valve 1 equals the
cumulative downstream
demand of 10 set by
Valves 2 and 3. Because a
large enough supply of
flow exists to satisfy

Distributional Mode Diverge model

Merging, Diverging, and Routing Flow 325
Merging and diverging flow

D
iscrete R

ate
downstream demand, the distributional proportions are ignored and have no impact on the set of
effective rates defined for each outflow branch of the Diverge block.

Two examples highlight what happens when the Diverge block is set to Distributional model and
there is a “supply scarcity” that causes the upstream supply to be less than the downstream
demand:

• If the constraining rate in Valve 1 is changed from 10 to 8, the Diverge block will use the 1:1
proportions that have been defined in its dialog to allocate the now limited supply between the
two downstream demanding branches. In this case, 4 units of flow per time unit will move
through both the top and bottom branches.

• If the constraining rate in Valve 1 is set to 9 units of flow per unit of time, the situation is differ-
ent. According to the 1:1 proportions that have been defined in its dialog, the Diverge block
should allocate 4.5 units of flow to each of the two downstream demanding branches. However,
the constraining rate for Valve 3 is 4 units of flow per time unit and that is all it can accept. The
extra 0.5 units of flow will be routed through the top branch because the downstream demand
for the bottom branch cannot keep up with the upstream supply (4.0 vs. 4.5) and the Distribu-
tional mode will always try to push as much flow as possible.

☞ The Diverge block's Proportional mode is used to resolve discrepancies when downstream demand
is greater than upstream supply.

Distributional Mode Merge model
When the blocks are in Distributional mode, the difference between a Merge block and a Diverge
block (illustrated above) is that the proportions defined in the Merge block’s table impacts the
effective rates for the inflow branches only if there is a downstream “scarcity of demand”. The Dis-
tributional Mode Merge model illustrates the use of the Distributional mode when 1) the down-
stream demand exceeds upstream supply, and 2) downstream demand is less than upstream supply.

☞ The Merge block's Proportional mode is used to resolve discrepancies when upstream supply is
greater than downstream demand.

Sensing mode
Similar to the Proportional mode discussed on page 321, the Sensing modes use proportions to
calculate the effective rates for the branches. However, unlike the Proportional mode where you
directly enter or control the proportions for each branch, the proportions for the Sensing modes
are derived dynamically from the model as it runs.

• In the case of the Diverge block, Demand Sensing proportions for the outflow branches are cal-
culated as a function of the potential downstream demand. For instance, the downstream
demand placed on a particular outflow branch becomes the proportion for that branch.

• Similarly, the Merge block uses the potential upstream supply to define the Supply Sensing pro-
portions for each inflow branch.

☞ Potential demand and supply rates are advanced concepts that are discussed in “Upstream supply
and downstream demand” on page 382.

In the Sensing mode, the block's dialog has a table where you must define the maximum possible
rate of flow through each branch. This upper bound is used as a way to limit throughput so that
the proportions can be determined if the upstream supply or the downstream demand is infinite.

 The discussion on page 383 provides reasons why the Sensing mode should be used with extreme
caution and some situations where it should be avoided altogether. Given the potential problems,

326 Merging, Diverging, and Routing Flow
Merging and diverging flow

D
is

cr
et

e
R

at
e

and because similar behavior can be achieved using the Distributional mode, the Sensing mode
should be used only as a last resort.

Demand Sensing Mode Diverge model
In this example, the con-
straining rates in Valves
2, 3, and 4 define the
demand for flow down-
stream of the Diverge
block. They therefore
define the proportions
used to distribute the
flow across the Diverge
block’s outflow branches.

A maximum possible
rate of 1,000 for each
branch is entered in the
Diverge block’s table.
The block’s Results tab
(cloned onto the model
worksheet) displays each
branch’s actual outflow rate and the amount of total outflow for the simulation run.

Supply Sensing Mode Merge model
In the Supply Sensing Mode Merge example, the constraining rates in Valves 1, 2, and 3 define the
supply upstream of the Merge block. They therefore define the proportions used to distribute flow
across the inflow branches.

Neutral mode
Unlike any of the modes discussed previously, the Neutral mode does not allow you to control the
effective rates for the branches. This is a passive mode where no branch has a throughput advan-
tage; the branch that gets chosen cannot be predicted. It is used when the system does not need to
control how the flow is routed.

• In the case of a Diverge block, when the upstream supply is greater than or equal to the down-
stream demand, the block passes as much flow through each branch as downstream demand will
allow. However, when downstream demand exceeds upstream supply, the distribution of flow
across each branch cannot be predicted.

• In contrast, the Merge block passes as much flow as possible through each inflow branch when
downstream demand exceeds upstream supply. However, when upstream supply exceeds down-
stream demand, the distribution of flow across each branch cannot be predicted.

The Neutral mode should be used carefully but can be handy in certain cases. As a general rule of
thumb, if you don't care exactly which branch has priority, but you do want maximum flow, con-
sider using the neutral mode. The Neutral mode can also be used to resolve conflicting decision
rules. For example, using the Neutral mode in a downstream Merge block would allow an
upstream Diverge block in Proportional mode to control the effective rates of the inflow branches
in the Merge.

Demand Sensing Mode Diverge model

Merging, Diverging, and Routing Flow 327
Features of the Merge and Diverge blocks

D
iscrete R

ate
 Merge/Diverge blocks in Neutral mode are not always compatible with Merge/Diverge blocks in
Sensing mode. Consequently, an area of the model with some blocks in Sensing mode and others
in Neutral mode are prone to error. See “Cautions when using potential rates” on page 383 for
more information.

Features of the Merge and Diverge blocks
Some features available in the Merge and Diverge blocks of particular interest include:

• Bias order

• Dynamically changing parameters

• Internal Throw and Catch connections.

These features are described in the following sections.

Bias Order – resolving competing requests for flow
As models grow in complexity, it is common for the priorities or proportions defined in one
Merge/Diverge block to compete or conflict with the priorities or proportions defined in other
Merge/Diverge blocks. This problem of “competing requests for flow” is resolved by assigning a
bias order to the competing blocks. This is accomplished through entries in either the Model Set-
tings tab of the individual blocks or the Discrete Rate tab of the Executive block. The following
example demonstrates one of the many ways competing requests can arise and be resolved.

☞ Because certain modes allow flexibility in the way flow is distributed, Merge or Diverge blocks set
to Distributional, Priority, or Sensing modes must specify a bias order to resolve conflicts between
competing preferences for flow, as discussed below. For a complete description of the bias concept
and bias order, see “Biasing flow” on page 360.

Competing Requests for Flow model
This model demon-
strates how the prior-
ities in two routing
blocks compete
against each other.

In this example:

• The Diverge
block’s outflow
branch priorities
have been specified
in descending
order while the
Merge blocks'
inflow branch pri-
orities have been
specified ascending order.

• The two blocks share common flow streams.

While the Diverge block in this model will try to satisfy its top outflow branch first, the Merge
block will oppose that by trying to satisfy its bottom inflow branch. To resolve this conflict, the
Diverge block's priorities have been biased over the Merge block. This was accomplished by select-

Competing Requests for Flow model

328 Merging, Diverging, and Routing Flow
Features of the Merge and Diverge blocks

D
is

cr
et

e
R

at
e

ing Each block defines its own bias order in the Discrete Rate tab of the Executive block, then
selecting the Diverge block in the Executive’s table and entering a bias of 1.

Selecting the option “Show bias order on icon” in the Discrete Rate tab of the Executive block
causes the bias value to be displayed near block icons as “<x>”. In the above model, the bias order
is indicated as <1> for the Diverge block and <2> for the Merge block, indicating that the Diverge
block has precedence over the Merge block’s requests.

☞ To see how the Bias block is used instead of Merge/Diverge blocks to resolve competing preferences
for flow, see the “Prioritize With Bias Blocks” model located in the folder \Examples\Discrete
Rate\Merge and Diverge and discussed on page 360.

Internal throw and catch
While the Rate library has two blocks, Throw Flow and Catch Flow, specifically designed to trans-
port flow without the use of connection lines, the Diverge and Merge blocks have been given
throw/catch abilities as well. See “Throwing flow and catching flow remotely” on page 329 for a
full discussion.

Changing decision rules dynamically
With the exception of the Batch/Unbatch and Neutral modes, decision rule parameters for the
Merge/Diverge modes can be changed dynamically during the run. However, this is an advanced
feature that requires some caution and extra insight into how ExtendSim works.

There are two ways to dynamically change a decision rule for a Merge/Diverge mode:

• Allow the rules to be
controlled by other
blocks. To do this, check
the appropriate check-
box (such as Priorities
defined using value con-
nectors, as shown to the
right) on the Merge or Diverge block’s Options tab. When this checkbox is selected, a set of
value input connectors appear on the block’s icon, with one connector for each branch.

• Link the parameter table to an ExtendSim database table or global array. Any changes made to
the table or array while the model runs will have the same effect as using a block to dynamically
change the values.

Limiting the number of recalculations
While this advanced feature is useful for changing how effective rates are calculated on the fly,
there are potential pitfalls. Since computations typically happen sequentially on a computer, new
parameter values for each branch are changed one at a time. Ideally, the Merge/Diverge block will
not recalculate the new set of effective rates for each branch until after all parameters have been
updated. If this is not the case, however, the block will be forced to unnecessarily calculate an
entirely new set of effective rates every time a parameter is updated. At the very least this will cause
your runtimes to be longer than need be. At the very worst, redundant rate calculations could
introduce bugs into your model when effective rates are temporarily calculated using one or more
out-of-date parameter values.

There are three approaches that will help avoid this problem:

Modifying decision rules dynamically (Priority mode)

Merging, Diverging, and Routing Flow 329
Throwing flow and catching flow remotely

D
iscrete R

ate
1) The issue can be bypassed if the inputs on one Merge/Diverge block are controlled by the out-
puts from one equation-based block, such as the Equation block (Value library). This is
because the equation block will update all its outputs with the new results prior to alerting the
Merge/Diverge block to the change. For an example of this, see the model “Change Priorities
with Equation”.

2) By checking Update only when a True value is received at the GO connector in the block’s
Options tab. This allows the calculation of a new set of effective rates to be controlled explic-
itly. In this case, changes to the parameters are ignored until a message is received at the GO
input connector. This is shown in the example model “Change Proportions with Trigger”
which requests a new set of proportions at the beginning of each goal. (A goal represents the
production of 1000 units of flow and is repeated over and over until the end of the simula-
tion.) The values at the inputs change every 10 time units, but because the chosen set of
parameter values remains unchanged for the duration of the goal, effective rates are recalcu-
lated only at the beginning of each new goal.

3) By checking Poll new parameters only each: x time units in the block’s Options tab. This
causes a new set of parameters to be updated at fixed intervals. In this case, changes to the
inputs are ignored until the next interval in time arrives. In the example “Change Proportions
Periodically”, the model picks a new set of proportions every time another 100 units of time is
reached.

☞ The options Update only when a True value is received at the Update connector and
Poll new parameters only each: x time units can be combined together.

Throwing flow and catching flow remotely
The most common way to route flow from one block to another is by drawing a connection from
an outflow connector to an inflow connector. This is a powerful mechanism for routing flow
because it's simple to implement and it provides a very clear picture of how the flow is being
routed in a model. The use of connection lines between connectors, however, can prove to be cum-
bersome when many streams of flow need to be routed into or out of hierarchical blocks.

The ExtendSim throw/catch mechanism solves this issue by allowing flow to be moved without
the use of connection lines. By creating a throw/catch connection via block dialogs, flow can be
routed from a throwing block to any catching block in the model.

In the Rate library:

• Flow can be sent from the Throw Flow and Diverge blocks

• Flow can be received by the Catch Flow and Merge blocks.

• Any sending block can throw to any catching block regardless of location.

The rules restricting how normal flow connections can be drawn between outflow and inflow con-
nectors also apply to throw/catch connections:

• The flow can go one way only – from throw to catch

• One throw can be connected with one and only one catch

• One catch can be connected with one and only one throw

330 Merging, Diverging, and Routing Flow
Throwing flow and catching flow remotely

D
is

cr
et

e
R

at
e

☞ The advantage of using a Diverge block to throw flow or a Merge block to catch flow, is that each
outflow or inflow branch can throw or catch a separate stream of flow remotely. The Throw Flow
and Catch flow blocks, on the other hand, are limited to one flow source or destination each.

Creating a throw/catch connection
The creation of a throw/catch connection can be
made from either the sending (Throw Flow or
Diverge) or the receiving (Catch Flow or Merge)
block. Connections are made by selecting the
block to catch or throw the flow in a popup menu
in a block’s dialog. Each eligible block appears in
the list with its block label and global block num-
ber. Once established, the connection information
is automatically displayed in the dialogs of the
sending and receiving blocks. In the screenshot
above, the Catch Flow block will receive flow from
a Diverge block labeled “Diverge B”; the Diverge block’s global block number is 4.

Choosing the connector position for Merge and Diverge blocks
If a Diverge or Merge block is part of the throw/catch connection, after selecting the connecting
block, you must also choose a Merge or Diverge connector position for flow to come from or go
to. This is because the Merge and Diverge blocks have multiple inflow and outflow branches.
Some of their inflows or outflows may not be used for throwing/catching and some throwing/
catching blocks may get flow from or send flow to different branches on a single Merge or Diverge
block.

The number that indicates a Merge or Diverge block’s particular connector position is displayed in
the leftmost column of the table in the Merge/Diverge block’s Throw or Catch tab; the number of
the topmost inflow or outflow branch is zero (0). You select the connector position from a popup
menu to the right of the Position field in the corresponding block. The menu will list all the avail-
able connector positions for the named block. In the screenshot in the preceding section, the top
outflow connector position (0) for the Diverge block labeled Diverge B is entered in the Position
field of a Catch Flow block’s dialog.

☞ An asterisk to the right of a connector position number in the popup menu indicates that the con-
nector is already being used by some other throw/catch block.

Filter options to facilitate throw/catch connections
In large models, it is possible to have a great number
of sending and receiving blocks from which a throw/
catch connection can be made. To simplify the popup
list of blocks eligible for connection, three types of fil-
ters can be applied:

• Group filter

• Block type filter

• Only unconnected blocks filter

These filters can be used in combination with each
other.

Selecting a connection in a Catch Flow block

Filtering options

Merging, Diverging, and Routing Flow 331
Throwing flow and catching flow remotely

D
iscrete R

ate
Group filter
Each block with throw or
catch capabilities can be
added to a throw/catch
group. Groups can be cre-
ated or selected through
the group popup menu
found in the sending and
receiving blocks. When this popup is blank, the block does not belong to a group. When a block
has been added to a group, its throw/catch options are limited to the blocks currently in that
group.

Block type filter
By default, the block types a throwing block can connect to include both Catch Flow and Merge
blocks and the block types a catching block can connect to include by Throw Flow and Diverge
blocks.

• For throwing blocks, the list of blocks to select from can be
narrowed to only Catch Flow blocks or only Merge blocks.

• For catching blocks, the list of blocks to select from can be
limited to only Throw Flow blocks or only Diverge blocks.

Only unconnected blocks filter
This filter narrows the selection of possible blocks to only
those blocks without an established throw/catch connection.

Examples of throw and catch connections
The two example models that follow show how to use catching and throwing in a model. The first
model uses Throw Flow and Catch Flow blocks; the second model uses a Diverge block.

Catch Flow and Throw Flow model
The Catch Flow and Throw Flow
model shows two lines, one above the
other. They produce identical results
even though the flow connections have
been created differently:

• The top line uses normal flow con-
nection lines to connect Valve A to
Valve AA.

• The bottom line uses a throw/catch
connection to connect Valve B to
Valve BB. In this line, the flow is
sent remotely by a Throw Flow
block and received by a Catch Flow
block.

Defining a Group

Block type filters for a Diverge block

Catch Flow and Throw Flow model

332 Merging, Diverging, and Routing Flow
Throwing flow and catching flow remotely

D
is

cr
et

e
R

at
e

The particulars of the throw/catch connection can be
viewed from the dialogs of either the Throw Flow or
Catch Flow blocks. In the Throw Flow dialog you can
select the Catch Flow block and see the throw/catch
connection; in the Catch Flow dialog you can select the
Throw Flow block and see the throw/catch connection.

Catch Flow and Diverge model
Similar to the previous model, the
top and bottom lines for the
Catch Flow and Diverge model
produce identical results even
though the flow connections have
been created differently:

• The top line of the model a uses
regular connections to connect
the two outflow branches of a
Diverge block to Valve AA and
Valve AAA.

• The bottom line uses throw/
catch connections to connect
the outflow branches of the
Diverge block to Catch Flow
BB and Catch Flow BBB.

In the bottom line, both Catch
Flow blocks indicate in their dia-
logs that the block labeled Diverge
B is remotely sending the flow. Since the flow is being sent by a Diverge block which can have
multiple outflow branches, and since each Catch Flow block must receive its flow from a separate
source, the Catch Flow blocks must also specify which of the Diverge block’s connector positions
they will receive flow from.

In the screenshot at right, the Catch tab of Catch Flow
BB indicates that it is receiving flow from the Diverge
block labeled Diverge B. It is getting that flow from the
Diverge block’s top outflow branch (outflow connector
position 0).

☞ If the throw/catch connection has been properly defined
for a particular branch of a Merge or Diverge block, the “Open” button for that branch will appear
in the last column of the table in the block’s Throw or Catch tab.

Portion of Throw Flow dialog

Catch Flow and Diverge model

Portion of Catch Flow BB dialog

Discrete Rate Modeling

Delaying Flow
For a certain period of time, either

maintaining flow at a certain speed or blocking it.

334 Delaying Flow
Blocks of interest

D
is

cr
et

e
R

at
e

The “Rates, Constraints, and Movement” chapter discussed how to specify critical constraints
(such as a Valve’s maximum rate) and the factors that determine the actual speed of flow moving
through a model.

☞ Since the concepts of flow rules and critical constraints are central to the discussion of delaying
flow, it is assumed that you have already read the “Rates, Constraints, and Movement” chapter.

This chapter describes how to use advanced methods to delay flow – for a specified period of time
or until a specified condition has been met, either blocking the movement of flow or maintaining
it at a certain speed. It illustrates several methods for delaying flow, including how to:

• Control how and when a Valve observes or ignores its maximum rate setting:

• Setting a goal for a quantity of flow

• Setting a goal for a duration

• Using hysteresis to control when the block’s maximum rate will be observed

• Use a Shift block (Item library) with a Convey Flow, Interchange, Tank, or Valve to delay flow
movement for a specified period of time

• Transport flow over a defined distance at a specified speed with a Convey Flow block

☞ Most of the models illustrated in this chapter are located in the folder \Examples\Discrete
Rate\Delaying Flow. The tutorial models mentioned are located at \Examples\Tutorials\Discrete
Rate.

Blocks of interest
The following blocks from the Rate library will be the main focus of this chapter.

Convey Flow
Delays the movement of flow from one point to another. Can accumulate flow to a
maximum density, accumulate flow to fill empty sections, or act as a non-accumulating
conveyor.

Valve
Controls and monitors the flow, limiting the rate of flow passing through. This block
can also be used to set a goal for the duration of flow movement or the amount of flow.

Controlling a Valve’s maximum rate
The section “Defining a critical constraint” on page 308 showed how to set a Valve’s maximum
rate. Options on the Valve’s Flow Control tab provide advanced control over how and when the
Valve applies its maximum rate. These settings determine when the Valve’s maximum rate is
observed or ignored, and for how long.

The advanced control options include:

• Setting a goal for a certain quantity of flow to pass through the Valve.

• Setting a goal for how long flow can move through the Valve or for how long it should be
stopped from moving.

• Determining what happens when the goal ends.

• Using hysteresis to delay the Valve’s response to system requirements.

Delaying Flow 335
Controlling a Valve’s maximum rate

D
iscrete R

ate
Using the Flow Control tab
By default, the settings in a Valve’s Flow Control tab are disabled. Use the
tab’s popup menu, shown at right, to choose either the Goal or Hysteresis
option.

If the Goal option is selected, an additional popup menu appears to the
right. Use this second menu to choose:

• Goal as a quantity

• Goal as a duration

Observing the maximum rate for a goal
Whether you select a quantity or a duration goal, a Valve’s maximum rate is observed while a goal
is On. While the goal is off, you have the option to choose whether the maximum rate is observed
or not and whether the flow is stopped. Thus your purpose in using a goal could be to block flow
for a period of time and allow it to move through when the goal is off, allow flow for a period of
time and block it at other times, accept a certain quantity of flow but stop flow when the goal is
off, and so forth. In fact, you can choose to observe the maximum rate when the goal is off. This
can be useful for a quantity goal, when you just want the Valve to report when a goal is finished.

• If its maximum rate is 0 (zero), the Valve will block flow while its goal is On.

• If its maximum rate is >0, blank, or infinite, the Valve will allow flow to pass through at that rate
while its goal is On. (If the maximum rate is blank, the Valve uses an infinite rate.)

☞ If a Valve’s maximum rate is zero and a quantity goal is On, no flow will go through the block and
the goal will never end.

Options when goal is Off
Dialog options allow you to choose what will happen when the goal switches to Off:

• Stop the flow

• Ignore maximum rate (do not constrain flow)

• Observe maximum rate

Setting a Valve’s quantity goal
Using popup menus in a Valve’s Control Flow tab, you can specify that the block has a goal to pass
a certain quantity of flow from its inflow to its outflow. Additional options allow you to specify
what the Valve should do once that quantity of flow has passed.

The quantity goal modulates a Valve's critical constraint (its maximum rate) by cycling between
On and Off states.

• While a quantity goal is On, the value in the Valve tab’s Maximum rate field, or the value at the
block’s R (maximum rate) input connector, is observed. The goal remains On until either the
amount of flow that has passed through the block reaches the target quantity, or the goal is inter-
rupted. At that point the goal switches to the Off state.

• What happens when the goal switches to the Off state depends on the Off option selected in the
block’s dialog: stop the flow, do not constrain flow, or observe maximum rate.

☞ To interrupt a goal, send a value to the Valve’s stop input connector.

Flow Control options

336 Delaying Flow
Controlling a Valve’s maximum rate

D
is

cr
et

e
R

at
e

Quantity Goal model
This model uses a Pulse block (Value library) to periodically start a new quantity goal. At the start
of the simulation run and every 60 minutes afterwards, the Pulse block sends a True value (a num-
ber ≥ 0.5) to the Production Gate valve’s start connector, starting a new goal.

The Valve’s maximum rate is 20 gallons/minute and the
simulation runs for 480 minutes. The control for the
movement of flow through the block is provided by its
Flow Control tab. The desired quantity of flow, 500 gal-
lons, is entered in the dialog. While the goal is On, flow
passes through the Valve at a maximum rate of 20 gallons/
minute. After 500 gallons, the goal goes Off, the flow is
stopped, and the effective rate goes to 0. As the simulation
runs, a plotter displays the Valve’s effective rate, the quantity of the goal and the times when it has
been reached, and the number of each new goal.

Settings in the Flow Control tab cause the Valve to Start a
new goal when “start” connector value = 1. The goal-
starting options (seen at right) can also be set to start a new
goal when the block receives a message at its G (goal) input
connector or when the previous goal finishes.

You could have avoided building the Quantity Goal model
by instead mentally calculating the effect of the goal on the flow. The rate interactions and results
determined by the next model would not be so easy to compute.

Changeover Quantity Goal model
The Changeover Quantity Goal model involves a more complex system than the Quantity Goal
model from above. This model, based on the stage of the Yogurt Production model that is dis-
cussed in “Add maintenance” on page 280, shows how a quantity goal in a Valve can be used to
control a sequence of production changeovers. The top part of the model is composed of Rate

Quantity Goal model

Options for starting a new goal

Delaying Flow 337
Controlling a Valve’s maximum rate

D
iscrete R

ate
library blocks and the bottom line is Item library blocks. A Decision block (Value library) trans-
mits values from a Valve (Rate library) to a Gate (Item library).

Since its initial goal has been set to “none”, the goal status is Off and flow through the Production
Gate valve is stopped at the start of the simulation. However, when an item passes through the Get
block (Item library) labeled Start Goal, a message is sent to the Production Gate valve’s G (goal)
input connector. Once that happens, the valve’s goal switches from Off to On and the goal quan-
tity is set to the value of the item’s Quantity attribute (5000 gallons).

In the bottom portion of the model, when the item leaves the Get block it moves into the Queue,
where it is blocked from leaving by a Gate block. The Gate will remain closed until the Production
Gate valve reaches its new goal of 5000 gallons. At that time the goal switches from On to Off, the
flow stops (because that is the option set on the Control Flow tab), and the value at the GS (goal
status) output is set to 3 (indicating that the goal has ended).

As a result, the Gate opens and the item moves into the Changeover Activity block where it is
delayed for the amount of time required to perform a changeover. After the changeover has been
completed, the item cycles back and initiates the next production cycle.

☞ By default, a Valve’s GS (goal status) output connector reports the following values:
0 when there is no goal
1 when a goal is starting
2 when a goal is in progress
3 when a goal has ended
4 when a goal is interrupted

Changeover Quantity Goal model

338 Delaying Flow
Controlling a Valve’s maximum rate

D
is

cr
et

e
R

at
e

The following screenshot shows how the Production Gate’s quantity goal has been configured on
its Flow Control tab:

• The value for the Goal quantity is received through the G input connector. (In this model, the
goal is 5000 gallons because each item has a Quantity attribute value of 5000.)

• The initial goal has been set to none. (This causes the goal to be in the Off state at the start of
the simulation.)

• The Valve has been instructed to Stop flow when the goal is Off.

• A new goal is started each time the G input connector receives a message. (Getting a value at G
causes two things to happen: 1) the goal switches from Off to On, and 2) the goal has a new
quantity as defined by the value received at the G connector.)

• If a new goal is received before the previous one is finished, the new goal will be ignored. (In this
model, a new goal cannot arrive before the previous one is finished.)

An interesting aspect of this model is that the Production Gate valve has been set to have an infi-
nite maximum constraining rate. This means that it will, in and of itself, not limit the rate of the
flow moving through it. However, the block’s effective (actual) rate will be determined by the two
upstream Valves. One of these Valves is connected to a Lookup Table block (Value library) that
changes its maximum rate depending on the time of day. The other upstream Valve is connected to
a Shutdown block (Item library) that causes the movement of flow to be stopped periodically for
specified durations. This sequence causes some interesting effects in the model, and the Produc-
tion Gate’s effective rate ranges between 80 and 0 gallons/minute.

☞ This examples uses the G (goal) connector to control the “when” and “how much” aspects of the
goal. Alternately, the Control Flow tab allows you to choose to start a new goal when the start
connector receives a message or when the previous goal finishes.

Setting a Valve’s duration goal
Like the quantity goal, the duration goal is used to modulate a Valve's maximum rate. However,
the duration goal cycles between the On and Off states as a function of time rather than the vol-
ume criteria used for the quantity goal.

Flow Control tab, goal is quantity

Delaying Flow 339
Controlling a Valve’s maximum rate

D
iscrete R

ate
A duration goal remains in the On state for some amount of simulation time before switching to
the Off state:

• While a duration goal is On, the value in the Valve tab’s Maximum rate field, or the value at the
block’s R (maximum rate) input connector, is observed. The goal remains On until either the
specified amount of time has passed, or the goal is interrupted. At that point the goal switches to
the Off state.

• What happens when the goal switches to the Off state depends on the Off option selected in the
block’s dialog: stop the flow, do not constrain flow, or observe maximum rate.

☞ To interrupt a goal, send a value to the Valve’s stop input connector.

Duration Goal model
The Duration Goal model is similar to the Quantity Goal
model from above, except the goal allows the flow to move
through the Valve for a certain period of time.

In this model, the Valve’s Flow Control tab is set to
observe its maximum rate of 20 gallons/minute for 45
minutes. When the goal is On, the block passes through
whatever amount of flow it can, at the maximum rate of
20 gallons/minute. When the 45 minutes passes, the goal
is set to Off and all flow through the block stops. The Pulse block (Value library) restarts the goal
every 60 minutes. As the model runs, the block’s maximum rate cycles from 20 gallons/minute to
0, depending on whether the goal is On or Off. As a result, the block’s effective rate stays at 0 for
the period of time (15 minutes) from when the previous goal ends until when a new goal starts.

Changeover With Only Goals model
The Changeover With Only Goals model is equivalent to the Changeover Quantity Goal model
(discussed earlier) in terms of behavior. However, while the Production Gate valve still has a quan-
tity goal in this model, the changeover is controlled using a second Valve with a duration goal,
rather than by an item.

Since it’s Flow Control tab specifies that it has an initial quantity goal of 5000 gallons, the Produc-
tion Gate valve starts the simulation by observing its maximum rate setting – infinity. However, as

Duration Goal model

Changeover With Only Goals model

340 Delaying Flow
Controlling a Valve’s maximum rate

D
is

cr
et

e
R

at
e

was true for the Changeover Quantity Goal model, the block’s actual effective rate will be
impacted by the Liquid Supply and Fruit Supply valves upstream.

The Production Gate's goal state is communicated to the Changeover Gate through the connec-
tion between the first block’s GS (goal status) output connector and the second block’s start input
connector. Because of this connection and because of how the duration goal has been specified in
the Changeover Gate, the duration goal starts in the Off state and will switch to On only after the
Production Gate's quantity goal is completed. After 20 minutes, the Duration Goal is finished and
the Changeover Gate sends a message to the Production Gate to start a new quantity goal.

☞ Unlike the Duration Goal model that allows flow to pass through for a specified amount of time,
the duration goal in this model causes flow to be blocked for a certain period. The Changeover
Gate’s maximum rate is set to 0 and the goal’s duration is set to 20 minutes. While the goal is On,
the block’s maximum rate (0) is observed and no flow passes through, allowing for the changeover.

The following screenshot shows how the Changeover Gate’s duration goal has been configured on
its Flow Control tab:

• The goal duration is a constant 20 minutes. The duration could be made variable by instead
choosing Goal durations is: value at G connector.

• The 20 minute blocking of flow allows the changeover to occur. The maximum rate on the
Changeover Gate’s Valve tab is 0. This would cause the flow to be blocked in the absence of any
goal being set for this block. Consequently, if the block has a duration goal and it is On, that
maximum rate of 0 will be observed and flow will be blocked from entering. When the goal
turns Off after 20 minutes, the Changeover Gate doesn't apply any constraining rate on the flow
because it is set to Off: ignore maximum rate.

• A new duration goal is started only when the start input connector receives a value of 3. Conse-
quently, a new duration goal begins only when the upstream Production Gate's quantity goal
has finished.

• When the changeover has completed and the duration goal switches from On to Off, a signal is
sent from the Changeover Gate to the Production Gate. This results in a new quantity goal
starting in the Production Gate.

Flow Control tab, goal is duration

Delaying Flow 341
Controlling a Valve’s maximum rate

D
iscrete R

ate
Setting hysteresis in a Valve
Hysteresis is a property of systems that causes them to not react instantly to a change. The purpose
of adding hysteresis in a model is to introduce a delay in the time it takes some part of the system
to switch from one state to another.

Hysteresis allows you to insert a lag or delay in a Valve’s response to system requirements. It is used
to avoid oscillations and to achieve better control over flow movement. This is accomplished by
using model conditions to explicitly control both when a Valve’s maximum rate is observed and
when it is ignored.

Unlike the quantity and duration goals discussed earlier, where the conditions for applying the
Valve’s maximum rate were entered in its dialog, hysteresis must always get its control information
from outside the block. The hysteresis option always relies on the Valve’s start input connector to
control when the Valve’s maximum rate will be observed and its stop input connector to control
when the maximum rate will be ignored. When the maximum rate is ignored, the Valve’s dialog
provides a popup menu for choosing if the flow stops or if the Valve does not constrain the flow.

Hysteresis model
In this model, the Filling valve opens
when the Storage tank is empty and
closes when the tank is full. Conversely,
the Emptying valve opens when the Stor-
age tank is full and closes when the tank
is empty. As a result, the model repeat-
edly cycles through the following stages:

• Emptying valve closes and filling valve
opens

• Storage tank starts accumulating flow

• Storage tank reaches the full state

• Emptying valve opens and filling valve closes

• Storage tank starts emptying

• Storage tank reaches the empty state

Based on settings in its Indicators tab, the Storage tank's I (indicator) connector outputs a value of
0 when empty and 2 when it is full. (Tank indicators are discussed on page 295.)

The Filling valve’s Hysteresis settings
are shown at the right. When this
valve’s start connector gets a 0 from
the Storage tank’s I output connector,
the valve observes its maximum rate.
When the Filling valve’s stop input
connector gets a 2, the block shuts
down.

Hysteresis model

Hysteresis settings: Filling valve

342 Delaying Flow
Delaying flow with the Shift block

D
is

cr
et

e
R

at
e

The Emptying valve’s hysteresis set-
tings are the opposite of the Filling
valve, as shown at the right. When
this valve’s start connector gets a 2
from the Storage tank’s I output con-
nector, the valve observes its maxi-
mum rate. When its stop input
connector gets a 0, the valve shuts down.

Delaying flow with the Shift block
The Shift block (Item library) is discussed fully in “The Shift block” on page 218. It is used to
schedule capacity in certain blocks found in the Item and Rate libraries. Shifts come it two types:
On/Off and Numeric.

Rate library blocks do not support a Number type of shift. The following Rate library blocks can
be controlled using On/Off Shifts:

• Convey Flow. When the shift is Off, the effective inflow rate is set to 0, blocking any new flow
from entering. Depending on which option has been chosen in the Convey Flow’s dialog, the
block’s speed will either also be set to 0 or it will remain unchanged from what is set in the dia-
log. If the Empty when shift is off checkbox is checked, any flow already on the conveyor at the
Off shift time will continue progress towards exiting the block.

• Tank. The effective inflow and outflow rates are set to 0 when the shift is Off, effectively shut-
ting the block down.

• Interchange. Same logic as the Tank.

• Valve. Same logic as the Tank.

Adding a Shift to a model
The easiest way to add a Shift block to a discrete rate model is to click the Add Shift button found
on the Options tab of a Convey Flow, Tank, Interchange, or Valve block. This automatically does
the following:

• Places a Shift block on the model worksheet below the originating block

• Enters the Shift name in the originating block's Use Shift field

• Opens the Shift’s dialog so settings can be entered

To use the Shift, enter the required information in the block’s dialog. (The Shift controls the origi-
nating block remotely; it does not need to be connected in the model.) Each Shift block starts with
a default name for its shift. If you subsequently change the name of the shift, the new name will be
reflected in the block that uses that shift.

For more information about using the Shift block, see “The Shift block” on page 218.

Convey Flow block
Setting an initial contents and the capacity of a Convey Flow block is discussed in the chapter
“Sources, Storage, and Units”. The current chapter focuses on the behavior of the Convey Flow
block and how to set parameters that affect how flow is delayed through the block.

Flow entering the Convey Flow block is available to leave only after a specified delay that has been
defined as a function of length and speed. The flow that enters is required to move some distance
at a certain rate of speed before arriving at the block's exit point. The Convey Flow, then, is a resi-

Hysteresis setting for Emptying valve

Delaying Flow 343
Convey Flow block

D
iscrete R

ate
dence block with flow distributed across its length at varying densities. (Density is the amount of
flow that has accumulated at any one point on the conveyor.)

This block is useful for representing a conveyor, industrial oven, refrigeration system, or other sim-
ilar piece of equipment with a length component where the position of flow must be taken into
consideration.

 A Convey Flow block is computationally intensive, so it should be used only if the system you are
modeling requires very precise tracking of flow movement and position. For instances when the
block should not be used, see page 346.

Dialog settings
Movement of flow across the Convey Flow block is influenced by the dialog settings and parame-
ters.

Determining speed and distance
The Convey Flow block
offers two options: Speed
determines travel time or
Delay determines travel
time. Depending on
which of these is selected,
the following entries can
be made:

• Speed. Specifies the
maximum potential
speed at which the con-
veyor can transport
flow. However, when
the potential supply of flow from the conveyor exceeds the downstream demand, the observed
speed of the flow can become something less than the speed parameter.

• Delay. Represents the amount of time flow will spend in the block if there is no downstream
blocking. If the block’s dialog is set to Speed determines travel time, the delay is calculated by
dividing Length by Speed. If the dialog is set to Delay determines travel time, the flow will take
the entered Delay time to travel the stated Length.

• Length. Represents the distance flow must travel before reaching the block's exit point. The
length of a Convey Flow block has to be greater than 0.

• Maximum density. Density is the amount of flow that has accumulated at any one point on the
conveyor. The observed density of flow on a conveyor is a function of the upstream supply rate,
the conveyor's speed, the downstream demand rate, and what settings have been chosen in the
block’s dialog. The Maximum density setting limits how high the pile of flow can be at any one
point along the conveyor. For example, if the upstream supply rate is greater than or equal to the
conveyor's maximum inflow rate (speed*maximum density), then the amount of flow entering
the conveyor will be equal to the maximum density. In this case, it is the conveyor's capacity to
receive flow that limits its effective inflow rate.

Dialog parameters for Convey Flow

344 Delaying Flow
Convey Flow block

D
is

cr
et

e
R

at
e

☞ The parameters for speed or delay can vary dynamically during the simulation; the length and
maximum density parameters remain fixed.

Convey Flow behavior
The Convey Flow block is divided into segments, where the boundaries of each segment are
defined by a change in the density of flow. Depending on the options chosen in the dialog, flow
could accumulate or “pile up” along the length of the block any time the amount of flow ready to
exit the block exceeds downstream demand.

The Convey Flow block has three options controlling how or if flow is allowed to accumulate:

• Accumulate-maximum density. Allows flow to accumulate up to its maximum density setting. If
the conveyor's ability to deliver flow exceeds downstream demand, any flow delayed from exit-
ing will begin piling up at the outflow end of the conveyor up to the maximum density level.

• Accumulate- fill empty segments. Allows flow to fill in any empty segments along the conveyor
when the block’s ability to deliver flow exceeds downstream demand. (An empty segment is an
area along the block’s length that has a density of 0.) This differs from the first option in that
one section of flow is not allowed to pile onto another section of flow.

• Non-accumulating. This option does not allow flow to accumulate. Therefore, the block’s speed
slows when its ability to deliver flow exceeds downstream demand.

☞ The Compare Convey Flow model compares the behavior of three Convey Flow blocks, each set to
one of these behaviors, under different emptying rates.

Constraining rates
Critical constraints define an unconditional maximum upper bound to the rate of flow. As dis-
cussed in the chapter “Rates, Constraints, and Movement”, the Convey Flow block calculates crit-
ical constraints for its inflow and outflow connectors separately. The critical constraints are derived
from model conditions and settings in the dialog.

• The critical constraint for the Convey Flow block’s inflow is calculated by multiplying the
block’s effective speed by its maximum density entry.

☞ The effective speed can be less than or equal to the speed set in the dialog. If the block is non-accu-
mulating, or if it is accumulating but cannot accumulate more, and the block’s ability to deliver
flow exceeds downstream demand, the effective speed will be lower than the entered speed.

• The critical constraint for the block’s outflow is the result of the multiplication of the block’s
speed setting by the density of flow present at the outflow end of the block.

Convey Flow information
The Convey Flow block provides different types of information concerning the distribution of
flow along the length of its conveyor. Some of the information is provided by default while other
mechanisms for reporting data, like sensors and indicators, must be customized through the
block's dialog.

Delaying Flow 345
Convey Flow block

D
iscrete R

ate
Distribution of flow
If you select Run > Show 2D Animation before you run the simula-
tion, the distribution of flow in the Convey Flow block will be dis-
played across the top of its icon, as shown on the right.

On the Convey Flow block’s Animation tab, selecting Show block's
flow distribution in table during simulation causes a table to
appear. As the simulation runs, the table displays information about
the current distribution of the flow in each segment of its length:

☞ The length of a Convey Flow block is divided into segments, where the boundaries of each seg-
ment are defined by a change in the density of flow. The table above indicates that this Convey
Flow block currently has 8 segments along its length.

Accumulation point
If the block is set to be accumulating, any accumulation will start at its outflow and go toward its
inflow. The point beyond which no more flow can accumulate is known as the accumulation
point. This point will probably move between the inflow and the outflow as the simulation runs.

The Results tab reports information about the accumulated flow: the distance from the outflow
where the accumulation point is located, the indicator, and the accumulated quantity of flow.

If the command Run > Show 2D Animation is checked while the model runs, and there is accu-
mulation, a vertical red bar will move on the block’s icon during the simulation; this indicates the
location of the accumulation point. The “Flow and accumulation point” screenshot above shows
the red line of the accumulation point.

☞ The accumulation point is located somewhere along the length of a Convey Flow block that has
been set to accumulate flow.

Sensors
The Convey Flow block has a Sensors tab for specifying the locations and trigger points of sensors
along the length of the conveyor. Each sensor reads and communicates the density of flow over
time at a particular point on the conveyor. This information is displayed in a table in the block’s
dialog and reported by the block’s S (sensor) output connectors – one S output for each sensor.

You must specify in the table not
only the number of sensors desired
but also the location of each one.
(Use the +/- button in the table’s
lower right corner to specify the
number of sensors.) The example

Flow and accumulation point

Table showing example distribution of flow

Sensor tab table

346 Delaying Flow
Convey Flow block

D
is

cr
et

e
R

at
e

table shown here indicates that four sensors have been placed along a ten foot section of the con-
veyor.

☞ The S connectors should be used judiciously. Extra events are used to update them at the proper
time and the calculation is computationally intensive.

Indicators
As discussed in “Accumulation point” on page 345, the accumulation point indicates the point
beyond which no more flow can accumulate. You might want an indication when the accumula-
tion point is within a particular segment of the Convey Flow block.

The Indicators tab on a Convey Flow block is used to define segments to indicate where the accu-
mulation point is along its length. Each segment is assigned a name, a defined range, and an ID
number. The ID number is used to update the block’s I (indicator) output connector as the accu-
mulation point moves from one segment to the next.

See “Indicators” on page 295 for complete information about creating and using indicators.

☞ The I connectors should be used judiciously. Extra events are used to update them at the proper
time and the calculation is computationally intensive.

When to avoid using the Convey Flow block
A Convey Flow block should be used only if the system you are modeling requires very precise
tracking of flow movement and position. While the block is very precise, it is also very time con-
suming, so use it with caution. Following are some usage guidelines:

• The travel time has to be long enough to justify using the Convey Flow block. If the impact on
the result of the simulation is small, it is a good strategy to ignore any travel time delays. For
instance, the amount of time required for product to traverse a pipe separating two tanks is often
insignificant and should usually be ignored.

• The distribution of flow along the Convey Flow block should impact the rest of the model in
some significant way. If the effective inflow rate varies significantly during the simulation and/or
if the speed changes, the product may be unevenly distributed across the length of the conveyor.
This discontinuity impacts the rate at which flow is able to exit the block over time. The greater
this variation in availability, the greater the potential impact on the rest of the model and the
greater the block's use can be justified.

One alternative would be to use a combination of Tank and Valve blocks to mimic a Convey Flow
block. This is far less computationally intensive than the Convey Flow block by itself. While some
configurations may not be as precise, you can use a combination of one Tank followed by one
Valve block in such a way that the behavior is identical or almost identical to the results when
using a Convey Flow block.

Another alternative is shown in the Tank and Valve to Convey model. In this example, the bottom
flow stream behaves almost identically to the upper stream without using a Convey Flow block.
Because Valves A1 and B1 vary their constraining rate, the Convey Flow block (Convey A) will get
and create a lot of messages, slowing down the simulation. But the Convey B1 tank won’t create
the extra events. This will be slightly less precise but much more efficient.

☞ Never use a Convey Flow block if the system’s behavior can be modeled using a Tank and Valve.

Discrete Rate Modeling

Mixing Flow and Items
Mingling discrete rate flows with discrete event items.

348 Mixing Flow and Items
Controlling flow with items and items with flow

D
is

cr
et

e
R

at
e

It is common for systems to exhibit a mixture of behaviors, where items from the discrete event
arena intermingle with discrete rate processes. In these “mixed mode” cases, a proper understand-
ing of both the Rate and Item libraries and how they can interact with each other is required.

There are two general techniques for integrating discrete event blocks from the Item library with
discrete rate blocks from the Rate library:

1) Sending signals and sharing information via value connections. Value connections can be very
useful for triggering some type of action as the system moves from one state to another. For
example:

• Value connections can trigger the generation of an item when the level of flow in a Tank
reaches a certain level.

• The value of an attribute on an item passing through some part of a discrete rate model
could trigger a change in the constraining rate in a Valve block.

2) Mixing items with flow using the Interchange block, as you saw in the Discrete Rate tutorial
on page 284. The Interchange block (Rate library) provides the ability for items and flow to
interface with each other. For example, an empty tanker truck (an item) might arrive at a refin-
ery and fill with gas (flow) at a continuous rate using an Interchange block. Once full, the
truck might be routed through a series of Item library blocks until it reached its unloading des-
tination. At that point the item would again interface with an Interchange block to discharge
its load.

This chapter focuses on the techniques used when the need for “mixed mode models” arises. It will
show how to:

• Control flow using blocks from the Item library

• Control items with blocks from the Rate library

• Mix flow with items using the Interchange block

☞ The models for this chapter are located in the folder \Examples\Discrete Rate\Flow and Items.

Controlling flow with items and items with flow
Rate library blocks can control the movement of items and Item library blocks can control the
movement of flow. In either case, value connectors communicate state changes to the controlling
blocks.

Items controlling flow
The Item Controls Flow model shows one of many ways blocks from the Item library can be used
to control the movement of flow in a model. It uses one item to open a valve, allowing a tank to
fill, then uses the same item to trigger the emptying of that tank.

Mixing Flow and Items 349
Controlling flow with items and items with flow

D
iscrete R

ate
Item Controls Flow model
Unless the presence of an item in an
Activity block triggers them to open,
Valves 1 and 2 are both closed during
the simulation run. While an item is in
the Activity block (Item library) labeled
Filling Valve 1, it causes Valve 1 to open;
this allows the Reception tank to fill.
When the item moves to the Activity
block labeled Emptying Valve 2, it
causes Valve 1 to close and Valve 2 to
open. This allows the Reception tank to
empty into the Sink tank. The closing
and opening of the valves is accom-
plished by detecting which Activity
block has the item and for how long it is
held there.

In this model, constant blocks (Value
library) provide a potential constraining
rate of 100 for the valves. Multiplying the constant value by an Activity’s F (Full) output (which
will be 1 if the Activity has the item in it and 0 if it does not) gives the valves their actual constrain-
ing rate (100 or 0). This causes the valves to open and close depending on where the item is in the
model. Both Activity blocks are set to delay the item for a random amount of time, which repre-
sents how long the Reception tank can fill and empty.

Notice that the Reception tank can be full even while the item is still in the Filling Valve 1 activity.
Since the tank can’t accept any more flow when it is full, and can’t start emptying until the item
moves to the Emptying Valve 2 block, the flow stops before the Filling process has been completed.
The next model shows how the Reception tank can let the item know that it is full.

Flow controlling items
The example below illustrates one of ways blocks from the Rate library can be used to control the
movement of items in a model.

Item Controls Flow model

350 Mixing Flow and Items
Controlling flow with items and items with flow

D
is

cr
et

e
R

at
e

Flow Controls Item model
This model is extends the one above,
adding that the state of the Reception
tank alters the movement of the item
and interrupts the filling process.

As in the prior model, the Reception
tank fills and empties based on the
movement of an item and delays set in
the two Activity blocks.

In this model, whenever the Reception
tank is full, it sends an indicator signal
to the Decision block (Value library).
This block in turn notifies the Activity
block labeled Filling Valve 1, preempt-
ing the item whose presence opened
Valve 1 and allowed the tank to fill.
When the item is preempted, it moves
to the Activity block labeled Emptying
Valve 2. This causes Valve 1 to close,
Valve 2 to open, and the Reception tank
to empty into the Sink for the duration specified in the second Activity block.

Flow controlling items and items controlling flow
The following model combines both of the previous concepts – flow controlling items and items
controlling flow – into an even more complex system.

Step The Flow Process model
In this model the location of a “cycling item” triggers the opening and shutting of valves for the
flow, while tank states control the opening and shutting of the gates for the item. The control logic
is circular in nature: the item's location defines the current stage; the current stage controls the

Flow Controls Item model

Mixing Flow and Items 351
Controlling flow with items and items with flow

D
iscrete R

ate
opening and shutting of valve blocks; valves impact the level of flow; and the level of flow controls
the item's location.

Flow controlling the item
The top section of the model is where flow controls the item. The I (Indicator) connectors on both
the Reception and Processing tanks (Rate library) control the three Gate blocks (Item library) used
in the item stream at the bottom part of the model. Gate 1 is open only while the Reception tank
is in the full state. Conversely, Gate 2 is open only while the Reception tank is in the empty state.
Finally, Gate 3 is open only while the Processing tank is empty.

Item controlling the flow
The bottom section of the model is where the item controls the flow. In this case, the three Valve
blocks (Rate library) in the top part of the model are controlled by the lengths of the three Queue
blocks (Item library) in the item stream in the bottom portion. The item stream has only one item
which cycles through the item-based blocks in a loop. Consequently, the queue lengths for each
Queue in this loop will alternate between 1 and 0. For instance, Valve 1 is open only when the
length in the Stage 1 queue equals 1. Similar logic applies to Valve 2 and Valve 3.

The activity in the model is divided into four stages: open Valve 1 and release flow into Reception;
open Valve 2 and release flow into Processing; process the flow; open Valve 3 and release flow into
Sink

Stage 1: Open Valve 1 and release flow to Reception
The I (Indicator) connector on the Reception tank is controlling Gate 1. At the start of the simu-
lation, Gate 1 is closed because the Reception tank is not full (it's actually empty at this point),
and the cycling item is blocked from leaving the Stage 1 queue. Notice the highlighted area where
the Max & Min block (Value library) is used to translate the cycling item's location into a stage

Step The Flow Process model

352 Mixing Flow and Items
Using the Interchange block to mix items with flow

D
is

cr
et

e
R

at
e

number. Since the cycling item remains in the Stage 1 queue, the model is now in a Stage 1 hold-
ing pattern. Consequently, Valve 1 is opened (so the Reception tank starts receiving flow) and
Valves 2 and 3 are closed.

Stage 2: Open Valve 2 and release flow to Processing
Once the Reception Tank reaches the full state, Gate 1 is opened and Gate 2 is closed. This allows
the item to move on to the Stage 2 queue. The result is that Valve 2 opens, Valves 1 and 3 close,
and flow starts moving from the Reception tank into Recycling and Processing. Gate 2 remains
closed while the Reception tank empties.

Stage 3: Process the flow
Once the Reception tank is completely empty, Gate 2 is opened, Gates 1 and 3 are closed, and the
item enters an Activity block labeled “Stage 3”. While the item remains in Stage 3, all three Valve
blocks remain closed. The Activity block, which has a delay of 2 minutes, is used to keep the flow
in the Processing tank for some period of time so it can be processed.

Stage 4: Open Valve 3 and release the flow
Once processing is completed, the item leaves Stage 3 and moves into the Stage 4 queue. Since
Gate 3 is currently closed (because the Processing tank is not empty), the model is now in a Stage 4
holding pattern and Valve 3 opens. Once the Processing tank is empty, Gate 3 opens and the item
cycles back to the State 1 queue where the whole processes starts all over again.

☞ While this model is useful for demonstrating how mixed mode models can control item and flow
movement, the same behavior can be created without items using the Valve block’s Hysteresis
option. For more information, see “Setting hysteresis in a Valve” on page 341.

Using the Interchange block to mix items with flow
The Rate library’s Interchange block is unique in that it allows items and flow to interface directly
with each other. Flow can enter the Interchange block not only through its inflow connector but
also through the arrival of an item. Conversely, flow can exit the block through its outflow connec-
tor or through the exiting of an item.

The use of the Interchange block was introduced on page 284 of the Discrete Rate Tutorial, and
the block’s capacity to hold flow is discussed starting on page 292 of the Flow Sources, Storage,
and Units chapter. This chapter will describe how the Interchange block interfaces flow with items.

☞ The Interchange block is where an item can be filled with flow or emptied of flow.

There are a number of occasions where it can be useful to provide items with the ability to store,
transport, and empty flow as they move from one section of a discrete rate model to another. For
example, the attribute capabilities used to distinguish one item from another can also be used to
distinguish one block of flow carried by one item from another block of flow carried by a different
item. This can be an especially useful modeling construct since flow units by themselves are indis-
tinguishable from each other.

Behavioral rules
The Interchange block has two very different modes (“Tank only exists while item is in it” and
“Tank is separate from item”) that affect how the block behaves. (These modes were introduced on
page 292 and will be discussed more fully on page 354.) Even so, the Interchange block always fol-
lows a fundamental set of rules:

• The item input and item output connectors on the Interchange block must both always be con-
nected.

Mixing Flow and Items 353
Using the Interchange block to mix items with flow

D
iscrete R

ate
• At least one of the Interchange block's inflow/outflow connectors must be connected (both may
be connected as well).

• The Interchange block's capacity for holding items is permanently fixed at one item.

• The Interchange block loads and unloads the item and its flow instantaneously. (Flow present in
the item when it enters the block is instantaneously available to the block; flow leaving the block
with an item is instantaneously removed from the block.)

The flow connector configuration
The behavior of the Interchange
block is dramatically affected by
how the inflow and outflow con-
nectors have been connected. As
mentioned above, only one of the
two flow connectors needs to be
connected. If only the inflow con-
nector is connected, arriving items
can only be filled with flow, and if only the outflow connector is connected, arriving items can
only unload flow.

Item release conditions
The release conditions determine when an item is scheduled to leave the Interchange block; they
are the same for both block modes. Releases can also be accomplished at any time using the Pre-
empt connector.

Scheduled releases
There are 5 options for defining when the item should be
released:

• When contents >= Target. This option requires the item
to be filled with a certain amount of flow prior to
release. The Target amount is entered in the dialog.

• When contents <= Target. Requires the item's flow level
to empty to a certain point prior to release. The Target
amount is entered in the dialog.

• As soon as possible. Releases the item whenever there is downstream item capacity for the item,
irrespective of the current flow level.

• Only with preempt connector message. Releases the item when a true value is received at the
block’s PE (preempt) value input connector.

• When level reaches indicator. Requires the flow contents to reach a certain level prior to release.
Indicators (segments that indicate the level of contents) must first be entered on the block’s Indi-
cator tab for this option to be used.

Preemption
The scheduled release conditions can be
superseded at any time by using the
preempt connector. Whenever the pre-

Arriving item is always filled (left) or is always emptied (right)

Release options for Interchange block

Preemption options for Interchange block

354 Mixing Flow and Items
Using the Interchange block to mix items with flow

D
is

cr
et

e
R

at
e

empt connector receives a value that corresponds to the preemption options selected in the Item/
Flow dialog, seen above, it will trigger a preempt.

☞ To immediately dispose of an item after it releases flow, connect an Exit block (Item library) to the
Interchange block’s item output connector. To instead have an item present all the time, connect a
Create block set to Create items infinitely to the block’s item input connector.

Interchange modes
The Interchange block has two modes:

• Tank only exists while item is in it

• Tank is separate from item

These are illustrated below.

Tank only exists while item is in it
In this mode, the Interchange's capacity to handle flow is completely dependent upon the presence
of an item. The arriving item can be thought of as a “tank” with a capacity to hold flow. This item/
tank can move through the item-based blocks just like any other item would. However, once it
enters an Interchange block, the item/tank can release flow directly into the block’s outflow con-
nection and/or accept flow directly from its inflow connection. In the absence of the item/tank,
the Interchange block has no flow capacity.

Two very important behaviors result from an item exiting the block when it is set to this mode:

• Once the conditions for item release have been met, the exiting item will always take with it any
flow currently residing in the block.

• Until a successor item arrives, the Interchange’s inflow and outflow will be blocked.

 In this mode, the absence of an item eliminates not only the Interchange's capacity to hold flow
but also its capacity to pass flow from an upstream source to a downstream sink. (This differs from
the behavior of a Tank block, which passes flow through even if its capacity has been set to zero.)

Shipping model
A typical example
of how the Inter-
change block
could be used in
this mode is illus-
trated by the
Shipping model.
In this example,
an empty ship (an
item) arriving at a
loading port (an
Interchange
block) where it is filled with cargo according to a filling rate. Once full, the ship sails for a period
of time (represented by an Activity block) until reaching the new destination port (another Inter-
change block). At this point the ship’s cargo is unloaded according to the unloading rate.

To simulate the loading process, flow is piped from the Interchange block's inflow connector into
the item/ship. Once filled, the item/ship exits the block, taking the flow with it. Conversely, once

Shipping model

Mixing Flow and Items 355
Using the Interchange block to mix items with flow

D
iscrete R

ate
the item/ship arrives at the second Interchange block, flow is piped from it into the second Inter-
change block's outflow connector.

The item/ship travels with a Quantity
attribute that has been set to a value of
1000. This attribute sets the ship’s capacity.
For the filling process, the Interchange
releases the ship when it is full, that is, after
1,000 units of flow have been piped in. The second Interchange block releases the ship when it is
empty, that is, after 1,000 units of flow have been piped out. At the end of the simulation run, the
ship has not yet been released from the unloading dock because it still contains 100 units of flow.

Yogurt Production model
The Yogurt Production model, located in the folder
\Examples\Turorial\Discrete Rate and discussed in the
Discrete Rate Tutorial that starts on page 274, is an exam-
ple of using an Interchange block set to Tank only exists
while item is in it.

In this model, empty item/pallets are generated randomly
by a Create block (Item library). The arrival of an item/
pallet causes the Interchange block to have flow capacity;
the maximum capacity of 24 cartons is entered in the
block’s dialog. Once the maximum capacity is reached,
the full pallet leaves the block. The Interchange block
then has no capacity until another pallet arrives.

Yogurt Changeover model
This model is based on the Yogurt Production
model from above. The Yogurt Changeover
model, however, provides a period of time (the
changeover) for an operator to remove each full
pallet and replace it with an empty pallet, and
there is an infinite supply of empty pallets.

In this model, each Create block (Item library)
can generate an infinite number of items so that
empty pallets are available as required. Activity
blocks (Item library) represent the two minute
changeover time. Once a pallet has been released
from an Activity, it notifies a Gate block (Item
library) to open, pulling in a pallet from the Create block. This process causes the Interchange to
not have a new pallet/item to fill until the changeover from the previous pallet is finished.

☞ The Create block’s ability to Create items infinitely is specifically intended for this type of situa-
tion. It provides an infinite supply of items that are available on demand, creating items when-
ever there is a capacity for flow.

Tank is separate from item
In this mode, the Interchange block's ability to handle flow is identical to the Tank block irrespec-
tive of the presence of an item. That is, the Interchange can be set to have an initial amount of
flow, its capacity can be set through the dialog or through a connector, and maximum inflow/out-
flow rates can be defined.

Release options for unloading

Yogurt Production palletization

Yogurt Changeover palletization

356 Mixing Flow and Items
Using the Interchange block to mix items with flow

D
is

cr
et

e
R

at
e

The only difference lies in the Interchange block's ability to pipe flow into and out of items. When
the Interchange block is set to Tank is separate from item, the block can receive and hold flow
that has been provided by its inflow connector or the arrival of an item and it can release flow
through its outflow connector or through the exiting of an item.

☞ When the Interchange block is in this mode, an item carrying flow releases its entire load instanta-
neously upon arrival. However, depending on other settings in the block, the item can also take
flow with it upon exiting. If this is the case, the Interchange block's flow level is decremented
instantaneously when the item leaves. Furthermore, an item whose load of flow exceeds the block’s
capacity will be blocked from entering the Interchange.

Bucket Elevator 1 model
The Bucket Elevator 1 model
simulates a series of buckets
(items) pulling flow out of a
source (an Interchange block)
located at a low elevation, trans-
porting the water in a series of
steps to an infinite sink located
at a higher elevation (another
Interchange block), and then
returning empty through a
series of steps to the source.
Both Interchange blocks are set
to Tank is separate from item.
With this setting, both the
source and the sink have the
capacity to hold water even in
the absence of an item.

This model is similar to a con-
tinuous loop of buckets drawing
water from a well, emptying
into a catch basin, and return-
ing to the well. There are ten
bucket/items and each bucket
has a capacity of 100 gallons;
this is defined in the Resource
Item block by the attribute Capacity. There are also ten slots in this “pseudo-conveyor” – each rep-
resented by an Activity block that can hold one item/bucket. The delay at each slot is 1/10 the sum
of all the delays, as determined by the items’ Speed attribute.

Even if the source has less than 100 gallons, the buckets keep moving and grab as much water as
possible. As each bucket reaches the top, its contents are released instantaneously into the sink, and
the journey back down to the sink immediately starts. Running the simulation with animation on
shows the buckets as they cycle from the well, up to the catch basin, and then back down again.

Bucket Elevator 1 model

Mixing Flow and Items 357
Using the Interchange block to mix items with flow

D
iscrete R

ate
Bucket Elevator 2 model
The Bucket Elevator 2
model is similar to the
Bucket Elevator 1 model,
except there is some added
complexity. In this model,
the flow blocks at the bot-
tom and top of the model
represent streams of water.
In the bottom stream,
some of the water is
removed by the buckets,
but the rest continues on
at a varying rate of flow.
Likewise, after the buck-
ets have unloaded their
contents into the sink,
water flows from the top
stream at a varying rate.

Both Interchange blocks
have a capacity of 1,000.
Based on settings in the
Interchange block’s Indica-
tors tab, the level of water
affects the constraining
rate of the Valve that fol-
lows each of the blocks.

Indicators are a method of reporting what
category or range the current level of flow
falls into; the table from the Source
block’s Indicators tab is shown to the
right. An Equation block (Value library)
looks at the Interchange block’s I (indica-
tor) output to determine the range the
water level in the tank falls into. The block then adjusts the Valve’s maximum rate depending on
that information and an equation.

The upper and lower streams in this model have different equations; the upper stream bases the
Valve’s maximum rate on a constant while the lower stream bases it on a random distribution. In
the lower stream for instance, if the Source tank’s level is equal to or less than the Low range, the
maximum rate is a Triangular distribution that is most likely 30 units. If the level falls within or
above the High range, the most likely maximum rate for the Valve is 150; otherwise, the most
likely rate is 100.

☞ For more information, see “Setting indicators” on page 296.

Bucket Elevator 2 model

Indicators for the source

358 Mixing Flow and Items
Using the Interchange block to mix items with flow

D
is

cr
et

e
R

at
e

Discrete Rate Modeling

Miscellaneous
Concepts that don’t easily fit into other chapters

360 Miscellaneous
Precision

D
is

cr
et

e
R

at
e

This chapter covers:

• The precision of calculations

• Using bias to give preference to some component or portion of a model and how that affects
effective rates

• Global and advanced options in the Executive

• Value connector abbreviations and meanings

• The different types of information that animation displays

Precision
An LP area is made up of one or more rate sections; it encompasses all the rate sections for which
the Executive block has been notified that effective rates might change. The LP area has a linear
program (LP) that is responsible for calculating an effective rate for each section contained within
that area. (The LP area and LP calculations are discussed fully in “LP technology” on page 376.)

The maximum mathematical precision for an LP area is 12 digits. Because one LP can be responsi-
ble for calculating multiple effective rates for its rate sections, and because LP precision is limited
to 12 digits, precision can become an issue not only for the individual effective rates but also for
the effective rates calculated for the entire LP area. For example, if an LP area contains two rate
sections where the first rate section's effective rate was 1,000,000 flow units per time unit (FPT),
the effective rate for the second section could be no smaller than 0.0001 FPT.

☞ To preserve adequate precision for all rate sections, don’t separate any two effective rates within an
LP area by more than 12 digits of precision.

Biasing flow
The discrete rate architecture includes a feature called bias – a method for stating a preference that
flow travel one route rather than another.

☞ Bias is only relevant when the flow is merged or diverged.

The advantages of the bias concept are that it:

1) Gives you a way to specify preferences for how flow circulates in one part of the model com-
pared to other parts.

2) Provides flexibility in resolving conflicts for how flow should be distributed among competing
branches.

Bias is present in a model whenever you use one or more of the following blocks:

• A Bias block in a model that contains Merge or Diverge blocks set to a non-fixed mode (dis-
cussed in “Merge and Diverge blocks” on page 362).

• A Merge or Diverge block (Distributional, Priority, or Sensing modes only)

Because bias can skew the way flow is distributed, it is taken into consideration by the global LP
calculation and can thus have an effect on effective rates. (For specific information on how bias is
used in the calculation of effective rates, see the advanced topic “LP technology” on page 376.)

☞ We suggest that you read the chapters “Rates, Constraints, and Movement” and “Merging, Diverg-
ing, and Routing Flow” before the Bias section.

Miscellaneous 361
Biasing flow

D
iscrete R

ate
Bias order
If a block in a model has bias, it has a bias order that indicates its ranking compared to all the
other blocks with bias. Each biasing block is listed in order from the top (strongest) bias order to
the lowest (weakest) bias order. The block at the top of the ranking list has a bias order greater than
0. Bias orders lower than the top have numbers higher than the top number; bias numbers that are
Blank or less than or equal to 0 are ignored.

Since the bias order is used during the LP calculation of effective rates, changing the bias order
often results in a different set of effective rates. It is therefore important to understand the concept
of bias order and the influence it has on how effective rates are calculated.

☞ The bias of a Bias block is by definition stronger than the biasing effect of any Merge or Diverge
block. So Bias blocks will always have higher bias orders than Merge and Diverge blocks.

Bias block
The Bias block allows you to specify a preference for where the flow should be directed. Wherever
the Bias block is located in the model, it pulls in as much flow as possible. If a model has multiple
Bias blocks, each has its own bias order.

 If the model’s Merge and Diverge blocks use non-fixed rules to obtain or distribute flow, there is
some leeway in how flow can be biased and the Bias block is useful. If the model’s Merge and
Diverge blocks all use fixed rules, there is no possibility of biasing the flow with the Bias block.
(Fixed and non-fixed rules are discussed in “Merge and Diverge blocks” on page 362.)

Dialog settings and bias order
The block’s bias order can be set
directly in its dialog or it can be
modified dynamically through the
B (bias) input connector or by
linking the Bias order dialog
parameter to an ExtendSim data-
base. You can enter an initial bias
order that has effect until the
block gets a bias order value
dynamically; you can also show
the block’s bias order on its icon.

The Bias dialog shown at the right
is for one of two Bias blocks in a
model. The block shown has the
highest preference for flow, as
indicated by the setting Bias
order: 1.

The dialog table reports information about each Bias block in the model, its bias order, block label
or name, and block number. You can use the table’s Bias column to change the bias order for any
of the listed blocks.

Calculation of the effective rate
The preferences for flow defined by Bias blocks has an effect on the calculation of the effective rate.
If there is more than one Bias block in the model, each block’s preference is expressed in turn based
on its bias order. As each Bias block takes its turn, it calculates the maximum effective rate which
could circulate at its location, without taking into consideration the preferences expressed by

Bias dialog

362 Miscellaneous
Biasing flow

D
is

cr
et

e
R

at
e

blocks with a lower bias order. When its maximum effective rate has been determined, that rate
will be fixed for the succeeding calculations involving blocks with lower rankings.

• The bias order of Bias blocks can change dynamically during the simulation

• If multiple Bias blocks have identical bias orders, the way the flow is distributed between the
effective rates cannot be predicted. The model will use one of the possible solutions.

• If a Bias block has a bias order that is Blank or is less than or equal to 0, the block does not
express any preference.

Prioritize With Bias Blocks model
This model illustrates
how Bias blocks can be
used to indicate prefer-
ences for flow. It is sim-
ilar to the Competing
Requests for Flow
model discussed on
page 327. However,
this model uses Bias
blocks to indicate the
preferred route for flow,
rather than bias order
settings in Merge and
Diverge blocks set to
Priority mode.

In the Prioritize With
Bias Blocks model, the
Merge and Diverge blocks at set to Neutral mode and the Bias blocks indicate flow preferences.
The results are identical to the Competing Requests for Flow model.

☞ This model is located in the folder \Examples\Discrete Rate\Merge and Diverge.

Merge and Diverge blocks
As shown in the “Mode table” on page 319, some Merge/Diverge modes use a fixed rule to obtain
or distribute the flow. For other Merge/Diverge modes, flow rules are only invoked in specific situ-
ations depending on model conditions.

Because it influences the way flow is distributed, the bias concept only applies to Merge or Diverge
blocks set to non-fixed rule modes: Distributional, Priority, or Sensing. To avoid confusion when
Merge or Diverge blocks have competing requests for flow, blocks with these modes must specify a
bias order.

Fixed rule modes
The Batch/Unbatch, Proportional, and Select modes all use a fixed flow rule to obtain or distribute
flow. For example, the way flow is distributed between the branches for a Merge/Diverge in Pro-
portional mode will follow the proportions set in the block’s dialog. No matter what happens in
the rest of the model, the proportions will be respected.

The bias setting options in these block’s Model Settings tabs will be disabled.

Prioritize With Bias Blocks model

Miscellaneous 363
Biasing flow

D
iscrete R

ate
☞ If the model contains Merge and Diverge blocks that are only set to the Batch/Unbatch, Propor-
tional, or Select modes, bias has no impact on the effective rates.

Non-fixed rule modes
The Distributional, Neutral, Priority, and Sensing modes do not use a fixed rule to obtain or dis-
tribute flow. Instead, they provide a certain degree of freedom about where the flow can be
directed.

A Merge or Diverge block in Priority mode, for example, impacts the flow as follows:

• Taking into consideration how much flow it can get, the block will do its best to direct as much
flow as possible to its top priority branches.

• However, the block just expresses a “preference” for where to send the flow; model conditions
determine how well those preferences can be achieved and the top priority branches may not
actually get the most flow.

☞ If the model contains any Merge or Diverge blocks set to the Distributional, Priority, or Sensing
modes, the bias order must be specified. (There is no bias order required for the Neutral mode.)

Setting a Merge or Diverge block’s bias order
When set to the Distributional, Priority, or Sensing modes, the Merge and Diverge blocks must
express a bias order. This is accomplished as follows:

1) By default, the Executive is set to Bias order: defined by Simulation Order. With this setting,
the bias order for each Merge and Diverge block is automatically determined based on Simula-
tion Order. Simulation Order is set in the command Run > Simulation Setup > Continuous
tab; the default is Flow order. It would be unusual to change the simulation order from the
default Flow order. (For further information on Flow order, see “Simulation order” on
page 86.)

2) You can also directly enter a bias order for a biasing Merge or Diverge block. To do this, first
change the Executive’s default setting from Bias order: defined by Simulation Order to Bias
order: each block defines its own. Then do one of the following:

• In the block’s Model Set-
tings tab, use the two array
buttons (“<<” and “>>”) to
change the block’s bias
order. This also changes the
block’s position in the tab’s
bias order table.

• Or, in the Executive’s Dis-
crete Rate tab, select the
row that contains the
desired block, then use the
<< and >> arrows to change
its position in the table.
The bias order changes
when the position of the block in the table changes.

Model Settings tab

364 Miscellaneous
Global and advanced options in the Executive

D
is

cr
et

e
R

at
e

Bias order table
The bias order table in a Merge or Diverge block’s Model Settings tabs displays each biasing Merge
and Diverge block, its bias order, block label or name, mode, and Simulation Order.

• If the blocks are set to Bias order: defined by Simulation Order, the table will be inactivated
since bias order is determined automatically.

• If the blocks are set to Bias order: each block defines its own, the table is active only in Merge
or Diverge blocks in the Distributional, Priority, and Sensing modes. In blocks with those
modes, it can be used to change the blocks’ bias order, as discussed above.

The Model Settings tab also reports the number of Bias blocks in the model; Bias blocks always
have a higher bias order than any Merge or Diverge block.

Competing preferences
“Bias Order – resolving competing requests for flow” on page 327 discusses how competing prefer-
ences between Merge and Diverge blocks is resolved using Merge and Diverge blocks.

Global and advanced options in the Executive
The Executive block (Item library) oversees the global discrete rate system. It is responsible for cal-
culating a model’s effective rates, centralizing and coordinating the information from Rate library
blocks as discussed in the advanced topic “LP technology” on page 376.

The Executive’s Discrete Rate tab is used as a central location for setting options used throughout a
discrete rate model. These options are divided into global and advanced options, as discussed
below.

Global options
The Executive’s global options are:

• Defining the “infinite” rate

• Defining a “zero” effective rate

• Setting options for how often blocks should update their flow status

• Choosing that the Valve animate and report blocking and starving information

• Managing flow units

The first three options are listed in a global
options frame at the top of the tab (shown
below); the fourth option is located at the bot-
tom of the tab. They are all discussed in the fol-
lowing sections.

Infinite rate
The Discrete Rate tab specifies that a rate equal
to or greater than some number is considered
infinite; the default setting is that a rate ≥ 1e10 is considered infinite. This information is impor-
tant when setting critical constraints and for the determination of the effective rate. It is discussed
fully in “Infinite rate” on page 304.

Global options in Executive

Miscellaneous 365
Global and advanced options in the Executive

D
iscrete R

ate
Zero effective rate
The Discrete Rate tab specifies that an effective rate less than or equal to some number is consid-
ered zero, resulting in no flow. The default setting for that number is 1e-10. It is strongly suggested
that you do not change the default setting unless you have an excellent reason to do so.

Update flow status
In the Rate library, some values change continuously over time. The frequency of updating those
values can be customized by setting options for the Convey Flow, Diverge, Interchange, Merge,
Tank, and Valve blocks. They define how often the following information is updated:

• The level of flow in residence blocks (Convey Flow, Interchange, and Tank)

• The amount of flow passing through the Convey Flow, Diverge, Interchange, Merge, Tank, and
Valve blocks

At a minimum, the discrete rate global system
updates flow status only when it needs to. The
updating options provide two additional oppor-
tunities to have calculations performed. The
option that has been selected in the Executive is displayed in each block’s Options tab (shown in
the screenshot), along with any choices associated with that option. The choices in the popup
menu are:

• Only when necessary. This default setting is computationally the most efficient option because
flow status is updated only when needed by the system. With this setting, the information is
updated:

• When a block is determined to be part of an LP area

• Whenever a block creates an internal event such as reaching a new indicator

• When a block receives an active message at one of it value output connectors

• Each block defines how often. If this option is selected, each block’s Options tab will give you
the choice to check the option Update animation and results at each event. If that is checked,
the calculation of the flow status will occur at each step for that block.

• Each block at each step. With this choice, every block will update at each step. This option has
to be used cautiously because it is computationally demanding to update the information this
frequently.

Valve animates and reports blocking and starving information
This option only affects the animation and reporting of Valve blocks. A Valve can be limiting, not-
limiting, blocked, starved, or blocked and starved. By default, the Valve’s Results tab and S (status)
output connector only report whether the block is limiting (0) or not limiting (1). The Results tab
also reports cumulative information regarding the percentage of time the block was limiting or not
limiting.

When the global option is checked, the block’s Results tab and its S output report all status infor-
mation as a value:

• limiting (0)

• starved (1)

• blocked (2)

• starved and blocked (3)

Valve’s default update setting

366 Miscellaneous
Global and advanced options in the Executive

D
is

cr
et

e
R

at
e

☞ A Valve’s complete status information is helpful during the early stages of model construction and
for debugging purposes. However, it can slow the simulation, so by default the option is not
checked.

The differentiations are animated on the Valve’s icon as discussed in “Valve” on page 371.

Manage flow units for discrete rate models
This section of the Discrete Rate tab provides a central location where flow units can be renamed
or added to or deleted from a model. To delete or rename a flow unit, select it in the table and click
the appropriate button. Flow units are discussed on page 297.

Advanced options
The advanced options in the
Discrete Rate tab only apply
to specific situations:

• Merge or Diverge blocks
in the Distributional, Pri-
ority, or Sensing modes

• Merge blocks in Propor-
tional mode when there is
an empty loop

☞ Merge and Diverge modes
are discussed in the chapter
“Merging, Diverging, and
Routing Flow”.

Merge or Diverge blocks
in Distributional, Priority, or
Sensing modes

This first set of options determines how bias order is set for certain Merge and Diverge blocks and
whether the bias order is displayed on the block’s icon.

Bias order determination
For a Merge and Diverge block in the Distributional, Priority, or Sensing mode, the choices are
that the block’s bias order number is defined by:

• Simulation Order. This is the default; it causes the bias order to be automatically calculated by
the simulation order of the blocks in the model.

• Each block. This option allows the user to customize the bias order of each Merge and Diverge
block (Distributional, Priority, or Sensing mode only) in the model.

For detailed information about the requirement for a bias order and how it is set, see “Merge and
Diverge blocks” on page 362.

Displaying the bias order
For Merge and Diverge blocks in the Distributional, Priority, or Sensing mode, a popup menu
provides choices for displaying their bias order:

• Show bias order on icon

• Don’t show bias order on icon

Advanced options in Executive

Miscellaneous 367
Global and advanced options in the Executive

D
iscrete R

ate
• Each block decides whether to show bias order on icon

If the bias order is displayed on a block’s icon, it will be in the format <#>, where # is the bias
order number. If the third option is chosen, a checkbox will appear in each Merge or Diverge
block’s Model Settings tab. Check the Show bias order on icon checkbox if you want the block to
show the bias order number on its icon.

Merge blocks in Proportional mode
For Merge blocks in Proportional mode, a conflict can result if the block is part of an empty loop
(can’t get flow). If a Merge block’s proportions are 1:2 for instance, what should happen if the top
inflow branch is part of an empty loop and cannot get any flow from that loop?

The Executive provides three options for how empty
loop situations should be resolved:

• Branches need simultaneous inflows to push flow.
With this default setting, flow is stopped at all
inflow branches if one or more of them are part of
an empty loop.

• Blocks push flow even in empty loops. This choice allows the branches with flow to send it
through. The result is that the branch that is part of the empty loop will then get some flow.

• Each block defines how it will push flow. This setting causes an additional popup menu to
appear in the Model Settings tab of any Merge block in Proportional mode. The two choices in
each Merge’s dialog are:

• The block pushes flow even in
empty loops. This is the
default setting; it allows
branches with flow to send it
through.

• Each branch needs simultaneous inflows to push flow. With this choice, flow is stopped at
all inflow branches if one or more of them cannot get any flow.

Which of the three empty loop options you choose depends on the behavior of the system you are
simulating.

Merge Proportion Setting model
In this model the two flow streams have identical settings except for how the Merge blocks handle
empty loops. So that each block can specify its own behavior, the Executive’s setting for the section
“Merge blocks (Proportional mode and empty loop)” is Each block defines how it will push flow.

Executive options for empty loops

Model Settings tab of Merge block

368 Miscellaneous
Common connectors on discrete rate blocks

D
is

cr
et

e
R

at
e

The Merge block in the top stream
(Wait for Flow) specifies that Each
branch needs simultaneous flow
while the Merge block in the bot-
tom stream (Push Flow) is set to
Blocks push flow even in empty
loops. The flow is blocked at the
Merge block in the top stream but
flows through the Merge block in
the bottom stream.

☞ This model is located in the folder
\Examples\Discrete Rate\Merge and
Diverge.

Common connectors on dis-
crete rate blocks

Most Rate library blocks have inflow and outflow connectors and value input and output connec-
tors. The Interchange block also has item input and output connectors.

Flow connectors pass information about the effective rate from one discrete rate block to another.
Item connectors pass discrete items.

For value connectors, many discrete rate blocks use abbreviations or acronyms to indicate the con-
nector’s purpose. Some of these abbreviations represent more than one purpose and are context
sensitive.

The following connector labels appear for value connectors on Rate library blocks:

Connector In or Out? Meaning

AL Output Accumulation length - for a Convey Flow block, the distance from its
end to the accumulation point.

AQ Output Accumulated quantity - the amount of flow that has been accumulated
along a Convey Flow block’s accumulation length.

B Input Bias order number

C Input Capacity

CO Output Contents

D Input Delay

DR Output Potential downstream demand rate

factor Input Conversion factor in Change Units block

G Input Quantity of flow (quantity goal) or duration of time (duration goal)
for a Valve. Can also be used to start a new goal, depending on Valve’s
dialog setting.

G# Output Goal number

GD Output Goal duration

Merge Proportion Setting model

Miscellaneous 369
Common connectors on discrete rate blocks

D
iscrete R

ate
GS Output Goal status:
0 - no goal
1 - starting
2 - in progress
3 - ended
4 - interrupted

GQ Output Goal quantity

GO Input Activate a status update: 0 or 1 (Sensor and Merge/Diverge)

I Output Indicator (Convey Flow, Interchange, or Tank)

IC Input Item capacity

ICO Input Item contents

ID Input Inflow/outflow branch ID for Merge/Diverge in Select mode

IT Input Target value to release item

L Output Length of item line: 0 or 1

LE Output Level of contents

NB Output Number blocked: 0 or 1

PE Input Preempt item

PT Output Process time

Q Output Cumulative quantity

R Input Maximum rate (Note that the effective rate is reported by the flow
input and output connectors.)

S (on Convey
Flow)

Output Status:
0 = empty
1 = intermediate
2 = full

S (on Inter-
change or
Tank)

Output Status direction (Interchange):
-1 = down
0 = stable
1 = up

S (on Valve) Output Status [if Valve only reports limiting or non-limiting]:
0 = limiting
1 = non-limiting

S (on Sensor
or Valve)

Output Status [if Valve reports full status:]
0 = limiting (Valve) or unused (Sensor)
1 = starved
2 = blocked
3 = starved and blocked

S (0-n) Output Sensors - numbered from 0 to n (Convey Flow)

SP Input Speed parameter

SP Output Effective speed

SR Output Potential upstream supply rate

Connector In or Out? Meaning

370 Miscellaneous
Animation

D
is

cr
et

e
R

at
e

Animation
Rate library blocks can be animated during the simulation if Run > Show 2D Animation has been
selected before a simulation run. For blocks with animation, the following information explains
what each display means.

☞ The models illustrated in this section are located in the folder \Examples\Discrete Rate\Miscella-
neous.

Tank
Tanks animate information about their levels and information about the direction of flow within
the Tank.

Level information
The table below shows animation of the Tank’s level under different conditions.

start Input Start hysteresis

stop Input Stop hysteresis

TL Output Cumulative time Valve was limiting, effective rate > 0

TU Output Cumulative time Valve was not limiting, effective rate > 0

TLO Output Cumulative time Valve was limiting, effective rate = 0

TUO Output Cumulative time Valve was not limiting, effective rate = 0

Finite Capacity Infinite Capacity Specific Behaviors

Full (contents 100, capacity 100) Full Overfull (contents 1,000,
capacity 100)

Some flow (contents 50,
capacity 100)

Some flow (10 units) Overfull (contents 1,000, no capacity)

Empty (contents 0, capacity 100) Empty No capacity and empty

Connector In or Out? Meaning

100 1000

50 10 1000

0 0

Miscellaneous 371
Animation

D
iscrete R

ate
Direction information
An arrow is animated on the icon to indicate the direction of change in the Tank’s level. When
there is no arrow, it means that the Tank has neither an inflow nor an outflow rate.

Interchange
The Interchange block displays the same animation behavior as a Tank, shown above. In addition,
a ball appears in the middle of the block’s icon when an item is present in the block. The ball is red
if the item is ready to leave the block but is blocked downstream. Otherwise, the ball is green. If
the option Tank only exist while Item is in it is chosen and there is no item in the block, the tank
icon animates as white with cross-hatching.

Valve
A Valve reports its maximum and effective rates when animation is turned on. If the option Valve
animates and reports blocking and starving information is not selected in the Executive block’s
Discrete Rate tab (the default setting), a Valve will display only its limiting or non-limiting status.
If that option is selected, it will also report its blocking and starving status. (See “Valve animates
and reports blocking and starving information” on page 365 for full information.)

Displaying limiting and non-limiting status
By default, the Valve only animates information about its limiting or non-limiting status.

Limiting is when the effective rate equals the maximum rate. In this case, the Valve is what limits
the flow. When a Valve is non-limiting, the effective rate is less than the Valve’s maximum rate. In
that case, the Valve has no impact on the flow.

Item filling (contents 50,
capacity 100)

Item emptying (contents
50, capacity 100)

Item blocked downstream
(contents 99,
capacity 100)

No item present (Tank only
exists while item is in it)

Non-Limiting Limiting

Effective rate 5, maximum rate 10 Effective rate 5, maximum rate 5

No flow, maximum rate 10 No flow, maximum rate 0

372 Miscellaneous
Animation

D
is

cr
et

e
R

at
e

• When the effective rate is not the same as the constraining (maximum) rate, the two numbers
are represented as effective rate/constraining rate above the icon. If the two rates are the same,
only one number appears.

• If the Valve is limiting and the effective rate is greater than 0, the interior of the icon is plain
blue. If the Valve is limiting to 0, the interior of the icon is plain red. If the Valve is not limiting,
the interior of the icon is white.

• When the effective rate is greater than 0, a blue rectangle appears along the icon, and the rates
are written in blue. When there is no flow, the blue rectangle does not appear on the icon and
the rates are written in red.

Also displaying blocking and starving status
If the option Valve animates and reports blocking and starving information is selected in the
Executive block’s Discrete Rate tab, Valves will also animate their blocking and starving status
information.

If a Valve is blocked, it means that there are one or more blocks downstream which are limiting the
flow through the Valve. If a Valve is starved, it means there are one or more upstream blocks that
limit the flow to the Valve.

• If there is no flow, there will not be a horizontal line through the Valve. If there is flow, and the
Valve is non-limiting, the horizontal line through the Valve is a patterned blue. The horizontal
line is a plain blue color if there is flow.

• If a Valve is limiting, the central, vertical part of the Valve is plain blue (if the maximum rate is
>0) or red (if the maximum rate = 0).

Limiting only Blocked Starved Blocked and Starved

Limiting Non-limiting, with flow Non-limiting, with flow Non-limiting, with flow

Maximum rate 0 Non-limiting, no flow Non-limiting, no flow Non-limiting, no flow

Limiting, with flow Limiting, with flow Limiting, blocked, and
starved with flow

Limiting, no flow Limiting, no flow Limiting, blocked, and
starved and no flow

Miscellaneous 373
Animation

D
iscrete R

ate
• If the right side of the Valve’s icon is plain blue, the block is partially blocked by downstream
blocks. If there is a red line on the right side of the icon, the flow is completely blocked down-
stream.

• If the left side of the Valve’s icon is plain blue, the block is partially starved by upstream blocks.
If there is a red line on the left side of the icon, the flow is completely starved upstream.

Goal and hysteresis animation
A Valve that uses a quantity goal to control its flow has a blue line below its icon. If the Valve con-
trols its flow with a duration goal, the line is green. While the goal is On, a progression bar appears
along the top of the blue or green goal line.

A Valve that uses hysteresis has a purple line at the bottom of its icon. While hysteresis is active, the
purple line is thicker for all or part of its length.

Sensor
The shape and color of the Sensor block’s icon indicates if the flow is being blocked, starved, or
both., and if there is flow or not.

Convey Flow
The animation of the Convey Flow block shows what mode it is in, the distribution of flow along
its length, the position of the accumulation point, and other information.

Mode animation

For further exploration, the Compare Convey Flow model compares the behavior of three Convey
Flow blocks, each set to one of the possible modes, under different emptying rates. The model is
located in the folder \Examples\Discrete Rate\Delaying Flow.

Distribution of flow and other information
A Convey Flow block animates the distribution of flow as follows:

Quantity goal, about 75% completed Duration goal, about 75% completed Hysteresis is active

Flow? Blocked Starved Blocked and Starved

Yes >>>

No >>>

Accumulate-maximum density Accumulate-fill empty segments Non-accumulating

374 Miscellaneous
Animation

D
is

cr
et

e
R

at
e

• A blue shape along the top of its icon indicates flow distribution.

• A slowing of flow movement causes the blue shape to have a green border.

• The complete stopping of flow movement causes the blue shape to have a red border.

• If the block has reached its capacity, the shape is a solid blue rather than a dotted blue.

• If the block is empty, a black line will appear at the top of its icon, as seen above.

• The position of the accumulation point is indicated by a red vertical line that moves along the
length of the icon. This is shown in the first, second, and fourth screenshots below and is dis-
cussed on page 345.

Distribution of flow Slowing movement Stopped Capacity reached

Discrete Rate Modeling

Advanced Topics
Some additional information

for those of you who want to know more

376 Advanced Topics
What this chapter covers

D
is

cr
et

e
R

at
e

The earlier chapters in the Discrete Rate module discussed important concepts you need to know
to build discrete rate models. This chapter provides an overview of the way discrete rate calcula-
tions are made and describes the underlying functioning of the Rate library. This information is
not necessary to build discrete rate models but will be of interest to advanced users.

 It is highly recommended that you read the previous discrete rate chapters before this one, particu-
larly the chapter “Rates, Constraints, and Movement”.

What this chapter covers
• The LP technology that has global oversight over a discrete rate model

• How the LP area is determined

• The sequence of events for the LP calculation

• How bias affects the calculation

• The types of information provided to the Executive

• How a relational constraint is calculated

• The potential rates “upstream supply” and “downstream demand”

• Messaging in discrete rate models

LP technology
Linear programming problems involve the optimization of an objective function subject to a set of
constraints. The purpose of solving a linear programming problem is to maximize or minimize
selected variables in the objective function.

LP technology is the method ExtendSim uses to provide global oversight to maximize the move-
ment of flow throughout a discrete rate system. The discrete rate architecture employs an inte-
grated LP Solver DLL to solve a series of equations to optimize effective rates at each point of the
simulation run.

The purpose of the LP calculation is to determine the maximum effective flow rates in the system
given the constraints defined by block settings and the structure of the model. After all the rules
for storage capacity and movement have been declared in the model, ExtendSim uses the Executive
block’s LP calculations to cause as much flow as possible to move through the system. This calcula-
tion is handled automatically and internally.

Overview
In a discrete rate model, the Rate library blocks communicate with each other and with the Execu-
tive block. In turn, the Executive communicates with an integrated linear program (LP Solver).
The Rate library blocks are dependent on each other, have an effect on one another, and are part of
a global LP system that evaluates the entire model to calculate its effective flow rates.

• A rate section is a network of connected blocks, all possessing the same effective rate. Established
at the beginning of the simulation run, rate sections do not change. (See “Rates, rate sections,
and the LP area” on page 303 for more information.)

• An LP area is made up of one or more rate sections; the actual configuration can change during
the simulation. A change in a block’s constraints during the simulation run initiates a propaga-
tion of messages through all the rate sections whose effective rates might change. This propaga-
tion defines the LP area at that point in time.

Advanced Topics 377
LP technology

D
iscrete R

ate
• Each rate section within the LP area contributes a part of an LP equation for a recalculation.
The purpose of the recalculation is to determine the maximum effective flow rates in the system,
given the constraints defined by block settings and the structure of the model. The result is the
set of effective rates for each section in the LP area at that point in the simulation. The system is
optimized such that only the rate sections in the LP area are recalculated; all the other effective
rates in the system don’t need to recalculate at that moment and won’t.

• Among other things, the LP calculations take into consideration each block’s:

• Critical constraints, which place an upper bound on rate sections connected to that block.

• Relational constraints, which define the way rate sections are related to each other.

• Bias, which is a block’s preference that flow travel one route rather than another.

The LP area
The LP area is made up of one or more rate sections linked together by the fact that their effective
rates could change at that point in the simulation – a change in the effective rates in one section
might impact effective rates in the other sections. The rates, constraints, and biases within the LP
area are used by the LP Solver to calculate the optimal set of effective rates for the rate sections
contained within that area.

The effective rate of one section can affect the effective rate of another section through relational
constraints. When an event occurs that causes a rate section’s effective rate to be reevaluated, blocks
propagate “rate block flow” messages (see “Block messages” on page 387) throughout the model to
determine which other rate sections might be impacted by the new event. The affected rate sec-
tions constitute the LP area and rate sections outside of the LP area are not included in the recalcu-
lation, reducing redundant computations.

The boundaries of the LP area are determined through the propagation of messages between Rate
library blocks. A change in a block’s constraints during the simulation run causes the block to
notify the Executive and send messages which propagate through all the rate sections whose effec-
tive rates might change as a result. Whether the block is the originator of the recalculation request
or receives a propagation message:

• The block declares which of its connected rate sections are in the LP area. The propagation pro-
cess then creates a global list of rate sections to include in the current LP area.

• If the block provides a relational constraint connection between two or more rate sections, the
effective rates connected to that block are dependent on one another. The block then continues
the message propagation to all the dependent block(s), who propagate the message to their
dependent blocks, and so forth.

The change in the originating block will definitely cause a recalculation of the effective rates for all
directly connected rate sections, and (depending on relational constraints between the sections)
might cause a recalculation of the effective rates for other rate sections.

☞ The boundaries of the LP area will change dynamically during the simulation depending on which
effective rates are involved in the recalculation and which relational constraint dependencies occur
between rate sections.

The sequence of events
A change in a block’s constraints during the simulation run initiates a reevaluation of all the effec-
tive rates for the LP area at that point in time. The block’s constraint change will definitely cause a
recalculation of the effective rates for all directly connected rate sections, and (depending on rela-

378 Advanced Topics
LP technology

D
is

cr
et

e
R

at
e

tional constraints between the sections) might cause a recalculation of the effective rates for other
rate sections. The sequence is:

1) A block’s constraint changes.

• If a block’s status changes it can affect its effective inflow and/or outflow rates. For exam-
ple, the effective inflow rate for a finite Tank block that is filling up is greater than its effec-
tive outflow rate. When the Tank becomes full, it creates an event because its effective
inflow rate can no longer exceed its effective outflow rate.

• When a block reacts to new parameters, the effective inflow and/or outflow rates must be
reevaluated. For example, a Merge block in Select mode might choose its top inflow
branch at the start of the simulation. If the block subsequently receives an order to select
its bottom inflow branch, its effective rates have to be recalculated.

2) The block posts a zero-time event requesting a reevaluation of effective rates.

3) The LP area is determined based on the propagation of block messages.

• Starting with the originating block. messages are propagated through the model to all the
blocks that might be affected by the change. This propagation of messages defines the
boundaries of the LP area.

• The LP area encompasses all the rate sections with effective rates that might change during
the calculation.

• For a complete description of the LP area and how it is determined, see page 377.

4) As the LP area is determined, the blocks update their status.

• Each block that is part of the LP area updates the amount of flow which has passed
through it since the last update.

• If the block is a residence block (Convey Flow, Interchange, or Tank), the amount of flow
the block is holding is also updated.

• Note: The frequency of status updates outside of an LP calculation is set in the Executive.
See “Update flow status” on page 365 for information.

5) Blocks report to the Executive how they impact effective rates.

• Each block in the LP area declares the flow rules (critical and relational constraints) that it
applies to the rate section it is connected to.

• The block’s bias order is stored in a list. Each block declares its bias order (if any) and pro-
vides coefficient information to the Executive. The coefficients allow the Executive to
build an objective function that considers the effect of the bias.

• See “Types of information provided to the Executive” on page 379.

6) The Executive determines an objective function.

• The objective is to maximize the flow rate for each rate section subject to the constraints
defined by the blocks’ flow rules.

• Each decision variable in the objective function is the effective rate of a section in the LP
area. For instance, the objective could be “Maximum effective rate = 1*ER1+ 1*ER2 +
1*ER3…”, where ERn is the effective rate for a rate section in the LP area.

Advanced Topics 379
LP technology

D
iscrete R

ate
• If there is no bias, or all the intermediate calculations related to bias order have been com-
pleted, the coefficient of each variable will be 1. If there is bias, the coefficient could be
other than 1.

7) The Executive communicates with the LP Solver.

• The Executive gives the LP Solver the objective function and the information from the
blocks and rate sections within the LP area.

• Critical constraints put an upper bound on some of the effective rates (the decision vari-
ables). Relational constraints provide a link between the effective rates of different rate sec-
tions and must be taken into consideration during the calculation. For instance, if effective
rate X is less than or equal to effective rate Y, the objective function must conform to that
information.

8) The Solver performs a calculation.

• The Solver calculates an optimized set of effective rates for the LP area.

• The result is an intermediate LP calculation (if there is bias) or the final LP calculation (if
there is no bias).

• For full details, see “The LP calculation” on page 382.

9) Steps 6-8 are repeated, if necessary.

• If the blocks in the LP area have bias, the Executive must determine intermediate objective
functions and the Solver must perform intermediate calculations. The number of recalcu-
lations is equal to the number of blocks with bias, plus 1.

• For each recalculation, the list of critical and relational constraints is changed to include
the constraints caused by the particular bias order being considered.

• See “Bias information” on page 380.

10) The rate sections are notified.

• The Executive sends “Executive block flow” messages to the head of the rate sections to
update to the new effective rates.

• The blocks receiving this information update according to their dialogs and value connec-
tors. They then post new events if necessary.

☞ Since the purpose of the recalculation is to maximize the entire set of effective rates, some rates will
change while others might not.

Types of information provided to the Executive
When effective rates need to be recalculated, Rate library blocks provide critical and relational con-
straint and bias information to the Executive.

To learn which blocks contribute which types of information, see “Table summarizing constraint
and bias information” on page 381.

Flow rules
Flow rules consist of critical and relational constraints.

• If a rate section has a critical constraint, it places an upper limit to the effective rate within that
section. Since effective rates are decision variables in the LP’s objective function calculation, crit-
ical constraints place an upper bound on some of the equation’s variables.

380 Advanced Topics
LP technology

D
is

cr
et

e
R

at
e

• Relational constraints describe the dependencies between different rate sections. In some blocks,
relational constraints can vary depending on the state sensitivity of the block; in others they are
permanently active.

• An example of a state sensitive relational constraint can be found in a Tank block. (Tanks
are always within two rate sections; the input side and the output side define the sections.)
As long as a Tank is empty, its relational constraint is defined as “effective outflow rate is
less than or equal to effective inflow rate”. Once the Tank becomes “not empty”, the rela-
tional constraint doesn't apply.

• An example of a permanent relational constraint can be found in a Change Units block
where a conversion factor defines the relationship of the inflow effective rate to the outflow
effective rate. If the factor varies over time, the relational constraint may also vary. But the
dependency between the inflow and outflow effective rates is active for each calculation
which includes the two rate sections.

Bias information
When the LP area is created, the Executive ranks all Bias blocks and any Merge or Diverge blocks
with a bias order in a list. The Executive considers the top bias from that list as part of the objective
function and instructs the Solver to perform an intermediate LP calculation using that function
and the current critical and relational constraints. Then the Executive takes the next bias order into
consideration, and so forth.

Since bias affects critical and relational constraints, each succeeding bias order means a new objec-
tive function will be determined and a new set of critical and relational constraints will be added to
the previous ones. The results from the previous LP are used as inputs to the next LP. This results
in multiple intermediate LP calculations – one for each bias order in the list – until the final result.

Most blocks with bias order supply:

• Flow rules (critical and relational constraints) which apply to all the LP calculations. (This infor-
mation is not supplied by a Bias block.)

• A set of coefficients that the Executive will use to build the objective function corresponding to
this bias order. Depending on the bias information received from the blocks in the LP area, the
intermediate objective function can include coefficients that are other than 1. (A coefficient of 0,
for instance, indicates that a particular effective rate does not need to be maximized; it causes
that effective rate to not be directly affected by the maximization.)

• Flow rules for that bias order which use the results of the intermediate calculation. (After the
intermediate calculation, the results of the calculation are used to add new flow rules to the suc-
ceeding calculations.)

Some additional situations that enter into the calculation include:

• If a Bias block has a bias order that is Blank or is less than or equal to 0, the block does not
express any preference.

• If multiple Bias blocks have identical bias orders, the effective rates for these blocks cannot be
predicted. The model will use one of the possible solutions.

• Merge and Diverge blocks with bias order are always lower on the bias list than any Bias block.

Advanced Topics 381
LP technology

D
iscrete R

ate
Table summarizing constraint and bias information
The following table summarizes the types of bias and constraint information (if any) Rate library
blocks supply to the Executive for the calculation of effective rates:

☞ Diverge and Merge blocks can imply a critical constraint depending on the branch parameter and
the mode.

The relational constraint calculation
The table that follows describes how the relational constraint is calculated for blocks that provide
either permanent or state sensitive relational constraints.

For the purposes of this table:

• Xin is the effective inflow rate of a block and Xout is its effective outflow rate.

• Index i describes one of the inflow branches (for a Merge) and one of the outflow branches (for
a Diverge).

• The number of branches is n.

Block Mode Critical
Constraint

Relational:
Permanent

Relational:
State Sensitive

Bias
Order

Bias No Yes No Yes

Catch Flow No No No No

Change Units No Yes No No

Convey Flow Yes No Yes No

Diverge Neutral, Proportional,
Select, Unbatch

Depends Yes No No

Diverge Distributional, Priority,
Supply Sensing

Depends Yes No Yes

Interchange Yes No Yes No

Merge Batch, Neutral,
Proportional, Select

Depends Yes No No

Merge Distributional, Demand
Sensing, Priority

Depends Yes No Yes

Sensor No No No No

Tank Yes No Yes No

Throw Flow No No No No

Valve Yes No No No

Block Calculation

Change Units The permanent boundary is Xin = factor*Xout

Convey Flow If the block is in an accumulating situation (outflow rate is blocked or partially
blocked downstream) and doesn't have any more capacity for accumulation, a state
sensitive boundary applies: Xin<=Xout

382 Advanced Topics
Upstream supply and downstream demand

D
is

cr
et

e
R

at
e

The LP calculation
The Executive block maximizes an objective function composed of the set of effective rates for the
LP area. If there is no block with bias order involved in the LP area, the Executive block maximizes
the sum of all the effective rates in the LP area – in this case, only one LP calculation is necessary.

If the blocks in the LP area have bias, the Executive must determine multiple intermediate objec-
tive functions and the Solver must perform multiple intermediate calculations. The number of
recalculations is equal to the number of blocks with bias plus 1.

When the LP area involves blocks with bias order, the calculations are made in cascading order. For
each bias order, an intermediate calculation is made with an objective function depending on the
type of block that is being evaluated:

• Bias block. The function to maximize is the sum of the effective rates attached to the Bias blocks
with an identical bias order. When the calculation is made, the function is used as a new rule for
the succeeding intermediate calculations. The calculation is: sum effective rates within the bias
order>= result of the maximized function.

• Merge/Diverge in Priority mode. The function to be maximized contains the effective rates from
the variable inflow and/or outflow branches of the block. The lower the priority of the branch,
the higher the coefficient associated with the effective rate. The calculation is: sum p*Xp (for p:
1=>n with 1 top priority and n lowest priority). When the calculation is finished, the objective
function is used as a new rule for the next intermediate calculations (sum p*Xp >= result of the
maximized function).

• Merge/Diverge in Batch/Unbatch, Distributional, Neutral, Proportional, Select, or Sensing
mode. This calculation is beyond the scope of this document.

When all the intermediate LP calculations have been made, the last LP calculation maximizes the
sum of all the effective rates for the LP area.

Upstream supply and downstream demand
The effective rate is not the only result a rate-based model can provide. The potential upstream
supply rate and the potential downstream demand rate can also be useful in special situations –
the rates determine the branch proportions for Merge and Diverge blocks in Sensing mode (as dis-

Diverge Select. A permanent relational constraint applies between the inflow effective rate
and the selected outflow effective rate: Xin=Xout selected

Proportional. A set of permanent relational constraints applies to insure the propor-
tions: Xout_i = factor_i*Xin (i: 0=>n-1)

Batch/Unbatch. Permanent relational constraints: Xout_i = Xin (i: 0=>n-1)

Neutral, Priority, Distributional and Supply Sensing. Permanent relational con-
straint Xin = Xout_1+…… Xout_n

(Other calculations are beyond the scope of this document.)

Interchange As long as the tank is full, Xin<=Xout. As long as the tank is empty, Xout<=Xin
(State sensitive relational constraint)

Merge Same as the Diverge with Xout and Xin reversed

Tank See Interchange

Block Calculation

Advanced Topics 383
Upstream supply and downstream demand

D
iscrete R

ate
cussed in “Sensing mode” on page 325) and the Sensor block can be used to report the potential
rates for making model decisions.

☞ This is an advanced topic because the concept is complex and there is an elevated potential for
error, as discussed in the section “Cautions when using potential rates”, below. Careful model veri-
fication and validation, and an advanced knowledge of the ExtendSim LP technology, are required
to avoid unexpected results.

Definition
The potential upstream supply rate is the theoretical rate at which an upstream source could pro-
vide flow to the beginning of a rate section if there weren’t any downstream limitations on flow
movement (downstream capacity is infinite). For instance, for a not-full Tank at the beginning of a
rate section, the upstream supply rate would equal the Tank’s effective inflow rate. A not-full Tank
does not limit the inflow rate it can receive. In this case, the effective inflow rate is also the poten-
tial upstream supply rate.

The potential downstream demand rate is the theoretical rate at which a downstream section of
the model could receive flow from the end of an upstream rate section if there were an unending
upstream supply of flow (upstream source is infinite). For instance, for a not-empty Tank at the
end of a rate section, the potential downstream demand rate would be equal to the Tank’s effective
outflow rate. A not-empty Tank does not limit the outflow rate it can provide. In this case, the
effective outflow rate is also the potential downstream demand rate.

Upstream supply and downstream demand could potentially be infinite. For example, the
upstream supply rate right after a Tank (if the tank doesn't declare any constraint on its outflow
rate) is infinite.

☞ When flow movement is from left to right, the information to calculate the upstream supply rate is
propagated from left to right while downstream demand information is propagated from right to
left.

Requirements for the supply/demand calculation
For a model’s Executive block to calculate a potential supply or demand rate, at least one of the fol-
lowing blocks must be part of the LP area:

• Sensor block. The only purpose of the Sensor block is to display the potential rates wherever it is
located in the model. The Sensor block only provides information; it has no direct impact on
the calculation of effective rates.

• Diverge block in Demand Sensing mode. Proportions for the outflow branches are calculated as
a function of the potential downstream demand. For example, the downstream demand placed
on an outflow branch becomes the proportion for that outflow branch.

• Merge block in Supply Sensing mode. The block uses the available upstream supply rate to
define the Supply Sensing proportions for each inflow branch.

Cautions when using potential rates
We strongly recommend exercising caution when using the Merge/Diverge blocks in Sensing
mode, or when relying on a potential rate reported by the Sensor block, because:

• Getting information about these rates slows down the simulation. The Executive has to make a
lot more LP calculations to extract the potential rate information.

384 Advanced Topics
Upstream supply and downstream demand

D
is

cr
et

e
R

at
e

• In some cases the potential rates as reported by the Sensor block are not accurate. Depending on
how flow is diverged and merged, the potential supply or demand rates could be aggregated even
if they should not be. This is illustrated in the “Supply & Demand Warning model” described
below.

• Merge/Diverge blocks in Distributional, Neutral, and Priority modes are not always compatible
with Merge/Diverge blocks in Sensing mode. Consequently, models with blocks that mix Sens-
ing mode with Distributional, Neutral, or Priority modes are prone to error.

• A Merge or Diverge block in Sensing mode has a bias order. Depending on the block’s location
in the Executive’s list of bias orders:

• The effective rates might be different.

• The block might not follow the proportions specified by the Sensing mode.

For instance, the effective rates are different in the “Combine Priority Sensing model” and the
“Combine Sensing Priority model”, and neither of those models follow the Sensing rule.

Issues when relying on the Sensor to report potential rates
Based on how a model is configured, and the mode selected in a Merge or Diverge block, a Sensor
block could report erroneous information.

Supply & Demand Warning model
In this model, the Sensor blocks correctly report the upstream supply. But Sensor A reports an
invalid downstream demand of 1400 gallons/minute. The actual downstream demand is 1000 gal-
lons/minute, reported by Sensor C. This is determined by verifying the demand results, compared
to what was expected, from right to left.

Evaluating the model from right to left (for the downstream demand rate):

• Sensor C reports a demand (Demand C) of 1000 gallons/minute because Valve C limits flow to
1000 gallons/minute. The Sink at the end of the line doesn't limit the inflow rate at all.

• Demand B1 is 1000 gallons/minute because the Prioritize 2 block has its top priority at branch
B1. (Verification: If a Tank with flow is present at branch B1, Prioritize 2 and Valve C would
accept 1000 gallons/minute coming from branch B1.)

• Demand B2 is 400 gallons/minute because the effective rate on branch B1 is 600 and Demand
C is 1000: Demand B2=Demand C-effective rate B1. (Verification: If a Tank with flow is

Supply & Demand Warning model

Advanced Topics 385
Upstream supply and downstream demand

D
iscrete R

ate
present at branch B2, it could provide 400 gallons/minute because the total Prioritize 2 can
accept is 1000 and the block already takes 600 from the top priority branch.)

• Sensor A reports a demand of 1400 gallons/minute because Demand B1 is 1000 and Demand
B2 is 400. However, this is incorrect. (Verification: If a Tank with flow is placed right before Pri-
oritize 1, the outflow effective rate would be 1000 gallons/minute and not 1400 gallons/min-
utes. The erroneous result comes from the fact that the association of “correct” local rules
doesn't guarantee a “correct” global result.

☞ By understanding flow rules and how they can affect the global result, you can avoid this problem.
The most important step is verifying this model from left to right for the supply and from right to
left for the demand. Two solutions are 1) having the Prioritize 2 block be in Neutral mode, and 2)
placing a Valve with a maximum rate of 1000 between Sensor A and Prioritize 1.

Mixing Merge/Diverge block modes
Situations where Merge or Diverge blocks in Sensing mode are mixed with Diverge or Merge
blocks in Distributional, Neutral, or Priority modes within an LP area should be avoided as they
are prone to give inaccurate results.

In these types of mixed-mode situations, the LP area is going to be recalculated multiple times to
provide the effective rates and the upstream supply and downstream demand rates. All the blocks
in the LP area must provide one set of constraints to the Executive so it can solve the effective rates
and a second set of constraints so the Executive can solve the supply and demand rates. This causes
repeated intermediate LP calculations, the results of which are affected by constraints which are
applied for the supply and demand rates. This may yield inaccurate results.

Unexpected effects of bias order
As discussed on page 362, the Distributional, Priority, and Sensing modes require bias order to be
defined. This affects their effective rates. However, the only mode whose proportions are influ-
enced by the bias ranking is the Sensing mode.

When effective rates within an LP area have to be recalculated, the Executive makes a list of blocks
ranked from the top bias order to the bottom. Depending on a Merge or Diverge block’s ranking
in the Executive’s list, the effective rates might be different. If the block is in Sensing mode, the
proportions will also be influenced. The two models that follow illustrate these issues.

Combine Priority Sensing model
In this model, a Diverge block (Prioritize 1) is set to Priority mode and a Merge block (Sensing 2)
is set to Supply Sensing mode. The blocks’ Model Settings tabs are set to Each block defines its
own bias order. The table in the tabs indicates Prioritize 1 has the top bias order and Sensing 2 has
the lower bias order.

Combine Priority Sensing model

386 Advanced Topics
Messaging in discrete rate models

D
is

cr
et

e
R

at
e

The supply in branch B1 is 1,000 while the supply in branch B2 is 400. However, the Sensing 2
block doesn’t distribute flow following the expected supply proportion.

• Because the Prioritize 1 block has the top bias order, the Executive gives priority to that block in
choosing how to distribute the flow between the branches B1 and B2.

• At the first intermediate result of the LP calculation, branch B1 gets an effective rate of 600 gal-
lons/minute and branch B2 gets 0 gallons/minute.

• Because this decision has been made for branches B1 and B2, the Sensing 2 block with its lower
bias order cannot control the proportion of flow it will get through branches B1 and B2. For
example, if the supply from B1 is 1000 gallons/minute and the supply from B2 is 400 gallons/
minute, the proportion between the effective rates for the Sensing 2 block’s inflow is not 71%
B1 (1000/1400) and 29% B2 (400/1400) but rather 100% B1 and 0% B2.

Combine Sensing Priority model
Like the preceding model, the Diverge block (Prioritize 2) in this model is set to Priority mode and
the Merge block (Sensing 1) is set to Supply Sensing mode and the Model Settings tabs for the
blocks are set to Each block defines its own bias order. However, in this model the table indicates
that Prioritize 2 has a lower bias order than Sensing 1.

• The Sensing 1 block has the top bias order, so the Executive gives priority to that block to
choose how the flow it receives should be distributed between branches B1 and B2.

• At this point of the LP calculation, the Prioritize 2 block gets a supply of 1000 gallons/minute
and has not decided how to distribute the flow. With that limited information, the potential
upstream rate is calculated as 1000 gallons/minute for Supply B1 and 1000 gallons/minute for
Supply B2. Therefore, Sensing 1 decides to get 50% of the flow from inflow branch B1 and the
other 50% of the flow from branch B2.

• Because the decision has been made for branches B1 and B2, Prioritize 2 with its lower bias
order can no longer control the distribution of flow between branches B1 and B2.

Messaging in discrete rate models
As discussed in “How ExtendSim passes messages in models” on page 533, the ExtendSim archi-
tecture allows application messages to be sent from ExtendSim to a model’s blocks and block mes-
sages to be passed between blocks.

Discrete rate models use the same application messages as do continuous and discrete event mod-
els. The block messages sent between Rate library blocks are discussed below.

Combine Sensing Priority model

Advanced Topics 387
Messaging in discrete rate models

D
iscrete R

ate
Block messages
Discrete rate blocks have a sophisticated and complex messaging structure for communicating
with each other and with blocks from the Value and Item libraries. They can be categorized as:

• Event
• Value connector
• Item connector
• Flow connector
• Rate block flow
• Executive block flow
When a block initiates a recalculation of the set of effective rates, a succession of messages and cal-
culations are also initiated. Understanding how block messages work can prevent redundant mes-
sages from being created. At the very least redundant messages will cause runtimes to be longer
than need be. At the very worst, redundant rate calculations could introduce bugs into a model
when effective rates are temporarily calculated using one or more out-of-date parameter values. For
instance, see “Limiting the number of recalculations” on page 328.

☞ By limiting the number of times the set of rates have to be recalculated, the operational efficiency
of the model is maximized. For example, see “Limiting the number of recalculations” on page 328.

Event messages
Event messages communicate between the Executive block and Rate library blocks. In a discrete
rate model, the simulation clock advances from one event to another. Each time the clock
advances, the Executive block sends event messages to the blocks that have associated themselves
with that event. There are two types of events: future and current.

• A future event message occurs when the simulation clock reaches a time posted by a block. For
instance, when the level in a Tank increases, it posts a future event to the Executive correspond-
ing to the Tank’s “full time”. Once the simulation clock has advanced to this future event, the
Executive sends an event message to the Tank, alerting it that it is full.

• A current event message occurs when a block wants to be activated before the simulation clock
advances, but after it has completed its response to another message. For instance, instead of a
Valve immediately calculating a new effective rate when its constraining rate changes, it will post
a current event to the Executive letting it know that it will have to recalculate at a certain time.
This gives all the other blocks in the model the opportunity to update before the recalculation
occurs.

☞ In discrete rate models, blocks from the Value library typically neither post events to the Executive
nor receive event messages from the Executive. This has important ramifications on the behavior
of continuous blocks in discrete rate models.

Value connector messages
Blocks in a discrete rate model send value connector messages either because a new number is
needed by an input connector or because the value of an output connector has changed. These
messages request updated information for the input connectors or notify connected blocks that the
output value has changed. For example, if a Valve block’s R value input connector is connected and
the Valve receives a new value at R, the constraining rate on the flow changes. This will cause a
recalculation of the set of parameters in the model.

388 Advanced Topics
Messaging in discrete rate models

D
is

cr
et

e
R

at
e

These messages work the same in discrete rate models as in discrete event models. They are dis-
cussed fully at “Value input and output connector messages” on page 261.

Item connector messages
Discrete rate models often have portions that are item-based, using blocks from the Item library.
The Rate library’s Interchange block also has item connectors; it provides a mechanism for inter-
acting with item-based blocks in a discrete rate model.

Item connector messages (primarily wants, needs, and rejects) use a conversation of messages to
propel items from one item-based block to another through the model. The item connector mes-
sages work the same in discrete rate models as in discrete event models. They are discussed fully at
“Item connector messages” on page 262.

Flow connector messages
Flow connectors provide the value of the effective inflow and outflow rates. Flow connector mes-
sages cause the effective inflow/outflow rate to be updated for all connected blocks each time the
LP calculation determines that the effective rates have changed.

Rate block flow messages
As soon as a block from the Rate library receives a message, if it determines that the effective inflow
and outflow rates might change, it initiates a propagation of these messages. This propagation of
messages is used to define the LP area – the area of the model which could be impacted by the
originating block’s change.

Executive block flow messages
When a calculation of a set of effective rates for the LP area has been initiated, the Executive block
calculates the new set of effective rates and sends messages to the blocks in order to propagate the
results. These message update all the blocks in an affected area with a new effective rate.

3D Animation

Introduction to E3D
Some things to know before you run 3D animation

390 Introduction to E3D
What this chapter covers

E3
D

For communicating a concept, a 3D representation of the spatial location of objects and their movement
over time can be an extremely powerful and effective tool. The ExtendSim Suite package includes a next
generation 3D animation capability that is fully integrated with the ExtendSim simulation environment.

Simulation is concerned with building a logical model of the behavior or performance of a system. 3D ani-
mation, on the other hand, involves a model of a physical space. In ExtendSim you can build a logical
model that is separate from the physical model. When 3D animation is desired, ExtendSim translates the
logical model into a 3D representation.

This ability to separate the logical simulation model from the 3D environment is an important ExtendSim
advantage because:

• A logical model cannot be directly built in 3D space. If the physical and logical aspects were not sepa-
rated, every aspect of your system would have to be created as a physical representation of the real system.
That would be both counter-intuitive and tedious.

• You may not need 3D for your purposes, so creating a 3D animation for every model would be a waste of
time.

• You can ignore how the model will appear in 3D until the logical model is finished. This increases pro-
ductivity since you can concentrate on model behavior and results without being concerned about layout.

• In ExtendSim, 3D animation is available if and when you need it.

The ExtendSim 3D (“E3D”) environment is designed to be used both for model presentation and for
model comprehension and debugging. The E3D window provides a fully three-dimensional representation
of the world of the model. The objects modeled in the E3D window maintain information about their posi-
tions in three dimensions as well as their other physical and behavioral properties. The E3D window is
tightly integrated with the rest of the ExtendSim simulation engine and is open source, so you can control
every motion of every object and every aspect of what is happening in the 3D world.

☞ E3D animation is only available in ExtendSim Suite.

What this chapter covers
This chapter discusses:

• Blocks and objects for 3D animation

• Overview of 3D animation in ExtendSim

• Prerequisites for the E3D module

Blocks and objects for 3D animation
There are two common ways to create 3D animation in ExtendSim: change dialog settings and/or add spe-
cialized 3D blocks to a discrete event model, or build custom blocks that use the 3D functions to perform
animations. The first approach does not require any programming; the second method uses ModL func-
tions to create custom animations that are outside of the discrete event arena and, if you want, don’t even
require a simulation to be run.

Item library blocks
The Item library blocks are 3D-enabled. This means that these blocks and the items that pass through them
can quickly segue from the 2D to the 3D world. Most of the Item library blocks have two tabs with custom-
izable settings that affect 3D animation:

• An Item Animation tab for selecting a 3D object to represent the items that leave the block and, in some
cases, for choosing customizable aspects of their appearance (known as “skins”).

Introduction to E3D 391
Overview

E3D
• A Block Animation tab for choosing a 3D object to represent the block in the 3D world. You can also
define its scale, rotation, and location in the 3D window, as well as other properties.

Furthermore, the Item library’s Transport block is useful for representing the movement of an item from one
point to another along a path, while the Convey Item block represents moving items along a conveyor.

The most common way to use the E3D environment is to build a discrete event model using the Item
library blocks and run the simulation with the E3D window open. This displays the model and its items,
events, and results in the 3D world.

☞ ExtendSim includes an extensive collection of 3D objects to represent items and blocks. You can also add
your own 3D objects.

Animation library
Blocks in the Animation library perform specific 3D functions such as enabling sunlight or placing scenery
objects or text boxes in the E3D window. The Animate 3D block provides a non-programming method to
perform a 3D action in response to an item’s passage. For instance, you can create or delete an object, mount
one object on another, and so forth.

Custom 3D objects and blocks
Since the E3D environment is open-source, you can modify the animation capabilities of existing blocks,
create entirely new 3D objects and 3D-enabled blocks, and modify object behaviors. ExtendSim has numer-
ous ModL functions that allow you to define custom behavior for 3D objects and events. And Garage-
Games provides the Torque Script scripting environment for the – this provides additional control over the
animation environment and object behaviors (see “Torque Game Engine” on page 392 for GarageGames
information.)

ModL functions can even be used to perform 3D animations that do not require that the model be run. For
instance, the 3D animation of the Boids model was created using custom-built blocks and does not require
the model to be run. The Boids model is located in the folder \Examples\3D Animation.

Overview
The ExtendSim 3D (E3D) window is where 3D animation occurs. This is a separate window from the
worksheet where you build and run a simulation model. When you run a discrete event simulation with 3D
animation on, 3D-enabled constructs from the model worksheet are represented as graphical objects within
the E3D window. The E3D window contains an editor so you can modify the 3D representation of the
model, add objects, and edit the terrain.

For instance, by default the blocks of a discrete event model are represented in the E3D window by 3D
block objects, the items that move through the model are represented by 3D item objects, and the model’s
connections indicate the path of the 3D item objects.

Features
Since it is common to use the Item library to create discrete event models that are then run with 3D anima-
tion, the following features are described in regards to the Item library. Keep in mind, though, that you can
build custom blocks that are also 3D-enabled.

Animation modes
Each model has a saved 3D animation mode: QuickView, Concurrent, or Buffered. The selected mode
controls aspects of the interaction between the ExtendSim application, the E3D window, and the ModL
block code.

392 Introduction to E3D
Overview

E3
D

Blocks appear as objects in the E3D window
In a discrete event model, the blocks occupy a 2D model worksheet. 3D-enabled blocks from that model,
such as those from the Item library, also automatically occupy a position within the E3D window. By
default some of these blocks appear as rectangular objects with the same icon as they have in the 2D model,
while others appear as specific objects. For instance, the default is that Select Item Out blocks appear as rect-
angular objects in the E3D window but Activity blocks appear as machines.

Unless you unlink their 2D and 3D positions, the location of the block objects within the E3D window
(their “3D position”) depends on their current position in the 2D model.

☞ The appearance and location of block objects in the E3D window can be changed from the default. This
will be shown in the tutorial chapters.

3D items appear as objects and travel on pathways
By default, pathways in the E3D window are initially related to the connections between Item library blocks
in the 2D model. As you will see in “Tutorial III”, you can modify the default pathways by unlinking a
block’s 2D/3D position and moving the block in the E3D window.

In addition, entirely new pathways can be designated by using the E3D Editor to create a named path
between two arbitrary points in the model. Then when an item takes a specific route in the model, it uses
the corresponding pathway in the E3D environment.

3D objects have collision capabilities
If item objects are specified as being collidable (the default), they will not occupy the same space. This can
be useful to show production lines, traffic patterns, waiting lines, and other queueing situations.

3D objects can mount other objects
In ExtendSim, two or more 3D objects can be temporarily or permanently joined together. This is known as
mounting. For example, a person can get a document from an out-box, transport it to another part of the
model, and place it into an in-box. The document is mounted with the person during the journey from the
out-box and unmounted at the in-box. Objects can even be mounted on other objects hierarchically; that is,
a person can hold a bin that is holding some documents.

The position at which an object can be mounted on another object is called a mount point. Most objects
have only one mount point, but some objects, like people, have several mount points that are selectable
depending on what object will be mounted.

E3D environment is modifiable
Using the E3D Editor you can directly modify the E3D window – add scenery objects, modify the terrain,
and change lighting, ceiling colors, and other environmental aspects to fit the model. These changes to the
basic 3D view are saved in environment files.

Torque Game Engine
The E3D environment is based on the Torque Game Engine (TGE) by GarageGames, Inc. This is a power-
ful 3D rendering architecture that GarageGames retails as a source code development environment. This
provides several advantages, including:

• There is a large and growing community of animation enthusiasts who are familiar with the TGE. They
can offer advice and provide consulting services.

• A large selection of free and inexpensive ready-made TGE components is available. If a particular compo-
nent doesn’t exactly suit your needs, it can be easily adapted.

• Components developed using other standards can be converted to the DTS format used by the TGE.

Introduction to E3D 393
Prerequisites

E3D
Information about the TGE and additional 3D resources can be found on the GarageGames web site at
www.GarageGames.com.

Controlling the E3D environment
Every motion of every object and every aspect of what appears in the E3D environment can be controlled.
Several ExtendSim features contribute to providing this capability:

1) Animation tabs in Item library block dialogs give you a choice of 3D objects to represent items and
blocks in the E3D window. In some cases you can even select particular properties of the 3D object,
such as its color or scale. The animation tabs are described on page 474.

2) Specialized blocks that provide 3D features or support E3D behavior. For instance, the Transport block
(Item library) discussed on page 482 is useful for representing the movement of items from one point to
another along a path. And blocks in the Animation 2D-3D library, described on page 482, can be used
to cause text and 3D objects to appear in the 3D animation area or to alter the appearance of the 3D
world.

3) Settings in the Simulation Setup and Options dialogs affect both the contents of the E3D window and
the relationship between ExtendSim, the model that controls the E3D window, and the E3D window
itself. For example, these settings can enable 3D directional sound effects or cause the animation to run
after the simulation rather than concurrent with it. These dialogs and commands are described in “E3D
Editor menu commands” on page 484.

4) The environment files can also be customized using the E3D Editor to define the appearance of the ani-
mation area – any permanent pathways and 3D objects as well as specific information about the terrain,
sky, sun, and so forth – without affecting the appearance of the 2D model.

5) And finally, ModL functions and message handlers allow you to develop customized 3D-enabled blocks
and specialized 3D functionality. ModL functions can be accessed through equation blocks or by pro-
gramming.

Prerequisites

Software and hardware
• E3D animation is only available in the ExtendSim Suite product.

• A graphics/video card capable of supporting 3D rendering. At a minimum, you will need at least 64 MB
of memory on the card and a 3D accelerator. A faster card with more memory will improve the perfor-
mance of the E3D window.

• The minimum memory required for E3D animation is twice the minimum for ExtendSim.

• If your computer does not have QuickTime installed, the color of the 3D objects in the preview area of
Item Animation and Block Animation tabs for Item library blocks may not display correctly. QuickTime
is Apple Inc.’s technology for handling video, sound, animation, graphics, and so forth. It can be down-
loaded for free onto a Windows or Macintosh computer from the Apple Inc. web site.

Preparation
This module assumes that you have either read the following or have equivalent experience:

• Tutorial module, Chapters 1 and 2, starting on page 13.

• If you are building discrete event models, as opposed to creating custom 3D-enabled blocks, you should
complete the Discrete Event module that starts on page 89.

394 Introduction to E3D
How the E3D module is organized

E3
D

How the E3D module is organized
• Introduction

• Tutorial I – exploring the E3D window

• Tutorial II – animating an existing model in 3D

• Tutorial III – advanced features such as creating a path and mounting one item on another

• Environment Files and the E3D Editor

• Objects – creating, deleting, scaling, rotating, etc.

• Movement, Paths, and Terrains

• E3D tips and reference

• Performance considerations

• ExtendSim commands for 3D

• Animation tabs in the Item library blocks

• Animation 2D-3D library

• E3D Editor menu commands

3D Animation

Tutorial I
Exploring the E3D window

396 Tutorial I
The E3D environment

E3
D

This chapter focuses on the E3D window and the appearance of a simulation model in that window. The
purpose of this chapter is for you to become familiar with the E3D terminology and environment. This
chapter covers:

• Exploring the E3D window

• Opening the window and learning about its options

• Navigating within the window

• 3D animation modes

• Running a simulation and animating it in 3D

The Tutorial II chapter that follows this one will show you how to add 3D features to an existing 2D dis-
crete event model.

The E3D environment
The first part of this tutorial examines the E3D window and explores its features.

Opening the E3D window
Launch ExtendSim.

Give the command File > New Model to open a blank model worksheet.

☞ The E3D window will not open unless a model worksheet is open. Even if a model is open, the E3D win-
dow will not open if you are not licensed for the ExtendSim Suite product.

Give the command Window > E3D Window or use the toolbar’s Open E3D Window button.

Depending on the speed of your processor, it may take a little while for the window to open.

Exploring the E3D window
The E3D window opens as shown to the right. The
window has four interface controls across the top of
the window, a title bar, and a MiniMap. The rest of
the window is the viewing area that displays the ani-
mation environment and a 3D rendering of 3D-
enabled blocks from the simulation model. (Since the
associated model worksheet is blank, there are no
blocks in the E3D window at the right.)

☞ You can open the E3D window for any model. How-
ever, if there are no 3D-enabled blocks in the model,
the default E3D environment will not contain any 3D
objects.

Interface controls
• The top left control is a popup menu that displays

the name of the associated model. Only one E3D
window can be open at a time, so if multiple models are open, this popup menu allows you to choose
which model will be associated with the E3D window. The name of the selected model (in this case,
Model-1) appears in the popup and also in the title bar at the top of the window.

• The next control is a popup menu for choosing the specified resolution, or size, of the window. Clicking
this popup displays a list of possible sizes for the E3D window. Selecting a different size will cause a

E3D Window in QuickView mode - 2D model is empty

Tutorial I 397
The E3D environment

E3D
redraw of the 3D window at the new resolution. Lower resolutions will make the E3D window smaller;
higher resolutions will make the window larger. Resolution information is stored with the model.

• The third and fourth controls are for selecting the speed of the animation, either Slower or Faster. The
selected speed factor (0.25 to 8) is displayed in the title bar in brackets; the default is a factor of 1. Infor-
mation about the selected 3D speed setting is stored with the model.

☞ In QuickView mode the speed buttons in the E3D window do not affect the speed of the simulation, only
the speed of the 3D animation. In Concurrent and Buffered modes, there is a direct correlation between 3D
animation speed and simulation speed.

Title bar
The title bar at the top of the E3D window lists the name of the model associated with the E3D window,
the 3D animation mode enclosed in chevrons (in this case, “<QuickView>”), the 3D speed factor displayed
in angle brackets (in this case, “[1]”), and the name of the model’s environment file (by default, new models
use the Extend3D.mis environment file).

Modes are discussed in “3D animation modes” on page 400, the speed conversion factor is discussed on
page 478, and environment files are described starting on page 432.

☞ The title bar also includes the ExtendSim icon. Clicking the icon (Windows only) reveals the Move, Editor,
and Close commands. The Editor command enables the E3D Editor; editors are discussed starting on
page 433.

MiniMap and camera
The cyan square in the upper right hand corner of the E3D window is the Mini-
Map. This is a miniaturized display of the E3D window; it shows the position of a
virtual camera and any local objects as if seen from directly overhead a location in
the E3D window.

The 3D camera is a virtual object in 3D space that represents your point of view of
the E3D window – what you see in the window is as if you were looking through the
current position of the camera.

The camera can be manipulated programatically using ExtendSim's ModL functions
or by the use of keyboard controls, as discussed in the next topic. As you move the
camera around in 3D space, the contents of the MiniMap will change to reflect the location and direction of
the camera, as well as the presence of any other objects in the immediate area.

The arrow in the center of the MiniMap represents the location and direction of the camera. The X and Y
labels at the right and top hand sides of the map, respectively, show the direction of positive X and Y values.
The X and Y values at the bottom of the MiniMap report the location of the camera within the E3D win-
dow.

The MiniMap is displayed by default; you can hide the display by unchecking it in the Edit > Options > 3D
tab.

Animation area
The E3D window opens with the default environment for the animation area – an unbounded 3D world
with a cloudy sky, a sun, and a flat gridded floor. When the E3D window is associated with an empty model
worksheet, as you have done in this chapter, the 3D world will be empty. When the E3D window is associ-
ated with a model, it will contain 3D objects that represent the 3D-enabled blocks in the model.

MiniMap

398 Tutorial I
The E3D environment

E3
D

You can add scenery and fixtures to the E3D window and use 3D features and settings to modify the terrain,
lighting, ceiling colors, and other environmental aspects to fit the model. And you can change the 3D
objects and their location to enhance the 3D animation. This will be shown in other chapters.

Selecting and moving
Clicking an object in the animation area of the E3D window selects it and causes it to display with a cyan
frame around it. Clicking again unselects it. If the 3D object is the representation of an ExtendSim block,
double-clicking the object will open the dialog box of the associated block.

By default, selecting and moving a block in the 2D model also moves its object in
the E3D window. For instance, if you place an Activity block (Item library) in the
model, you can click and drag it around the worksheet. When you release the
mouse, the Activity’s representative 3D object will correspondingly change location
in the E3D window. This is because the 2D position of a block is linked by default to the 3D position of the
object, as shown in the Block Animation tab and the screenshot to the right, above.

You need to use the E3D Editor to move a 3D object directly in the E3D window. If the object’s position is
linked to a block, and you move the object with the Editor, it will also move the block. The Editor is
described in “The E3D Editor” on page 433.

Changing the associated model
When the E3D window opens, it will be associated with the currently
active model worksheet. If you make another model the active window,
it will not change the E3D window’s associated model. To have that
model window be animated in the E3D window, you must select it
from the popup menu at the top left of the E3D window. This will associate the new model with the E3D
window.

Each time you use the associated model popup menu, the 3D window will refresh and redraw with different
contents based on the new model and whichever environment file it uses. Any 3D commands or function
calls from models other than the currently associated model will be ignored.

Navigating within the E3D window
The virtual 3D camera is used to navigate the E3D window. This can be done through the use of keyboard
controls to pan and zoom. (You can also navigate using ModL functions in an equation block or block that
you program.)

Click the E3D window to make it active.

To navigate within the E3D window using keyboard controls:

Use the arrow keys on your keyboard to move left, right, forward, and backward. (For left-handed
movement, use the W (forward), S (backward), A (left), and D (right) keys.)

To pan the area, change the direction of the camera by right-clicking the mouse (Windows) while
moving the mouse around the window. (On Macintosh, press the control key while mousing around
the window.)

Use the mouse to change direction and the keys to move, both simultaneously, to navigate around
the 3D world.

Note how the MiniMap changes as you navigate the 3D space.

Linked positions

Associated model popup menu

Tutorial I 399
The E3D environment

E3D
☞ You can also use the m key as a “mouse-look toggle”. Clicking the m key once allows you to use the mouse
to change the direction of the camera without having to right-click. To return the mouse to normal use,
click the m key again.

Manipulating the E3D window

Opening the window
Under the following conditions, the E3D window automatically opens whenever the associated model
opens:

• If the command Run > Show 3D Animation has been checked for that model

• Or, if Show 3D animation during simulation run has been checked for that model in the Run > Simu-
lation Setup > 3D Animation tab

If either of these have been checked, and the E3D window has been closed, it will reopen when the simula-
tion runs.

To manually cause the E3D window to open, do one of the following:

• Give the command Window > E3D Window

• Or, click the Open E3D Window tool in the toolbar

☞ A model must be open for the E3D window to open. Also, it may take some time for the E3D window to
initialize and open.

Moving the window
By default, the E3D window behaves like a child window of the ExtendSim application. With this setting,
the window can be moved within the ExtendSim application window just like any other ExtendSim win-
dow.

There is also an option (Windows only) to allow the E3D window to act like an independent application
window. To do this, choose Edit > Options > 3D tab and check the box for 3D window outside applica-
tion. After restart, the E3D window will float outside the ExtendSim application window. This is especially
useful if you have multiple monitors and you want the model displayed on one monitor and the E3D ani-
mation on the other. (This option is not needed for the Macintosh since this is the E3D window’s default
Macintosh behavior.)

Changing the window size
The resolution menu discussed in “Interface controls” on page 396
allows you to change the size of the E3D window to make it easier to
view.

Closing the window
The E3D window can be closed:

• By clicking the close box in its title bar

• With the esc (escape) key

• By selecting Close from the menu that appears when you click the ExtendSim icon in the E3D window’s
title bar (Windows only)

All three options leave the model window(s) open and the simulation running (if applicable). The E3D win-
dow automatically closes whenever you exit ExtendSim.

Resolution popup menu

400 Tutorial I
3D animation modes

E3
D

☞ The E3D window does not close when you close the associated model; it stays open so you can use the left-
most popup menu to select another model to animate. Likewise, the model does not close, nor does the sim-
ulation stop, when the E3D window is closed.

3D animation modes
Each model has a saved 3D animation mode which is selected in the 3D Animation tab of the Run > Sim-
ulation Setup dialog and displayed in the E3D window’s title bar. The selected mode controls aspects of the
interaction between the ExtendSim application, the E3D window, and the ModL block code.

Mode descriptions
There are three 3D animation modes:

• QuickView shows a default representation of the movement of items in the E3D window while the sim-
ulation is running. In this mode, only one item object moves at a time.

• Concurrent is a more realistic animation than QuickView and shows only the movement that requires
simulation time. The 3D animation displays the movement of multiple item objects simultaneously and
runs during the simulation run.

• Buffered is similar to Concurrent except it runs the 3D animation after the simulation has ended.

These modes are discussed in more detail on page 477.

QuickView versus Concurrent or Buffered
Each 3D animation mode has advantages and disadvantages. The QuickView mode is useful for getting an
instantaneous 3D representation of a model. And with some easy changes to dialog settings, you can quickly
run a 3D animation that has a more realistic appearance than the default. However, because of the way they
handle object movement, the Concurrent and Buffered modes are more likely what you would use for pre-
sentation.

The primary difference between the QuickView and the Concurrent or Buffered modes has to do with time
and how the display of items in the E3D window relates to the real world clock.

• In the QuickView mode, the amount of real-world time it takes a 3D object to move from one point to
another is not representative of the simulation time it takes that object to move. When the block code
executes a move of an item from one block to another, the code will instruct the E3D window to show a
representation of that move. This will be done without regard to the ratio of simulation time to real time.
This means that the length of time it will take that item to travel visually from one block to another will
be just based on the model’s animation speed.

• In the Concurrent and Buffered modes, the simulation time to real-world clock time ratio is carefully
respected, so each simulation time unit will by default take one second to display in the E3D window.

Running a model with 3D animation
Now that you’re familiar with the E3D window and terminology, the next section will show you how to
open and run a model that has been adapted for 3D animation.

Tutorial I 401
Running a model with 3D animation

E3D
Opening the model
Open the Airline Security model located in the \Examples\E3D Animation folder.

About the model
The Airline Security example is a discrete event model that represents passengers moving through security
lines at an airport. The model includes:

• Waiting lines

• Carry-on baggage that must be associated with each passenger

• A passport examination desk before the security area

• Conveyors with x-ray machines for scanning the bags

• Walk-through metal detectors

• A special security check station where a random number of passengers are searched

In the Airline Security model, people randomly enter the security area from each of the two
doors on the left. The doors are hierarchical blocks that establish the frequency of passenger
arrivals and specific information that will be used in the 3D world.

The passengers must first undergo a passport check; those who are rejected exit the airport. The
remaining passengers continue to a conveyor where they deposit their luggage for screening by

an x-ray machine. The passengers are scanned by a metal detector, and a random sample is selected for addi-
tional search procedures. After the screening process, passengers are united with their specific piece of lug-
gage and exit the security area.

Accommodations for the 3D world
The model has been specifically adapted to animate in the E3D window in Concurrent animation mode.
The differences between this model and a standard discrete event model are:

Airline Security model

402 Tutorial I
Running a model with 3D animation

E3
D

• 3D objects have been selected in the Item Animation and
Block Animation tabs of Item library blocks. For instance,
each passenger is a Random person, as shown in the Create
block’s Item Animation tab at the right. (You won’t be able
to see these selections unless you have the E3D window
open.)

• Several Transport blocks have been added to animate real-
time delays in item movement. These are placed between
other Item library blocks so the E3D window will know how far the item travels from one block/object to
another and how long it will take the item to get there. So that delays in movement are realistically repre-
sented, this information is used as part of the conversion of simulation time in the 2D model to anima-
tion time in the E3D window.

• Among other tasks, Animate 3D blocks (Anima-
tion 2D-3D library) within hierarchical blocks
are used to create pieces of luggage that are then
“mounted” to each passenger.

• 3D Text blocks (Animation 2D-3D library) have
been placed in the model at various locations to
serve as labels in the E3D window. For instance, a 3D Text block places the label “Passport Control” at
the appropriate location in the 3D window.

• 3D Scenery blocks (Animation 2D-3D library) add stationary figures for the various security stations.

• A custom environment file has been created to facilitate the movement of passengers along paths.

☞ Notice that no programming was required to adapt this model for 3D animation. The only accommoda-
tions were the addition of some animation-specific blocks, the selection of 3D options in block Item Anima-
tion and Block Animation tabs, and modifications to the environment file.

Running the model with 3D animation
To open the E3D window and animate the model:

Give the command Window > E3D Window or click the Open E3D Window button in the toolbar

Verify that the E3D window is associated with the Airline Security model

Position the E3D window in a convenient location

☞ If you have multiple models open, be sure the model associated with
the E3D window is “Airline Security”. The associated model is listed
in the E3D window’s popup menu, shown at right.

Give the command Run > Run Simulation, or click the Run Simulation button in the toolbar

3D object selected in Item Animation tab

Animate 3D dialog - mounting luggage

Associated model popup menu

Tutorial I 403
Next step

E3D
As the animation runs, you will be able to see security
personnel checking passengers’ travel documents and
passengers placing their bags on the x-ray conveyors,
going through metal detectors, and then picking up
their correct bags at the end of the screening process.

This model illustrates many concepts used in the 3D
world such as material handling and the routing of
passengers. Notice that arriving passengers are ran-
domized (male, female, etc.) and are of differing
heights. This indicates just some of the flexibility of
the ExtendSim 3D modeling environment.

Next step
The next step is to add animation-specific features to
an existing model. You do this in the Tutorial II chap-
ter that comes next.

404 Tutorial I
Next step

E3
D

3D Animation

Tutorial II
Adding 3D animation to a model

406 Tutorial II
Adding 3D behavior to an existing model

E3
D

This chapter is an extension of, and assumes you have read, the preceding chapter. It will show you how to
adapt a model so that it generates a concurrent 3D animation. It covers:

• Using Concurrent mode to have items move simultaneously

• Animating items as 3D objects

• Creating 3D objects to represent blocks

• Adding scenery and labels to the E3D window

• Using a 3D Controller block to clear items at the end of the simulation

• Causing the model to automatically open the E3D window

Enabling 3D animation for this model is fairly simple – just set options in block dialogs and add some spe-
cialized blocks to the model worksheet.

The chapter that follows this one will show how to perform more advanced tasks: using the Transport block
to simulate travel time, determining the length of the path using block positions, mounting an object on an
item object, and creating custom paths that are unlinked from the position of blocks in the 2D model.

☞ The models for this tutorial are located in the folder \Examples\Tutorials\E3D Animation\Production Line.
The examples assume some familiarity with discrete event simulation.

Adding 3D behavior to an existing model
In this section you will modify a discrete event model so that it animates in the E3D environment.

The goal
Before starting, look at the finished model to get an idea of what you will accomplish.

Open the Production Line Final model

The command Run > Show 3D Animation has been checked for this model, so opening the model also
opens the E3D window, and running the simulation also runs the 3D animation.

☞ If the E3D window is already opened when this model is opened, be sure the Production Line Final model
is the one associated with the E3D window.

Run the simulation

Production Line Final model

Tutorial II 407
Adding 3D behavior to an existing model

E3D
Navigate around the E3D window

This is a model of a process where crates full of bottles move along conveyors and are processed by
machines. A random number of crates are sent on one or another branches of the line.

Move the camera in the E3D window so you can see the entire model; zoom in and out to see the detail.

Open the starter model
Now that you have seen what the final model will look like, you can begin the process of animating a model
in 3D:

So that the E3D window is always associated with the correct model, close any open models

Open the Production Line Start model

Model particulars
This model represents a production line consisting of five conveyors and three machines. After the first con-
veyor and machine, the line separates into two branches, each of which ends at an exit.

About the model
The production line processes crates full of bottles.

• Crates are generated by a Create block, approximately one every 1.1 seconds

• They are held in a Queue until pulled into the system

• Conveyors are 8 or 10 meters in length, run at 10 meters per second, and have a capacity of 8 or 10 items
(depending on the length)

• The length of a crate is 1 meter

• Depending on the machine, the crates are processed for 1 or 2 seconds

• Attendants are posted near each machine

• Crates are sent randomly to one of the two branches by a Select Item Out block

E3D window for Production Line Final model

Production Line Start model

408 Tutorial II
Adding 3D behavior to an existing model

E3
D

• All the blocks are from the Item library

• The length unit is meters, the time unit is seconds, and the simulation ends after 180 seconds

• The 3D animation uses the default Extend3D.mis environment file

Accommodations for 3D modeling
If you are familiar with discrete event modeling, you may notice a difference between this model and a typi-
cal single queue/two server model. In this model, the location argument for the exponential distribution in
the Create block is 0.1. In a logical model, the location argument is often left at zero for expediency. For this
model, the location value ensures that the interarrival time can never be zero – there will always be some
time between item arrivals.

Other than that, this discrete event model is the same as you would typically build without considering 3D
animation.

Running the 3D animation
Use the Open E3D Window button in the toolbar or give the command Window > E3D Window to
open the E3D window.

Notice that the window opens in the default QuickView mode.

Place the E3D window in a convenient location and, if desired, change the window’s resolution using the
resolution interface control at the top of the window.

Run the simulation. Since the E3D window is open, the 3D animation will also run.

As the simulation runs, you can see green balls moving in the E3D window just as they might in a 2D ani-
mation. A difference from the 2D model is that the blocks are represented in the E3D window by their
default 3D objects – the Create and Exit blocks are displayed as doors, the Queue as a bin, the Convey
Item blocks as conveyors, and the Activity blocks as machines. The conveyor belt moves, and when a
green ball enters the machine the lights go on and the machine moves, indicating that a process is taking
place.

☞ You can have 2D animation turned on simultaneously with 3D animation, but performance will be better if
only one type of animation is on at a time.

Save a model to explore
So that you have a model to work with during the tutorial:

If it is still running, stop the simulation

Give the command File > Save Model As and save the model as “3D Production Line”.

E3D window for starter model

Tutorial II 409
Adding 3D behavior to an existing model

E3D
Cause objects to move simultaneously
Since QuickView mode is just a visual representation of the 2D model, only one object moves at a time and
items can stack on top of each other in waiting areas. So that the objects that represent items can move
simultaneously and wait in a queue line, the 3D animation needs to be in Concurrent mode.

If it is still running, stop the simulation

Give the command Run > Simulation Setup

In the dialog’s 3D Animation tab, choose Select mode: Concurrent.
Then close the Simulation Setup dialog.

If you run the simulation again, the green balls should be moving simulta-
neously and should order themselves in a line if there is more than one of
them waiting to be processed.

Create objects to represent items
The specification for this animation is that crates are moving around rather than green balls. To remedy this,
you need to create an object to represent the model’s items. This involves selecting an object from a popup
menu in a block’s Item Animation tab, as shown below.

An object for the Create block’s items
In the Create block’s Item Animation tab, notice that the behavior is set to Select item animation. This
allows quick customizing of the 2D and 3D animation from popup lists of objects.

If it is closed, open the E3D window

 The E3D window must be open in order to select a 3D object.

Open the Create block’s Item Animation tab

In the tab’s 3D object frame (shown at right), select the 3D
object CrateBottles

If you run the simulation again crates of bottles, rather than
green balls, move from object to object.

Objects for the items that go to the branches
The Select Item Out block separates the production line into
two branches. In the block’s Item Animation tab, each row of
the table represents one of the two outputs.

So that each branch will show a slightly
different 3D object:

Open the Select Item Out block’s
Item Animation tab

In the Animation Option column,
choose Change to for both rows

Select:

3D object: Crate in the third column of the first row

Skin 1: old for the fourth column of the first row

Skin 2: base for the last column of the first row

Concurrent mode selected

Selecting 3D object for item animation

Selecting 3D objects in Select Item Out block

410 Tutorial II
Adding 3D behavior to an existing model

E3
D

The first row of the table should look like the screenshot, above.

For the second row, select 3D object: Crate, Skin 1: base, and Skin 2: base

Save the model
Save your 3D Production Line model. (The tutorial model is named Production Line 2).

Create objects to represent blocks
For this model, most of the default block/object correlations (Activity blocks as machine objects, Convey
Item blocks as conveyor objects, and so forth) are exactly what you want. Other objects need to be changed.

This section shows how to create objects and waypoints to represent blocks. Creating an object to represent
a block is similar to creating an object to represent items, except the object is selected in the Block Anima-
tion tab.

☞ Objects that represent blocks are created at a size that corresponds in scale to other objects.

3D objects to represent blocks
Some of the blocks should have their default object representations changed. For instance, instead of a door,
the Create block could be represented as a supply room and the Queue block as a table.

In the Create block’s Block Animation tab:

If it is closed, open the E3D window

Select Show block in 3D window as: Kiosk

Enter Rotation: 90 to turn the kiosk to the
proper position

In the Block Animation tab of the Queue block:

Enter Show block in 3D window as: Table

This will place a small building at the same loca-
tion as the previous door object and replace the Queue’s default bin object with a table.

Waypoints
Blocks that are superfluous to a 3D animation, such as the Select Item Out block in this model, should have
their appearance in the E3D window minimized. Rather than being represented by a 3D object, these
blocks can be represented by a marked position in the E3D environment. This minimization of the object is
accomplished using waypoints.

In the Block Animation tab of the Select Item Out block:

Enter Show block in 3D window as: Waypoint

When you do this, the object representation of the Select
Item Out block (represented as a block shape in the E3D window) will disappear and be replaced by an
invisible waypoint.

Save and run the model
Save your 3D Production Line mode. (The tutorial model is named Production Line 3.)

Run the model with the E3D window open.

You should see crates traveling from a storage area, being processed by machines that are oriented in the
correct direction.

Selecting 3D object to represent Create block

Selecting Waypoint

Tutorial II 411
Enhancing the model

E3D
Enhancing the model
So far you have adapted the 2D model to run in 3D. But there are some additional steps you can take to
enhance the animation.

Add scenery
The model has machines, but no workers. This is easily fixed by adding scenery. Any type of fixed object
that is not already represented by a block in the 2D model can be represented as scenery – people who don’t
move, furniture, equipment that doesn’t perform an activity, walls, trees, and so forth. There are two ways
scenery can be added to a model:

1) Add a 3D Scenery block (Animation 2D/3D library) to the 2D model. This is the simplest method and
is shown below.

2) Use the E3D Editor to add scenery to the E3D window. This has the advantage that it does not change
the 2D model; it is discussed in “Using the E3D Editor to create scenery” on page 447.

Adding workers
For this tutorial, the workers don’t move but are instead part of the scenery.

Place a 3D Scenery block (Animation 2D/3D library) close to each of the three Activity
blocks labeled Machine. By default, the block appears with a minimized icon.

Be sure the E3D window is open so you can select the 3D object

In the dialog of each of the three 3D Scenery blocks:

For Show block in 3D window as. Then choose a Male or Female object and whichever Skin 1 and
Skin 2 you want.

Enter Rotation: 225

Unselect the checkbox Show 3D footprint in 2D model. This option is sometimes helpful when
placing blocks in a 2D model; you do not need it for this model.

The 3D Scenery blocks are linked to the objects. If the workers don’t appear in the correct location in the
E3D window, move the 3D Scenery blocks on the model worksheet closer to the Activity blocks. When you
release the mouse, the objects in the E3D window will move accordingly. You can also play with the rotation
to orient them as you want, or change their scale relative to the size of other objects.

Add a 3D Controller block
At this point you may notice that when you stop the simulation the crates stay wherever they are.

Add a 3D Controller block (Animation 2D-3D library) anywhere in the model.

In its dialog, check Clear items in 3D window when simulation ends.

When you run the simulation, all the crate/items will disappear when the run ends but the
scenery (the workers) and the objects that represent the 2D blocks (the kiosk, conveyors,
machines, and doors) remain.

Save your 3D Production Line model. (The tutorial model is named Production Line 4.)

☞ Since item objects will automatically be cleared from the E3D window at the start of the next simulation
run, the 3D Controller block is not really necessary for clearing items in this model. Note, however, that the
block has several uses for controlling the E3D window, such as turning on/off the clouds and changing the
color of the ceiling/sky.

3D Scenery

3D Controller

412 Tutorial II
Some things to notice

E3
D

Launch with the E3D window
So that you don’t have to manually open the E3D window, you can choose to have the window open auto-
matically each time the model is opened. To do this, do one of the following:

1) Either give the command Run > Show 3D Animation

2) Or, in the Run > Simulation Setup > 3D Animation tab, check Show 3D animation during simula-
tion run

If the E3D window is subsequently closed, it will reopen when the simulation is run.

☞ The final model, with the E3D window opening when the model is launches, is labeled Production Line
Final.

Some things to notice
Now that you are familiar with this model, it is a good time to investigate some 3D features.

Internal animation
As you saw for the Production Line models, some 3D objects contain internal animation that shows the sta-
tus of the object during the simulation. For instance, the Machine object supports four internal animation
states (running, idle, blocked, and down) while the Conveyor animates a running belt.

If you don’t want to see this behavior, unselect Enable animation of 3D object in the Block Animation tab
of the activity-type blocks (Activity, Convey Item, Transport, and Workstation).

☞ The default object for a Transport block is a Waypoint so this option is unchecked by default.

Rotation of 3D objects
While you needed to rotate the Kiosk and scenery objects, most objects are oriented correctly for the flow of
items in this model. This is because ExtendSim will try to place objects using the correct rotation for the
model.

For example, the machine objects are oriented for a left to right flow of items. Furthermore, you did not
need to change the rotation in the Convey Item blocks. When the E3D window opens, the rotation param-
eter for this block’s object automatically adjusts to reflect how the block is connected in the model. For
instance, Conveyors 2A and 2B are horizontal in the 2D model but are displayed at an angle in the E3D
window.

Mounting objects
You may have noticed that the item objects move in the E3D window as you would expect them to – the
crates move along the conveyor and the machines process the crates as they arrive. You will see how to
explicitly mount objects in the next chapter. But for this model, there was no need to explicitly cause one
object to be mounted with another object

The movement of items in the Production Line model is due to two E3D features:

• Item objects automatically use the from and to loca-
tion information in the Transport Animation tab of
the Convey Item block. The default is that the from
location is the previous non-passing block and the to
location is the next non-passing block. This causes the item object to be displayed as moving along the
path represented by the Convey Item block’s object. (The options on the Transport Animation tab will be
discussed further in the next chapter.)

Tutorial II 413
Some things to notice

E3D
• By default the Item Animation tabs of Activity
blocks are set to Mount item while activity is
ongoing. This causes the item object (the crate)
to stay with the Activity’s object (the machine)
until it has finished its processing. (As you will see in the next chapter, you may not always want that
behavior.)

Moving blocks linked to objects
For the Production Line models, each of the objects in the E3D window are linked to the blocks in the 2D
model. This is seen in their Block Animation tabs, where the checkbox Link 2D/3D positions is selected by
default.

If the 2D and 3D positions are linked, moving most types of blocks in the model will also directly move
their objects in the E3D window. However, the Convey Item block has more complex behavior. If its Block
Animation tab is set to Stretch 3D object to conveyor’s length (the default setting), moving the block itself
will have no effect on the position of its 3D object. That is because its displayed length is based on the start-
ing and ending points of the conveyor in the model. If the from location is the previous non-passing block,
and the to location is the next non-passing block (the default settings), the conveyor will be stretched
between those two locations regardless of the position of the Convey Item block.

For example, moving Conveyor 1 between the Queue and Machine 1 will not change the location of its
conveyor object in the E3D window. However, moving either the Queue or Machine 1 will result in a
change in the conveyor’s position.

☞ You will not be able to see the change in position until the simulation is run.

Conveyor
The Convey Item block (Item library) moves items along a conveyor, oven, cooling unit, moving walkway,
or any other type of moving path. The items travel from the starting point to the end along the length of the
conveyor.

The block has three options for setting the travel time:

• Move time. The item is delayed for the specified time; speed and length are ignored.

• Speed and length. Speed and length are entered in the dialog.

• Speed and calculated length. Speed is entered in the dialog; length is determined based on dialog settings
and block positions (the from and to locations).

These options are described fully on page 188. For this model, the conveyors’ speeds and lengths are all
known and have been entered in their dialogs. In the next chapter, you will see how to use the speed and
calculated length option to cause the block to automatically determine its length.

Item length
The Behavior tab of a Convey Item
block has options for specifying the
length of items. The item’s length can
be a constant, from an attribute, or
based on length and capacity. In the Production Line models, item length is set at 1 meter for all the Convey
Item blocks.

Item length setting

414 Tutorial II
Some things to notice

E3
D

Whichever item length option is selected, the 2D picture or 3D item object does not visually change. How-
ever, the item length does affect calculations for accumulation and capacity, as well as the timing of when
items are pulled onto and released from the block.

☞ If either speed and length or speed and calculated length has been selected as the travel time, the
item’s length is expressed as either feet or meters. However, if move time has been selected as the travel
time, the item’s length is expressed in time units. Thus for a move time of 10 time units, a constant item
length would be x time units.

Conveyor capacity
The capacity for a Convey Item block can be entered in the block’s dialog. However, regardless of what is
entered in the dialog, the block’s actual capacity is the lesser of either the entered capacity or the length of
the conveyor divided by the length of the item.

3D Animation

Tutorial III
Advanced 3D topics

416 Tutorial III
Animating a bank line

E3
D

This chapter is an extension of, and assumes you have read, the preceding two chapters. It will show how to:

• Use Transport blocks to animate people walking from one location to another

• Determine the distance the people need to walk based on block positions

• Mount a 3D object on an object that represents an item

• Use hierarchical blocks in 3D animation

• Unlink an object’s position from the corresponding block’s position

• Create custom paths that are unlinked from the position of blocks in the 2D model

• Create and save an environment file

☞ The models for this tutorial are located in the folder \Examples\Tutorials\E3D Animation\Bank Line. These
bank line models assume some familiarity with discrete event modeling.

Animating a bank line
This chapter illustrates how to use some of the more advanced ExtendSim 3D capabilities. So that you can
focus on the features in this chapter, the example model already has some accommodations for 3D anima-
tion. Those 3D accommodations were covered in the preceding chapter and are listed on page 418.

The goal
Before starting, look at the finished model to get an idea of what you will accomplish.

Open the 3D Bank Line Final model

This is a model of customers arriving, waiting in a line, being served by one of two tellers, and then exiting
a bank. The command Run > Show 3D Animation has been checked for this model, so opening the
model also opens the E3D window, and running the simulation also runs the 3D animation.

Run the simulation

Navigate around the E3D window

Move the camera in the E3D window so you can see the entire model; zoom in and out to see the detail.
As the simulation runs, you will see customers entering the bank, forming a single line, getting their
paperwork ready, walking to one of the tellers, being waited on, and leaving the bank.

Close the 3D Bank Line Final model

Open the starter model
Now that you’ve seen the goal, you can start adding 3D functionality to a starter model.

Tutorial III 417
Animating a bank line

E3D
Open the 3D Bank Line Start model. (Unlike the final model, this model is set to open without opening
the E3D window.)

Animate the model in 2D
So that you can see some action in this model:

Select the command Run > Show 2D Animation

Run the model

Model particulars
In this model, customers enter the bank randomly, approximately one every 5 seconds. Gate blocks restrict
access to the tellers so that each teller can have only one customer in front of them at a time; all other cus-
tomers must wait in the Queue block.

When a teller becomes available, the first customer in the queue walks to that teller. The walk takes 5 sec-
onds and Transport blocks (labeled Walk to Teller) are used to delay the customer for that amount of time.
Activity blocks (labeled Transaction) represent the time it takes for the transaction with the teller. The trans-
action time is specified by a triangular distribution with a minimum of 2, a maximum of 10, and a mostly
likely time of 5. After finishing the transaction, the customer exits the bank.

Differences from typical discrete event models
If you are familiar with discrete event modeling, you may notice some differences between this model and a
typical single queue/two server model:

1) The location argument for the exponential distribution in the Create block (labeled People Arrive) is 1.
In many discrete event models the location argument is left blank for expediency. For this model, a loca-
tion value of 1 ensures that the interarrival time can never be too close to zero – there will always be at
least one second between item arrivals. The real-life correlation is that people don’t walk through a door
at exactly the same time.

2) The time it takes a customer to walk from the waiting area to a teller is explicitly represented by a Trans-
port block (labeled Walk to Teller). In many discrete event models, the travel time would not be consid-
ered significant or would be just added to the time it takes to perform the transaction. This model takes
travel time into consideration, because for 3D animation you want to see the customers moving from
the waiting area to the teller.

3D Bank Line Start model

418 Tutorial III
Animating a bank line

E3
D

3) There is a large gap between the Queue (Wait) and the Select Item Out (Choose a Free Teller) blocks.
This just provides space for inserting some blocks without having to move everything.

Animate the model in 3D
In the 3D Bank Line Start model:

Unselect the command Run > Show 2D Animation. (For maximum performance, you do not want 2D
animation running concurrently with 3D animation.)

Open the E3D window

Verify that the E3D window is associated with this model

Run the simulation. Since the E3D window is open, the simulation will animate in 3D.

☞As the model runs, you may notice some “interesting” behavior. This is discussed below in “What this model
needs”.

Accommodations for 3D animation
The Bank Line model has already been modified for 3D animation in the following ways:

• 3D animation has been set to run in the Concurrent mode.

• Objects to represent items and blocks in the E3D window have already been selected:

• Items generated by the Create block (People Arrive) appear as random people

• The Queue block (Wait) is represented by a door

• The two Transport blocks (Walk to Teller) are, by default, waypoints

• The two Activity blocks (Transaction) appear as desks

• The Create, Select Item Out, and the two Gate blocks have been set as waypoint objects

• Two 3D Scenery blocks (Animation 2D-3D library) provide male and female tellers, with different skins,
as scenery objects in the E3D window.

• A 3D Controller block (Animation 2D-3D library) clears items in the E3D window when the simulation
ends.

Since these modifications were illustrated in the previous chapter, they are not repeated here. This chapter
will instead focus on other ways to enhance the 3D animation.

What this model needs
There are several odd things that you may have noticed about the customers in this model. For instance,
they:

• Line up in the doorway, sometimes on top of each other

• Didn’t bring any paperwork to the bank

• Stand on top of the teller’s desk while completing their transactions

• Jump, rather than walk, into the bank and from the teller to the exit

The following sections show how to solve these problems.

 So that the tutorial models aren’t overwritten, you need to have your own model to work with during this
tutorial.

Tutorial III 419
Unmount the Activity blocks

E3D
Save a model to explore
Give the command File > Save Model As and save the model as “My 3D Bank Line”

Unmount the Activity blocks
By default, Activity blocks are set to have an item’s 3D object mount the block object while the activity is
ongoing. While this was useful in the Production Line models of the previous chapter, where crates were
being processed by machines, you don’t want customers standing on desks.

In the Item Animation tab of both Activity blocks (labeled Transaction):

Uncheck the option to Mount item while activity is ongoing

Run the simulation with the E3D window open

Now the customers will stand in front of the desks, rather than jump
onto them.

Save your model. (The equivalent example model is 3D Bank Line 2.)

Either leave the E3D window open or close it if you prefer. (If you close it, you will need to open it to
perform any 3D operation or to run the animation.)

Add Transport blocks
The Production Line model for the previous chapter used Convey Item blocks to represent a moving path
from the start to the end of the conveyor. Likewise, the Transport block is useful for displaying the move-
ment of an item from the start to the end of a path.

Animating the travel time
To show events as they occur in a model, 2D animation normally displays items moving from one block to
another without a time delay. This is the type of 2D animation that is shown when the Run > Add Connec-
tion Line Animation command is enabled.

When a model is animated in 3D, the 3D item objects will likewise move from one 3D block object to the
next without any time delay. This is seen in the Bank Line models, where customers move instantaneously
from the Queue to the Activity blocks and from the Activity blocks to the Exit and can stack one above
another. There are two reasons for this:

• Until a teller is available, the people have no place to go as they wait in line. If customers arrive at about
the same time, or if the tellers can’t keep pace with the arrival of customers, the Queue block will show its
contents (the customers) stacking on top of each other.

• The 2D model does not move people along a path at a specific velocity. The 3D world needs Transport
blocks to not only represent how long the journey takes but to also show the people moving along a path
during that time.

To have an animation where items don’t jump from one block to another or stack on top of each other as
they wait in line, you need to show them moving along a path as they are delayed. This is accomplished by
setting a travel time in a Transport block (Item library). This results in an animation delay that corresponds
to the time that the item spends in transit from one location to another.

What the model needs
For this model, you need to add:

• A path for the waiting line, consisting of one Transport block between the Queue (Wait) and the Select
Item Out (Choose a Free Teller) blocks

Mount option unchecked

420 Tutorial III
Add Transport blocks

E3
D

• Two paths to the exit, each represented by a Transport block between the Activity blocks (Transaction)
and the Exit

The tutorial also shows how to minimize the icons of the Transport blocks already in the model.

☞ For this part of the tutorial, it is assumed that customers take 5 seconds to reach any destination.

Walking and waiting in a line
A Transport block can provide a mechanism to show people
walking into the bank and lining up instead of stacking on top
of each other.

In your My 3D Bank Line model:

Right-click the Queue block’s item output connector.

Choose Add Transport following this block

This inserts a Transport block between the Queue and the Select Item Out blocks. By default, the block is
inserted with its icon view set to “Left-to-right (small)”.

In the Transport’s Behavior tab:

Choose Travel time: move time (the default)

Enter Move time: 5 seconds

Label the block Walk in Line

Leaving the bank
In the current model, customers walk to the teller desk, finish their transactions, and then disappear. You
could just leave the model like that, but it would be more fun to see customers walking to the exit. Trans-
port blocks between the Activity blocks and the Exit block will show customers walking out of the bank.

 When there is more than one connection line from the output of a block, you should create a Transport
block directly in the model rather than right-clicking to insert it. Otherwise, the Transport block could get
inserted onto the wrong connection.

To manually place the Transport blocks:

Delete the connection between each Activity (Transaction) and the Exit.

Insert a Transport block between each Activity and the Exit.

Connect the Transport blocks between the Activity and Exit as
shown here.

In each Transport block’s Behavior tab

Choose Travel time: move time (the default)

Enter Move time: 5 seconds

Label the Transport blocks Walk To Exit 1 and Walk To
Exit 2

At the bottom of the dialog, select Left to right (small),
rather than Left to right, for the icon view

Right-click the Queue’s item output connector

 Transport blocks for leaving the bank

Tutorial III 421
Block positions to determine a path’s length

E3D
Minimizing the icons of the existing Transport blocks
Since the Transport blocks that you have added use small icons, minimize the icons of the Transport blocks
that were originally in the model.

Either right-click the Transport block labeled “Walk to Teller 1” or select the
icon view popup menu at the bottom of the block’s dialog.

Select “Left to right (small)”, as shown at the right. This changes the block’s
appearance in the model so that it uses a smaller icon.

Do the same steps for the Transport block labeled “Walk to Teller 2”.

If necessary, move the blocks so that the connection lines are straight.

Save your My 3D Bank Line model. (The equivalent example model is 3D Bank Line 3.)

The model so far
If you have followed this tutorial, your model should look similar to the following screenshot:

Run the model again with the E3D window open.

The customers now line up after the entrance and walk, rather than jump, from the teller to the exit. How-
ever, they walk at different speeds. This is because the time to get to the end of a path has been set to a con-
stant 5 seconds. But the lengths of the three paths (from the entrance to the head of the waiting line, from
the waiting line to the teller, and from the teller to the exit) are all different.

Furthermore, unlike the Convey Item blocks in the Production Line models of the previous chapter, the
length of the bank lines is not known in advance. In this case, settings in the Transport blocks can be used to
determine the length of the paths. (The problem of customers walking through the desks will be solved later
using custom paths.)

Block positions to determine a path’s length
As discussed on page 185, the Transport block has three options for expressing the item’s travel time:

• Move time. This acts just like a delay in an Activity block. As you can see in the current model, the item’s
speed and the length of the path are ignored.

• Speed and distance. How fast the item is moving, and how far the item must travel to reach its destina-
tion, are entered in the block’s dialog. This is useful if you know the length of the path.

3D Bank Line 3 model

422 Tutorial III
Block positions to determine a path’s length

E3
D

• Speed and calculated distance. The item’s speed is entered in block’s dialog. The distance is determined
from information entered in the frame labeled “Select From and To locations for calculated distance”.
This is useful when you don’t know the length of the path, but you know its starting and ending points.

The third option, speed and calculated distance, will provide a more natural walking pace for customers in
this model, since it considers not only their speed but how far they have to go.

Setting the speed and determining the distance
Each of the Transport blocks in this model need to be changed to calculate the length of the path the cus-
tomers will take.

☞ Rather than the constant move time of 5 seconds in the previous section, this part of the tutorial assumes a
natural walking speed of 5 feet per second.

Walking to the front of the line
In the dialog of the leftmost Trans-
port block (Walk in Line):

Select Travel time: speed and
calculated distance.

Enter Item speed: 5 feet/sec-
ond.

In the frame that appears at the
bottom of the block’s dialog
(seen at right), do not change
the default settings.

The calculated distance
Based on the frame’s default settings, this path starts at the Queue (the previous non-passing block) and
ends at the Select Item Out (the next non-passing block). The distance is calculated in a straight line and the
default distance ratio is used to convert the metrics of the 2D model into coordinates in the E3D window.
Since the default settings in the block’s Behavior tab are exactly what you want, you do not need to make
any changes in the frame that calculates the distance.

See “How the length is calculated” on page 189 for a more detailed explanation of the calculation.

Walking to the teller
In the dialog of the two middle Transport blocks (Walk to Teller):

Select Travel time: speed and calculated distance

Enter Item speed: 5 feet/second

Do not change the default settings in the frame that appears at the bottom of the dialogs.

Notice that the Transport block automatically calculates not only the length of the path but how long (the
move time) it will take the customer to reach the end. This information is reported in the block’s Behavior
tab.

Leaving the bank
In the dialog of the two Transport blocks (Walk to Exit) on the right side of the model:

Select Travel time: speed and calculated distance

Enter Item speed: 5 feet/second

Frame for calculating the distance items travel

Tutorial III 423
Mounting objects

E3D
Do not change the default settings in the frame that appears at the bottom of the dialogs.

Notice that, although the customers’ walking speed stays the same in every Transport block, each path is
determined to be a different length.

Run the animation and save the model
With the E3D window open, run the simulation

Now the customers should be walking at the same pace from one location to another.

Save your model. (The equivalent example model is 3D Bank Line 4.)

Mounting objects
You may have noticed that the customers did not bring any paperwork with them. The ExtendSim mount-
ing feature can be used to indicate that customers have some paperwork (for instance a check, withdrawal
slip, or loan document) as they approach the teller.

In the previous chapter you saw how item objects (crates) are mounted on Activity block objects (machines)
by default. In this chapter, the object must be mounted onto an item object – in other words, paperwork
mounted onto the customers.

Steps for mounting an object
Since the paperwork is not already part of this model, you need to:

1) Create a paper object

2) Create an attribute to track the object

3) Mount the paper with the customers.

4) Enclose the blocks in a hierarchical block

so that there is minimal disruption to the model

The Animate 3D block (Animation 2D-3D library) is an advanced method for executing an animation
action in the E3D window as an item passes through the block. It is useful for creating and mounting
objects.

Create the object
If it isn’t already open, open the E3D window

Delete the connection between the Transport (Walk in Line) and Select Item Out (Select a Free Teller)
blocks

Place an Animate 3D block (Animation 2D-3D library) above and to the right of the
Transport block

Connect the Transport block’s output connector to the input connector of the Ani-
mate 3D block as shown here. (For now, do not connect the output of the Animate 3D
block.)

In the Animate 3D block’s Item Anima-
tion tab:

Select 3D action: create object (this
is the default option)

Choose the option Select object
from list

Creating a paper object in the Animate 3D block

424 Tutorial III
Mounting objects

E3
D

In the popup menu that appears, select the Paper object

Select Skin 1: Random skin (the default)

Label the block Create Paper

Create an attribute
The next step is to create an attribute so that the objectID of the paper object can be stored and used else-
where in the model. (This is described in “Adding attributes to a model” on page 117.)

In the Item Animation tab of the Animate 3D block (Create Letter):

Select Store objectID of created object in: New value attribute

Name the new value attribute Letter

Close the block’s dialog

☞ As discussed on page 463, every object has an objectID. This is a unique
value that the E3D environment uses to identify the object.

Mount the object on the item
The next step is to mount the paper object onto the items.

Place another Animate 3D block to the right of the first one.

Connect the blocks together so that the output of the first Animate 3D
block is connected to the input of the second Animate 3D block, and its
output is connected to the input of the Select Item In block.

In the block’s Item Animation tab:

Select 3D action: mount object

Choose Rider object: Letter

Select Mount object: _3D objectID

Label the block Mount Paper

☞ For objects that represent items, the value of their
ObjectID is stored in their _3D objectID property. This allows you to perform actions on item objects by
referencing that property.

Save the model

Run the animation

As customers reach the front of the line, they bring out their paperwork. However, there are two unneces-
sary block objects in the E3D window.

Create a hierarchical block
The final step in this section is to enclose the Animate 3D blocks into a hierarchical block.

Frame-select the two Animate 3D blocks

Give the command Model > Make Selection Hierarchical

Name the new hierarchical block anything you want and click OK to close that dialog

In the dialog of the hierarchical block, label the block “Mount Paperwork”

Creating an attribute

Mounting a paper object using the Animate 3D block

Tutorial III 425
Unlinking objects from blocks

E3D
Reposition the model’s connection lines as desired

Save the model. (The equivalent example model is 3D Bank Line 5.)

In the E3D window, notice that the Animate 3D blocks are no longer represented by objects.

☞ By default, Animate 3D blocks appear in the E3D window as a block object. However, hierarchical blocks
and the blocks within them normally have no representation in the E3D window. See “Hierarchical blocks
and 3D animation” on page 474 for how to change this.

Your model should now look similar to this:

 The next two sections involve the positioning of objects in the E3D window. It is a good idea to not make
changes to the layout of the 2D model after positioning objects using the E3D Editor. Otherwise, you may
need to reposition those objects.

Unlinking objects from blocks
Customers now enter the bank, wait in line, and walk from the front of the line to the first available teller.
However, the waiting line is pretty short and the walk to a teller is rather long. To lengthen the waiting line,
you could do either of the following:

1) Move the Select Item Out block (Choose a Free Teller) closer to the Transport block (Walk to Teller).
This would make a messy model.

2) Unlink the 2D position of the Select Item Out block from its 3D object, then just move the object. This
will be shown below.

☞ Although mentioned in this chapter, the E3D Editor is discussed in detail in the next chapter.

Unlinking positions
In the Block Animation tab of the Select Item Out block, unselect the option
Link 2D/3D positions, as shown at right.

Make the E3D window the active window

Enable the World Editor by pressing F11

3D Bank Line 5 model

Unlinking positions

426 Tutorial III
Creating custom pathways

E3
D

In the animation area, select the waypoint object labeled
“Select Item Out3”. When the object is selected, informa-
tion about it is displayed in the panes to the right of the
animation area. The object’s label is highlighted in the Tree
pane at the top right of the window and its properties are
listed in the bottom right Inspector pane, shown here.

☞ In the Editor, each object in the E3D window is labeled with a
name ending with a number that corresponds to the block’s global block number. The global block number
for the Select Item Out block is 3. To see a block’s global block number, open the block’s dialog or use the
command Model > Show Block Numbers.

Drag the object to the right so that it is located closer to the teller desks. You can select the object
and drag it or use the Gizmo to move it. (The Gizmo will be discussed on page 435.) This should
put its position on the X axis at about 20 (the screenshot above shows the position as 20.55). Be sure
to only drag the object in the direction of the X axis!

Press F11 again to return to the E3D window

Save the model. (The equivalent tutorial model is 3D Bank Line 6.) Since the object represents a block in
the 2D model, saving the model also saves the position of the unlinked 3D object.

Creating custom pathways
Predefined custom paths allow you to mark each intermediate step along a predetermined route. They pro-
vide more flexibility than just choosing to have item objects move in a straight line or along connections and
are a convenient way to have item objects move around block objects in the E3D window.

The E3D Editor provides control over every aspect of the E3D window. In its World Editor Creator (WEC)
mode, it can be used to create custom pathways.

☞ Although it is mentioned in this chapter, the E3D Editor is discussed in detail in the next chapter. Custom
paths are described more fully in “Paths and markers” on page 467.

Use the correct Transport behavior
Before creating the paths, you need to change the setting in two of the Transport blocks. If Travel time:
speed and calculated distance is selected for the Transport block’s Behavior tab (as it is in this model), the
following factors are used to calculate the transportation time:

• Speed

• The starting and ending points in the 2D model
• The distance ratio

• Whether the Transport calculates distance along connection lines or in a straight line

If you instead select a custom path, the calculated travel time may not be appropriate. This is because the
2D distance is unlikely to be the same as the distance for the custom path.

☞ When using a custom path, you should first change the setting in the Transport block’s Behavior tab to
Travel time: speed and distance. (If you don’t do this, ExtendSim will give you a message and make the
change for you.)

In the Behavior tab of the two Transport blocks labeled Walk to Teller 1 and Walk to Teller 2:

Select Travel time: speed and distance

Tutorial III 427
Creating custom pathways

E3D
Creating paths
In the next sections you will:

1) Create a new environment file

2) Create a path object

3) Create marker objects and positioning them on the path

4) Select the custom path in the Transport block

Create a new environment file
An environment file holds information that is not saved with the model, such as static objects, paths, and
terrain changes. The default environment file, Extend3D.mis, cannot be changed. When you modify the
E3D environment by creating custom paths or changing the terrain, you must either create a new environ-
ment file or save the default environment file under a new name.

If it isn’t already open, open the E3D window

Be sure your “My 3D Bank Line” model is the associated model (is displayed as the active model in the
popup in the upper left hand corner of the E3D window)

Press F11 to go to the E3D Editor

Give the command File > Save Environment As

Save the environment file as “My 3D Bank Line.mis” (the default option). It will be saved in the
same directory or folder as your model is located.

Press F11 to leave the E3D Editor and return to the E3D window

Save your model.

“My 3D Bank Line.mis” will now be listed as the environment file in the Run > Simulation Setup > 3D
Animation tab.

☞ When you create a new environment file, the model must also be saved. This ensures that the model will be
associated with the proper environment file.

Create a path object
In your “My 3D Bank Line” model:

If it isn’t already open, open the E3D window

Press F11 to go to the E3D Editor

Press F4 to select the World Editor Creator (WEC) mode

In the WEC Creator Tree (the lower pane on the right):

Open the Mission Objects category

Open the Mission sub-category

Click the Path object

In the dialog that appears, name the path “ExitTeller1” and click OK to close the dialog

The path named ExitTeller1 will be listed at the bottom of the Tree pane (the upper pane on the right)
within the SimGroup-Mission Group category.

428 Tutorial III
Creating custom pathways

E3
D

Create path markers
Each path will require four pathmarkers, each of which is created in exactly the same way. Pathmarkers are
stored in the path’s folder.

Create Point1
In the Creator Tree pane (the lower pane on the right):

Open the Mission Objects category

Open the Mission sub-category

Click the PathMarker object

In the dialog that appears, name the marker “Point1” and click OK to close the dialog. A marker
named “Point1” will appear in both the animation area and at the bottom of the Tree pane.

☞ The E3D engine does not allow spaces in the names of markers or objects. If you enter a space in the name,
ExtendSim will warn you.

Expand the Tree pane (the upper pane on the right) so that all the objects are listed

At the bottom of the Tree pane:

Click and drag the marker named Point1 until it reaches and selects the
path named ExitTeller1. The path’s name will be highlighted when it is
selected. This will both create a path folder named ExitTeller1 and store
Point1 within that folder, as shown on the right.

Create the remaining markers
Create three more markers by repeating the steps used to create Point 1

Name the path markers Point2, Point3, and Point4

Store the new markers in the ExitTeller1 path folder

Position the markers
In the animation area of the E3D window, drag Point1 so that it is in front
of the desk for the topmost teller. This is the start of the path.

Position the other three markers in the E3D window so that they will cause customers to go around the
desk and walk up to the exit. The marker labeled Point4 is the end of the path.

☞ For accurate placement, zoom the camera towards the desk so you can see both the front of the desk and the
exit door.

Give the command File > Save Environment As, to save the environment file

Press F11 to exit the Editor

Leave the E3D window open

Select the path
The next step is to use the ExitTeller1 path in the model.

In the Transport Animation tab of
the Transport block (Walk to
Teller 1), select the path
ExitTeller1, as shown here.

Path folders with markers

Tutorial III 429
Enhancing the model

E3D
Click the button Get distance from 3D path length. This places the length of the path in the Distance
field of the block’s Behavior tab and ensures that the model behavior will be the same whether or not the
E3D window is active.

Run the animation. Now when customers get to that teller, they will walk around the desk rather than
through it.

Save your model

Repeat the process for another path
Repeat the above steps to create an ExitTeller2 path with four markers (Point1, Point2, Point3, and
Point4) positioned correctly so customers walk around the desk.

Select the path ExitTeller2 in the Transport Animation tab of the Transport block labeled Walk to Teller
2.

Click the button Get distance from 3D path length.

Save the model.

Run the animation to make sure both paths work correctly. If customers do not move along the route you
want, go to the E3D Editor and move the markers to a better position.

The equivalent tutorial model is 3D Bank Line Final. Notice that the distance using the custom path is
much longer than the distance that was calculated. This is because the customers now must walk around the
desks to get to the exit, rather than walking through the desks.

☞ Paths are discussed in more detail in “Creating paths” on page 467.

Enhancing the model
There are several other E3D features that could enhance this model. For instance, the 3D Bank Line
Advanced model, located at \Examples\Tutorials\E3D Animation\Bank Line, shows how the customers at
this bank could leave paperwork on the tellers’s desks.

430 Tutorial III
Enhancing the model

E3
D

3D Animation

Environment Files & E3D Editors
The appearance of the E3D window and how it can be modified

432 Environment Files & E3D Editors
Environment files

E3
D

As you saw in “Tutorial II” on page 405, you can add blocks to a 2D model to modify aspects of the E3D
window’s animation area – insert scenery or text labels, turn the sun on or off, and so forth. And you can
enable environmental aspects such as vehicle trails and shadows by going to the Edit > Options > 3D tab.

The appearance of the animation area can also be modified by using the ExtendSim E3D Editor to alter the
model’s environment files, without altering the 2D model.

This chapter discusses environment files and the E3D Editor. It will focus on the E3D window’s animation
area and the editors that can be used to add pathways, create or manipulate objects in the E3D window, or
modify the terrain.

☞ Additional information about the functioning of the E3D/World Editor can be found by reading the
Torque World Editor documentation at GarageGames.com.

Environment files
The environment file defines the appearance of the animation area in an E3D window. It provides environ-
mental information – lighting, terrain, and so forth – as well as the location of paths and 3D objects that are
not shown in the model worksheet.

A model’s 3D environment is selected by choosing
an environment file in the Run > Simulation Setup
> 3D Animation tab. The default is the
Extend3D.mis file that provides the environment
you see on opening a default E3D window – a perfectly flat, gridded terrain with sun and clouds.

Each 3D model has two animation files: a
.mis (mission) file that contains information
about the pathways and any 3D objects that
exist by default in the 3D animation area,
and a .ter (terrain) file that supplies infor-
mation about the terrain texture and so
forth. The two files will have the same name
but a different extension; they are collec-
tively known as the environment file. Thus
when you select Extend3D.mis as the envi-
ronment file in the 3D Animation tab of the
Simulation Setup dialog, you are also select-
ing the associated Extend3D.ter file.

Modifying the environment
Defining a custom environment allows you
to specify the placement and location of
fixed objects (such as desks, workstations,
and interior walls) that you want to have
appear by default in the E3D window, as well as a custom terrain and any custom paths and waypoints the
model might use. This is accomplished by using the E3D Editor, discussed below, to cause changes to the
E3D window that do not impact the 2D model. The information about these modifications is stored in the
environment file for the model.

By default, environment files are saved at the same location as the model they are associated with. Whenever
the E3D window is opened, the environment file for the associated model will be used to populate the E3D
window.

Default environment file in 3D Animation tab

Default E3D window’s environment for an empty model worksheet

Environment Files & E3D Editors 433
The E3D Editor

E3D
☞ The default environment file, Extend3D.mis, can be accessed by every model. Only custom environment
files need to be saved in the same location as the model they are associated with.

The E3D Editor
The E3D Editor is an interface to the E3D window that provides extensive and sophisticated control over
the contents and appearance of the window. It allows you to alter aspects of the E3D animation area with-
out affecting the appearance or structure of the 2D model. It provides greater flexibility than using blocks
from ExtendSim libraries and it allows you to perform tasks you can’t do using library blocks, such as:

• Defining custom pathways that are not linked to the position of the 2D model’s blocks.

• Placing 3D objects directly in the E3D window, without having to add them as blocks in the 2D model.

• Creating specialized terrains, such as adding contours to the floor, removing its grid, or using a different
floor pattern

• To give a very advanced animator complete control over the E3D environment.

Learning about the E3D Editor
So that you can more clearly see how the E3D Editor works:

Place an Activity block (Item library) anywhere on a new model worksheet, as shown on the
right.

Save the model as “EditorExploring”.

Accessing the Editor
With the EditorExploring model the active window, open the E3D window.

The appearance of this window is defined by the default environment file “Extend3D.mis”.

Activate the E3D Editor using one of the following methods:

Click the F11 key on your keyboard.

Or, click the ExtendSim application icon at the left side of the E3D window
(Windows only). This causes a menu to appear so you can select the Editor.

☞ If the Editor does not open correctly on a Macintosh, be sure there is no default key-
board shortcut for F11 in the System Preferences > Dashboard & Expose dialog.

Exiting and closing
To exit the E3D Editor, use the close box at the top of the window. This also closes the E3D window. To
toggle between the E3D Editor and the E3D window without closing either of them, use the Toggle E3D
Editor command or the F11 key.

434 Environment Files & E3D Editors
The E3D Editor

E3
D

Exploring the Editor
When you invoke the E3D Editor, it causes
the E3D window to change and reveal:

• Commands in a menu bar across the top
of the window. These are described start-
ing on page 484.

• Two panes on the right side of the win-
dow. In the WEI mode, the top pane is
the Tree that lists all the objects in the
window and the components of the envi-
ronment (such as sky and sun); the bot-
tom pane is the Inspector that will display
information about a selected object.
(These panes are discussed in more detail
in “WEI panes” on page 437.)

• A numbered object in the animation area.
This machine is the default 3D object
that represents the Activity block in your
EditorExploring model. An object’s number corresponds to its listing in the Tree pane.

The E3D Editor appears by default in its World Editor Inspector (WEI) mode. Editor modes allow you to
alter aspects of the E3D window without affecting the appearance or structure of the 2D model. They are
discussed starting on page 435.

Inspecting objects
The WEI mode is useful for inspecting objects and modifying their properties. It allows you to both see and
set the position, rotation, and scale values of objects, as well as other object properties. The list of properties
in the Inspector pane varies by object.

To inspect an object, click it once in the window’s animation area or select it in the Tree pane.

When an object is selected, the contents of the Inspector pane
change to show the object’s properties. The object’s name appears
in the pane’s Name field; if the object is the representation of a
block, the object’s name will be followed by the block number.
Some properties of the Activity block’s 3D representation are
shown in the screenshot to the right.

E3D Editor in WEI mode for EditorExploring model

Activity block’s 3D object properties

Environment Files & E3D Editors 435
E3D Editor modes

E3D
The Gizmo
Once you have selected an object in the window, it will appear with a
three-axis (XYZ) device drawn through it. This device (called a Gizmo) is
a tool for translation (movement), rotation, or scaling of the selected
object.

Each axis arm has a different colored line: red (X), green (Y), and blue
(Z). If you hover the mouse over one of the axis arms, it highlights in a
yellow color. The object can then be moved in that direction.

Using the Gizmo to move and perform other tasks on objects is described
in the chapter “3D Objects” that starts on page 441.

☞ The axes of the Gizmo are expressed in terms of the object, not necessarily
the E3D world. If an object is placed in the E3D window in its default
orientation, the axes will be pointing in the same direction as the compass for the E3D window. However, if
you rotate the object by 90 degrees, for example, the Gizmo’s axes will be 90 degrees out of sync with the
E3D window’s compass.

Modifying object properties
You can change a selected object’s properties by editing values the block’s dialog (if the object corresponds to
a block in the model), changing property values in the Inspector pane, or by using ModL code. If you make
a change to one of the properties in the Inspector pane, you must click the Apply button at the upper left
corner of the pane to apply the change to the object. You can also alter some properties (an object’s position,
rotation, or scale) by physically manipulating the object using the Gizmo. Changing object properties is
described in the chapter “3D Objects” starting on page 441.

☞ If the 2D block position is linked to the 3D object position, changing the position of the object in the E3D
window will change the position of the block in the 2D model.

E3D Editor modes
The E3D Editor has several editor modes that allow you to alter different
aspects of the E3D animation area. You can select a mode by either choosing
it in the Editor’s Window menu (shown at right) or by pressing the equivalent
function key.

If you select a different mode in the Window menu, the panes on the right of
the E3D window change and sometimes disappear. These changes are dis-
cussed where the respective modes are described.

Mode categories
There are three categories of modes for the E3D Editor:

1) World. The three World modes (World Editor, World Editor Inspector, and World Editor Creator) are
used for inspecting and manipulating objects. They are discussed in “World modes” on page 436.

2) Terrain. The two Terrain modes (Terrain Editor and Terrain Texture Painter) are useful for modifying
the contours and textures of the terrain. They described in “Terrain modes” on page 438.

3) Other. The Editor has some other modes (Mission Area Editor, Terrain Terraform Editor, Terrain Tex-
ture Editor, and GUI Editor) which, by default, are disabled and not shown in the E3D Editor’s Win-
dow menu. These advanced modes, along with some advanced menu commands (such as Import
Terraform data) can be enabled by making a change to the EditorGUI.cs file located in the folder \Cre-
ator\Editor. These modes are beyond the scope of this documentation.

Gizmo for Activity default 3D object

Window menu: Editor modes

436 Environment Files & E3D Editors
E3D Editor modes

E3
D

 The disabled modes and menu commands should be enabled only by very advanced animators and should
be used with extreme caution.

World modes
As described in detail below, there are three World modes:

• World Editor

• World Editor Inspector

• World Editor Creator

Each of the World modes allows you to manipulate an object’s properties – its position, rotation, scale, and
so forth. By default, the Editor appears in World Editor Inspector (WEI) mode, as seen earlier. The World
Editor Creator mode is most often used to create an object in the E3D window so that it becomes a default
part of a model’s environment.

☞ Using the World modes to create an object or modify object properties is discussed in the “3D Objects”
chapter that starts on page 441.

World Editor
This base mode is intended for moving, scaling, or rotating objects. These operations can also be performed
in the other World editor modes, but this mode gives you the maximum viewing area.

World Editor Inspector
The World Editor Inspector (WEI) is the default mode you saw earlier. It allows you to inspect any objects
in the E3D window and modify their properties.

Accessing the World Editor Inspector mode
To access the WEI:

Open the E3D window

Enable the E3D Editor (F11)

Then either give the Window > World Editor Inspector command in the E3D Editor’s menu or press the
F3 key

Environment Files & E3D Editors 437
E3D Editor modes

E3D
WEI panes
The WEI has two panes that appear on the right hand side:

• The top pane contains the Tree. This is an explorer-type list of
the 3D objects that are present in the E3D window, including
environmental components such as the sky and sun. The location
of an object’s listing in the tree can be moved; that change will
not have an effect on the object’s position in the E3D window.
An expanded Tree for a model that contains only an Activity
block (Item library) is shown on the right.

• The lower pane contains the Inspector. This pane shows the val-
ues of properties of the selected object – its name and block num-
ber (if any), position, rotation, and scale, as well as other object
properties. The particular information shown depends on the
object selected. In the screenshot on the right, the Activity block
has been selected in the animation area. It is also selected in the
Tree’s list and its name and properties are listed in the Inspector
pane.

World Editor Creator
This mode is used for creating 3D objects in the E3D window and
establishing custom pathways, among other tasks. (Causing an
object to appear directly in the E3D window so that it becomes part
of the environment is known as “creating” the object.)

Accessing the World Editor Creator mode
To access the WEC:

Open the E3D window

Enable the E3D Editor (F11)

Either give the command Window > World Editor Creator in
the E3D Editor’s menu or press the F4 key

World Editor Inspector panes

438 Environment Files & E3D Editors
E3D Editor modes

E3
D

WEC panes
The WEC has two panes that appear on the right hand side:

• The top pane contains the Tree, as shown to the right. This is the
same as the Tree in the WEI pane, described earlier.

• The lower pane contains the Creator Tree that contains a list of
all the types of objects that are located in the ExtendSim 3D fold-
ers. The objects are divided into three categories:

• Shapes. This category contains most of the functional
objects you might want to add to the animation area: Vehi-
cles, Scenery, Blocks, ExtendItems, and Person. Some shape
objects have functionality (movement or behavior) and
some are static.

• Mission Objects. This category includes three sub-catego-
ries: Environment objects (clouds, skybox, sun, and so
forth), Mission objects (Paths, PathMarkers, and so forth),
and System objects (SimGroups). You will not usually need
to add Environment objects since the default environment
already contains the most-needed ones. Mission objects are
quite important and useful – see Paths and Markers “Creat-
ing paths” on page 467 for additional information. You will
not need System objects unless you script the E3D window.

• Interiors. These are buildings and other types of structures.

Terrain modes
As described in detail below, there are two Terrain modes:

• Terrain Editor

• Terrain Texture Painter

The Terrain modes are used to modify the contour and appearance (“texture”) of the floor or terrain of the
3D animation area.

☞ For E3D animation, the word terrain means the floor of the 3D animation area and the word texture
means the appearance of the terrain – its color, pattern, gridding, and so forth.

The default environment file (Extend3D.mis) does not make much use of the E3D terrain capabilities. In
fact, if you build models using the blocks in the Item library, you should not change the terrain from the
default flat floor. This is because the ExtendSim library blocks assume that the terrain will be flat. For cer-
tain kinds of custom block models, however, the ability to manipulate the terrain in the E3D window can
be quite useful. And you can always change the terrain’s texture without harmful effect.

☞ Using the terrain modes to modify the terrain is discussed in “Terrains” on page 470.

Terrain Editor
This mode is used for filling and excavating the terrain to add contours such as hills and valleys.

Accessing the Terrain Editor mode
To access the Terrain Editor:

Open the E3D window

World Editor Creator panes

Environment Files & E3D Editors 439
E3D Editor modes

E3D
Enable the E3D Editor (F11)

Give the command Window > Terrain Editor in the E3D Editor’s menu or press the F6 key

The default terrain in the ExtendSim 3D environment file is at a height of 100 units. The ExtendSim
library blocks assume objects will be at this height. Changing the contours of the terrain may cause issues
with the standard ExtendSim blocks.

The E3D window in Terrain Editor mode
In this mode there are no panes but two new menus:

• Action. The Select and Adjust Selection options in this menu allow you to make a
semi-permanent selection of the terrain. The Add Dirt, Excavate, Adjust Height,
Flatten, Smooth, and Set Height commands determine what will happen when you
click an area and move the mouse. The Paint Material command allows you to use a
texture to change a part or all of the floor’s appearance; it is used when in Terrain Tex-
ture Painter mode, discussed below.

• Brush. This command is for choosing the shape, consistency, and size of the brush
when performing actions on terrains.

☞ See more information about these commands in “E3D Editor menu commands” on
page 484.

If you move the cursor around in the animation viewing area you will see a selection area appearing under
the cursor. This is called the brush and is your primary tool for editing the terrain in the E3D window with
the Action commands.

Terrain Texture Painter
This mode allows you to add terrain textures and change the E3D window’s terrain so that it has a different
appearance. When the Editor is in this mode, the Action menu defaults to selecting the Paint Material com-
mand, discussed above.

Accessing the Terrain Texture Painter mode
To access the Terrain Texture Painter:

Open the E3D window

Enable the E3D Editor (F11)

Give the command Window > Terrain Editor in the E3D Editor’s menu

Action menu

440 Environment Files & E3D Editors
Editor menus and commands

E3
D

Texture pane
In addition to the Action and Brush menus discussed above, the Terrain Texture
Painter has a Texture pane on the right side that has six slots where each slot can
display a different terrain texture. Slots can be changed to a different texture (in
the case of an existing texture) and different textures can be added (if the slot is
blank). Textures are stored in the \Extend3D\data\terrains folder. They are
accessed by clicking a texture slot’s Change or Add button.

In the screenshot, the three slots on the left show pre-loaded textures that can be
changed. Those on the right are empty slots where a texture can be added.

 No two slots can have the same texture. When changing or adding a texture, the
new texture must be different from those already in any slot. Otherwise, the new
selection will not have any effect. For instance, there will be no effect if you try to
change the “Grid” texture to the “Grass” texture, and there is already a slot with
“Grass” as its texture.

Editor menus and commands
The menus and commands for the various modes of the E3D Editor are described
starting on page 484.

Slots in Texture pane

3D Animation

3D Objects
Creating and manipulating 3D objects

442 3D Objects
3D objects

E3
D

As mentioned in the “Controlling the E3D environment” on page 393, there are several ways to accomplish
3D tasks. With the exception of using an equation-type block or programming with ModL code (described
in the Developer Reference), this chapter shows how to use those methods to:

• Create objects for E3D animation

• Use skins to affect the object’s appearance

• Change object properties such as position, rotation, scale, and visibility

• Mount one object on another object

• Use waypoints to mark the positions of invisible 3D objects and as movement destinations

• Access other object information: collision, gravity, ObjectID

This chapter is focused on objects. Paths, which are a specialized type of object, and the terrain, which
causes the appearance of the “floor” of the E3D world, are discussed in the next chapter.

☞ This chapter assumes you have read all the Tutorial chapters for the E3D module and the “Environment
Files & E3D Editors” chapter. Example models for this chapter are located in the folder \ExtendSim\Exam-
ples\3D Animation.

3D objects
A 3D object is what you see (and sometimes what
you don’t see but you see the effect of) in the E3D
window. ExtendSim Suite includes a collection of
pre-defined 3D objects; you can add new objects to
that collection.

An object might appear in the E3D window as the
representation of a component of the 2D model or it
could exist only in the E3D window. It can represent
a block or item from models that use the Item library;
it can represent any stationary or moving component
of a custom-block model. An object can also appear
only in the E3D window, without having a corre-
spondence to a block in the model. This is commonly
done when the object is a piece of scenery, a marker
for a path, or an environmental effect such as sun-
light.

Objects can be created, manipulated, and deleted and they can be visible or hidden. They have properties
and can have functionality (movement and behavior). Objects that represent items (or any custom entity
that has movement) can be made to follow intricate paths.

Item library blocks, as well as the 3D blocks in the Animation 2D-3D library, have popup menus and
checkboxes that allow you to create objects in the E3D window; you can also modify many of an object’s
properties in those dialogs. Some environmental effects – shadows, sounds, and footprints – can be turned
on or off in the Options dialog. The E3D Editor can be used to create objects such as scenery and paths
directly in the E3D window and to manipulate object properties. You can also create custom blocks that
have 3D object representations and custom behavior and properties.

Types of objects
3D objects can be divided into the following categories:

• Interior objects – buildings and other interior structures.

RobotArm object in E3D window

3D Objects 443
3D objects

E3D
• Shapes – vehicles, scenery, blocks, ExtendItems, and people. Some shapes have movement and behavior
while others are static.

• Mission objects – environmental objects such as clouds and sun, as well as paths and markers.

A waypoint is a special type of 3D object that just marks a position, but is invisible, in the E3D window.
Waypoints are useful for keeping non-essential blocks from appearing as objects in the E3D window or for
placing text at specific positions in the window. They are discussed on page 459.

Object properties
Each object has properties that vary depending on the type of object; all object properties can be changed.
Typical properties include:

• Skins. Some objects have just one appearance in the E3D window, but many objects have multiple skin
choices that affect how they look.

• Position, scale, and rotation. Objects appear in the E3D window in a default X/Y/Z location with a
default size and orientation.

• Collidable. With this property, objects will not occupy the same space.

• Visible. Some objects, such as paths, are by default invisible and you only see their effects. Paths can be
made visible and normally visible objects can be made invisible.

Actions
The following table lists many of the object actions you might want to perform and describes which meth-
ods can be used to accomplish those tasks.

3D Action
Item
Library

Animation
2D-3D
Library

Options
Command

Gizmo
Inspector
Pane

Creator
Tree
Pane

Equation
Block, ModL
Code, or
Torque Script

See
Page

Create an object
for a block or item

X X X 444

Create a non-block
object

X X 446

Create an environ-
mental effect

X X X 448

Change skin X X X 450

Move an item’s
object

X X X 483

Move a block’s
object

X X X X 451

Move a non-block
object

X X X 451

Rotate a block’s
object

X X X 455

Rotate a non-block
object

X X X 456

444 3D Objects
Creating objects

E3
D

For the table:

• Non-block objects and non-item objects are those objects that do not have a corresponding block or item
in the model.

• In the Item library, use the block’s Item Animation and Block Animation tabs.

• The 3D-enabled blocks in the Animation 2D-3D library are:

• 3D Controller – establishes and controls aspects of the E3D environment

• 3D Scenery – creates scenery in the E3D window

• 3D Text – displays text in the E3D window

• Animate 3D – performs a 3D action as an item passes through

• You can use the Gizmo in any World mode

• The Inspector pane is enabled when the E3D Editor is in WEI mode

• The Creator Tree pane is enabled when the E3D Editor is in WEC mode

• Equation-type blocks (the Equation block in the Value library and the Equation(I) block in the Item
library) can call ModL functions to perform 3D actions. Likewise, you can use ModL code to program
custom blocks to perform 3D actions. Torque script is the scripting environment supported by the E3D
window. ModL functions and Torque Script are described in the Developer Reference.

 If a 3D object has been created by the 2D model, and/or you modify any of that object’s properties, the
information about the object’s creation and property change is saved when the model is saved. If the object
has not been created by the 2D model, its creation and any modifications to its properties can only be saved
by creating a new environment file or making and saving changes to an existing one. This is discussed in
“Saving changes” on page 459.

Creating objects
Creating an object causes it to be placed in the E3D window. Objects are created:

• To represent blocks from the 2D model

• To represent moveable entities, such as items, from the 2D model

• Directly in the E3D window as scenery, environmental effects, or paths for the 3D animation

Scale a block’s
object

X X X 457

Scale a non-block
object

X X X 458

Keep objects from
colliding

X X X X 462

Mount/Unmount X X 460

Show/Hide X X X X 453

3D Action
Item
Library

Animation
2D-3D
Library

Options
Command

Gizmo
Inspector
Pane

Creator
Tree
Pane

Equation
Block, ModL
Code, or
Torque Script

See
Page

3D Objects 445
Creating objects

E3D
Since paths are specialized, they are discussed in the next chapter starting on “Creating paths” on page 467.
After an object has been created, you may want to change one or more of its properties, such as its appear-
ance (skins), scale, or rotation. This is discussed in “Changing object properties” on page 449.

☞ Creating an object is not the same as defining an object. Creating a 3D object places a copy of the object in
the E3D window. Defining a 3D object is the process of developing a new type of 3D object, as discussed
in the Developer Reference.

Create an object that represents a block
Most 3D-enabled blocks have popup menus that provide choices for indicating which 3D object will repre-
sent the block. Blocks that don’t have these choices, such as the 3D Controller block (Animation 2D-3D
library), don’t have a representation in the E3D window.

Objects that represent blocks are created in the block. As discussed below, it is most common to use the
Block Animation tab of Item library blocks or a 3D popup menu in the dialog of the 3D Scenery, 3D Text,
or Animate 3D block (Animation 2D-3D library).

Using an Item library block
The following steps show how to create a 3D object to represent a Create block:

Open a blank model worksheet.

Save the model as “HowToE3D”.

Open the E3D window. (Be sure the HowToE3D model is displayed as the associated model in the E3D
window’s top left popup menu. If it is not the associated model, select it.)

Place a Create block (Item library) on the model worksheet. The block will automatically be represented
in the E3D window as its default object, a door.

In the Create block’s Block Animation tab, use the popup
menu (shown to the right) to create other objects to repre-
sent this block. As you make each selection, notice how the object changes in the Block Animation tab’s
preview area and in the E3D window.

☞ If you do not have QuickTime installed, the color of the object in the tab’s preview area may not be the same
as the color of the object in the E3D window.

If a Skin popup menu appears to the right of the object popup menu, it can be used
to change the object’s appearance. This, along with other settings in the Block Ani-
mation tab, is discussed in “Changing object properties” on page 449.

So that it can be used for other sections in this chapter and for other chapters:

Select the command Run > Show 3D Animation. This will cause the E3D window to open whenever the
HowToE3D model opens.

Save the model. Since the object has been created by the 2D model, saving the model saves the object
information.

 Your HowToE3D model will be used for other sections.

Create an object that represents an item or other moveable entity
Items only occur in discrete event or (sometimes) discrete rate models, but you can create custom blocks to
show other types of moving entities. To create an object to represent something that moves:

• Use a block from the Item library (this only creates objects that represent items).

446 3D Objects
Creating objects

E3
D

• Use the Animate 3D block from the Animation 2D-3D. (This is an advanced method; see page 483.)

• Use an equation block or program with ModL functions to create an object that represents any moveable
entity. This is discussed in the Developer Reference.

Using an Item library block
In addition to Block Animation tabs, Item library blocks also have Item Animation tabs. This is used for
specifying which 3D object will represent the items that travel through the block.

The process for creating an object to represent items is similar to creating an object to represent a block. (See
“Create an object that represents a block”, above.) However, the list of objects in the Item Animation tab’s
popup menu is limited to those most appropriate to represent items. (The Animate 3D block in the Anima-
tion 2D-3D library provides a complete list of objects to represent items.)

Furthermore, rather than just choosing an object from a popup menu as was done for block animation,
there are three ways the object can be created for item animation, as discussed below.

Item animation selection methods
Item Animation tabs have three options for creating a 3D
object to represent the item (the Create block will have
slightly different wording):

• Do not change item animation. With this default choice,
the 3D object representation of the item passing through
the block will not be changed from what was set in the preceding block. (The default 3D object created
by a Create block is a green ball to correspond with the default green circle seen with 2D animation.)

• Change all items to. This choice provides a popup menu so you can choose an object to represent the
items in the 3D world. Any item that arrives with some other object representation will be changed to the
selected choice.

• Change item animation using property. The object will change depending on the value of the selected
item property (attribute, priority, and so forth). This method is most common for creating different
objects for the different types of items that pass through, or if you want each 2D animation picture to cor-
respond to a particular 3D object.

For more details about these options, see “Selecting an animation picture” on page 552.

☞ The Create (Item library) and Animate 3D (Animate 2D-3D) blocks have a 3D object choice in their Item
Animation tabs that other blocks don’t offer – Random person. If this is selected, the block will randomly
generate male and female people objects with random clothing, face, and hands to populate the animation.

Create a 3D object as scenery
In the previous topics, 3D objects were created to indicate the purpose of a model’s blocks or to represent
items or other entities that move in the model. You might want to create an object as scenery instead.

Scenery is the term used to describe any object that is displayed in the E3D window but which is not a nec-
essary part of the 2D model. You can select any object to be scenery, but some common choices are bed,
chair, desk, door, filing cabinet, machine, shelf, table, tree, and wall. Text, which can be used to label objects
or to stand on its own as a label or sign, is also considered scenery.

There are several ways to create objects for scenery:

• With blocks from the Animation 2D-3D library

• Using the E3D Editor to place scenery directly in the E3D environment

3D Objects 447
Creating objects

E3D
• Using an equation block, or program with ModL code as described in the Developer Reference.

Using an Animation 2D-3D library block
The 3D Text and 3D Scenery blocks (Animation 2D-3D library) are used to create text and other scenery
objects in the E3D window. The following discussion concerns using these blocks to create objects; the
blocks are discussed fully in “Animation 2D-3D blocks” on page 482.

☞ Using blocks from these libraries requires adding the block to the model but does not require creating a new
environment file or making and saving changes to an existing one.

3D Scenery block
A 3D Scenery block in a 2D model
will cause scenery to be created in the
E3D window. The block’s dialog pro-
vides a popup menu for selecting a representative 3D object, similar to the Create block discussed on
page 445.

When initially placed in the 2D model, this block has a minimized icon. By default, the footprint of which-
ever 3D object you choose will be reflected in the model by the block’s icon. If you don’t want this effect,
uncheck Show 3D footprint in 2D model in the block’s dialog.

3D Text block
The 3D Text block works similar to the Create block discussed on page 445 in that you can select an object
to represent it in the E3D window. However, this block also allows you to cause text to be written on the 3D
object. If you select the Waypoint object, the text appears at a marked position in the E3D window like a
free-standing sign.

To use this block:

Select an object in the block’s object popup menu (the Waypoint choice will cause only the text to appear
in the E3D window)

Enter the text in the text field

Select a color for the text

Click the Update button to cause the text to appear in the E3D window

For instance, this block was used to label the Passport Control sections of the Airline Security model dis-
cussed on page 401.

Using the E3D Editor to create scenery
Creating an object using the E3D Editor causes the object to be placed directly in the E3D environment
without having to place a block on the model worksheet. The object could be a visible object (such as a
piece of scenery) or an invisible object (such as a path or waypoint). Since the object has no corresponding
block in the model, it is considered scenery.

While it is simpler to create scenery by using a 3D Scenery or 3D Text block, the advantage of using the
Editor is that the scenery will be in the E3D window every time the environment file is opened. This is
especially helpful for different models that require the same scenery.

This section assumes you have read the chapter “Environment Files & E3D Editors”.

☞ Using the E3D Editor to create an object requires creating a new environment file or making and saving
changes to an existing one. But it avoids having to place an extra block in the model.

448 3D Objects
Creating objects

E3
D

Accessing the E3D Editor
Open the HowToE3D model that you created on page 445.

The E3D window for this model will automatically open.

Access the E3D Editor by pressing F11

Select the WEC mode by pressing F4. (Or choose the command Window > World Editor Creator within
the E3D window.)

Creating the scenery object
In the Creator Tree (the lower pane on the right):

Open the Shapes category.

Open the ExtendItem sub-category. (You can also select objects from other
sub-categories, but most scenery is at this location.)

Click the Barrel object. Depending on the resolution, you may need to zoom
back to see the object. You can also use the Gizmo to move the object, if it is
not placed where you want.

This will create a Barrel object in the E3D window’s animation area without putting a
block in the model worksheet.

When you create an object using the Editor, it will be selected by default. Clicking else-
where in the E3D window unselects the object.

 The default drop setting in the E3D window is World > Drop at Screen Center. With this setting
ExtendSim will attempt to place the new item at the center of the camera view, where the terrain is inter-
sected. If a ray from the center of the camera view doesn’t intersect the terrain, the object will default to
being dropped right on the camera’s position. Thus if the newly created object isn’t immediately visible on
your screen, or if it appears too large, back the camera up with the W key or the down arrow.

To save the environment file and the model
So that the barrel will be part of the 3D environment whenever the E3D window is opened for this model,
you must create a new environment file or save the changes to an existing one:

Save the environment file. With the E3D Editor as the active window, give the command File > Save
Environment As and save the new environment. You can name the file any name you want, for example
“HowToE3ED.mis”. The environment file will be saved in the same directory or folder as you saved the
model.

Save the model. With the HowToE3D model window as the active window, save the model. This will
also save the name of the new environment file with the model.

Now whenever you open the HowToE3D model,
the E3D window will open using your environment
file with a barrel object. The associated environ-
ment file is listed in the Run > Simulation Setup > 3D Animation tab, as shown here.

☞ For more information about saving changes, see “Saving changes” on page 459.

Create an environmental effect
Environment objects are things like clouds, the skybox, and the sun. While these objects are not obviously
apparent in the E3D window, you can see their effects. To cause or disable an environmental effect:

• Select options in the Edit > Options > 3D tab

Selecting an object

3D Objects 449
Deleting objects

E3D
• Use a 3D Controller block from the Animation 2D-3D library

• Use an equation block, program with ModL code, or use Torque script and the World Editor Creator, as
described in the Developer Reference

Options dialog
In the Edit > Options > 3D tab, some environmental options
can be turned on and off:

• Shadows

• Sounds

• Footprints and vehicle trails

☞ These settings are system-wide and affect the E3D windows for
all models.

3D Controller block
This block has many uses, as fully described in “3D Controller block”
on page 482.

It is also useful for turning off the sun or cloud effects in the E3D win-
dow or changing the color of the ceiling/sky. These options are shown
at right.

When this block is placed in a model, unchecking the checkboxes dis-
ables the sky and/or clouds for the model’s environment file. If the
option for the clouds object is not checked, you can modify the color
of the ceiling using the Slider controls to achieve the desired effect.

☞ These settings are saved with any model that includes the 3D Control-
ler block.

Deleting objects
The mechanism used to delete objects from the E3D window depends on how the objects were created.

• For objects that correspond to blocks in the model, delete the block from the 2D model. This will auto-
matically delete the object that corresponds to that block. (If you instead delete the object using the WEC
as described below, the object will reappear when the E3D window is reloaded and you may get error
messages if you then try to delete the block from the model.)

• For an object that exists in the E3D environment but is not a direct representation of a 2D block, delete it
in the WEC.

To do this, select the object in the WEC animation area and either:

• Press the backspace or delete key

• Or choose the command World > Delete Selection

• Or choose the command Edit > Cut

☞ The objects that represent items are automatically deleted when the model is re-run or reloaded.

Changing object properties
Once you have created a 3D object, you might want to change its properties. As was discussed in “Object
properties” on page 443, each object has properties that vary based on the object. The following section

Environmental choices in 3D tab

Environmental choices in 3D Controller

450 3D Objects
Changing object properties

E3
D

describes the most common object properties and tells when you can change them and how to do it. It cov-
ers changing an object’s:

• Skin

• Position

• Visibility

• Rotation

• Scale

A list of all the potential object properties is beyond the scope of this document. However, the following sec-
tions describe using the most important object properties; the Developer Reference has information about
others.

 If a 3D object has been created by the 2D model and you modify any of that object’s properties, the infor-
mation about the property change is saved when the model is saved. If the object has not been created by the
2D model, any modifications to its properties must be saved in the environment file. This is discussed in
“Saving changes” on page 459.

Changing skins
Skins is the 3D modeler’s term for the texture files that show the surface details of objects in the 3D world.
Each object has a skin property that affects the object’s appearance in the E3D window. While some objects
have just one appearance in the E3D window, many objects have a skin type with multiple choices. For
those objects, you can change which skin is showing by:

• Selecting a skin from a popup menu in the dialog of the block that creates or changes the object.

• Using the Animate 3D block from the Animation 2D-3D library. (This is an advanced method; see
page 483.)

• Using an equation block or programming with ModL, as discussed in the Developer Reference.

Skin types
Many of the 3D objects have a single type of skin with multiple choices. For example, desk objects have one
skin type that can be base, oak, or old.

☞ Base skin is what is seen in the preview area of a block’s Item Animation or Block Animation tab.

The Male and Female objects have two skin types:

• Skin 1 is for the clothing

• Skin 2 is for the face and hands

☞ In a block’s Item Animation tab, objects with a choice for skins also have
a Random skin option. This causes a randomized display of all the pos-
sible skin choices for that object. For male and female objects, both skin 1 and skin 2 can be random.

Using an Item library block
When you create an object using a block from the Item library, it is common to select the skin for the object
at that time. For instance, the Create block you placed in the HowToE3D model on page 445 has a door
with no skin options as its default 3D object. If you had instead selected a Crate object in the block’s Block
Animation tab, you could have selected either a base skin or an old skin. Skins for the objects that represent
items are selected in the Item Animation tab of the block that creates or changes those objects.

Female object with two skin types

3D Objects 451
Changing object properties

E3D
Move an object
While a simulation is running, the movement of objects that represent items will be taken care of by the
block code and dialog settings. However, you may want to move objects that have been created by the 2D
model (such as objects that represent block) or objects that have been created using the E3D Editor.

There are several ways a 3D object can be directly moved:

• If the object represents a block and 2D and 3D positions are linked:

• Move the corresponding block in the 2D model

• If the object does not represent a block, or if the 2D and 3D positions are not linked:

• Change X/Y/Z coordinates in the corresponding block’s Block Animation tab

• Move the object in the World editor

• Change the value of the object’s position property in the World editor

• Set the object’s position using the Animate 3D block. (This is an advanced method; see page 483.)

• Use an equation block or program with ModL functions (discussed in the Developer Reference)

As you will see below, the method you can use depends on the circumstances.

Move a block in the 2D model
By default the Block Animation tabs of Item library blocks are set to Link 2D/3D
positions. This means that when one of these blocks is moved in the model, the
position of its representative object will change in the E3D window.

The object’s position in the E3D window is displayed in the 3D position
section of the Block Animation tab, shown at right. If 2D/3D linking is
enabled, these coordinates are display only and cannot be edited.

Moving a block is an easy way to manipulate 3D objects but requires that the locations of the blocks in the
model be changed. Unlinking 2D/3D positions provides more freedom since you can then move 3D objects
around without affecting the 2D model, as shown below.

The positions of the block and the object are both saved when the model is saved.

☞ This action only applies to objects that represent blocks with 2D/3D linking selected.

Change settings in the Block Animation tab
If Link 2D/3D positions is unchecked in a block’s Block Animation tab, the object
can be directly moved by changing the 3D position X/Y/Z coordinates.

For instance, if you change the X coordinate from 7.125 to 9.125 the
object would move 2 animation meters (40 pixels) to the right in the
E3D window. (The distance is based on the conversion ratios specified in
the Run > Simulation Setup > 3D Animation tab, discussed on
page 477.)

This method has the advantage of moving the object ‘s position in the E3D window without moving the
block in the model. The position of the object in the E3D window is saved when the model is saved.

☞ This action only applies to objects that represent blocks with 2D/3D linking not checked.

Move the object in the World editor
Objects can also be moved to any position by dragging them using the World editor. After selecting an
object, you can move it by:

452 3D Objects
Changing object properties

E3
D

• Selecting and dragging one of the arms of the Gizmo. This constrains the movement to one axis but does
allow movement along the Z axis.

• Dragging it freely in the X and Y directions.

To access the World editor
Open the E3D window

Access the E3D Editor by pressing F11

Select any World mode (for instance, select the WEI mode by choosing it in the Window menu or press-
ing F3)

Select the object in the E3D window

Using the Gizmo
The Gizmo was introduced on page 435. Among other tasks, it can be
used to move a 3D object along one axis.

Access the World editor, as shown above.

Select and drag the Gizmo’s X, Y, or Z arm to move the object along
that axis.

☞ If an arm on the Gizmo is selected, it turns yellow.

For example, in the HowToE3D model you saved on page 448, try using
the Gizmo to move the barrel or door object.

Moving the object freely
Using the World editor, an object can be freely moved in the X and Y
directions without using the Gizmo.

Access the World editor, as shown above.

Without selecting any of the arms of the Gizmo, drag the object to move it where you want. (If the object
is very small, zoom in on the object.)

☞ If the object is the representation of a block, and the block’s Block Animation tab has been set to Link 2D/
3D positions, moving the object will also move the block. Unchecking the linking option allows the 3D
object to be moved in the E3D window without affecting the block’s position in the model.

Save the position
How the position change is saved depends on the object:

If the object has been created by the 2D model, the information about the object’s position is saved when
the model is saved. (For an object that represents a block, the position information is displayed in the
block’s Block Animation tab.)

If the object has not been created by the 2D model, the environment file must be saved in order to save
the object’s position. See “Saving changes” on page 459.

Change object property values
While it is more common that you would change an object’s position by one of the previous methods, a
selected object’s location can also be modified by changing the value of its position property.

Gizmo for Barrel object

3D Objects 453
Changing object properties

E3D
Access object properties
Object properties can be changed in the E3D Editor when it is in Inspec-
tor mode. The properties of the selected object are listed in the Inspector
pane, as shown at right.

The steps to change an object’s properties are:

Open the E3D window

Access the E3D Editor by pressing F11

Select the WEI mode by pressing F3 (Or choose the command Win-
dow > World Editor Inspector within the E3D window.)

Select the object in the animation area or in the Tree

Move the object
The position property is listed in X Y Z format, for instance as “9.125 -
8.875 100”. Changing the first position number for that hypothetical
object from 9.125 to 11.125 would move the object 2 animation meters
(40 pixels) to the right. (The distance is based on the conversion ratios
specified in the Run > Simulation Setup > 3D Animation tab, discussed
on page 477.)

In the Inspector pane:

Change the values for the position property

Click the Apply button

Try changing the position for the barrel or door object in the HowToE3D model from page 448.

Save the position
If the object was created by the 2D model, saving the model saves the object’s position.

If the object was not created by the 2D model, save the environment file to save its position.

This is discussed in “Saving changes” on page 459.

Show or hide objects
By default most 3D objects are visible in the E3D window. An obvious exception are paths, which are invis-
ible unless you make them visible. Like other object properties, visibility is an object property that can be
manipulated. For instance, you may want to show or hide a piece of scenery in an environment file depend-
ing on the model. That would allow one environment file to be used by multiple models with different
scenery needs.

When animating in 3D you might want to:

• Hide a normally visible object

• Show a normally invisible object

• Switch between hiding and showing an object based on some condition or situation

• Hide or show all objects of a particular type

☞ Objects that have been created by blocks should be hidden and shown using dialog options; the model
should then be saved to save those changes. Objects that are not associated with blocks can be hidden and
shown using the E3D Editor; this is a modification to the environment file and requires that the environ-
ment file be saved.

Properties for Create block’s object

454 3D Objects
Changing object properties

E3
D

Hiding an object
It is common that a block performs a function in the 2D model but you want its representative object hid-
den in the E3D window. Scenery objects created using the E3D Editor, as well as objects that represent
items or other moveable constructs, can also be hidden.

Objects can be hidden by:

• Unchecking a dialog option

• Using a waypoint as a representation

• Using the E3D Editor

• With equation blocks or programming with ModL code, as discussed in the Developer Reference

Hide objects that represent blocks
You might want a particular block to not have a visible
object representation. If the block is from the Item or Ani-
mation 2D-3D library, the easiest way to do this is to
uncheck the field Show block in 3D window as. In the
Item library this is located in the Block Animation tab, as shown above right. This causes the block to have
no representation in the E3D window, no matter what object is selected in the object popup menu.

Another way to hide an object is to create a waypoint object
to represent the block. A waypoint is a special type of 3D
object that is invisible and just marks a position in the E3D
window; it is discussed on page 459.

Compared to making the object invisible, the advantage of using a waypoint is that the waypoint’s location
can be used for a particular purpose. For instance, one object could be made to move toward a waypoint,
although the waypoint would be invisible in the E3D window.

Objects that represent items
In a discrete event model, items move from one Item library block
to another. By default all items have a 3D object representation. By
unchecking an option in the Create block’s Item Animation tab, as
shown here, you can choose to not create objects in the E3D window to represent items. Note that the
model must be saved to save this change.

Scenery objects
A scenery object that has been created in the E3D window, but which does not correspond to a block in the
model, can also be hidden for a particular model or for a certain purpose.

The process for doing this is the same as for changing a scenery object’s posi-
tion property, as described in “Change object property values” on page 452. If
the scenery object’s visible property is displayed in the Inspector pane, unse-
lecting that property will cause the object to become invisible. Note that the
environment file would need to be saved.

Hiding a group of objects
You might want an entire group of blocks to not create objects in the E3D window. This is particularly true
for passing or decision blocks like the Set or Select Item Out blocks in the Item library.

Making an object invisible

Marking an invisible object

Making the items invisible

“Visible” property unselected

3D Objects 455
Changing object properties

E3D
Objects that represent groups of Item library blocks
Rather than hide each individual object, as described earlier,
you can use the 3D Controller block (Animation 2D-3D
library) to select a group of objects to be represented as way-
points. This causes the objects to not appear in the E3D win-
dow but to instead just have their positions marked.

The 3D Controller block’s 3D Options tab has several choices
for which category of block should be represented as a way-
point. The categories are based on divisions for the Item library blocks – all blocks (residence, passing, and
decision), passing blocks, decision blocks, or only Transport blocks.

☞ Although these options apply mainly to Item library blocks, custom blocks can be designated with those cat-
egories and the 3D Controller block will hide the representative objects.

Objects that represent 3D Scenery blocks
In the Scenery tab of the 3D Controller (Animation 2D-3D
library), you can choose to hide all objects that have been cre-
ated using the 3D Scenery block (Animation 2D-3D library).
This tab also has options for hiding the icon of the 3D Scenery
block in the 2D model and/or the footprint of the 3D object.

Showing an object
Since most objects are visible by default, the process for making them visible after they have been hidden is
the reverse of hiding them (see above).

The path object is one of the few that is invisible by default. Causing the path object to be visible in the
E3D window is discussed in “To modify path properties (optional)” on page 469.

Conditionally showing and hiding
Some common ways of showing and hiding an object in the E3D window are:

• With the 3D Text block (Animation 2D-3D library).

• Using the Animate 3D block from the Animation 2D-3D. (This is an advanced method; see page 483.)

• With equation blocks or programming with ModL code, as discussed in the Developer Reference.

3D text block
The input connector on a 3D Text block (Animation 2D-3D library)
can create text in the E3D window if certain conditions occur. To cause
the input connector to appear, select 3D object when input connector is
true in the block’s dialog. Then connect to the connector to cause the
sequence you want. During the simulation, the text will be shown in the E3D window if the value of the
input connector is >= 0.5; it will be hidden otherwise.

Rotate an object
Depending on the object, there are several ways a 3D object can be rotated:

• If the object was created by the 2D model:

• Change rotation settings in the corresponding
block’s Block Animation tab or in the Create block’s
Item Animation tab.

3D Controller: hiding objects

3D Controller: hiding scenery objects

Dialog option for 3D Text block

Options in Block Animation tab

456 3D Objects
Changing object properties

E3
D

• Set the object’s rotation using the Animate 3D block. (This is an advanced method; see page 483.)

• If the object hasn’t been created using the 2D model:

• Use the World Editor Inspector mode of the E3D Editor to rotate the object with the Gizmo or to
change the value of its rotation property

• Use an equation block or program with ModL functions (discussed in the Developer Reference)

 Scenery and other 3D objects created in the E3D window using the E3D Editor can be rotated using the
Editor, but a 3D object created by the 2D model can only be permanently rotated by changing block dia-
log settings or by using the Animate 3D block.

Use the Block Animation or Item Animation tab
If an object has been created by the 2D model, its rotation can be adjusted in the block’s dialog.

In the Create block’s Item Animation tab, or in any block’s Block Animation tab:

Enter numbers in the rotation field:

Close the block’s dialog

The object’s rotation value is saved when the model is saved

➠ For example, using the How To E3D model you created on page 448, try changing the rotation
field in the Block Animation tab of the Create block. Then close the block’s dialog to see the
effect on the door object in the E3D window.

☞ The rotation value is based on a 360 degree range; blank is the same as 0 or 360. For objects that have a nat-
ural front, that front will by default be facing forward (towards the positive Y direction) for the 0 or default
rotation setting.

Rotate the object using the World editor
If an object has been created using the E3D Editor, it can be rotated in the E3D window. To do this, either:

• Rotate the object with the Gizmo in any World mode

• Or, change the value of the object’s rotation property in the World Editor Inspector

The object’s rotation is saved when the environment file is saved.

To access the WEI
Open the E3D window

Access the E3D Editor by pressing F11

Select the WEI (World Editor Inspector) mode by choosing it in the
Window menu or pressing F3

Using the Gizmo
The Gizmo was introduced on page 435. Among other tasks, it can be
used to rotate objects.

Access the WEI, as shown above.

Select the object in the E3D window

Press the ALT key (Windows) or the Command (Apple) key (Macin-
tosh) while using the mouse to drag one of the Gizmo’s X/Y/Z arms. The arm will turn yellow when it is
selected.

Gizmo for Barrel object

3D Objects 457
Changing object properties

E3D
Save the environment file to save the changes, as discussed in “Saving changes” on page 459.

This rotates the object around the axis associated with the selected arm. Rotation around the Z axis is the
standard kind of rotation used in the ExtendSim libraries.

Changing rotation property values
The selected object’s rotation can be changed by changing the value
of its rotation property. The rotation property is expressed as four
numbers – the first three are factors and the fourth is an angle in
degrees. The three multipliers determine the amount by which the
object is rotated around its axis based on the angle number.

For example, a value of “0 0 1 90.0” means that the object is rotated
90 degrees around the Z axis. A value of “1 0 1 45.0” would mean
that the object is rotated 45 degrees around both the X and the Z axes.

The most common form of rotation in the ExtendSim modeling world is around the Z axis, as this will
rotate the front of the object on the flat plane.

To rotate the object using its rotation property:

Access the WEI, as shown above

Select the object in the E3D window

In the Inspector pane:

Change the values for the rotation property

Click the Apply button

Save the environment file to save the changes, as discussed in “Saving changes” on page 459.

Scale an object
Depending on the object, there are several ways a 3D object can be scaled:

• If the object was created by the 2D model:

• Change the scale settings in the corresponding block’s Block Animation tab or, for items, in the Cre-
ate block’s Item Animation tab.

• Set the object’s scale using the Animate 3D block. (This is an advanced method; see page 483.)

• If the object wasn’t created using the 2D model:

• Use the World Editor Inspector mode of the E3D Editor to scale the object with the Gizmo or to
change the value of its scale property

• Use an equation block or program with ModL functions (discussed in the Developer Reference)

 Scenery and other 3D objects created in the E3D window using the E3D Editor can be scaled using the
Editor, but a 3D object created by the 2D model can only be permanently scaled by changing block dialog
settings or by using the Animate 3D block.

Using the Block Animation or Item Animation tab
If an object has been created by the 2D model, its scale can be adjusted in the block’s dialog.

In any block’s Block Animation tab, or (for items) in the Create block’s Item Animation tab:

Enter a number in the scale field:

Properties for the Barrel object

458 3D Objects
Changing object properties

E3
D

☞ The scale is relative to 1 and a blank is the same as 1. Thus a scale of 2 would cause the object to be twice the
default size and a scale of 0.5 would cause it to be half the default size.

Close the block’s dialog

The object’s scale value is saved when the model is saved

➠ For example, use the “How To E3D” model you created on page 448. Change the scale of the
Activity block, then close the block’s dialog to see the effect on the machine object in the E3D
window.

Scale the object using the World editor
If an object has been created using the E3D Editor, it can be scaled in the E3D window. To do this, either:

• Scale the object with the Gizmo in any World mode

• Or, change the value of the object’s scale property in the World Editor Inspector

The object’s scale is saved when the environment file is saved.

To access the WEI
Open the E3D window

Access the E3D Editor by pressing F11

Select the WEI (World Editor Inspector) mode by choosing it in the
Window menu or pressing F3

Using the Gizmo
The Gizmo was introduced on page 435. Among other tasks, it can be
used to scale objects.

Access the WEI, as shown above

Select the object in the E3D window

Press both the ALT key and the CTRL key (Windows) or the Com-
mand (Apple) key and Option key (Macintosh) while using the mouse to drag one of the arms of the
Gizmo.

Save the environment file to save the changes, as discussed in “Saving changes” on page 459.

With this method, the scaling will be in the direction of the selected axis and will distort the shape of the
object. To scale an object in all three dimensions at the same time, change the values of the object’s scale
property in the World Editor Inspector, as described below.

Changing scale property values
An object’s scale can be changed by changing the scale property.
This property is displayed in the Inspector pane as three numbers,
each representing the object’s relative scale along an axis. Units of
scale are relative to 1 and associated with each axis in X, Y, Z order.
Thus a scale value of “1 1 1” indicates a scale of 1 for each axis.

Scaling an object from “1 1 1” to “2 2 2” would make it twice as big
along each axis. (This is the same as entering a value of 2 for a
block’s scale field, as discussed in “Using the Block Animation or Item Animation tab” on page 457.) If you
scale an object from “1 1 1” to “1 1 2” it will stretch along the Z axis but remain the same along the X and
Y axis. This would cause it to look taller but also a bit distorted. A scale value of “1.1 0.5 1.0” would indi-
cate that the item was scaled to 110% on the X axis, 50% on the Y axis, and 100% on the Z axis.

Gizmo for Barrel object

Properties for Create block’s object

3D Objects 459
Saving changes

E3D
To access object properties:
Access the WEI, as shown above

In the Inspector pane:

Change the values for the scale property

Click the Apply button

Save the environment file to save the changes, as discussed in “Saving changes” on page 459.

Saving changes
If you create objects or change their properties, you probably want to save those changes. There are two
issues you should be aware of when saving changes:

• Objects that have been created by the 2D model, as well as any changes to the properties of those objects,
are saved when the model is saved. For instance, if you move an object in the E3D window, and the object
is associated with a block in the 2D model, that position change is saved when the model is saved. Fur-
thermore, saving the model saves the name of the associated environment file; if the environment file has
been renamed, the new name will be saved with the model.

• If you’ve used the E3D Editor to create paths or objects in the 3D window, or you have made changes to
the properties of those objects, you will need to save the environment file to keep your changes. Either
create a new environment file or save changes to an existing one, as described below.

☞ To save the changes made to object properties using the E3D Editor, you must first Apply the change, then
save the environment file.

Saving an environment file
With the E3D window as the active window:

• If the model’s current environment file is the default Extend3D.mis file, you will not be permitted to
make changes to the environment file. Instead, with the E3D Editor as the active window, give the com-
mand File > Save Environment As and save the environment file under a new name.

• For any other environment file, with the E3D Editor as the active window, use the File > Save Environ-
ment command to save changes.

You can name the file any name you want. It will be saved in the same directory or folder as the model is
located.

If the model uses a new environment file, or a renamed environment file, you must also save the model.
This ensures that the model will be associated with the proper environment file.

☞ You will not be able to save changes to the default Extend3D.mis file; you must use the Save Environment
As command instead. Furthermore, the Save commands in the E3D window or E3D Editor window do not
affect any changes made to the 2D model.

WayPoints
A waypoint is a special type of 3D object that marks a position but is invisible in the E3D window. Way-
points are useful for keeping non-essential blocks from being represented as visible objects in the E3D win-
dow. They are also helpful for marking positions as destinations for object movement in the E3D window.
They can be given labels to act as signage for the animation.

Creating a waypoint
There are several ways to create waypoints:

460 3D Objects
Mounting objects

E3
D

• Select Waypoint as the 3D object for any Item library block

• Use the 3D Scenery block (Animation 2D-3D library)

• Create a waypoint in the E3D Editor

☞ Waypoints can never be made visible in the E3D window but their labels will be visible.

Create a waypoint object in an Item library block
A waypoint object is created the same way any other object is created, as is shown for the Create block on
“Using an Item library block” on page 445.

In the E3D Editor
Accessing the E3D Editor’s World Editor Creator:

Access the WEC as was done in “Accessing the E3D Editor” on page 448

Creating the waypoint object
In the Creator Tree (the lower pane on the right):

Open the Shapes category

Open the Markers sub-category

Click the WayPointMarker object

This will create a waypoint in the E3D window’s animation area. The location
will be marked but no object will appear in the E3D window.

Choosing a waypoint as a destination
If a block is represented by a waypoint in the E3D window, that waypoint will
automatically be chosen as the destination for items traveling to the block. To
specifically target a waypoint as a destination for item objects that don’t travel through the block, use the Set
Waypoint option in the Animate 3D block (Animation 2D-3D library).

Mounting objects
The process of attaching one 3D object (the “rider”) to a certain point on another 3D object (the “mount”)
is known as mounting.

Each 3D object has one mounting node and at least one mount point.

• The mounting node is the rider object’s location that will be attached to the mount object. For instance,
a Suitcase object’s handle is its mounting node.

• A mount point is the location on the mount object where the rider object can be attached. In the case of
Male and Female mount objects, you would usually attach the handle of the Suitcase to their hands
(mount point 1), rather than to their heads (mount point 0).

In many cases, mounting is performed automatically by the blocks. For example, the Activity block will, by
default, mount the 3D object that represents the items being processed onto the block’s 3D object.

Furthermore, mounting causes some automatic actions. For instance, mounting a Box object onto a Male
object automatically attaches the Box to the mount point on the Male object. The Male object then adjusts
its animation to change its hand position, so that it looks as if it is holding the Box. If the Male is then given
a destination, the Box will travel along with the Male object.

An object that represents an item can be mounted on an object that represents a block. Likewise, any 3D
object can be mounted on the objects that represent items. And while it is not a requirement, an object that
has been mounted on another object can also be unmounted.

Selecting a waypoint

3D Objects 461
Mounting objects

E3D
Item object on block object
An object that represents an item can be mounted on an object that represents a residence-type block.

• For Activity and Workstation blocks (Item library), the item's object is mounted by default on the block's
object for the duration of the activity. This option can be turned off in the block's Item Animation tab. If
the option is not checked, the item's object will move up to the block's object but will not mount it.

• Until they are released, objects that represent items automatically mount the object representations of
Queue and Resource Item blocks (Item library). This is the blocks' default behavior and cannot be turned
off.

In QuickView mode, item objects will mount on top of each other when they reach a residence-type block's
object. In Concurrent or Buffered mode, they will either mount or line up and move along a path, depend-
ing on the block and various settings in its dialog.

An example of an item object being mounted onto a block object is in
the Airline Security model, located at \Examples\3D Animation. In the
hierarchical block labeled “Metal Detector”, the objects that represent
passengers are mounted to the Detector object for the length of time it takes for that part of the process.
This is accomplished by choosing in the Activity block to Mount item while activity is ongoing.

☞ Item objects are not mounted on the Convey Item or Transport blocks. Instead, item objects use the from
and to location information set in the block’s dialog. This causes the item object to be displayed as moving
along the path represented by the block’s object.

Object on item object
You may want to mount an object on an object that represents an item. For example, to mount a piece of
paper on a customer in a bank line or to mount a suitcase on a passenger at an airport.

Mounting an object on an item object is usually accomplished using an Animate 3D or 3D Scenery block
(Animation 2D-3D library) and is sometimes done within a hierarchical block to minimize the details at the
top level.

An example of an object being mounted onto item objects is in the Airline Security model, located at
\Examples\3D Animation.

In the hierarchical block that looks like a
door, two Animate 3D blocks create a
Suitcase object and then mount it onto
the object that represents the person
entering the airport. The mounting is

accomplished by attaching a rider object (Suitcase)
onto the mount object, as seen above. The mount object is referenced by the _3D objectID property of the
items that pass through this block; the value of the property is the value of the object’s ObjectID (discussed
below). Note that at this point the Suitcase object is not associated with an item or block in the 2D model.

Scenery object on scenery object
An example of a scenery object being mounted onto another scenery
object is in the Airline Security model, located at \Examples\3D Anima-
tion. The Equation block (Value library) just to the right of the “Passport
control” section is used to mount the person representing the passport
inspection officer to a chair object. The officer and the chair objects are both placed in the model through
the use of 3D Scenery blocks (Animation 2D-3D library). The 3D Scenery blocks output the value of the
_3D objectID property of their respective items to the input connectors on the Equation block. Since the

Mounting function with arguments

462 3D Objects
Other object information

E3
D

value of the _3D objectID property references the object, this information can be used to mount the pass-
port officer onto the chair.

Other object information
As mentioned earlier, objects have too many properties to fully discuss in this documentation. Some addi-
tional information is summarized below.

Collision
The collidable property defines whether an object that represents an item will respect the physical bound-
aries of other objects or if it will be allowed to pass through the other objects. If an object’s collidable prop-
erty is set to True, the object will stop before moving into the physical space of other objects in the E3D
window. If collidable is set to False, the object will be allowed to move through other objects in the E3D
window.

By default, the collidable property of item objects is set to true in the Item Animation tab of
the Create block (Item library). The Block Animation tab in other Item library blocks has a
checkbox for selecting whether the block object is collidable. The collidable property can also be accessed
from the WEI.

Gravity, friction, and momentum
Gravity is implemented in ExtendSim for certain types of objects and not for others. People and vehicles
(for instance, the Shapes > Vehicles and Shapes > Person objects of the WEC) will respect gravity. If created
at a height, or made to travel to a Z location higher then 100, these objects will drop back down to the
ground. Other objects, such as the ExtendItem, Blocks, and Scenery objects in the Shapes category of the
WEC, will not be effected by gravity. Instead, they will be able to travel along at a fixed height, or even
travel to a different height, by simply setting a Z location higher then 100. In the Boids example, located at
\Examples\3D Animation, Boid objects fly through the air by just setting 3D destination locations.

To maintain the constant speeds associated with making travel times match simulation times, the concepts
of friction and momentum are not implemented in the objects that travel from location to location in
ExtendSim.

Sound
The E3D window supports objects playing sounds. Sounds can either be associated with
objects in the E3D window or they can be played by ModL function calls.

Use the Edit > Options > 3D tab to globally disable and/or enable sounds in the E3D window; they are dis-
abled by default. If the object has ambient sound, and if Enable animation of 3D object has been selected
in the block’s Block Animation tab (it is enabled by default), the sound will be played when the simulation
is run.

The machine object is an example of an ambient sound. To see this, open any model that has an Activity
block represented in the E3D window by the machine object, such as the Production Line Final model
located at \Examples\Tutorials\E3D Animation\Production Line. Select Sounds in the Edit > Options > 3D
tab and run the simulation. While the machine is running, you will hear an active machine sound.

Sounds played in the E3D window are represented as 3 dimensional sounds. If you move the camera in the
E3D window closer or further from the machine, or turn to the left or right, the volume and direction of the
sound will change accordingly.

3D Objects 463
Other object information

E3D
Object ID
An ObjectID is a unique value associated with an object that the E3D environment uses to identify the
object. Every object has an Object ID, including GUI objects such as the camera, and objects created by a
model’s blocks, by the E3D Editor, or by programming.

The value of the ObjectID is the main identifier that the E3D window uses to identify the objects it needs
to support. For example the camera object, mentioned in “MiniMap and camera” on page 397, has an
objectID. Knowing this allows you to call any of the other ModL functions that take an ObjectID value on
the Camera. You could then use this information to dynamically set the position of the camera while an
object is moving, so the camera follows along with the moving object.

For objects that represent items, the value of their ObjectID is stored in their _3D objectID property. This
allows you to perform actions on item objects by referencing that property.

BlockNumber
The BlockNumber property is defined in the WEI, but is not available through the dialogs of blocks in the
Item Library. This property is used to contain the block number of the block from the 2D model that cre-
ated the 3D object. It is used internally by the Item library block code and is not something that you will
ever want to change. However, viewing it can be useful for informational or debugging purposes.

GroupTag and UserTag
Like the BlockNumber, the GroupTag and UserTag properties are used internally by the block code of the
Item library blocks. They are described in the Developer Reference.

464 3D Objects
Other object information

E3
D

3D Animation

Movement, Paths, and Terrains
Creating paths and modifying terrains

466 Movement, Paths, and Terrains
Traveling time

E3
D

This chapter shows how to:

• Use the Transport and Convey Item blocks to represent item movement and travel time

• Create custom pathways for items and other moveable entities to travel

• Change the terrain

☞ This chapter assumes you have read all the Tutorial chapters for the E3D module and the “Environment
Files & E3D Editors” chapter. Example models for this chapter are located in the folder \ExtendSim\Exam-
ples\3D Animation.

Traveling time
In a discrete event model, items move from block to block as dictated by the connections. These connec-
tions indicate the direction of movement, but they don’t provide any delay for the items. If travel time is sig-
nificant, it is common to either:

• Increase the delay time of destination blocks to compensate for the travel time

• Specify a minimum wait time in a Queue block’s Options tab to simulate travel time

In a logical model, these approaches work well for simulating behavior and result in correct item travel
times. When the model is animated in 2D or 3D, however, item/objects visually jump from block/object to
block/object. This is rarely what you would want to see.

Instead of implying a travel time, it can be explicitly set in a Convey Item or Transport block (both from the
Item library). When the model is then animated, multiple items will move simultaneously at a certain speed
from one point to another, rather than jumping from object to object. The Transport and Convey Item
blocks are the primary way to show multiple 3D objects moving at the same time in the E3D window.

☞ The Behavior and Options tabs of the Convey Item and Transport blocks are discussed in “Transportation
and material handling” on page 185.

Setting travel time in a Transport or Convey Flow block

Simultaneous item movement
If the Add connection line animation command is enabled in the Run menu, 2D animation shows items
moving from block to block. To show events as they occur, items do not move simultaneously and the
movement is displayed without a time delay.

When a model is animated in 3D using the QuickView mode, the 2D animation is directly translated into
3D animation and 3D item objects will likewise move from one 3D block object to the next without any
time delay.

To have an animation where items don’t jump from one block to another, you need to show items moving as
they are delayed. You do this by setting a travel time in either a Transport or Convey Item block. This results
in an animation delay that corresponds to the time that the item spends in transit from one block to
another.

There are two methods to add a travel time delay:

• Right-click a block’s item output connector and choose “Add Transport following this block”. A Transport
block will be inserted between the output connector of that block and the input connector of the next
downstream block.

• Add a Convey Item or Transport block (Item library) to the model as you would any other block.

For 2D animation, to view the simultaneous movement of items in the model:

Movement, Paths, and Terrains 467
Creating paths

E3D
Use a Transport or Convey Item block to represent the item’s travel time.

Check 2D animation shows
simultaneous item movement in
the block’s Item Animation tab.

Unselect the command Run > Add Connection Line Animation. (This command is not compatible with
simultaneous item movement.)

For 3D animation, to see the simultaneous movement of items in the E3D window:

Use a Transport or Convey Item block to represent the item’s travel time.

• Give the command Run > Simulation Setup > 3D Animating tab and select either the Concurrent or
Buffered modes. These modes force the simulation model to maintain a constant ratio between simula-
tion time and external clock time.

In 3D animation, the movement will be either along the connections or in a straight line, as specified in the
Convey Item or Transport block’s Options tab.

Creating paths
The purpose of a custom path is to set a pre-defined route for objects to travel through the 3D world. In a
3D animation of a discrete event model, item objects move from one destination to another, so paths are
not required. They are, however, frequently created for situations that involve intricate traffic patterns or
models that use custom-built blocks.

Paths and markers
A path is a route for an item or other entity that has movement. Each path is a collective object composed of
multiple steps, or markers, laid out in a predefined order towards a destination. Paths are created using the
E3D Editor in World Editor Creator mode and become a part of the E3D environment. They are never vis-
ible in the 2D model; by default they are also not visible in the E3D environment.

There are two ways to create paths:

• With the E3D Editor in World Editor Creator (WEC) mode, as shown in this section.

• Using an equation block or programming with ModL functions, as discussed in the Developer Reference.

Markers
A marker is a point on a path, indicating a step towards the destination. A path can contain as many markers
as you want; it can even contain just a single marker.

Markers have their locations specified in X/Y/Z dimensions. Certain objects in the ExtendItem category of
objects (such as people and vehicles) will ignore the Z dimension by default, but other objects do not.
Because objects in the ExtendItem category are most often used to represent items, and because objects that
don’t need the Z dimension will ignore it, the Z locations of markers should always be set to the correct
value.

☞ The default height of the ground in the E3D window is 100 meters and the default height (Z dimension) of
3D objects is 100.1.

The steps to creating a path include:

1) Create a new environment file, if necessary

2) Create a path object in the WEC

3) Create marker objects for the path

468 Movement, Paths, and Terrains
Creating paths

E3
D

4) Modify path properties in the WEI (optional)

5) Save the environment file

6) Store the path in the SimGroup - Paths folder (optional)

7) Set the movable object on the path

8) Save the model

 If you create or modify a path, and you want that path available for the model, you must save a new envi-
ronment file as discussed in “Saving changes” on page 459.

To create an environment file
Paths are created using the E3D Editor. They do not have a correspondence to the 2D model and must
therefore be saved in the environment file.

If the model uses the default environment file, Extend3D.mis, you will need to create a new environment
file or save the default file using the File > Save Environment File command. If instead the model uses a cus-
tom environment file, you just need to save it each time it is modified.

Full instructions for creating and saving an environment file start on page 459.

To create a path object
Open the HowToE3D model that you modified and saved on page 448

The E3D window for this model will automatically open when the model opens.

Access the E3D Editor by pressing F11

Select the WEC mode by pressing F4

In the WEC Creator Tree (the lower pane on the right):

Open the Mission Objects category

Open the Mission sub-category

Click the Path object

In the dialog that appears, name the path “Path 1” and click OK to close the dialog

To create markers
In the WEC Creator Tree:

Open the Mission Objects category

Open the Mission sub-category

Click the PathMarker object

In the dialog that appears, name the marker “Marker A” and click OK to close the dialog. Marker A
will appear in both the animation area and the Tree pane.

Click and drag Marker A within the Tree pane until it reaches and selects the name of the desired path –
in this case, Path 1. The path’s name will be highlighted when it is selected.

Movement, Paths, and Terrains 469
Creating paths

E3D
This will both create a folder named Path 1 and store Marker A within that
folder.

In the animation area, use the Gizmo to position the marker at the appropri-
ate X/Y/Z location

Create additional markers until you have as many as you need for this path,
storing them in the Path 1 folder

Save the environment file

To modify path properties (optional)
Like other E3D objects, paths have properties that can be modified using the
E3D Editor or through ModL functions. A path’s properties are most com-
monly changed to make it a looping path or to cause it to be visible in the E3D
window.

To change a path’s properties, use the WEI:

• Select the path’s folder in the Tree pane, as shown at the right.

• In the Inspector pane, find and change the property – looping or
visible, as discussed below.

• Click Apply to save the property change

• Save the environment file

Looping
Each path has a property that determines whether or not it is a
looping path. If the path is looping, an object on the path will
return to the first marker after it reaches the last marker. To
cause a path to be looping:

Select the path in the WEI Tree

In the WEI Inspector pane:

Check the IsLooping property checkbox

Click Apply

Save the environment file

Visible and colored paths
By default, paths are not visible in the E3D window (they are never visible in the 2D model). Setting a path
to visible will display the path in the E3D window. A visible path can also have a color. To cause a path to be
visible:

Select the path in the WEI Tree

In the WEI Inspector pane:

Check the visible property checkbox

Click Apply

Save the environment file

Changing the color of a path changes how it displays in the E3D window when it is set to be visible. To
cause a visible path to have a color:

Path folders with markers

Path selected in Tree

Path properties: looping and visible

470 Movement, Paths, and Terrains
Terrains

E3
D

Select the path in the WEI Tree

In the WEI Inspector pane:

Enter a 1 (true) or a 0 (false) for the Red, Green, and/or Blue color properties

Click Apply

Save the environment file

 If you create or modify a path in the E3D Editor, and you want that path available for the model, you must
save the environment file as discussed in “Saving changes” on page 459.

To store the path (optional)
Notice that, by default, a path does not have a representation in the animation area, but it is listed in the
Tree pane at the top right of the window. To store all paths in one location:

In the Tree pane, click and drag the path to within the SimGroup - Paths folder.

Save the environment file.

☞ Paths do not have to be stored in the SimGroup - Paths folder, but it is a good collection point if you have a
lot of paths.

To set the item or moveable entity on the path
There are several ways to set items on a path:

• Using a Transport or Convey Item block (Item library). An example of this, using a Transport block, is
shown in “Select the path” on page 428.

• Animate 3D block (This is an advanced method; see page 483.)

• Using an equation block, or program with ModL code as described in the Developer Reference.

Terrains
By default, the Extend3D.mis environment file has only one texture painted on the entire terrain floor – the
Grid texture. Furthermore, the default terrain is a flat surface. However, terrains can be customized to have
contours as well as multiple textures (color and patterns). As introduced on page 438, terrains are created
and modified using the E3D Editor in Terrain mode.

☞ If there is no texture associate with the terrain, or if the texture cannot be located, the terrain will appear
white.

The commands in the Action menu are used in conjunction with the commands in the Brush menu to
modify or create custom terrains. As an example, if you select the Add Dirt command, move the cursor to
the center of the viewing area, and click the left mouse button, you will be “adding dirt” to the terrain. This
will have the effect of creating a small mound under the brushed area. How long you hold down the mouse
button effects how much dirt is piled up. Each Action has a different behavior and between them all you
have a lot of editing control over the terrain.

To do this, choose the Select command and click the terrain with the left mouse button, selecting the terrain
under the brush. The selection area is indicated by squares (nodes) that are drawn at each point where the
brush touches the terrain, turning from outlined to solid. Clicking again on other sections of the terrain will
add them to the selection. Clicking while holding down the Ctrl key will remove the nodes under the brush
from the selection. After selecting whatever portion of the terrain you wish, select the Adjust Selection menu
command to raise and lower that selection. When this is selected, moving the mouse forward will raise the
selected terrain, and moving the mouse backward will lower it.

Movement, Paths, and Terrains 471
Terrains

E3D
☞ The Action and Brush menu commands are described starting on page 485.

Modifying the terrain
For example, to modify the terrain or “floor” of the E3D window:

With the E3D window the active window, click F11 to access the E3D Editor

In the E3D window, choose the command Window > Terrain Texture Painter

On the right side of the window, the Texture pane appears with six slots for selecting textures. (The Tex-
ture pane is shown on page 440.) Notice that, by default the Grid texture has been selected. This is the
default texture for the default (Extend3D.mis) environment file.

Click the Change button below the Grid texture pane

In the Open File window that appears, expand the Extend 3D folder by clicking the + sign.

Expand the data folder by clicking the + sign

Within the data folder, select the terrains
folder so that the textures appear to the
right, as shown in the screenshot to the
right.

Select the GridGreen texture and click
Load. The floor will change to a green
colored grid.

Press F11 again to leave the Editor

To save the environment file, see “Saving
changes” on page 459.

☞ As with custom paths, changing the terrain
is a modification of the environment file. To
save terrain changes, the environment file
must be saved.

 No two slots can have the same texture.
When changing or adding a texture, the
new texture must be different from those
already in any slot. Otherwise, the new
selection will not have any effect. For
instance, there will be no effect if you try to
change the “Grid” texture to the “Grass” texture, and there is already a slot with “Grass” as its texture.

Textures for terrain

472 Movement, Paths, and Terrains
Terrains

E3
D

3D Animation

Tips and Reference
Tips, and explanations of dialogs and commands, for 3D animation

474 Tips and Reference
Tips

E3
D

This chapter is has some E3D tips and provides reference for the E3D environment. It covers:

• Tips when calling 3D functions from equation blocks

• Performance considerations

• ExtendSim commands and options for 3D animation

• The Animation tabs – Animate Item and Animate Block

• 3D enabled blocks in the Animation 2D-3D library

• Menus in the E3D Editor

☞ The four controls located along the top of the E3D window are described in “Interface controls” on
page 396.

Tips

Using an Equation block to call E3D functions
E3D functions, such as E3DCreateObject or E3DPostCreateObject, can be called from an equation type
block. This adds tremendous flexibility to your 3D modeling capabilities. However, the E3D animation
mode that is currently enabled (QuickView, Concurrent, or Buffered) impacts the functions that you will
want to call, especially when referencing 3D objects that represent items. (For a description of the three ani-
mation modes, see “3D Animation tab of Simulation Setup dialog” on page 477.)

Most E3D functions have a “post” and “non-post” version. The difference is that the post version of a func-
tion includes a time argument that allows the E3D engine to synchronize the real time to the 3D animation
time. For example, the two functions E3DCreateObject and E3DPostCreateObject differ only in that
E3DPostCreateObject has a time argument. The time argument is nearly always set to “CurrentTime”, the
current simulation time.

3D objects that represent items
• If the E3D mode is Concurrent or Buffered, then you should use the post type functions when dealing

with 3D objects.

• In QuickView mode, where 3D actions happen immediately without a real-time synchronization, you
should use the functions that operate on the 3D item object immediately.

3D objects that represent blocks or scenery
When the 3D objects represent blocks or scenery and the E3D mode is Concurrent or Buffered, use the post
functions if you want to change them at a specific point in time. If you are not concerned about time (for
example you want to create an object, rotate, or mount an object when the model opens), you can use the
non-post functions.

☞ In general, you should not use the post functions when the simulation is in QuickView mode.

Hierarchical blocks and 3D animation
By default, hierarchical blocks and the blocks within them have no representation in the E3D window. To
cause a block within a hierarchical block to have an object representation, select an object in the block’s
Block Animation tab and also select the option Link to enclosing H-block.

Items stack on top of each other
If multiple items arrive within the same simulation time unit, they will stack on top of each other. You may
not want this behavior unless this is how your system behaves.

Tips and Reference 475
E3D commands, options, and settings

E3D
The exponential arrival distribution can result in arrival times that are extremely short, causing items to
arrive at exactly the same time. To prevent this, enter some small number, such as 1.0, as the Location
parameter.

This changes the minimum arrival time to one item per time unit, a more realistic minimum for item arriv-
als in 3D. You could experiment and make the Location parameter a little less, but if it is too small, item
objects could collide and stack when they arrive.

Performance Considerations
The E3D window is doing a complete textured rendering of a complex 3D environment. The performance
of the animation is directly related to the number of objects being rendered and the capability and sophisti-
cation of your computer.

Suggestions for improving performance
There are several things that you can do to improve performance if the E3D window is feeling sluggish or if
the 3D rendering is not able to keep up with the speed of the commands from the ModL code.

1) The first thing to consider is the capability of your computer’s graphics card. It is critical to have a mod-
ern, powerful graphics card in your machine for any 3D graphics application. The 3D rendering done
by the E3D window is comparable to the rendering done by 3D gaming software, so buying a card that
is recommended for running a modern game is advised.

2) The number of objects being rendered in the E3D window at one time is one of the key factors that
determine how much work the E3D window is doing. ExtendSim will not impose a limit on the num-
ber of objects you can try to put on the screen at one time, but displaying a large number of objects in
motion can cause the 3D animation to slow down.

3) Shadows can be enabled or disabled from the Options dialog’s 3D tab. They are cosmetic and add to the
visual impact of the rendering of the 3D world, but are disabled by default since they will increase the
load on the 3D graphics card and processor.

4) The 3D tab of the Options dialog also has a setting that allows you to choose the level of detail (LOD)
of the 3D objects rendered in the 3D window. If you are not having performance issues, you should
probably leave this popup menu on the Very High setting. If you are having performance issues you can
try turning it down to High or Medium. The Low setting is not recommended unless you are running
with very many objects, or on a machine that is not very capable. On the Lo' setting many objects will
not look well defined.

5) The Item Animation or Block Animation tabs show moving previews of 3D objects. Leaving these tabs
open while the animation is running will impact performance.

E3D commands, options, and settings
ExtendSim has many application-level commands, settings, and options that affect the appearance of the
E3D window and the behavior of the animation.

Opening the E3D window
Since the commands to display 3D animation are linked to each other, the E3D window automatically
opens whenever the associated model opens:

• If the command Run > Show 3D Animation has been checked for that model

476 Tips and Reference
E3D commands, options, and settings

E3
D

• Or, if Show 3D animation during simulation run has been checked for that model in the Run > Simu-
lation Setup > 3D Animation tab

To manually cause the E3D window to open, do one of the following:

• Give the command Window > E3D Window

• Or, click the Open E3D Window tool in the toolbar

• Or, click Ctrl+3 (Windows) or command+3 (Macintosh)

☞ A model must be open for the E3D window to open. Also, it may take some time for the E3D window to
initialize and open.

3D tab in Options dialog
Selecting the command Edit > Options > 3D tab displays the
dialog on the right. This tab has several settings that control
aspects of the E3D window.

☞ These settings apply to every 3D animation, not just the one
associated with the currently active model.

• Shadows. Checking this option causes objects in the E3D
window to cast shadows. By default this option is not selected
since calculating shadows is computationally intensive and can
slow the animation.

• Sounds. Enables objects with sound capability to make a sound. Some of the 3D objects have ambient
sounds and, if you program, there are ModL functions associated with playing sounds from the E3D win-
dow.

• Footprints & vehicle trails. These are cosmetic additions to the displaying of the 3D objects. The foot-
prints are left after the motion of people objects and the vehicle trails after the motion of vehicles such as
cars or forklifts.

• MiniMap. This option toggles the displaying of the MiniMap on the E3D window; it is checked by
default. This map is quite useful for location information when building a model, but may not be neces-
sary for presentation.

• 3D window outside application (Windows only). By default, the E3D window behaves like a child win-
dow of the ExtendSim application. In the default behavior, the window resides within the ExtendSim
application window just like any other ExtendSim window. If the option is checked, the E3D window
will act like an independent application window and, after restart, will float outside the ExtendSim appli-
cation window. (This option is not needed for the Macintosh because the E3D window is always outside
of the application window.) This option is useful if you have multiple monitors.

• Level of detail. This popup controls the level of detail (LOD): Very High, High, Medium, or Low) with
which 3D objects are displayed in the E3D window. The choice determines the number of polygons that
are drawn for each 3D object; it does not affect the background of the E3D window. In most cases you
should just leave this on Very High (the default). You might want to change this option is if there are
many objects on the screen and the display of models in the E3D animation is slow.

☞ If the LOD is set to one of the higher settings, the detail is automatically adjusted based on the camera’s dis-
tance from the object. In that case, the object will be displayed with a low LOD if viewed from a far dis-

3D tab in Options dialog

Tips and Reference 477
E3D commands, options, and settings

E3D
tance. If the LOD is set to Low, the object will be displayed at a low LOD whether the camera is close to it
or not.

3D Animation tab of Simulation Setup dialog
Selecting the command Run >
Simulation Setup > 3D Animation
tab displays the dialog on the
right. This tab has several settings
that control the behavior of the
E3D window.

☞ These settings apply only to the
currently active model.

• Show 3D animation during
simulation run. This option
causes the E3D window to open
when the model opens. If the
E3D window is subsequently
closed, it will reopen during
model initialization when the
simulation is run. If this option is not checked, you will need to open the E3D window manually before a
simulation run.

• Select mode. Defines how the E3D window and the simulation interact. There are three modes:

• QuickView. This default mode allows a simulation model to display its behavior in the E3D win-
dow almost “as is”. Most of the model’s blocks will have a representation in the E3D window; a
block’s location in the 2D model will determine the location of the corresponding 3D object. Simi-
lar to the 2D animation of the simulation model, only one object will move at a time in the E3D
window. Furthermore, object movement in the E3D window is not an accurate reflection of timed
item movement in the 2D model – there is no direct correlation between simulation time, anima-
tion time, and real time.

• Concurrent. This mode is most commonly used for a model that has been designed to specifically
support E3D functionality. In this mode, multiple objects can be moving in the E3D window at
one time and the locations of the objects in the E3D window do not have to correspond to the loca-
tion of the model’s blocks. In addition, the timing of 3D object movement is directly related to the
travel time of items in the 2D model – animation time is based on the ratio of simulation time to
real time.

• Buffered. Buffered mode is a variation on concurrent mode where the information about what
should happen in the E3D window is stored in an internal buffer and then replayed later. When the
simulation model completes running, the buffered information will be complete as well and the 3D
representation will be stored. At this point, a “start” button will appear in the E3D window. When
the start button is clicked, the 3D visualization of the simulation will begin. You have to wait for the
simulation to complete before the animation will begin. But because the model is not running while
the E3D window is animating, the performance of the 3D animation might be better than for Con-
current mode.

The selected mode is shown in the title bar of the E3D window.

3D Animation tab in Simulation Setup dialog

478 Tips and Reference
Dialog tabs for animation

E3
D

• Environment file. Selects a file that specifies the appearance and behavior of the background for the E3D
window. The default is the “Extend3D.mis” file – an empty, unbounded 3D world with a cloudy sky and
a gridded flat floor. This file will also be used if the field is left blank. You can also create custom environ-
ment files as described in greater detail in “Saving changes” on page 459.

• Define conversion ratios. These ratios specify the relationship for distance and time between the E3D
window and the simulation model. In most cases the default values will not need to be changed.

• The units of distance in the E3D environment are in meters while distance in the model worksheet
can be stated in pixels. The distance ratio defines how many pixels in the 2D worksheet represent
one meter in the E3D window. The distance ratio defaults to Distance: 20 pixels per meter. For
models that use a direct relationship between the two windows, each 20 pixels of distance in the
model worksheet will translate to one meter of distance in the E3D environment.

• The time ratio controls the 3D animation’s display speed for the Concurrent and Buffered modes;
the value of the ratio is reported in the E3D window’s title bar. (Since simulation time equals anima-
tion time for the QuickView mode, the time ratio is ignored for that mode.) For the Concurrent
and Buffered modes, animation time in the E3D window is related to model simulation time by the
time ratio. By default the ratio is defined to be Time: 1 time units per second (one simulation time
unit to one second of real time). This means that if a simulation is set to take 60 time units and the
3D animation is being displayed in Concurrent mode, the display in the E3D window should take
1 minute. The time ratio value, and the animation speed, changes if you click the Faster or Slower
buttons on the E3D window.

Dialog tabs for animation
The main dialog tabs that affect 3D animation are:

• Item Animation

• Block Animation

• Transport Animation

Most of the blocks in the Item library, as well as the Tank and Interchange blocks (Rate library) and the Ani-
mate 3D block (Animation 2D-3D library), have Item Animation and Block Animation tabs. The Convey
Item and Transport blocks (Item library) also have a Transport Animation tab.

Item Animation tab
This tab is for choosing objects to represent items in the E3D window. If a block has an Item Animation
tab, the tab has a core set of options that are the same for each block. Some blocks have additional options
that are explained below.

Core options
The item options create an object to represent the item as it leaves the block. The options are:

• Do not change item animation. The 3D object is the same for the item leaving the block as when the item
entered the block.

• Change all items to. Allows you to select an object to represent each item that leaves the block.

• Change item animation using property. You can choose which object will represent which item based on
the item’s properties (attributes, priority, and so forth).

These options are discussed in “Selecting an animation picture” on page 552.

Tips and Reference 479
Dialog tabs for animation

E3D
Create blocks
The Create block has choices for the
Item Animation tab that are not
present in other Item library blocks:

• Represent items as objects in 3D
window. When this option is
checked, a 3D object will be created whenever this block generates an item. If it is not checked, no object
is created to represent the item. (The list of objects to represent items is shorter than the list of all
ExtendSim objects; only objects with a group tag of items, players, and wheeled vehicles can be used to
represent an item in this block.)

• Rotation. Sets the rotation in degrees of the 3D item object around the Z axis.

• Scale. Sets the scale in the X/Y/Z dimensions of the 3D item object relative to its natural size, which has a
scale of 1.

• 3D Position. When checked, changes the initial position of the 3D object to the specified X, Y, and Z
coordinates. Leaving a coordinate blank will use the location of the 3D block object as the coordinate for
the 3D item object.

• Collidable. When enabled, the 3D objects will collide with each other and not occupy the same 3D area.
This is useful for representing items waiting in a queue. If this is not checked, 3D objects can occupy the
same 3D space. This option is only relevant to the concurrent and buffered modes.

Batch blocks
Batch blocks provide two choices on their Item Animation tabs for what should happen to the 3D object
when two or more items are batched together:

• Create new 3D animation object. A new 3D object will be created to represent the items that have
arrived to this block. If Do not change item animation is selected in the Item Animation tab (the default
setting), the 3D object will be determined by the _animation attribute option in the block’s Properties
tab. This can be overridden by choosing Change all items to or Change item animation using property
to change the animation object in the Item Animation tab.

• Mount objects (preserve uniqueness required; not available in QuickView). The original 3D objects
coming into the batch block are mounted onto a base object. The base object corresponds to the 3D
object associated with the first item to arrive at the connector that has been selected by The base object is
the item from the connector.

Activity and Workstation blocks
The Item Animation tabs of Activity and Workstation
blocks have these additional 3D options:

•Mount item while activity is ongoing. Mounts the 3D
item object on the 3D block object while the activity is running. For instance, this could be used to show
parts being processed by the Machine object.

• Unmount [-X, +Y, -Y, +X]. If Mount item while activity is ongoing is enabled, this specifies the direction
that the mounted object will initially move to when it is unmounted.

• Distance (m). If Mount item while activity is ongoing is enabled, this specifies the distance that the
mounted object will initially move when it is unmounted. The direction is determined by the Unmount
[-X, +Y, -Y, +X] option.

480 Tips and Reference
Dialog tabs for animation

E3
D

Block Animation tab
This tab is used to create a 3D object to represent the block in the E3D window.

Core options
The following options are common
to the Block Animation tabs of Item
library blocks.

• Show block in 3D window as.
When this option is checked, a
3D object will be created to rep-
resent the block. If it is not
checked, no object is created. The
popup menu provides a choice of
objects to represent the block. Choosing a waypoint object causes an invisible marker, instead of a visible
object, to be created in the E3D window to represent the block.

• Rotation. Sets the rotation in degrees of the 3D item object around the Z axis.

• Scale. Sets the scale in the X/Y/Z dimensions of the 3D item object relative to its natural size, which has a
scale of 1.

• 3D Position (X, Y, Z). If Link 2D/3D is enabled, displays the position in the 3D window of the 3D
object for this block. If Link 2D/3D if turned off, the fields can be used to set the position of the 3D
object in the 3D window.

• Collidable. Turns on the collidable flag for the 3D object representing this block. When collidable is
enabled, other 3D objects will be prevented from occupying the same 3D space as this object.

• Z is ground level. Sets the Z coordinate to whatever ground level has been set to. This is useful if ground
level has been changed from the default of 100 meters.

• Link 2D/3D positions. Links the locations of the block in the 2D model worksheet with the 3D object
representing the block in the 3D window. If the block is moved on the model worksheet, the 3D object
will move correspondingly.

• Link to enclosing H-block. Links the position of the 3D block to the worksheet position of the hierarchi-
cal block containing this block. Generally, you would want to have this checked in only one of the blocks
inside of a hierarchical block.

For activity type blocks
The Block Animation tabs of Activity, Convey Item, Transport, and Workstation blocks have an additional
3D option:

• Enable animation of 3D object. Some 3D objects contain internal animation that shows the status of the
object. For instance, the Machine object supports four internal animation states (running, idle, blocked,
and down) while the Conveyor supports running.

The Block Animation tab of a Convey Item block has this additional 3D option:

• Stretch 3D object to conveyor’s length. This will cause the associated 3D object to stretch to the length
specified in the block’s Behavior tab.

Tips and Reference 481
Dialog tabs for animation

E3D
Transport Animation tab
In addition to their Item Animation and Block Animation tabs, the Convey Item and Transport blocks
(Item library) have some 3D options in a tab labeled “Transport Animation”. This tab provides several
choices for how the object that represents an item should move.

1) From and To locations. The choices for the from location are shown ar the
right; the choices for the to location are similar. Although in this tab they are
only used to display movement, not to calculate distance, these options have
the same meaning as those discussed in “Calculated distance” on page 186.

☞ If either move time or speed and distance is selected as the travel time in the
block’s Behavior tab, you can choose the starting and ending locations for item
movement on the Transport Animation tab. If speed and calculated distance is
selected, the from and to locations are determined by settings on the block’s Behavior tab; the location
options on the Transport Animation tab will not be available.

2) 3D animation shows simultaneous item movement. Checking the box allows simultaneous item move-
ment.

☞ In Concurrent and Buffered modes, 3D animation can display multiple objects moving simultaneously. In
QuickView mode, only one object moves at a time even if you choose simultaneous item movement in the
Transport Animation tab.

3) The popup menu to the right of the simultaneous movement checkbox allows
you to choose how the movement will be displayed:

• Along connections. The objects will follow a path that is equivalent to fol-
lowing connections in the 2D model. The from and to locations are speci-
fied in the block’s Behavior or Transport Animation tabs, depending on the
selected travel time option.

• In a straight line (the default) starting at the from location and ending at
the to location.

• Along a pre-defined path. For example, the screenshot above shows four custom “PassportControl”
paths. Paths are created in the E3D Editor, as discussed in “Creating paths” on page 467, and the
E3D window must be open for the names of available paths to appear in the popup menu. (Paths
are invisible by default; to view a custom path in the E3D window, access the E3D Editor.)

☞ If either move time or speed and distance is selected as the travel time in the block’s Behavior tab, you can
choose in the Transport Animation tab how the item should move. If instead speed and calculated dis-
tance has been selected, item movement along connections or in a straight line is determined by the
settings in the block’s Behavior tab. In this case, you can only choose in the Transport Animation tab if
simultaneous movement should be shown or if a custom path should be used.

4) Get distance from 3D path length. Calculates the length of the currently selected path and puts that
length into the distance parameter field on the block’s Behavior tab.

5) Move 3D object immediately to start of movement position (Transport block only). Sometimes it is use-
ful to move the 3D object to a starting point. This is common when the 3D item object is not close to
the start of the path or if there is an obstruction between the current location of the 3D object and the
from location. Note that if this option is used, the object will “jump” in zero time and then begin its
timed movement. It will also jump if there is an obstacle (such as another 3D object) in its path.

From location options

Movement options

482 Tips and Reference
Animation 2D-3D blocks

E3
D

6) Show path. Flashes the path used for a few seconds, when 3D animation shows item movement along
connections or on a custom path.

The use of the Transport and Convey Item blocks is discussed in “Transportation and material handling” on
page 185.

Animation 2D-3D blocks
There are four 3D-enabled blocks in the Animation 2D-3D library:

• 3D Controller

• 3D Scenery

• 3D Text

• Animate 3D

These blocks are discussed in detail in the following sections.

3D Controller block
Use this block to set behavior for the E3D
window or to select the 3D options for a
range of blocks.

3D Options tab
• Clear items in E3D window when simula-

tion ends. This removes objects that repre-
sent items at the end of the run, so that
the window looks as it did before the sim-
ulation started.

• Represent blocks as waypoints. You can
choose to cause all 3D-enabled blocks to
appear as waypoints or just a certain type
of 3D-enabled block.

• Sun in 3D window, clouds in 3D window,
ceiling color. Unchecking the checkboxes
causes sun and/or clouds to disappear
from the E3D window. If the option for
the clouds object is not checked, you can
modify the color of the ceiling using the
Slider controls.

Scenery tab
This tab allows you to:

• Hide all objects created by the 3D Scenery block

• Hide 3D Scenery blocks in the 2D model

• Hide the 3D footprint for all 3D Scenery blocks in the 2D model

The 3D Scenery block is discussed below.

3D Controller: 3D Options dialog

Tips and Reference 483
Animation 2D-3D blocks

E3D
3D Scenery block
This block represents scenery and other fixed 3D objects in the E3D window. When initially placed in the
2D model, this block has a minimized icon. By default, the footprint of whichever 3D object you choose
will be reflected in the 2D model by the block’s icon.

Except for the following additions, the options in this block’s dialog are the same as options in Block Anima-
tion tabs of Item library blocks, discussed on page 480.

• Show 3D footprint in 2D window. This causes the footprint of the 3D object to appear as an area in the
2D model. This is useful for knowing where to place blocks in the model so that they are well positioned
for the 3D window.

• Show 3D objectID. Enables an output connector so other blocks can access the 3D ObjectID. With the
ObjectID, you can manipulate the properties of the object in an equation-type block or a block that you
build.

• Show. The block’s input connector can be used to dynamically hide and show the 3D object, or display
the value of the input connector on the object, during the simulation. The choices are to show:

• 3DObject when input connector is TRUE

• Value of input connector on 3D object

3D Text block
Displays text in the E3D window. The text can be displayed on a visible object or on a waypoint object. If it
is displayed on a waypoint, only the text appears in the E3D window.

This block has many of the same choices as for the Block Animation tabs of
Item library blocks, discussed on page 480. An additional option is provided
by the popup menu shown to the right:

• True connector value shows text. Causes the text to be shown or hidden
depending on whether the input connector gets a true value.

• Append connector value to text. Causes the value received at the block’s input connector to be appended
to the text.

• Hide connector (text always visible). This is the default option and just shows the entered text.

Animate 3D block
The Animate 3D block is an advanced method for executing an animation action in the E3D window as an
item passes through the block. Use this block to augment the standard 3D options built into the Item
library blocks.

In this block’s Item Animation tab, select one of the 3D actions from the popup menu and enter the appro-
priate parameters. These actions correspond directly to functions that can be called from an equation block
or from a custom 3D-enabled block:

• Create object

• Delete object

• Mount object

• Set destination

• Set position

• Set rotation

3D Text options

484 Tips and Reference
E3D Editor menu commands

E3
D

• Set scale

• Set target

• Set path

• Set skin

• Set waypoint

• Unmount object

The Animate 3D block can be used for almost any 3D action, even one that does not involve the item that
passes through the block. For instance, it can be used to mount one static object onto another or move an
item’s object from one point to another.

☞ Most of the options will only be useful if the Concurrent or Buffered 3D mode is used. In QuickView
mode, the 3D objects move without simulation time elapsing, so any action that has a simulation delay (or
speed) associated with it will not be processed. Also, in the QuickView mode mounting one moving object
on another moving object will not work properly, as only one object moves at a time and objects are deleted
and re-created each time they move. Furthermore, because QuickView mode does not have a direct relation-
ship between simulation time and real time, options such as Set destination and Set target will give
unexpected results.

The individual actions are described in the block’s Help and many of them are illustrated in the “Animate
3D Block” model located at \Examples\3D Animation\Tips. In that model, Animate 3D blocks are used to
create barrels at a fixed location, set intermediate destinations to a random X/Y/Z position, set their final
destination to a fixed location, and then delete the objects. In the model, Activity blocks (Item library) are
used to delay the items for the amount of time the 3D objects will require to arrive at their destinations.

E3D Editor menu commands
The E3D Editor, described starting on page 433, has its own set of menus and commands. Depending on
the mode selected, the E3D Editor’s menus will change somewhat. The first five menus listed below apply
to either the World or Terrain modes; the World menu applies only to the World mode and the Action and
Brush menus apply only to the Terrain mode.

To access the E3D Editor and either the World or Terrain mode:

Open the E3D window

Enable the E3D Editor (F11)

To access the World editors, give the command Window > World Editor Creator (F4) in the E3D Edi-
tor’s menu.

To access the Terrain editors, give the command Window > Terrain Editor (F6) in the E3D Editor’s
menu.

☞ For more information about accessing and using the World modes, see “World modes” on page 436; for the
Terrain modes see “Terrain modes” on page 438.

File
The first four commands in the File menu are associated with creating, opening, and saving environment
files. These commands work as you would expect them to.

The Toggle E3D Editor command toggles between the E3D window and the E3D Editor. It is equivalent to
pressing the F11 key.

Tips and Reference 485
E3D Editor menu commands

E3D
☞ Because the Extend3D.mis file is protected, you cannot made changes to it. Instead, use the Save Envi-
ronment As command to create a new environment file containing the changes you’ve made using the
E3D Editor.

Edit
This menu has Undo and Copy/Paste commands that work just as you would expect.

Camera
The Camera menu provides control over the speed of the virtual camera, described in “MiniMap and cam-
era” on page 397. These commands affect the forward, backward, left, and right motions of the camera
when pressing the W/A/S/D keys or the keyboard’s direction keys.

Window
The Window menu contains the mode commands, discussed in “E3D Editor modes” on page 435.

Lighting Tools
This menu has a Light Editor and lighting commands. The Full Relight command is especially useful if the
lighting seems confused – it causes lighting sources and shadows to be recalculated.

World
This menu is specific to the World editor modes. It has commands for hiding and showing the selection in
the E3D window, deleting the object, and dropping the object at specific locations in the window.

Action
Specific to the Terrain modes, this menu allows you to add dirt, excavate, and otherwise adjust the contour
of the floor in the animation area of the E3D window. These commands are used in conjunction with the
commands in the Brush menu.

• The Select and Adjust Selection commands are for making a semi-permanent selection of the terrain.
They work together to allow you to choose a section of the terrain and apply the equivalent of the Adjust
Height command to it.

• The Add Dirt, Excavate, Adjust Height, Flatten, Smooth, and Set Height commands determine what will
happen when you left click an area and move the mouse to “brush” the area.

• The Paint Material command allows you to change the texture or color of the floor. It is the command
used when changing the texture in the Terrain Texture editor.

Brush
Specific to the Terrain modes, this menu is for choosing the shape, consistency, and size of the brush when
performing actions (from the Action menu) on terrains.

There are three selection sections in this menu and each allows one choice.

• Shape. The Box Brush is square and will affect a square grid of nodes on the terrain. The Circle Brush
shape is obviously circular. If you switch between these two shapes you should see the shape of the brush
changing as soon as you move the cursor onto the terrain.

• Consistency. This can also be seen in the viewing area of the E3D window. Each of the terrain nodes that
are going to be affected by the brush action will be drawn with a square on it at the point where the brush
touches it. These squares, outlined in the case of the brush and solid in the case of the selection mode
described in the Action menu, are drawn in different colors based on how hard the brush is. The hardness
determines how much the Action will effect the terrain that the brush touches. If you select a Hard Brush,

486 Tips and Reference
E3D Editor menu commands

E3
D

all the nodes will be drawn in red and the Action will affect each node equally. If you select a Soft Brush,
the central nodes will be drawn in red and the outer nodes will blend toward green. With a Soft Brush,
the Action will affect the central nodes (red) more then the outer nodes (green).

• Size. The brush will affect an area the size of the selected command.

☞ Terrains are discussed on page 470.

How To

Libraries and Blocks
A description of ExtendSim libraries and blocks

and the many ways to use them

“The first thing to have in a library is a shelf.
From time to time, this can be decorated with literature.

But the shelf is the main thing.”
— Finley Peter Dunne

488 Libraries and Blocks
The ExtendSim libraries

H
ow

 T
o

Working efficiently with libraries and blocks is critical to simulation modeling. This chapter dis-
cusses:

• The libraries available with ExtendSim products

• How to open and use libraries

• Creating and managing libraries for block developers

• Working with blocks, including using variable connectors

• Managing blocks in libraries

• Hierarchical blocks

The ExtendSim libraries
ExtendSim libraries are repositories for the blocks that you use to build models. ExtendSim ships
with several libraries, each one containing blocks that are used for modeling specific types of sys-
tems. You can also develop your own libraries of custom blocks, or create libraries to save and orga-
nize hierarchical blocks in a way that best works for your modeling needs.

• Libraries that are most often used, such as the Value and Item libraries, are stored at the top level
of the ExtendSim7/Libraries folder.

• The Example Libraries folder within the Libraries folder contains libraries created for specific
purposes, such as the Tutorial library for block developers

• The libraries in the Legacy folder are included for backwards compatibility, so models created
with those older libraries can run. They are no longer supported and should not be used to cre-
ate new models.

The following describes the libraries that ship with ExtendSim products. (Note that some libraries
are only available in specific products.)

Animation 2D-3D library
The Animation 2D-3D library lets you add custom animation to models and hierarchical block
icons. The Animate Item and Animate Value blocks in this library are used to add 2D animation
to models and hierarchical blocks, as described in “Blocks for customized animation” on page 553.
The 3D animation blocks are discussed at “Animation 2D-3D blocks” on page 482; they are used
with the 3D animation feature of the ExtendSim Suite product.

Electronics library
The blocks in the Electronics library are used to simulate system level design of analog, digital, sig-
nal processing, and control systems. Electronics blocks are used in the model “Noisy FM system”
on page 75.

Item library (not available in ExtendSim CP)
The blocks in the Item library are used primarily in discrete event modeling, although they can
also be included in discrete rate models. If you add a single block from this library into a continu-
ous model, the model automatically becomes a discrete event model. Discrete event models track
individual quantities and entities that can have unique characteristics. The Appendix that starts on
“Item Library Blocks” on page 723 has a complete list and brief description of the blocks in this
library.

Libraries and Blocks 489
The ExtendSim libraries

H
ow

 T
o

Plotter library
The Plotter library holds all the common types of Plotter blocks used to graph and output data for
models. Some of these are specific to continuous or discrete event models, while others can be used
with any type of model. In addition to the simple plotters you have already seen in the tutorials,
ExtendSim plotters can show scatter plots, moving strip charts, histograms, and so on. All plotters
are described in detail in “Plotters” on page 588.

Rate library (not available in ExtendSim CP or ExtendSim OR)
The Rate library is used for discrete rate simulations, where you model the flow of materials
according to some rate-based calculations. Discrete rate models often use blocks from the Value
and Item libraries. A complete list and brief description of the blocks in this library starts on
page 732.

Utilities library
The Utilities library contains a collection of helpful blocks for performing various tasks such as
counting the number of blocks in a model, fitting data to a curve, synchronizing the model to real
time, timing the duration of a simulation, adding active buttons to models, and so on. A complete
list and brief description of the blocks in this library starts on page 735.

Value library
The Value library contains blocks that are primarily used for continuous modeling, although they
play a critical role in other types of models as well. You used some of these blocks when building
the Reservoir model in the tutorial at the beginning of this User Guide. Continuous models repre-
sent a smooth flow of values that are recalculated at periodic time steps. A complete list and brief
description of the blocks in this library starts on page 716.

Example Libraries folder
The following libraries are located in the ExtendSim7/Libraries/Example Libraries folder.

Custom Blocks library
These blocks have been created for very specific purposes, such as to illustrate a concept or hard-
code certain behavior. For instance, the Planet block from this library is used in the model dis-
cussed at “Planet Dance” on page 79.

ModL Tips library
This library contains blocks that illustrate the techniques described in the ExtendSim Developer
Reference.

Item Templates library (not available in ExtendSim CP)
Contains hierarchical discrete event blocks that serve as templates for specific behaviors, such as
setting the arrival time based on the time of day.

Tutorial library
Contains blocks built in conjunction with tutorials in the Developer Reference.

Legacy folder
Several libraries are stored in the \Libraries\Legacy folder. The legacy libraries are furnished for
backwards compatibility, so that you can run models built with previous releases of the software.
Depending on which ExtendSim product you purchased, the Legacy folder will contain some or
all of the following libraries:

490 Libraries and Blocks
Using libraries

H
ow

 T
o

• Animation

• BPR

• Discrete Event

• Flow

• Generic

• Items (DB)

• Mfg (Manufacturing)

• Quick Blocks

• SDI Tools

The legacy libraries (listed above) have been replaced by the Animation 2D-3D, Item, Item
Templates, Rate, and Value libraries.

The legacy libraries will not be included in future ExtendSim releases. They are no longer sup-
ported and are supplied without warranty of any type or for any purpose. Legacy libraries are
included in this release so that you can run models built in previous releases; they should not be
used to create new models.

Using libraries

Opening a library
Whenever you open a model, ExtendSim automatically opens the libraries that are used in the
model.You can also manually open a library or instruct ExtendSim to automatically open some
libraries when it starts.

• To open a library manually, for example when you are starting a new model, choose Library >
Open Library. You can also double-click the library file or drop-launch it. You open libraries one
at a time with these methods.

• To specify that a specific library, or several libraries, open when ExtendSim launches, go to the
Edit > Options > Libraries tab and enter the names of the libraries you want pre-loaded. See
“Options” on page 688 for more information.

When a library opens, ExtendSim adds the library name, in alphabetical order, to the bottom of
the Library menu. Select a library name to see a submenu of the different block categories for that
library, which further expand to show the list of blocks for each category.

Libraries and Blocks 491
Using libraries

H
ow

 T
o

☞ To view all the blocks in a library alphabetically rather than
grouped by category, go to the Edit > Options > Libraries tab
and uncheck List blocks by category.

Closing a library
Unless you close ExtendSim, libraries stay open whether they
are used in a model or not. You can close libraries that are not
used in a model by choosing Library > Close Library and select-
ing the library you want to close. To close multiple libraries,
Shift select the libraries (or use the Ctrl (Windows) or Com-
mand key (Mac OS)), then click Close. It is unlikely that you
will need to close libraries often since open libraries do not take
up much memory and it is usually convenient to leave all your
commonly-used libraries open. Once you save the model, the
closed but unneeded libraries will not automatically open when
you open the model again.

☞ ExtendSim will warn you and will not let you close a library that is being used by an open model.

Searching for libraries and blocks
When you open a model, ExtendSim automatically searches for the blocks the model uses.It first
searches for the libraries in which the blocks last resided.

Library searches
The search order ExtendSim uses to locate libraries is:

• The Alternate path, if any, specified in the Options dialog

• The Libraries subfolder within the ExtendSim folder

• The folder containing the model

You can manually stop this search process at any time by pressing Ctrl+period (Windows) or Com-
mand+period (Mac OS). You can also force a manual search process by unchecking Automatic
search in the Edit > Options > Libraries tab.

If you have renamed, deleted, or moved a library from the expected folder since the model was last
saved, manually stopped the search process, or unchecked Automatic search in the Options dia-
log, ExtendSim will not be able to find the library.

Libraries should be kept in the Libraries folder, in the same folder as the model that uses them, or
in a folder specified as the Alternate path in Edit > Options > Libraries tab. Otherwise,
ExtendSim will always ask you for the location of the library.

If ExtendSim can’t find a library when the model opens, it will put up a file selection dialog that
asks “Where is the library xxx?”. Your choices are:

• Cancel the library search operation. ExtendSim will then try to find the missing blocks, as
described in “Block searches” below.

• Find and open the library manually. Since ExtendSim only needs to know where the blocks for
the model are, you could also use this choice to substitute a library that has a different name (but
the same named blocks) as the search library. See “Substituting one library for another” on
page 495 for more information.

Close Library dialog

492 Libraries and Blocks
Using libraries

H
ow

 T
o

When the model file is subsequently saved, any new library name and/or location will be saved as
well, so searching will not be necessary the next time the model file is loaded. (Although if Auto-
matic search is unchecked, ExtendSim will still ask you to locate the libraries.)

Block searches
As described above, ExtendSim searches for the blocks a model uses by first searching in the librar-
ies that contained those blocks. However, ExtendSim may not be able to find the blocks if you
have renamed the blocks or removed them from the library. Once the library search is finished,
whether successfully or in situations where the search has been cancelled, ExtendSim prompts you
to locate any missing blocks. The dialog offers two choices:

• Choose Open to locate and open another
library where the block resides. If ExtendSim
is unable to locate the block in this library, the
Substitute Block dialog will open which will
allow you to substitute an alternative block
from any open library. When the model file is
subsequently saved, any new block name and/
or location will be saved as well, so searching
will not be necessary the next time the model
file is loaded.

☞ Any substituted block must be substantially the
same as the searched-for block, or ExtendSim will report error messages.

• Select Cancel if the block no longer exists or if you can’t
substitute another block. In this case, ExtendSim noti-
fies you that it will put text in the place of the block.

Substitute Block dialog

Warning message

Libraries and Blocks 493
Creating and maintaining libraries

H
ow

 T
o

Library windows
The first choice in the blocks list for each library listed in the
Library menu is Open Library Window. This opens a window
that shows all the blocks inside that library in alphabetical
order. You can also open a library window using the Navigator,
as discussed at “Library Window mode” on page 671.

☞ If you enter libraries in the Edit > Options > Libraries tab to be
pre-loaded when ExtendSim launches, you can also choose
Open library window so that the window for the selected
library will also automatically open.

The top of the library window gives information about the
library version, size, and date last modified. The blocks in the
library are listed with pictures of their icons and, if the Show
library window dates option is selected in the Options dialog,
their last modified date.

Library windows provide an additional method for adding
blocks to models, as shown at “Library Window mode” on
page 671. If you program blocks, you can also use library win-
dows to manage blocks, as discussed in “Managing blocks” on
page 502, and to access a block's structure as discussed in the
Developer Reference.

Note that closing the library window only closes the window,
not the library itself.

☞ If a block has been compiled with external source code, it will
be listed in the library window with the designation CM (code
management) on the right side of its icon. If a block has been compiled with debugging code, its
name and any additional information will be listed in the library window in red and it will show in
a model window with a red border around it. Compiling options are used by block developers and
are discussed in the Developer Reference.

Creating and maintaining libraries
You do not need to start a new library unless you build your own blocks or want to save hierarchi-
cal blocks in a library.

Library window for Value library

494 Libraries and Blocks
Creating and maintaining libraries

H
ow

 T
o

Creating a new library
To start a new library, choose Library >
New Library. A dialog appears where you
can select a location for the new library
and give it a name. Libraries should be
saved in the ExtendSim7/Libraries folder
so that ExtendSim can quickly find them.

If you build your own blocks or modify
ExtendSim’s blocks, you should put them
in your own library. Do not put them in
the libraries that come with ExtendSim.
Otherwise when you install a new version
of ExtendSim, you could lose the blocks
you built.

Saving and compiling libraries
Every time you make a change to a library,
such as adding a new block or moving a block from one library to another, ExtendSim automati-
cally saves the library. If you build a block and save it, both the block and the library are saved.

When you create blocks using ExtendSim’s ModL programming language, the blocks need to be
compiled to machine code so they can be used to build models. If you make a change to an
Include file that is used by more than one block, its usually simplest to recompile the whole library
so the blocks incorporate the Include file.

 Unless you program your own blocks or move a library from one operating system to another (for
example, if you move a library from Windows to Mac OS) you do not need to compile. The librar-
ies and blocks that are packaged with ExtendSim are already compiled.

To compile a block or a library, use the compile commands in the Develop and Library menus:

• The Develop > Compile Block command compiles the block to machine code without saving or
closing the block. This is useful for testing new code for syntax errors as you are building the
block. This command is only enabled when the block’s structure window is the active window.

• The Library > Tools > Compile Open Library Windows command compiles all libraries whose
windows are open and saves the changes. This command is only enabled when at least one
library window is the active window.

• The Library > Tools > Compile Selected Blocks command compiles all the blocks that are
selected in a library window and saves changes. This command is only enabled when a library
window is the active window and one or more blocks are selected in the library window.

Compiling a library or block with debugging information allows you to set breakpoints, watch
points, and so forth. Compiling with external source code causes ExtendSim to generate an exter-
nal file that contains the source code; this is useful for version control.

☞ Blocks with debugging code show in the library window with their names in red and show in a
model window with a red border around their icon. Blocks with external source code will show in
the library window with CM (code management) next to their icons.

For more information about saving and compiling libraries, see the Developer Reference.

New Library dialog

Libraries and Blocks 495
Creating and maintaining libraries

H
ow

 T
o

Substituting one library for another
If you create your own blocks, you might want a model to use the blocks from a library with a dif-
ferent name. For example, if you have developed a newer version of a library and you want the
model to use those blocks. Normally ExtendSim opens the library too fast for you to stop it.

In order to bypass this process, you can choose to not have ExtendSim automatically find and open
libraries when a model opens. You do this by deselecting the Automatic search option in the
Edit > Options > Libraries tab. If you do this before opening a model, ExtendSim will stop and
request the location of each library the model uses. You can then use the dialog to find and open
the libraries you want the model to use. This will work even if the library name is different than
the one the model originally used, because what is important to the model is the block name
within the library, rather than just the library name.

Once all the required libraries are open, save the model. So that the model will again open the
libraries automatically, go to the Edit > Options > Libraries tab and select Automatic search before
reopening the model.

Arranging blocks in libraries
If you build your own blocks, you could put all of the blocks you use (up to the 200 block limit) in
one huge library. That way, you would never have to try to remember which block was where or
remember where your libraries are on your hard drive. However, this arrangement could make it
difficult to maintain your blocks.

☞ Simulations run neither faster nor slower when you group your blocks in a single or multiple
libraries. The only performance consideration is that it initially takes more time to open multiple
libraries than it does a single library.

There are typically three classes of libraries you might want to create: general-usage, subject-spe-
cific, and model-specific.

• General-usage libraries hold blocks that might be used in a wide variety of models.

• Subject-specific libraries are for blocks that are only relevant to one subject, such as paper mak-
ing.

• Model-specific libraries hold blocks that are only used in a single model.

Do not add blocks to the libraries that come with ExtendSim or move blocks from those libraries.
If you add blocks to an ExtendSim library, your work will be lost when you update. If you move
blocks from an ExtendSim library to a library you create, the blocks in your library will not be
updated when the ExtendSim library is updated.

Protecting the code of library blocks
If you build your own blocks, you may not want others to have access to your code. As discussed in
the Developer Reference, ExtendSim blocks contain ModL code and can also reference Include
files.

You can prevent others from accessing the code in your libraries by 1) not giving them the Include
files and 2) removing the ModL code of the blocks. To remove ModL code from your blocks, use
the Library > Tools > Protect Library command. This process creates a duplicate of the library,
with all the source code removed. Keep the original library in a safe place, since there is no way to
recover the ModL source code from the protected library.

496 Libraries and Blocks
Working with blocks

H
ow

 T
o

☞ To protect a hierarchical block's structure and prevent a user from double-clicking the hierarchical
block to see the underlying submodel, use the Model > Lock Model command discussed at “Lock-
ing the model” on page 677.

A protected library can be used in the same way as any other library except that the ModL code
cannot be altered or viewed. This means that someone using the library has all the functionality of
the blocks in that library but no ability to see how the blocks work.

☞ To keep a library from being used to build models, while still allowing it to be used to run simula-
tions, see “Convert Library to RunTime Format” on page 697.

Converting libraries to RunTime format
As discussed at “The ExtendSim LT-RunTime version” on page 678, the ExtendSim LT-RunTime
version is useful for distributing models to those who do not have a full ExtendSim license. To
have your custom libraries be available to run models in the LT-RunTime version, but not available
to build models, convert them to RunTime format. Converting libraries to RunTime format also
prevents them from being used in the full version of ExtendSim. The conversion process is
described in “Convert Library to RunTime Format” on page 697.

Working with blocks
ExtendSim blocks have a user interface (their icon, dialog, and help) and internal, integrated
ModL code that determines how the blocks behave.

Blocks are stored in repositories called libraries. The entire definition for a block (its program,
icon, dialog, and so on) is stored in the library. When you include a block in a model, the block
itself is not copied to the model. Instead, a reference to the block is included in and stored with the
model. Any data you enter in the block’s dialog is also stored within the model.

Customizing block icons
The blocks in the libraries that come with ExtendSim (such as the Value and Plotter libraries) are
displayed on the screen as icons that depict their function. Once you place a copy of these blocks
in your model, you might want to make its icon more closely indicate its role in your particular
model. However, using programming to change a block’s icon in one model will change it in every
model using that block, since blocks and their internal descriptions reside in libraries, not in mod-
els. In addition, since some blocks are animated, it is not easy to change a block’s icon without hav-
ing to modify its ModL code. For these reasons, you should not change the icon on the blocks in the
libraries that come with ExtendSim.

If you build your own blocks, you can give them any icon you want. However, there are two better
ways to customize blocks in your model without having to directly modify icons:

• You can paste pictures on the worksheet to customize the model. Pictures automatically go
behind blocks and text. For example, you can place a map of a region behind your model, or
show the layout of a plant. This is described in more detail in “Working with pictures” on
page 562.

• You can also add a picture to a block without affecting the original one in the library by making
the block hierarchical. This technique is described in more detail in “Modifying hierarchical
blocks” on page 548.

Icon views
As you saw in “Dialogs” on page 16, some blocks have multiple icon views. If a block has icon
views, the choice of view will determine how the block looks on the model worksheet.

Libraries and Blocks 497
Working with blocks

H
ow

 T
o

For example, an icon view could provide:

Alternate connector positions, such as an input connector on the right side of the block. This
helps avoid awkward connection line placements when building models.

Choices of icon size, such as regular and reduced size. An example is
the History block (Item library) where the Status view is smaller than
the Default view.

Different icons depending on choices that have been made in the
block’s dialog. For example, a block that represents a flow could be
pointed forward in the view labeled Forward and pointed backward
in the view labeled Backward.

Alternate icons depending on what the block represents in a model. This is often used for hier-
archical blocks that represent a specific process in one part of the model but a different process,
with the same functionality, in a different part of the model. For instance, in the Markov Chain
Weather model discussed on page 50, the hierarchical block “Weather Forecast” uses views to
indicate the current state for a state/action model.

Blocks without icon views will not have any
choices in the Views popup menu at the bot-
tom of the block’s dialog. If additional views
are present, they can be selected by right-click-
ing on a block or by using the Views popup
menu. They can also be called by functions.

ExtendSim facilitates the creation of different
icon views while developing or editing a
block’s structure. For more information see the
Developer Reference.

Connectors
Connectors are used to input and output val-
ues, items, or flow for each block.

The Model menu has commands that let you
show or hide the connectors in the model
workspace. Hiding connectors can improve
the appearance of the model, especially for
complex models with many blocks.

History icon: Default and
Status views

Icon views for Holding Tank block

Reservoir model with connectors hidden

498 Libraries and Blocks
Working with blocks

H
ow

 T
o

Connector types
Connectors on a block are visually different, depending on how they’re used. This table describes
the different types of connectors that can be seen on or (if you program) added to blocks in
ExtendSim.

☞ Other than some specific instances, you cannot connect from one type of connector to another.
For example, attempting to draw a connection from an Item output connector to a Value input
will result in an error message. The two exceptions are that Value, Item, Flow, and User-Defined
outputs can be connected to Universal inputs, and Value outputs can be connected to Flow inputs.

Variable connectors
Regardless of type, each connector can be single or variable depending on how the block is con-
structed. Variable connectors act like a row of single connectors, where the row can be expanded or
contracted to provide a required number of connectors. Some blocks have only single connectors,
some have only variable connectors, and some have a mix. Variable connectors are usually desig-
nated by a black arrow, as shown below.

Type Input Output How they’re used

Value Continuous blocks use value connectors to pass values
from one block to another. Blocks in the Item and
Rate libraries may also use value connectors for the
same purpose.

Item Discrete event blocks use item connectors to pass dis-
crete items. Blocks in the Rate library may also use
item connectors for the same purpose.

Flow Discrete rate blocks use flow connectors to pass infor-
mation about the effective rate from one block to
another. You can also connect from a flow connector
(input or output) to a value input connector.

Universal Universal connectors are usually used as inputs. Value,
Item, Flow, and User-Defined output connectors can
connect to Universal inputs.

Array Array connectors are for passing arrays of information
from one block to another.

User Defined User Defined connectors can be programmed to
behave in any manner the developer wants.

Libraries and Blocks 499
Working with blocks

H
ow

 T
o

The Constant block has two single input connectors and one single output connector:

A Math block in Add mode has a variable input connector and a single output connector:

The Math block's variable connector expanded to provide three inputs:

Each block's functionality determines whether or not it has variable connectors, where they are
located, and what each connector represents. For example, a variable connector could have connec-
tors captioned minimum and maximum placed on the bottom of the block for downward expan-
sion.

Variable connectors can be expanded or contracted; they can also be collapsed. You expand or con-
tract a variable connector to provide the desired number of inputs or outputs. You collapse a vari-
able connector to improve model appearance.

Expanding or contracting a variable connector
Wherever possible a block will anticipate its usage and provide the required number of connectors.
For example, the Holding Tank block (Value library) has a variable connector that can be
expanded to provide three inputs: the amount wanted from the tank, a trigger to reset the tank's
settings, and the amount of initial contents. You might use one, two, or all three of those inputs,
but the block won't allow more than three inputs.

For other blocks, the number of connectors you might need depends on choices you make in the
dialog or how you use the block in a model. There are two primary methods for causing a variable
connector to change the number of available connectors:

• Drag the variable connector (as discussed below) until the desired number of connectors is
achieved. An example of this is the Reservoir model in “, Building a Model ,” where you
expanded the variable connector of the Math block (Value library) to two inputs, one each for
rainfall and stream. If instead you had six water sources you could have expanded the variable
connector to accommodate all six.

• Change some setting in a dialog, causing an increase or decrease in the number of connectors.
An example of this is the Random Number block (Value library), where you select a distribution
from a popup. Depending on the distribution chosen, the variable connector will provide from
two to four inputs for specifying the distribution's arguments. Since the number of arguments
for each distribution is fixed, you will not be able to expand the number of connectors beyond

500 Libraries and Blocks
Working with blocks

H
ow

 T
o

the proper number. You can, however, contract the variable connector as discussed below. Note
that some blocks with variable connectors, such as the Equation blocks, do not allow you to
increase or decrease the number of connectors except through dialog settings.

 To increase the number of connectors, hover the cursor over the black arrow on the variable
connector until it becomes a dragging cursor (shown at left). Then click and drag in the
direction of the arrow. As you drag, more connectors appear and the number of connectors is

displayed.

☞ You will not be able to expand a variable connector beyond what is reasonable for the block, given
its usage and dialog settings. And some blocks, for example the Equation blocks, do not provide a
black arrow for expanding the number of connectors; the number of connectors in those blocks is
only controlled through the dialog.

To decrease the number of connectors, hover the cursor over the black arrow at the end of the last
connector until it becomes a dragging cursor. Then click and drag back towards the variable con-
nector's starting point.

☞ You will not be able to contract a variable connector below what is reasonable for the block, given
its usage and dialog settings. The number and location of connections to the variable connector
will also affect its ability to be contracted. If none of the connectors, or only the first connector, is
connected, you can contract the variable connector back to its unexpanded position by clicking
and dragging, as described above. However, if you have connected to more than one connector,
you can only contract the variable connector to the point of the outermost connection. In this
case, to reduce its size you need to collapse it, as discussed below.

Collapsing a variable connector
As discussed above, if you have made connections to a variable connector you might not be
allowed to contract it back to its unexpanded position. This is a safety mechanism, so that it is
clear what connections have been made. However, to simplify the appearance of the model, you
can collapse a variable connector to an unexpanded state even if it has many connections to it.

To collapse a variable connector, place the cursor over the black arrow until it
becomes a dragging cursor, then double-click. The connector now appears with
a red + sign in place of the black arrow, as shown on the right.

To reverse the process, place the cursor over the red + sign until it becomes a
dragging cursor, then double-click.

Connecting to different connector types
As you saw in earlier chapters, you can use continuous blocks (such as those from the Value
library) in your discrete event and discrete rate models, which means you can have blocks in a sin-
gle model that use different types of connectors (some blocks have multiple types of connectors on
them as well).

You can connect value connectors together, item connectors together, and flow connectors
together. You can also connect value and flow connectors to each other, but you cannot connect
value and flow connectors to item connectors. This is because value and flow connectors only pass
values while item connectors pass unique items.

☞ Any type of connector—value, flow, or item—can be connected to universal input connectors.

Also note that if you create blocks that have user defined connectors, those connectors can only be
attached to other user defined connectors and to universal connectors.

Libraries and Blocks 501
Working with blocks

H
ow

 T
o

Dialogs
Most block dialogs let you change or view the settings before, during, and after a simulation run.
Some of the things you can do using a dialog include:

• Choose from multiple functions (e.g. the Math block)

• Enter initial values

• View simulation results

• Add comments to help document your models

• Set animation criteria

• Choose notification options

To open a block’s dialog, double-click or right-
click the block’s icon. For example, if you dou-
ble-click the Holding Tank icon, the dialog at
right opens.

In the dialog’s title bar is the block’s global
block number, its name, and, in braces, the
library it resides in.

As each block is added to a model it is assigned
a unique and sequential global block number
from 0 to n-1. This sequence does not change.
If a block is deleted, its number becomes an
“unused slot” which is available when another
block or text is added to the model window.

Each block within a hierarchical block has a
second, local, block number that reflects its
relationship to the other blocks in the hierar-
chical submodel.

At the bottom of every dialog is a Help button that provides more information, such as the block’s
purpose and use, what each connector does, the meaning of each dialog item, and so on. Beside
the button is a text box where you can enter a label for the block, up to 31 characters. The View
popup box lets you change the view of the icon for the selected block, when available.

Some dialogs also calculate and display values that are generated as the model runs, so if you leave
a dialog open during the simulation, you can watch the impact on different variables. You can even
change some of the settings in a dialog as you run the simulation, such as choosing different but-
tons or typing new values.

☞ When you click a button while the simulation is running, the block gets that changed value on the
next step. However, if you type text or enter numbers into a field, the model pauses while you are
typing in order to get your entire input.

Holding Tank dialog

Left: Random number block on worksheet, global number is 13
Right: Inside hierarchical block, global number is still 13, local number is 0

502 Libraries and Blocks
Hierarchical blocks

H
ow

 T
o

Animating blocks
ExtendSim provides built-in animation for many blocks and you can also create custom animation
for any block. To learn more, see “Animation” on page 551.

Hierarchical blocks
It’s not unusual for models to have thousands of blocks in them, which can make it difficult to
understand what is happening in the model. Hierarchy helps solve this problem by grouping sev-
eral blocks together into one hierarchical block that represents a portion of the process being mod-
eled. A hierarchical block can contain submodels, text, graphics and clones of dialog items and
tables. Hierarchical blocks can even contain other hierarchical blocks, so there are multiple levels
of hierarchy.

☞ The Navigator window in Model Exploring mode is a useful tool for quickly drilling down
through the different levels of hierarchical blocks to find the one you’re looking for.

Because hierarchy is mainly used to enhance or simplify model appearance, it is discussed in fur-
ther detail in “Hierarchy” on page 540.

Managing blocks
☞ The topics within this section are only for block developers and those who save hierarchical blocks

in libraries.

Copying blocks
To make a copy of a block in the same library, select the block in the library window and choose
Edit > Duplicate. The Duplicate command copies the block into the current library and renames
it with the block name followed by the word Copy. This is common when you want to use the
ModL code in one block as the template for a different block.

To copy a block from one library to another, open the library windows for each of the libraries.
Then drag the block from its library window to the destination library window.

Changing a block’s name
To change the name of a block, select the block in the library window and choose Develop >
Rename Block. Then type in the new name. If you change the name of a block, models that use
that block will not be able to find it because they are expecting the original name. ExtendSim will
then ask you where the block is located and present a dialog box for searching, as discussed in
“Block searches” on page 492.

Removing blocks
It is rare that you will want to remove a block from a library but, if you do, select the block in the
library window and choose Edit > Clear or press the Delete or Backspace key. ExtendSim will not
let you remove a block that is in use in an open model window. If you remove a block that is used
by a model and later open that model, ExtendSim will present an error message and give you the
opportunity to indicate the location of the missing block; if it can't find the block, it will put a
placeholder in the model window.

Corrupted blocks
On rare occasions, you may get a message as you open a library that indicates that a block has been
corrupted or is bad. The corrupted block will appear in the library window as *BAD*Blockname.
To save the rest of the library, copy the uncorrupted blocks to a new library and discard the old
library. Then copy a backup copy of the block (if you have one) into this new library. This is a
good reason to always back up your work!

How To

Creating a Custom User Interface
Personalize the ExtendSim

modeling environment

“If you can dream it, you can do it.”
— Walt Disney

504 Creating a Custom User Interface
Cloning

H
ow

 T
o

Every modeler’s needs are different. ExtendSim offers a variety of methods to customize the appli-
cation’s interface so you can work in the most convenient and effective manner. This chapter dis-
cusses several methods you can use to create a user interface, including:

• Cloning dialog and plotter items to change model parameters and report results

• Centralizing data in a database

• Simplifying and organizing models with hierarchy

• Creating a dashboard interface

• Using the Notebook to document and manage your models

• Adding Controls to change and monitor critical parameters on the fly

• Interacting with the model user

• Using external applications as an interface

• Documenting models using text and graphics

Cloning
In most programs, buttons and dialog parameters are found only in dialogs. The advantage of this
is you always know where to find them. However, having all your choices in dialogs can be a disad-
vantage in large models. For instance, you may want easy access to parameters in blocks that are
scattered in multiple hierarchical layers throughout the model. Or you might want to provide a
more accessible interface for other users of the model. ExtendSim overcomes these problems by
giving you freedom to clone dialog and plotter items and place them in a more convenient loca-
tion, effectively creating a link with the original dialog item.

Cloning gives you easier access to dialog and plotter items when you want to change settings or
monitor simulation results. Dialog parameter fields, tables, text, buttons, checkboxes, and radio
buttons, as well as graphs and data tables from plotters can all be cloned. Cloned items can be
placed in the model window, Notebook, or a hierarchical block’s worksheet, and text labels can be
used to make the cloned item easy to understand. You can clone multiple items from the same dia-
log or plotter or clone the same item to more than one location. Every clone acts exactly like the
original: if you change the original or any clone, all instances are updated immediately.

Using cloned dialog items puts you in direct control of your models. Clone the dialog items to a
centralized location so you can easily change parameters. Label the clones so they are well-docu-
mented and use them as the simulation runs, such as clicking buttons or entering values in text
entry boxes. For example, clone a Constant block’s Constant value field to change the value
between simulations without having to open the block’s dialog, making it easier to test different
assumptions. Or have an area of the model or its Notebook that lets you monitor several numeric
values at a time, rather than just using the Plotter’s graph to watch the simulation results.

☞ Clones that display changes will cause the simulation to run slower.

How to clone a dialog item
The same technique is used to clone an item onto the model or hierarchical block’s worksheet or
into a Notebook.

Open the Reservoir 1 model (located in the ExtendSim7\Examples\Tutorial folder)

Double-click the Holding Tank block to open its dialog.

Click the Clone layer button in the toolbar to select that tool.

Creating a Custom User Interface 505
Cloning

H
ow

 T
o

Select both the Current level text and its parameter field and drag them onto the model win-
dow below the Holding Tank block.

☞ Hold down the Shift key to select multiple items or drag a frame around them. Clones can be
moved, resized, and aligned after they are placed.

Close the dialog.

Run the simulation.

The cloned item will display the changing level in the Reservoir as the simulation runs.

☞ If the model runs too quickly to see the change, go to Run > Simulation Setup > Setup tab and
change the end time to something much larger, such as 1000, then run the simulation again.

Using cloned items
Once you have a cloned item, you can drag it almost anywhere you want. Many people prefer to
have all the items together at one side of the model window, for example, or to clone all dialog
items into the Notebook or into a hierarchical block.

 You cannot move a cloned item from one hierarchical block to another unless the target hierarchi-
cal block contains the source hierarchical block.

To move a cloned item, choose the Clone tool from the toolbar, click on the item, and drag it. To
align two or more clones, select them and use the Model > Align command.

To resize a cloned item, choose the Clone tool and click once near
the center of the cloned item so that the resizing handles appear.
Then click and drag a handle to change the size and shape of the
clone.

To remove cloned items from a model, simply select them (using
the Clone tool) and press the Delete key or choose Edit > Clear.

☞ If you delete the block from which you cloned a dialog item, the cloned item is automatically
deleted.

Cloned Holding Tank dialog items

Cloned item after simulation run

Resizing cloned item

506 Creating a Custom User Interface
Centralizing data in a database

H
ow

 T
o

To find and open the dialog from which an item was cloned, choose the Clone tool and double-
click the cloned item.

Unlinked clones
If a block’s structure is modified by deleting a dialog item or changing the tab
order of the dialog items, clones associated with that block may become
unlinked. In this case, the clone will be grayed out and “???” will appear in place
of the cloned dialog item.

Choosing the clone tool and double-clicking the unlinked clone will cause an alert message to
appear. Then the dialog of the block from which the clone originally came will open. You may
then select a replacement item to clone, or simply delete the clone if it is no longer needed.

Centralizing data in a database
Cloning is a quick and easy way to create a user interface. However, for large models it may be too
tedious to clone all the necessary items for easy access. ExtendSim databases are useful for organiz-
ing data for complex models into a central location.

You can create databases to store parameters to be used in the model, model results, or a combina-
tion of the two. Use the linking technologies to dynamically link dialog parameters or tables with
the database. Or use the Read and Write blocks to dynamically access database data. Since data-
bases are primarily data management systems, see further discussion at “ExtendSim databases for
internal data storage” on page 638.

Hierarchy
Hierarchy is useful for customizing a model’s interface. It reduces the number of blocks visible on
the model worksheet, so models are easier to understand and navigate. It is also used to organize
the model into easily-recognized components, separating the model into process elements that are
more closely tied to reality.

For instance, you could encapsulate portions of a model into hierarchical block then clone dialog
items to the top of the hierarchical block's worksheet for easy access. Or add custom pictures as
icons for groups of hierarchical blocks that all relate to a certain part of the process you’re simulat-
ing. You could also create a hierarchical Help block for the model user, as discussed at “Help
block” on page 514.

For more information about working with hierarchy and customizing and animating hierarchical
blocks, see “Hierarchy” on page 540.

Creating a dashboard interface
In addition to permitting cloned items in
the Notebook or model worksheet for
creating a user interface, ExtendSim lets
you add customized buttons, popup
menus, and on/off switches.

Unlinked clone

Model window
showing a
custom button,
a custom popup
menu, and a
cloned dialog
item

Creating a Custom User Interface 507
Creating a dashboard interface

H
ow

 T
o

Buttons
The Buttons block (Utilities library)
makes it easy to create buttons that
will activate frequently-used com-

mands. A number of predefined buttons can be
selected from the popup menu in the block’s dialog.
You can also create a custom button for a specific
purpose by changing the label and/or equation.

The pre-defined buttons are:

• Animation On

• Animation Off

• Open Notebook

• Run Simulation

• Pause Simulation

• Save Model

• Open Block

• Open H-block

• Open Database Table

• Open Database

Select or create the button in the block’s dialog, then clone the button from the dialog to the
model worksheet, Notebook, or hierarchical block. The button will execute the command when-
ever it is clicked. Each button requires a separate Buttons block. To store the block, place it any-
where on the model worksheet or within a hierarchical block. A common place is to store the
Buttons block behind its cloned button.

☞ The Animation On and Animation Off buttons in the Buttons block only control 2D animation
during the simulation run; they do not control 3D animation.

Buttons block dialog

508 Creating a Custom User Interface
Notebooks

H
ow

 T
o

Popup menus
The Popups block (Utilities library) lets
you create a popup menu of customized
options that a user can select from to con-
trol model behavior. Connect the block’s

output to the input connector of any block that requires
that value. Depending on the option selected, the block
will output a value specified in its dialog table.

To create the popup menu, enter a label for each option
in the second column of the table in the block’s dialog.
Then clone the menu item to a worksheet, hierarchical
block, or Notebook and connect the Popups block’s out-
put to the block you want to control. When the user
selects an option from the menu, the Popups block out-
puts the corresponding numeric value from the first col-
umn in the dialog’s table. You can create a popup menu
with as many options as you want.

For an example where the Popups block is used, see the
Monte Carlo model, located in the folder \Examples\Continuous\Stan-
dard Block Models. The hierarchical block labeled “Scenario in the lower
right corner contains a Popups block. That block is used to create the pop-
ups menu for the cases.

☞ You can link the table in the Popups’ dialog to an ExtendSim database table, creating a popup
menu for selecting a database record.

On/Off Switch
The Switch block (Utilities library) can be used like an On/Off switch to control
some aspect of a model. The block’s input connector is used to turn the Switch on
and off; its output connector reports the status. A value of 0 (zero) indicates the
Switch is off and a value of 1 (one) indicates it is on. This block is similar to the

Switch control described in page 510, but it has some additional features: the Switch block’s dialog
has a Switch that can be cloned to the model worksheet, Notebook, and so forth; there is a dialog
item that allows the Switch’s status value (1 or 0) to be linked to a database, global array, or Excel
spreadsheet; and in a discrete event model, the Switch block can send a message to a connected
block to notify it of a status change.

Additional blocks to control model execution
To give the user more customized control over model execution, the Run Model and Pause Sim
blocks (Utilities library) provide additional settings that determine what happens when the model
is run or paused. You can clone dialog items from the Run Model and Pause Sim blocks to the
model worksheet, as part of creating a user interface. For more information, see “Blocks that con-
trol or monitor simulation runs” on page 525.

Notebooks
As you saw in the tutorial in Chapter 1, a Notebook is a window you can customize to help you
organize and manage the data in a model. Each model has its own Notebook which can contain
clones of dialog and plotter items (see “Cloning” on page 504), as well as text, pictures, and draw-

Popups block dialog

Popups menu

Creating a Custom User Interface 509
Controls

H
ow

 T
o

ing objects (see “Text and graphics” on page 514. To see an example of cloning a plotter’s graph to
a Notebook, see “Cloning” on page 38.

A typical use for Notebooks is for collecting all of the items you might want to watch in one place.
Since you can leave a Notebook open as a simulation runs, use it as a central display for all of the
important values in all the dialogs.

Another common use is as a control panel. Clone all the dialog items that you might want to
change while the simulation is running to the Notebook so you do not need to open the dialogs
from the worksheet in order to make a change.

☞ If a model's Notebook already has data or other contents in it, it will say (has data) beside the
Window > Notebook command.

When you save a model with the Notebook open, the Notebook will automatically open with the
same configuration the next time the file is opened. A Notebook can be many pages long. With the
Notebook as the active window, choose File > Show Page Breaks to show the number of pages and
how they would print.

You can copy the contents of a Notebook as a picture which can be pasted into other applications
such as a word processing document or a presentation. Simply select the items you want, then
choose the Edit > Copy To Picture command to copy the picture into the Clipboard.

Controls
ExtendSim has three special tools in he Model > Controls command that are used to control
blocks and show values directly as the simulation runs.

The controls are the Slider, Switch, and Meter. The Slider and the Switch are used to set values in
your models. The Meter is used to see values as the model is running. The Meter also has a dialog
that you can access by double-clicking it.

Slider
A Slider control lets you slide an indicator along a scale to change
the value of its output. You set the maximum and minimum val-
ues by selecting the numbers at the top and bottom of the Slider
and typing in the desired value.

☞ If you enter a value at the bottom of the Slider which is higher
than the maximum, or if you set the value at the top of the Slider
to be less than the minimum, ExtendSim will warn you.

As you slide the indicator, the current value is displayed on the
indicator and is output through the middle connector. There are
also connectors next to the minimum and maximum values that
output those values.

Slider

Maximum

Current

Minimum

510 Creating a Custom User Interface
Interacting with the model user

H
ow

 T
o

The Slider is useful to output a number in a range when the number
does not need to be exact or to experiment with model parameters.
For example, if you have an Activity block where you want to specify
the delay as the simulation is running and a delay of 8 is slow but a
delay of 2 is fast, you might put in a Slider with 8 as the maximum
and 2 as a minimum. Then, as the simulation is running, simply drag
the Slider’s bar up and down to indicate slow and fast.

Switch
The Switch control looks like a standard LED switch that glows green
when it is on. It has two inputs and one output.

The Switch outputs either a 0 (zero) or a 1 (one)
depending on the state of the LED. When you click on the left side, the
Switch turns off, the LED turns dark gray and the Switch outputs a 0 (zero).
Clicking on the right side (the side with the LED) causes the Switch to turn
on, the LED to glow green, and the Switch to output a 1 (one).

The Switch control is valuable in controlling blocks that have true-false
inputs. For example, you might attach a Switch to the SelectIn connector of a
Select Value Out block, as shown below.

The input connectors at the bottom of the Switch are used to change the
state of the Switch by setting their side of the Switch to true from within
your model. For example, you might want to set the Switch to off when a
model starts, then change it to on after some period of time. The next
time you run the model, the Switch would be automatically set to off
again when the model begins.

When either of the Switch’s inputs gets a true value (defined as 0.5 or
greater), it selects that side of the Switch. If the other input later gets a
true value, the Switch will shift to that side.

☞ If an input receives a true value and that side of the Switch is already selected, no change is made.

Meter
The Meter visually displays how values vary between a known
maximum and minimum. Set the maximum and minimum val-
ues through the Meter’s dialog or by connecting other blocks
(such as Constant blocks) to the top and bottom connectors.

This is a good control to use if you want to see values while the
simulation runs but you don’t need to save them to a plotter.

Interacting with the model user
Some ExtendSim blocks provide a convenient method for monitoring conditions in the model,
requesting input from the user, and reporting changes. In addition, if you build your own blocks
you can add customized alerts and prompts to display results and prompt for input data.

Using a Slider with an
Activity block

Switch showing off
and on states

Off

On

Using a Switch (on state)
with a Select Value In
block

Meter

Maximum

Minimum
Current

Creating a Custom User Interface 511
Interacting with the model user

H
ow

 T
o

Notify block
The Notify block (Value library) provides three options for sending messages to the
user: Play a sound, Prompt for output value, and Stop the simulation. For all
three options, the Notify block has an input connector that receives a True or False
value that is used to determine whether or not to play a sound, stop the simulation,
or issue a prompt. When the Prompt option is selected, the block also has an output
connector to output the value the user enters after being prompted.

All three options define True as being ≥ 0.5.

Play a sound
This option plays a sound when its input connec-
tor gets a True value (alternately, you can choose
to have it play only when the input value is True
and animation is on). To use a sound, choose the
Play a sound option and enter the sound name
in the Notify block’s dialog. You can enter the
name (such as click or crack) for any sound
located in the ExtendSim Extensions folder. To
hear that sound, click the Play Sound button.

☞ Sound files you create and place in the Extensions
folder must be in .wav format (Windows) or an
snd resource (Mac OS). On Windows, you can
also enter the name for any sound in Window's
Sounds Control Panel.

Prompt for output value
This option is mainly used to prompt the user to
change the block's output value. Until the input con-
nector gets a True value, the block outputs the value
specified in the dialog. When the input is ≥ 0.5, the
block prompts the user to enter a different value to out-
put.

You use this block to pause a simulation, request a
value from the user, then continue the simulation using

Set to play a
sound

Sound option selected in Notify block’s dialog

Prompt option selected in Notify block

512 Creating a Custom User Interface
Interacting with the model user

H
ow

 T
o

the new value. The output value can be any number, including 0. If the user clicks the Cancel but-
ton in the prompt dialog, the simulation stops.

Stop the simulation
This option is used to stop the simulation and
alert the user if the monitored parameter gets a
True value.

You can customize the block to display any warn-
ing message you want, up to 255 characters. You
can also set the message to include the block's
number and the time the event occurred.

Equation blocks
The Equation block (Value library) and Equa-
tion(I) block (Item library) provide flexibility and
control for creating user interface elements. Most
ModL functions can be called from an Equation
block, including functions specifically for inter-
acting with the model user. The blocks provide similar functionality, but the Equation block calcu-
lates its equation when it gets a value and the Equation(I) block calculates its equation when an
item arrives. Equation blocks are useful when you want a more complex set of rules for the interac-
tion than the Notify block provides.

For example, you could use an Equation block to prompt for a value if a certain con-
dition exists and then change the result based on input from the user, like the
Prompt block. But then add another condition, such as a delay between when the
user is prompted.

Stop option selected in Notify block

Creating a Custom User Interface 513
Interacting with the model user

H
ow

 T
o

The equation in the following screenshot causes a message to appear to the model user, asking for
a new processing time if the length of the queue exceeds 50 and at least 10 time units have elapsed
since the last value was requested.

Additional interactive features if you program
If you develop your own libraries of blocks or want to modify existing blocks, ExtendSim provides
even more capability for delivering messages and interacting with users. Here are some ideas from
the ExtendSim Developer Reference:

• Change what is shown in a dialog depending on what occurs in the model or what the user
selects or enters in the dialog. For example, you can change the text that is displayed in a block’s
dialog depending on which button a user clicks.

• Some of the available functions include displaying a message, prompting the user to input a
value, or making a sound. These functions can also be used for debugging ExtendSim’s ModL
code, although using the Source Code Debugger is the preferred approach.

• DLLs (Windows) and Shared Libraries (Mac OS) are especially handy where you want to add a
feature or functionality that ExtendSim’s language (ModL) does not support. For example, you
could use a DLL or Shared Library to display a picture or graphic in a separate window when a
user clicks a button or to create a customized sound resource based on numerical values from the
model. DLLs and Shared Libraries are segments of code written in any language, such as Visual
Basic or C++. ExtendSim’s DLL and Shared Library functions allow you to call these code seg-
ment resources from within a block’s ModL code and perform operations.

• Embedded objects can be used to place a document or display from another application, such as
Excel, into an ExtendSim model. Use one of the methods discussed at “Embedding an object
(Windows only)” on page 655 to transfer information between ExtendSim and the ActiveX
(Windows) control.

514 Creating a Custom User Interface
External applications as an interface

H
ow

 T
o

• COM/ActiveX Automation allows ExtendSim to communicate with other applications either as
a server or a client. As a client, ExtendSim uses the external application’s COM object model to
communicate with it. As a server, ExtendSim responds to COM/ActiveX messages. For more
information, see “ActiveX/COM/OLE (Windows only)” on page 665.

External applications as an interface
Other applications can serve as an interface to an ExtendSim model. This is accomplished by link-
ing to ExtendSim models or blocks directly, using technologies such as ActiveX commands, or
indirectly through text files.

Using an external application works much the same as using the ExtendSim database feature, since
the application stores the parameters to be used in the model and the results of the simulation. For
more information, see “Exchanging data with external applications” on page 657.

Documenting models
Creating a user interface also involves adding information or graphics to clarify what is happening
in a part of the model or to explain why a particular modeling approach was used. You do this by
putting text, pictures, or draw objects on the worksheet or by creating a hierarchical “Help” block,
as shown below.

Text and graphics
You can improve the organization of your model or Notebook by grouping elements together and
using text and graphics to identify or highlight different sections. To learn more about adding text
and graphics, including using colors and patterns to enhance them, see “Working with text” on
page 538, “Graphic shapes, tools, and commands” on page 561, and “Patterns and colors” on
page 562.

Help block
To create a Help block, choose Model > New Hierarchical Block and name the H-block “Help”.
Then add explanatory text, pictures and/or draw objects to the hierarchical block's worksheet,
close and save the block, and place it where you want on the model.

For more information about working with hierarchy and customizing hierarchical block icons, see
“Hierarchy” on page 540.

How To

Model Execution
Tips for running simulations

“The future is something that everyone reaches
at the rate of sixty minutes an hour.”

— C. S. Lewis

516 Model Execution
Simulation setup

H
ow

 T
o

With ExtendSim, you have several options for controlling simulation runs, including:

• Using the Simulation Setup dialog to determine how models will run

• Important points when running a model

• Information provided in the status bar

• Using blocks to control or monitor simulation runs

• Saving intermediate results

• Setting the timing for your runs

• Determining an appropriate simulation order

• Choosing time and other units that are most relevant for your models

• Determining the length and number of runs

• Speeding up and slowing down simulations

• Working with multiple models

• How ExtendSim passes messages in models

Simulation setup
Before running a simulation, you need to specify how long it will run. Use the Simulation Setup
dialog to set the simulation duration, choose a time unit for the model, have the model run multi-
ple times, or select other simulation and animation options. To access the dialog, choose Run >
Simulation Setup. The dialog has five tabs which are described in detail below.

Model Execution 517
Simulation setup

H
ow

 T
o

Setup tab

Choice Description

End time The time that the simulation will end. See also “Simulation timing” on
page 82 for continuous models and “Moving items through the simulation”
on page 246 for discrete event and discrete rate models.

Start time The current time at the start of the simulation. By default this is set to 0, since
that is the most common starting point. Set it to a different value if the model
uses the time value for some calculations. See also “Simulation timing” on
page 82 for continuous models and “Moving items through the simulation”
on page 246 for discrete event and discrete rate models.

Runs The number of consecutive times to run this simulation. In the status bar, dis-
cussed on page 524, the numbering of simulation runs starts at 0.

Global time units Time unit for the entire model. Local time units can be defined within the
dialogs of blocks that contain time parameters. See “Time units” on page 526.

Calendar date
definitions

Allows you to specify calendar-based timing if Use Calendar dates is selected.
See “Calendar dates” on page 528.

Non-Calendar
date definitions

Only available if Use Calendar dates is not selected. Used by ExtendSim to
automatically convert local time units to the global time unit. See “Time unit
conversions (non-Calendar dates)” on page 529.

518 Model Execution
Simulation setup

H
ow

 T
o

Continuous tab

The Continuous tab is only used for changing the time step, stepsize calculation, or simulation
order for a continuous model.

Choice Description

End time, Start time,
Runs, Global time
units

For the convenience of continuous modelers who want to change stepsize,
these four settings from the Setup tab are repeated on the Continuous tab.
Changing any of these settings on one tab will change them on the other. See
their descriptions in “Setup tab” on page 517.

Time per step (dt) Represents delta time (dt), or the length of time per step. This is the default
choice for determining the granularity of the simulation run. For most pur-
poses use the default setting of 1, meaning that each step will be one time unit
long. A value for the number of steps is automatically calculated based on the
dt entered. The value is computed as: floor(((EndTime-StartTime)/Delta-
Time) + 1.5). To see this, select the Number of steps option after changing the
Time per step (dt). See also “Specifying dt or the number of steps” on
page 83.

Number of steps Another method for determining the granularity of time for the simulation
run. In most cases, this would be a number equal to the duration (length of
the simulation run); the model calculates values once for each step and each
step is one time unit long. A default value for delta time is automatically cal-
culated based on the number of steps you enter. The value is computed as
(EndTime-StartTime)/(NumSteps - 1). To see this, select the Time per step
(dt) option after changing the Number of steps. See also “Specifying dt or the
number of steps” on page 83.

Stepsize calculations These are only used in continuous simulations that change the DeltaTime sys-
tem variable, such as electronics models. Most models should use Autostep
fast. If the blocks that you create change DeltaTime and demand more accu-
racy, use Autostep slow (which divides the calculated value for DeltaTime by
5). If your custom blocks change DeltaTime but you want to ignore the
changes, select Only use entered steps or dt.

Model Execution 519
Simulation setup

H
ow

 T
o

Random Numbers tab

☞ For the table that follows, consecutive simulation runs means setting the number of simulation
runs in the Setup tab to something greater than 1.

Simulation order Flow order should be used for most models. For more information, see “Sim-
ulation order” on page 86.

Choice Description

Random seed The “interface” for the random number generator. A value of 0 or blank uses a
random seed; any other value causes repeatable sequences of pseudo-random
numbers. Note: Each block that outputs random numbers will generate its
own independent sequence. For more information see “Random seeds” on
page 605.

Starting seed used in
last model run

Reports the random seed from the previous run.

Reset random num-
bers for every run

When this option is selected from the popup menu, random numbers are ini-
tialized at the start of every simulation run. If the global random seed is blank
or 0, a new randomized seed will be generated at the start of every consecutive
simulation run. If the global random seed is a positive integer, the same seed
value will be used for every consecutive run.

Continue sequence of
random numbers

When this option is selected from the popup menu, the sequence of seeds for
each consecutive simulation run is continued from the previous run.

Choice Description

520 Model Execution
Simulation setup

H
ow

 T
o

Use database
table__Seed for
values

When this option is selected from the popup menu, the starting seed for each
consecutive run is read from the __Seed table in the selected ExtendSim data-
base. This option allows you to specify exactly which seeds will be used for
each simulation run. It also is a convenient method for recording a set of seed
values. To specify a set of random seeds, create a table in a database with one
field and a number of records equal to the number of simulation runs. The
model will access sequential records for each consecutive simulation run, and
that record’s value will be the seed value for the run. If you leave the records
blank or enter zeros, ExtendSim will fill the table with seed values on the first
run. It will then use those seed values for each subsequent set of runs.

Check blocks for
duplicate random
number seeds

At the start of the simulation, all blocks that use random numbers are checked
to make sure that no two blocks are using the same seed values. This option is
not necessary unless the use block seed option is selected in the individual
blocks.

Use recommended
random number gen-
erator (default)

When checked, ExtendSim will use the recommended Minimum Standard
random number generator. When unchecked, ExtendSim will use the
optional Schrage random number generator used in previous versions (back-
wards compatibility). For details about the ExtendSim random number gener-
ator see “Random number generators” on page 605.

Antithetic random
variates (off by
default)

Generates antithetic variates for possible variance reduction using multiple
runs. It can be controlled by the Optimizer block (Value library), or by cus-
tom blocks, to alternate on and off in alternate runs using the AntitheticRan-
domVariates global variable. See the ExtendSim Developer Reference for more
information. This setting should be off under normal use.

Choice Description

Model Execution 521
Simulation setup

H
ow

 T
o

3D Animation tab

 3D animation is not available with all products. For complete information about 3D animation
and the following settings, see the E3D module that starts on page 389.

Comments tab
Use this tab to enter comments about the simulation run.

Choice Description

Show 3D animation
during simulation
run

Opens the E3D window when the model opens. If the window is subse-
quently closed, it will reopen during model initialization when the model is
run. This is the same as selecting the command Run > Show 3D Animation.

Select mode Defines how the E3D window and the simulation interact. QuickView shows
all of the movement of items in the E3D window while the simulation is run-
ning. Concurrent is a more realistic animation than QuickView and shows
only the movement of items that requires simulation time. The 3D animation
runs during the simulation run. Buffered is similar to Concurrent except it
runs the 3D animation after the simulation has ended. The selected mode is
shown at the top of the E3D window.

Environment file Selects a file that specifies the appearance and behavior of the background for
the E3D window. The default is the Extend3D.mis file; you can also create
custom environment files.

Define conversion
ratios

Specifies the relationship for distance and time between the E3D window and
the simulation. The distance ratio defines how many pixels in the 2D
worksheet window represent one meter in the E3D window. The value
for the time ratio controls the 3D animation’s display speed and is displayed at
the top of the E3D window. The time ratio value, and the animation speed,
changes if you click the Faster or Slower buttons on the E3D window. In most
cases the default values for these settings will not need to be changed.

522 Model Execution
Running a model

H
ow

 T
o

Running a model
In the ExtendSim Tutorial you learned the basic steps in running a model. Some additional points
are discussed in the following sections.

Menu commands and toolbar buttons
You can run, stop, and pause simulations using toolbar buttons or the commands under the Run
menu.

• The Run menu commands are discussed at “Run menu” on page 708.
• Buttons to activate the Run commands are shown at “Toolbar buttons” on page 714.

Running a model multiple times
It is common that you will build a model and run it repeatedly. Running a model multiple times
gives a range of values indicating possible outcomes and facilitates model analysis. For example,
you would do this when the model has random inputs, for Monte Carlo simulations, or when per-
forming sensitivity analysis.

• As discussed in “Constant values and random variables” on page 57, models with one or more
random inputs are called stochastic models. Stochastic models are run repeatedly and then ana-
lyzed statistically to determine a likely outcome.

• Monte Carlo simulation is commonly defined as applying random behavior to a static or dynamic
model and evaluating the results over a number of trials or observations. Applying Monte Carlo
simulation techniques to a dynamic model is also known as stochastic modeling, which is dis-
cussed above. You can build both static and dynamic models with ExtendSim. For more infor-
mation, see “Monte Carlo modeling” on page 47.

• When you perform sensitivity analysis on a model, you select a variable for analysis and vary it to
determine how much of an impact the variable has on the model as a whole. Sensitivity analysis
is discussed in detail in “Sensitivity analysis” on page 568.

You should plan on running a simulation at least 3-5 times to estimate the variability in output
whenever a model contains random variables. Then you can use statistical sample-size calculations
(discussed in “Determining the length and number of runs” on page 531) to determine how many
additional simulation runs are required to obtain an accurate estimate of the model’s performance.
Some tools in ExtendSim for evaluating multiple simulation runs are:

• Histogram blocks (Plotter library) that show the shape and any tendencies in the range of results

• Error Bar plotters (Plotter library) that show how a variable is affected by randomness through
the course of the simulation run

• MultiSim plotters (Plotter library) that can retain data and show the results of up to four simula-
tion runs

• Confidence intervals (reported by the Statistics block in the Value library) that show the proba-
bility that a certain range captures the true mean for a simulation model result

Stepping through a model
Sometimes you want to pause a simulation run to observe something of special interest, or step
through the run to verify the action. There are several ways to accomplish this:

Model Execution 523
Running a model

H
ow

 T
o

• Give the command Run > Pause, or click the Pause/Resume button in the toolbar, as the simula-
tion runs. Then give the command Run > Resume or click the Pause/Resume button again to
continue execution. This method works well for pausing a run one time to observe something of
interest, but is not that useful for stepping through the entire model since it depends on your
dexterity.

• Clone the Pause Simulation button from the Buttons block (discussed at “Buttons” on
page 507). Then give the command Run > Resume or click the Pause/Resume button to con-
tinue execution. To use this method, click the Pause Simulation button each time you want the
resumed simulation to pause. This works well if your intention is to pause the simulation once
or twice when you see something of special interest.

• Use the Pause Sim block (Utilities library).
This block causes the simulation to pause
when certain conditions are met; the con-
ditions are specified in the block’s dialog
(seen at right). These options give more
flexibility than either of the two previous
methods; they are particularly useful when
stepping through a model. Give the com-
mand Run > Resume or click the Pause/
Resume button to continue execution.

• Use the Debugging menu commands discussed on “Debugging” on page 711. This hierarchical
menu lets you modify the way a simulation runs and facilitates finding a modeling problem.
The three “Step...” commands in the Debugging menu determine how the Step command in
the Run menu performs during a simulation run.

See also “Slowing down simulations” on page 533.

Other points when running models
• You can run multiple models simultaneously. However, the Run > Run Simulation command

only activates one model at a time. See “Working with multiple models” on page 533 for how to
activate multiple model runs.

• Windows and dialogs, such as the Notebook, a block’s dialog, or a hierarchical block’s work-
sheet, can be left open when the model runs. However, you cannot run a simulation with a
block’s structure open and leaving too many windows open (especially if they have parameters
that update constantly) can slow simulation speed.

• The ExtendSim application communicate with blocks in a model and the blocks can communi-
cate with each other by sending and receiving messages before, during, and after a simulation
run. This unique communication method allows powerful modeling constructs and results in
models that are visually logical and easily understood. See also “How ExtendSim passes messages
in models” on page 533.

For more information about running models under different circumstances, see the following sec-
tions:

• “Animation” on page 551

• “Sensitivity analysis” on page 568

Pause Sim dialog

524 Model Execution
Running a model

H
ow

 T
o

• “Optimization” on page 572

• “Dotted lines for unconnected connections” on page 618

• “Model reporting” on page 620

• “Confidence intervals” on page 567

Status bar
Once the simulation run begins, ExtendSim shows information in a status bar at the bottom of
your model:

When you start the simulation run, ExtendSim displays some initial status information in the
form of messages that appear momentarily in the status bar area. Depending on the speed of your
computer, you may see the following messages: Wait, Checking Data, or Initializing Data. These
messages inform you of ExtendSim’s status as it checks and initializes the model prior to starting
the run. On fast computers, the messages may appear too quickly for you to read.

Other messages are displayed in the status bar while the simulation runs:

• The number after the hourglass is an estimate of the actual time left in the simulation (expressed
as minutes:seconds) so you can determine how long it will run.

• The clock shows the current time of the simulation in simulation time units.

• Run shows the number of the simulation run when multiple consecutive simulations are run-
ning (the numbering of simulation runs starts at 0).

These values are determined by the entries in the Simulation Setup dialog described in “Setup tab”
on page 517.

Note that the time remaining shown in the Status Bar is only an estimate. For continuous simula-
tions, it is usually accurate. For discrete event and discrete rate simulations, however, it can be inac-
curate, as discussed next.

Timer inconsistencies (event-based models only)
In discrete event and discrete rate models, the value for the timer hourglass sometimes varies from
one moment to the next, especially at the beginning of a run when it is impossible to know when
events are going to happen and thus how long it will take to run a model. The estimated time
remaining may even increase if the simulation starts to run slower because items are being delayed
more or because more events are being generated. The Status Bar will sometimes show the phrase
Initializing Data during the initial steps of a discrete event simulation if there is a great deal of
fast activity (for instance, if you use the preprocessing suggestion shown in “Connections to multi-
ple item input connectors” on page 248.

Since it is only an estimate, do not be concerned about the value in the Status Bar; the model is
running correctly regardless of the value shown there. However, if the timer hourglass continues to
increase throughout the run and the simulation clock does not advance, it may indicate that there
is an infinite loop in the model. Running the model with 2D animation on may help identify the
cause of this.

Status Bar

Model Execution 525
Running a model

H
ow

 T
o

Blocks that control or monitor simulation runs
In addition to the menu commands and toolbar buttons, several blocks provide customized con-
trol over the simulation run. As is true for other blocks, you can clone dialog items from these
blocks onto the model worksheet as discussed in “Cloning” on page 504.

Buttons (Utilities library)
Creates buttons to activate frequently-used commands such as running a simulation,
opening a Notebook, and saving the model. Since this block is most often used to
create a user interface for a model, it is discussed in “Creating a dashboard interface”
on page 506.

Pause Sim (Utilities library)
Pauses the simulation when certain conditions are met. This gives more flexibility
than cloning the Buttons block’s Pause Simulation button (discussed on page 507).
Give the command Run > Resume or click Pause/Resume to continue execution. See
also “Stepping through a model” on page 522

RealTimer (Utilities library)
Shows the duration of a simulation in real time. It should be placed at the far right
side of the model worksheet. At the conclusion of the model run, its dialog opens to
display the hours, minutes, seconds, tenths of seconds and ticks (sixtieth of a second)
that the simulation took to run.

Run Model (Utilities library)
Runs the simulation when the Run Simulation Now button is pressed. The options
in this block give you more flexibility than cloning the Run Simulation button from
the Buttons block (discussed at “Buttons” on page 507.)

Time Sync (Utilities library)
Synchronizes the model to run in real time. It does this by pausing on each simula-
tion step until the amount of simulation time that has passed equals the amount of
real time that has passed. This is only effective if the model is running faster than real
time. If the model is running slower then real time, the block will have no effect.

The timing starts at the beginning of simulation execution after all of the blocks have been initial-
ized.

Saving intermediate results
There may be occasions when you need to pause a simulation before it’s finished running and save
it to continue at a later time. For example:

• To interrupt a long model run when you need to shut down your computer

• To resume a simulation after a startup or warm-up period

• For debugging: pause just before the bug occurs and continue multiple times to try to track
down the bug

• To change the random numbers after the model has run for an amount of time

To pause a running model and save it for continuation later:

Bring the model window to the front, before all other windows.

While the model is running, select File > Pause and Save/Save As.

526 Model Execution
Timing

H
ow

 T
o

Close the model.

When you open the model later, select Run > Continue Simulation to resume.

If you are doing this for debugging, do not re-save the model after continuing. Instead, repeatedly
run the model from its original paused state.

Timing
Unless you stop them earlier, all simulations run for a specified period of time. ExtendSim deter-
mines the duration of a simulation run based on the values entered in the Run > Simulation Setup
> Setup tab; the duration is the period from the start time to the end time.

Continuous simulation timing
In continuous simulations, the duration is divided into intervals or steps of equal length, where
start time is the first step and end time is the last step. The length of time, in time units, for each
step is known as delta time or dt. The delta time determines how frequently model data is recalcu-
lated. For more information, see “Simulation timing” on page 82.

Discrete event simulation timing
In discrete event and discrete rate simulations, ExtendSim progresses from start time through end
time by a series of events. Time progresses from one event to the next and the time between events
is unlikely to be equal. The application calculates the time between events internally based on
when an event occurs. The number of steps in a discrete event or discrete rate model is the number
of events.

Simulation order (continuous models)
The Run > Simulation Setup > Continuous tab allows you to choose the order in which
ExtendSim executes block data for continuous models. The choices are Flow order (the default),
Left to right, and Custom.

 It would be unusual to change the simulation order from the default choice, Flow order.

Since this information pertains to running continuous models, it is discussed at “Simulation
order” on page 86.

Time units
Time is the most common unit of measure in simulation. Each model has its own time unit that is
managed in the Simulation Setup dialog.

Global time unit
The global time unit is the base unit for the entire model,
defining the units for the start and end times of the simula-
tion.

There are two ways to specify a global time unit:

• Use the Generic time unit to be the default for the whole
model.

• Select a specific global time unit, such as hours or seconds,
to be the default for the whole model.

Global time units are set by going to the Run > Simulation
Setup > Setup tab and selecting and defining the unit of

Global time units popup
with Seconds selected

Model Execution 527
Time units

H
ow

 T
o

time. Once you select a global time unit, all blocks with time-based parameters, including those
subsequently added to the model, use it by default as their local time unit.

Using the generic global time unit
By default, the non-specified “Generic” time is a new model’s global time unit. Generic is a con-
ceptual unit of time and has whatever meaning you give it. Generic time is the same for the whole
model and for each block that has time-based parameters.

This option is used by most modelers to quickly create a model without having to select a specific
time unit. It is also commonly used when the model’s blocks use the same time units as the model.

With the Generic global time unit, time-based blocks do not
have a local time unit. Instead, all blocks that include a time-
based parameter will specify generic “time units.”

You must be sure to maintain all time-based parameters
throughout the model in that same unit of conceptual time.
For example, if you have a model that simulates a factory over the course of three hours and your
conceptual time unit is minutes, set the end time of the simulation to be 180 in the Simulation
Setup dialog and enter parameters based on minutes in block dialogs. The Comments tab in the
Simulation Setup dialog is a convenient place for noting what unit of time Generic represents in
your model.

☞ Models cannot use Calendar dates or specify a local time unit if the global time unit is set to
Generic.

Using a specific global time unit
In the Run > Simulation Setup > Setup tab you can change the default global time unit to be
something specific, such as hours or seconds. Using a specific global time unit can add to the
understanding of the model, since it allows you to specify parameters based on different time units
throughout the model.

When a specific global time unit is selected, that setting
becomes the default global time unit for the model as well
as the default local time unit within time-based blocks.
There will be an asterisk (*) next to the name of the time
unit in the dialog of each block.

As discussed in “Local time unit” on page 527, when the model uses a specific global time unit,
you can change the local time unit to be anything you want.

☞ If you change the global time unit in the Simulation Setup dialog, be sure that the new time unit is
appropriate for all blocks that use the default time unit. For example, if the global time unit was in
hours and you change it to days, a block that used two hours will now use two days if it is set to use
the default time unit.

Local time unit
You can only change the local time unit in a block if the model is using a specific global time unit,
as discussed on page 527. As long as a block’s time unit is in default mode, the local time unit will
be the same as the global time unit. For instance, if you change the global time unit in the Simula-
tion Setup dialog, it will also change in every time-based block. However, as soon as you select a
different time unit from the popup menu in a block, the local time unit changes from the default
to that new time unit.

Block’s time-based parameter when
Generic selected as global time unit

Asterisk indicates time unit in block is
the same as global time unit

528 Model Execution
Time units

H
ow

 T
o

You can thus choose any unit of time for each time-based
parameter in each block in the model. This means you can
specify the parameter’s time locally as milliseconds, sec-
onds, minutes, hours, days, weeks, months, or years,
regardless of the global time unit.

☞ In continuous and discrete event models, a local time unit applies only to its associated time-based
parameter. For instance, an Item library block can have two local time units, each associated with a
different parameter. In discrete rate models however, the local time unit applies to the entire block.
There can only be one local time unit for a discrete rate block.

If a local time unit is specified, ExtendSim will automatically convert parameters based on the local
time unit’s relationship to the global time unit. If the model is using Calendar date definitions (see
“Calendar dates”, below) that conversion will be based on the calendar. For example, the actual
number of days in the month selected. If the model is not using Calendar dates, the conversion
will use the non-calendar definitions entered in the Simulation Setup dialog, as discussed in “Time
unit conversions (non-Calendar dates)” on page 529.

Selecting a specific global time unit provides consistency when adding new blocks to the model,
since every new block will initially be using the same time unit. However, in some cases you will
not want to keep all parameters in default mode. Explicitly selecting a time unit (even the same
unit of time as the global time unit) for each local parameter in the model is a safer choice. Then,
if you subsequently decide to change the global time unit, you will not accidentally affect the sim-
ulation results.

☞ You can select a time unit from the popup that is not the default but which has the same name as
the default global time unit. For instance, you can select hours from the popup, rather than
hours*. You would do that if you do not want the local time unit to change based on a change in
the global time unit.

Calendar dates
Sometimes it is helpful have the duration of simulation expressed in terms of a calendar-based
starting and ending time. Calendar dates is a time and date format that corresponds to the calendar
and a 24-hour clock. It is an option that you can choose in the Simulation Setup dialog, along
with the Start time, End time, and Global time unit entries.

 Calendar dates are not available if the global time unit is Generic, if milliseconds has been selected
as the specific global time unit, or if months or years have been selected as the specific global time
unit for a discrete rate model. If Calendar dates has been selected, individual Rate library blocks
will not be able to select Months or Years as their local time unit.

To enable Calendar dates:

Choose Run > Simulation Setup > Setup tab

Select Use Calendar dates

Click the Start: field

A calendar appears to select a date and time that represents the beginning of the simulation.
ExtendSim will use that information and the other entries you have made in the Setup tab to cal-
culate the End date. (Of course, all dates are in simulation time, not in real time.)

There are two other options that affect Calendar date definitions. The European format option
places the day before the month. The Macintosh date option, selected by default for Mac OS, is
needed when Excel is set to use the “1904 date system” (see Excel > File > Preferences > Calcula-

Local time unit is minutes; global time is
set to a different time unit

Model Execution 529
Other Units

H
ow

 T
o

tion.) If “1904 date system” is not checked in Excel on the Macintosh, uncheck this option in
ExtendSim.

Selecting Use calendar dates for a model can also affect blocks that deal with time. For example, if
Calendar dates is enabled, you can use the calendar format to create a schedule in the Create block
(Item library). An example of this is the block named “Schedule” in the Scheduling Resources
model located in the folder \Examples\Discrete Event\Resources and Shifts. (The model is dis-
cussed in the section “Scheduling resources” on page 216.)

The following blocks allow you to select Calendar dates in their dialog:

• Create (Item library) when it is set to Create items by schedule or Create values by schedule
• History and Shift blocks (Item library)

• Lookup Table (Value library) when it is set to Lookup the: time
• Plotter blocks such as the Plotter, Discrete Event and Plotter I/O

 Do not use Calendar dates if block dialogs are set to use values smaller than 1 second (such as
0.0005 seconds), as it may affect numerical precision.

Time unit conversions (non-Calendar dates)
If a model has not been set to use Calendar date definitions
when it runs, ExtendSim converts all time-based parameters
from their local time units to the specific global time unit
based upon constants entered in the Run > Simulation Setup >
Setup tab. You can use the default settings or set your own def-
initions for all the time categories. Specifying that there are 8
hours in a day is an easy way to model a standard 8 hour work-
ing day. Note that the default value for a year is 360, not 365.

For example, assume you are using the default constants and
the global time unit for the model is days, but you have selected a local time unit of hours for a
block’s time-based parameter. When the model runs, ExtendSim will cause that parameter to be
divided by 24, converting it into the appropriate value for one day.

☞ Time unit conversions are only applicable if the model uses specific global time units and does not
use Calendar dates.

Other Units

Flow units
Flow units (gallons of liquid, cartons of cereal, rolls of paper, tons of flour, and so forth) can be
defined in the Rate library blocks. For more information, see “Units and unit groups” on
page 271.

Length
The Transport and Convey Item blocks (Item library) utilize a unit of distance (feet or meters) to
calculate the delay required to move an item from one point to another. Similarly, the Convey
Flow block (Rate library) uses a user-defined unit of length to calculate a delay for moving units of
flow.

Default constants in the
Simulation Setup dialog

530 Model Execution
Length and number of runs

H
ow

 T
o

Length and number of runs
An important consideration when building a model is to determine how long and how often the
simulation should be run. Your entries for the End time and Runs in the Simulation Setup dialog
will depend on four factors:

• Whether the system being modeled is terminating (has a natural end point) or non-terminating
(has no obvious end time)

• The period of interest (what portion of time you are modeling)

• Your modeling objectives (estimating performance, exploring alternatives, or other)

• How the samples for statistical analysis are obtained (from running multiple short simulations
or by analyzing portions of one very long simulation run)

A brief discussion of terminating and non-terminating systems follows. A comprehensive discus-
sion on this matter is beyond the scope of this manual.

Terminating systems
Some systems obviously lend themselves to a natural determination of end time. For instance,
most service operations have a point at which activities end. In these terminating systems there is
an obvious time when no more useful information will be obtained by running the simulation
longer. For example, when modeling one day at a walk-in customer service center that is only open
8 hours each day, you could safely set the simulation end time for 8 hours. Since customers would
not wait overnight in line for service, the service queue would be empty or cleaned out at the end
of the day and further simulation time would be unproductive.

Because terminating systems do not typically reach a continuing steady state, your purpose in
modeling them is usually to look for changes and identify trends, rather than obtain system-wide
statistical averages. For instance, in the customer service center mentioned above, it is more impor-
tant to determine the peaks and valleys of activity than to calculate overall averages. Basing your
decisions on average utilization in this case could obscure transient problems caused by multiple
periods of understaffing.

Since the initial conditions in terminating systems will have an impact on results, it is important
that they be both realistic and representative of the actual system. Terminating systems are simu-
lated using multiple runs for short periods of time using different random seeds for each run. As
discussed in “Confidence intervals” on page 567, the more frequently a simulation is run, the more
confidence you can have in the results.

Non-terminating systems
A non-terminating system does not have a natural or obvious end time. Models of non-terminat-
ing systems are often called steady-state systems since, if they are run long enough, the results tend to
a steady state. In these situations, simulation runs could go on indefinitely without materially
affecting the outcome. Most manufacturing flow systems and some service situations (for example,
24-hour convenience stores, emergency rooms, and telephone service centers) are non-terminating
systems.

Systems that have off-shift periods, for instance a manufacturing plant that operates only two shifts
a day, may still be considered non-terminating. If the operation does not clear out at the end of the
second shift, but instead the first shift starts up where the second shift ended, the system is consid-
ered non-terminating and the off shift period is just ignored for modeling purposes.

Model Execution 531
Speeding up a simulation

H
ow

 T
o

The important considerations when modeling non-terminating systems involve eliminating the
initial bias caused by the warm-up period, deciding how to obtain samples for statistical analysis,
and determining the length of the run.

• The warm-up period is the period from start-up to when processes operate at their normal or
steady-state level. In simulation models, start-up conditions may be unrealistic or nonrepresen-
tative of the actual system and may bias simulation results. To overcome this, you can either wait
until after the warm-up period to gather statistics, reset statistics as discussed in “Clear Statistics”
on page 566, or run the simulation for a long period of time to “swamp” the biasing effect of the
initial conditions.

• To obtain multiple samples for statistical analysis, you could perform repeated runs after elimi-
nating or compensating for the warm-up bias or you could do one extremely long run and calcu-
late statistics on results occurring during various windows of time. As with terminating systems,
the greater the number of samples, the higher the confidence in the results.

• The run length of a non-terminating system depends on various factors, including how you
obtain samples, your period of interest, and your modeling objectives, as discussed below.

Determining the length and number of runs
When modeling terminating systems, the length of the simulation run is usually determined by
the natural end point of the process being modeled. For instance, the 8 hours that a bank would be
open is modeled for 8 simulation hours. For statistical analysis purposes, however, you may want
to build a model that looks at a specific time period of a terminating system. For example, you
could model the bank’s busiest time period (say from 11 AM to 2 PM) to run multiple times to get
a better statistical picture of how the bank operates during that time period.

For non-terminating systems, the length of the run depends on how you decide to obtain your
samples (as discussed above) and on your period of interest. Theoretically, a model of a non-termi-
nating system could be run indefinitely. In reality, it is usually simulated until the output reaches
an adequate representation of steady-state. For example, you would run a model of a manufactur-
ing operation for a long enough period of time that you feel confident that every type of event
happens at least several times. In other situations you might want to limit the run to an artificially
short period of time. For instance, you may want to only model the time it takes the manufactur-
ing operation to go from start-up to operating in a normal manner.

The number of simulation runs is determined by statistical sample size calculations and your mod-
eling goals. If your goal is to estimate performance, the number of runs is determined by the
required range in a confidence interval. If your goal is to compare alternatives, the number of runs
is based on acceptable levels of risk.

For more information on determining the length and number of simulation runs, please refer to a
simulation or statistics textbook.

Speeding up a simulation
The more complex your model, the more important it is to have it run quickly. Models become
complex as you add more detail to the workings of each part, or as you run it for longer or, for con-
tinuous models only, with smaller delta time increments. Although ExtendSim runs models at
extremely high speeds relative to other programs, it can never hurt to think about speed consider-
ations. The following topics discuss some common reasons why a simulation might run slower
than it should and how to speed it up.

532 Model Execution
Speeding up a simulation

H
ow

 T
o

Displaying data or movement
The most important thing to remember about running speed is that anything that causes the
screen to update will inherently slow down your model. Tips to keep in mind include:

• Only use animation when you need it, since animation will slow your model down more than
any other activity.

•Do not keep plotters open when running your model if you are concerned about speed.
To keep a plotter closed, select the plotter’s dialog tool (shown at right). In the resulting
dialog, select either Show plot at end of simulation or Do not show plot.

• Close dialogs and Notebooks that have parameters updating while the model is running.

Inefficient settings or block code
In some situations the simulation settings, or a block’s code or the settings in its dialog, will cause a
model to run slowly.

• Delta time. For continuous models, consider using larger delta time increments so that
ExtendSim does fewer computations. For example, if each step is a day in your model, consider
making each step a week. Of course, this will not work with every model because some calcula-
tions are based on the number of steps and will thus be not accurate if you reduce the number of
steps.

• Model profiling. In some situations a block’s code or the settings in its dialog will cause a model
to run slowly. For example, you might have 80,000 items arriving in a Queue that is set to prior-
itize its inputs, or an inefficient section of code in a block you have created. Profiling generates a
text file showing the percentage of time that each block spent executing during the simulation
run.

To profile a model, select the command Run > Debugging > Profile Block Code, then run the
model. A text file is generated with the following information for each block the model uses:

• Block name

• Block Number

• Time spent executing

• Percentage of total time spent executing

• Display Value block. The Display Value block (Value library) may cause the simulation to run
more slowly. This is because the Display Value block pauses while it shows you information. To
speed it up, set its dialog’s Wait value to 0 ticks or seconds. You can also deselect the Dialog
opens option if you don’t want to see the dialog during the entire model run.

• Executive block. The Executive block (Item library) stores information about each item in the
model. As the simulation is run, the Executive block allocates additional items in groups of a
fixed size when necessary. In the Control tab of the Executive block’s dialog, you can specify how
many items are allocated at the beginning of the run and the number of additional items allo-
cated when required during the run. The procedure of allocating additional items during the
run can slow the simulation down if performed numerous times. Therefore, set the number of
items initially allocated to be the maximum number of items that are expected to be in the
model at any given time, plus 10%. Note that unnecessarily allocating too many items will take
up available memory and can slow down the simulation.

Model Execution 533
Slowing down simulations

H
ow

 T
o

Other factors that affect simulation speed
• Increase the amount of physical memory (RAM) in your computer. If your computer runs out

of RAM, it will use virtual memory, which can slow down your model significantly.

• Using a large number of Value library blocks connected together to perform a simple calculation
can slow a model down. Where possible, replace large “webs” of blocks with equation blocks
that perform the same calculation.

• For discrete event models, you may be able to scale the number of items you generate. For exam-
ple, if your model is of a factory floor, instead of generating one item for each object manufac-
tured, you might generate one item for each set of five objects.

Slowing down simulations
You might want a model to run more slowly to debug it or critically visualize what the model is
doing. If this is the case, the best way to slow down your model is to turn on animation. If the
model is still running too fast, click the Animation Slower (turtle) button in the toolbar: this
causes animated models to run even slower. To speed up the model again, choose the Animation
Faster (rabbit) button.

Another example of when you might want to slow down a model is if you want to synchronize the
model to real-time events. This might be required if you are receiving real-world data. To accom-
plish this, refer to the TimeSync block (Utilities library).

If you set it to leave the dialog open while the simulation runs, the Display Value block (Value
library) is also useful for slowing down the simulation.

See also “Stepping through a model” on page 522.

Working with multiple models
ExtendSim can have multiple model windows open and run multiple models simultaneously. This
facilitates copying model sections or hierarchical blocks from between models and running models
that communicate with each other. You can also run one model in the background while con-
structing another.

The Run Simulation command only works on the active model. To run multiple models, start the
front model running. Then bring each model forward and start their runs. While some models are
running, other models can be built.

☞ The Prioritize Front Model command causes the frontmost model to have processor preference
over the background models.

How ExtendSim passes messages in models
ExtendSim uses a sophisticated messaging architecture to signal blocks into action. While messages
can originate either from the ExtendSim application or from individual blocks, it is always a block
that is on the receiving end of a message. Different types of messages result in the receiving block
doing different types of things.

Since messages have the potential to affect the speed and behavior of simulations, understanding
the ExtendSim messaging architecture will help you build more accurate and efficient models and
will make debugging models easier.

Model messages can be divided into two categories:

1) Messages typically sent from the application to one or more blocks

534 Model Execution
How ExtendSim passes messages in models

H
ow

 T
o

2) Messages typically sent between blocks.

☞ All types of blocks can receive application messages. Continuous blocks neither receive nor send
block messages.

Application messages
Application messages are usually sent to blocks by the ExtendSim application. There are several
types of application messages: Simulation, Model Status, Block Status, Dialog, Connector, Data-
base, OLE, and 3D Animation. They are completely discussed in the Developer Reference.

The major application messages are:

• CheckData

• StepSize

• InitSim

• Simulate

• FinalCalc

• EndSim

The application can send message before, during, and after the simulation run, including:

• At the start of the simulation

• At each step

• When a parameter is changed

• When a dialog is opened

• If a button is clicked

• At the end of the simulation

At the start of the model run, all blocks receive application messages to check their dialogs and
connections for consistency and to initialize variables, import data, or allocate any arrays used dur-
ing the simulation. At the end of the simulation run, blocks are triggered to collect statistics, dis-
pose of any temporary arrays, and update the status of the model. Other application messages are
sent only when a specific event, parameter change, or dialog click occurs. The Developer Reference
has a complete list of application messages, including CheckData, InitSim, Simulate, EndSim and
FinalCalc.

Link alerts
Link alerts are a special type of application message. If a block is linked to a data source in a global
array or ExtendSim database, it will receive a message whenever the value in that data source
changes. That message may cause changes in the block’s data. The application sends link alert mes-
sages in continuous, discrete event, and discrete rate models. In a discrete event or discrete rate
model, the alerted block may, in turn, send messages out its connectors.

Managing this message is important because linking blocks to a data source that frequently
changes may slow down the simulation. If a simulation model is running slowly, and blocks have
links to data sources, consider sending or receiving link alert messages only at the start or end of
the simulation. This can be done by modifying the properties of the link so it only sends messages
at the appropriate times. (See “Link dialog checkboxes” on page 634).

Model Execution 535
How ExtendSim passes messages in models

H
ow

 T
o

Continuous model messaging
In a continuous model, the most important application message is the simulate message that
causes code in blocks to execute as simulation time advances. At each step of the simulation, the
application sends a simulate message to every block in the model in the sequence defined by the
model’s simulation order. (Simulation order is determined by the application at the start of the run
based on settings in the Simulation Setup dialog, as discussed in “Continuous tab” on page 518.)
In the simulate message handler, each block will perform its intended calculation. For example, if
Add is selected in the Math block (Value library), the block will add all its inputs when it gets a
simulate message. Likewise, a Decision block (Value library) will check its inputs and output a true
or false value based on the options selected in its dialog.

Block messages
Blocks can send messages to each other either through connections or “through the air.” This often
happens when one block has calculated a new value and wishes to alert one or more blocks to this
change. Continuous blocks, such as those in the Value library, do not typically send or receive
block messages. Discrete event (Item library) and discrete rate (Rate library) blocks often send and
receive block messages.

Discrete event block messaging
In addition to receiving application messages, discrete event blocks communicate with each other
using block messages. A variety of messages are sent between blocks during the course of the simu-
lation. These block messages fall into the following categories:

• Event. Communication between the Executive and various Item library blocks in the model.
• Value connector. Notifies connected blocks that the value of a output connector has changed or

requests updated input connector information.
• Item connector. Propels items through the model.
• Block-to-block. Updates the status of other blocks in the model.
 To avoid modeling errors and simulation speed issues in discrete event models, it is important to
understand how the discrete event messaging architecture works. See “Messaging in discrete event
models” on page 260 for additional information.

Discrete rate block messaging
In addition to receiving application messages, discrete rate blocks intensively use messages in order
to initiate the calculation of the effective rates and to propagate information through the blocks.
These block messages fall into the following categories:

• Event. Communication between the Executive block and various Rate library blocks.
• Value connector. Notifies connected blocks that the value of a output connector has changed or

requests updated input connector information.
• Flow connector. Updates the effective rate through the connected blocks.
• Rate blocks flow. Defines the LP area – that part of the model that could be impacted by a

change in the effective inflow and outflow rates.
• Executive flow. Updates all the blocks in an LP area with a new effective rate.
 The discrete rate technology has a complex and unique messaging architecture. For optimal perfor-
mance, it is important to understand discrete rate messaging when building rate-based models. For
more information, see “Block messages” on page 387.

536 Model Execution
How ExtendSim passes messages in models

H
ow

 T
o

How To

Presentation
Organize and enhance models

so they communicate your ideas

“In the modern world of business,
it is useless to be a creative original thinker

unless you can also sell what you create.
Management cannot be expected to recognize a good idea

unless it is presented to them by a good salesman.”
— David M. Ogilvy

538 Presentation
Working with text

H
ow

 T
o

Simple models, like the Reservoir shown in the Tutorial, are easy to follow. But as models become
larger and more complex, worksheets can become crowded with thousands of blocks, making it
harder to communicate what’s happening. ExtendSim provides several features that let you orga-
nize, explore, and enhance models, such as:

• Using text and graphics to improve model appearance

• Using the Navigator to quickly locate important parts of the model

• Organizing the model into logical sections with hierarchy

• Adding 2D animation to visually represent the model’s logic and behavior

• Centralizing model inputs and outputs in an ExtendSim database

• Changing how connection lines are displayed

• Simplifying model appearance by hiding connections and connectors

For additional ideas to enhance a model’s appearance, see the chapter “Creating a Custom User
Interface” on page 503.

☞ 3D animation is covered in the module that starts on page 389.

Working with text
Text is used to document a model, create text labels for named connections, and to create text con-
nections for hierarchical blocks.

Entering text
To add text to your model, double-click the worksheet or Notebook
where you want the text to appear and a text box will appear. You can
now type your text. You can use the handles in the corner of the text
box to resize it.

When you’ve finished entering text, click anywhere else in the window
and the box will disappear. To edit an existing text box, select the
Block/Text layer tool and double-click the text. (You can also use the
Clone layer or All layers tool for this, but using the Draw layer tool will
open a new text box.)

Moving and copying text
To move the text while you’re entering or editing it, move your cursor
over the border (away from a handle) until it changes to a hand shape,
then click and drag the text box to the desired location. If the box is
not active, simply move the cursor over the text itself until the cursor
changes to a hand, then click and drag.

When the text is highlighted, you can use the Copy and Paste commands, then move the new text
where you want it (or click on the window before pasting to position it in that spot). To copy just
portions of the text, double-click to make the text box active, then select the text you want. You
can also use the Edit > Duplicate command or Ctrl+D to copy and paste model elements slightly
offset from the original.

☞ When you paste text onto the model worksheet or into another text box, it remains editable text.
However, if you select and copy an entire text box and paste it to the Notebook, it becomes a pic-
ture. To paste editable text into a Notebook, copy the contents of the text box, not the text box
itself.

Adding text to a model

Presentation 539
Navigator

H
ow

 T
o

Drag and drop text
It is often easier to drag and drop a piece of text than to copy and paste it. To do this, select a piece
of text and drag it. When you drag the selection, an insertion point appears at the end of the cur-
sor. Drag the insertion point to the desired location and release the mouse button.

Drag and drop can be used within a text box on a worksheet, a text file, a block’s structure window,
and between any combination of the above with one exception: it will not work between two sepa-
rate text boxes. For example, if you double-click on the worksheet to open a text box, enter text
into the text box, then select a portion of the text, you will not be able to move that text to another
text box using drag and drop. This is because on the model worksheet, you can have only one text
box open for editing at a time.

Formatting text
To type new text with a particular format, select the desired format before you start the text box.
ExtendSim will remember that format every time you start new text.

To format existing text, access the text box, select the text, and then choose a command from the
Text menu, such as Bold or Justify Center. You can also change the color of text using the Color
palette. To do this, select the text in the box then click one of the colored squares in the palette as
described in “Patterns and colors” on page 562.

☞ If you change the format of text within an existing text box, ExtendSim won’t use that format as
the default for the model. To cause a format to be the default, change it before creating a text box.

The Border command adds a border with a drop shadow to the text. This can
be a useful way to distinguish descriptive text from block labels or named con-
nections. The text example on the left has a border.

With the Transparent command checked, text on top of
another object won’t show its background color. With the command
unchecked, a white rectangle behind the text will overlap other objects. The
examples are shown at the right.

Navigator

The Navigator is an explorer-like window that can be used for multiple
purposes:

• Navigation through a model’s hierarchical structure and quick access
to block dialogs in large models

• Accessing any databases used in the model
• Adding blocks to the model worksheet, as an alternative to getting

them from the Library menu

The Navigator is especially useful when presenting a model to others.
Use it to explore the model by drilling down through hierarchical layers
to show subsystems or to quickly find blocks and access their dialogs, no
matter where they are in the model. See “Navigating through the
Reservoir model” on page 38 for an example of using the Navigator to
explore a model.

Since it has multiple uses, the Navigator is discussed fully in the How
To: Miscellaneous chapter. For more information, see “Navigator” on page 670.

Navigator with
hierarchical block
expanded

540 Presentation
Hierarchy

H
ow

 T
o

Hierarchy
As you saw in “Introduction to hierarchy” on page 36, ExtendSim’s hierarchical capability lets you
combine basic modeling constructs (such as a group of connected blocks) into a single, higher-
level construct, then combine several of those new constructs into an even higher-level construct,
and so forth. This process causes portions of a model, or even the entire model, to be implemented
in layers, where you can drill down from the highest system level to the smallest detail. For exam-
ple, the Santee River Basin model on page 9 was created using many layers of hierarchy; without
hierarchy the model would be overwhelmingly complex.

The mechanism for creating hierarchical layers in ExtendSim is by building a hierarchical block, a
special type of block that usually has a group of blocks nested inside it. These blocks represent a
portion of the model, a subsystem or submodel. Using hierarchical blocks you can nest subsystems
in an unlimited number of layers for top-down or bottom-up modeling.

☞ Top-down modeling is starting with a new hierarchical block and building a model or a series of
submodels in it. Bottom-up modeling involves selecting a group of blocks within a model and
making them into a hierarchical block. You can create multiple hierarchical layers from the top
down or from the bottom up.

Uses for hierarchy
Although you do not have to use them as you build models, hierarchical blocks can help organize
models logically, make models appear more attractive, improve productivity, and enhance compre-
hension.

• Simplify a complex model by grouping areas of the model into hierarchical blocks containing
submodels. These submodels can then be reused in other models without having to reproduce
all of the connections.

• Instead of showing all the detail, present a model as a few simple but logical steps. To reveal the
subsystems within a step, just double-click the hierarchical block.

• To increase productivity and comprehension, create a hierarchical block that represents a process
element, then use it in several models that have that element in common. By changing the
parameters, each instance of the hierarchical block can be customized for its model.

• When developing a new model, go from the simplest assumptions to more complex ones by cre-
ating more and more levels of hierarchy. This helps structure your thinking and makes models
easier to follow as they become more complex.

• Although hierarchical blocks usually contain submodels of blocks, they don’t have to. They can
also be useful for enhancing and documenting the model, serving as popup windows that reveal
pictures, text, and so forth when double-clicked. For an example, see “Help block” on page 514.

Presentation 541
Hierarchy

H
ow

 T
o

Hierarchical blocks
There are two ways to create a hierarchical block:

1) Select and encapsulate a group of blocks into a new hierarchical
block. This is most often used to organize the complexity of an exist-
ing model and is discussed at “Making a selection into a hierarchical
block” on page 542.

2) Create a new hierarchical block from scratch and build a submodel
within it. This is used for top-down modeling as discussed in “Build-
ing a new hierarchical block” on page 543.

In a model, a hierarchical block is represented by its own icon. By
default, the icon is a blank white square but you can use drawing tools or paste
in a picture to replace the icon. To help identify them in a model, hierarchical
blocks can have drop shadows, as determined by a setting in the command Edit
> Options > Model tab.

You open a hierarchical block by double-clicking it.
Instead of seeing a dialog inside, you see the blocks that
make up the submodel. The blocks are laid out like a
model, with connections, labels, and so on. Depending
on how the hierarchical block was created, it might also
contain text, pictures, or cloned dialog items that con-
trol the blocks within the hierarchical block.

The submodel’s connections with the rest of the model
are shown as connection text boxes (named connections
with red borders around them). In the example to the
right, RainOut is one of the outputs of the hierarchical
block Water Sources.

Hierarchical blocks have two kinds of windows:

• The submodel pane window. This is what is displayed if you double-click a hierarchical block.
Use this window to add blocks to a model, adjust block and connection line positioning, rename
connection text boxes, or add text and graphics to the submodel.

• The structure window. This is displayed if you create a new hierarchical block by giving the com-
mand Model > New Hierarchical Block or if you select an existing hierarchical block and give
the command Model > Open Hierarchical Block Structure. The structure window contains
another view of the submodel pane and additional panes for modifying the hierarchical block’s
icon, adding Help, and so forth. It is shown on page 544.

Characteristics of hierarchical blocks
Hierarchical blocks are unique; they have some characteristics of a block and some characteristics
of a model worksheet. All hierarchical blocks have the following in common:

• A hierarchical block can contain no blocks, one block, a group of blocks, and other hierarchical
blocks. It can also contain text, graphics, cloned dialog items, and pictures.

Hierarchical block adds
water sources together

Hierarchical block
default icon

Hierarchical block open

542 Presentation
Hierarchy

H
ow

 T
o

• Hierarchical blocks can be copied to other areas of the model or to other models and used just
like other blocks.

• The settings within a hierarchical block can be changed by double-clicking the hierarchical
block, then double-clicking the desired block’s icon, or by changing the desired block’s cloned
dialog items.

• Hierarchical submodel windows are similar to model windows: add blocks from a library, create
hierarchical blocks, add graphics, type labels and other text, clone dialog items onto them, and
so forth.

• The components of a hierarchical block (icon, connectors, or Help text) can be changed by
accessing the hierarchical block’s structure window.

• Unlike other blocks, by default hierarchical blocks are saved directly in the model as copies. This
characteristic allows them to be treated much like a copy of a portion of the model. You can
copy a hierarchical block to another part of your model and make changes to its submodel win-
dow without affecting the original hierarchical block. This is known as physical hierarchy.

• You can choose to save a hierarchical block in a library, in which case it can be treated much like
a regular block. When you make changes to the hierarchical block’s structure window and you
also choose to update all instances of that block, it is known as pure hierarchy.

Important notes about hierarchical blocks
☞ The action of creating a hierarchical block cannot be undone. If you accidentally include more

blocks than intended in the hierarchical block, remove them from the block’s submodel and put
them back into the model using the Cut and Paste commands in the Edit menu.

☞ Named connections (discussed on page 560) only connect within one level in a hierarchical model.
This means that the data will not flow between levels if you have a named connection on one level
and a corresponding named connection in a block at a lower or higher level. To connect between
hierarchical levels, use the Throw and Catch blocks in the Value, Item, or Rate libraries, or add
connectors to hierarchical blocks. To see how Throw and Catch blocks are used with hierarchy, see
“Throw Item and Catch Item blocks for merging item streams” on page 148. For more informa-
tion on adding connectors to hierarchical blocks, see “Step 4: Add connectors” on page 545.

☞ By default a hierarchical block is saved only in the model. To save it in a library, use the Save Block
As command, described later in this topic.

 Because they can contain entire submodels, hierarchical blocks can become quite large. Libraries
have a 15MB limit, so you may need to use more than one library to store all the hierarchical
blocks for a model.

Making a selection into a hierarchical block
The Tutorial on page 37 showed how to create a hierarchical block named “Water Sources” that
grouped three blocks from the Reservoir model. The steps are:

Open an existing model or place blocks on a new model.

Select some blocks and any desired draw objects by dragging over them or by holding down the
Shift key and clicking each item. (Remember, the selection tool used determines what gets
selected.)

Presentation 543
Hierarchy

H
ow

 T
o

 Do not select the text labels of any named connections, otherwise communication between the
submodel and the model outside will break.

Choose the command Model > Make Selection Hierarchical.

Enter a descriptive name for the hierarchical block
and click Make H-block.

When it creates the hierarchical block, ExtendSim
makes all the connections and replaces the selected
blocks in the model with the new hierarchical block
and its default icon, a square.

Double-click the new icon to see the submodel.

Hierarchical blocks can be saved in libraries or just in
the model, as discussed at “Saving hierarchical blocks”
on page 547. You can also alter aspects of the hierarchi-
cal block such as adding blocks, moving or renaming
connections, or adding art to the icon; see “Modifying
hierarchical blocks” on page 548 for more details.

Building a new hierarchical block
The steps in building a new hierarchical block are:

1) Open a structure window for the new hierarchical
block.

2) Build the model in the submodel pane.

3) Modify the icon (optional).

4) Add connectors to the block’s icon.

5) Connect the new hierarchical block to the other blocks in the model.

The following example creates a water sources submodel within a new hierarchical block.

Step 1: Open a structure window for the hierarchical block
Open an existing model or open a new model window.

Give the command Model > New Hierarchical Block.

Make Selection Hierarchical dialog

Open Hierarchical block

544 Presentation
Hierarchy

H
ow

 T
o

ExtendSim prompts for a name for the hierarchical block, then opens its structure window.

The hierarchical structure window is divided into four panes, which are work areas. The upper left
pane is the icon pane for designing the block’s icon and adding connectors. The upper right pane is
the Help pane for writing the Help text for this block. The lower left pane is the connector pane
which contains the names of the input and output connectors for the block; it can also be used to
rename the connectors. The large pane on the lower right is the submodel pane, where the sub-
model for this hierarchical block will be built. The submodel pane is what appears when you dou-
ble-click a hierarchical block’s icon.

Icon pane Help pane

Connector pane Submodel pane
Hierarchical block structure window

Presentation 545
Hierarchy

H
ow

 T
o

Step 2: Build the submodel
To build a submodel in a hierarchical block, add
blocks to the submodel pane using the same
methods used to build the Reservoir model in
the Tutorial on page 24. For instance, use the
Library menu to add blocks to the submodel
pane (or drag them from library windows) and
connect blocks in the normal fashion.

If you prefer, use the Copy and Paste commands
from the Edit menu to copy a portion of an
existing model into the submodel pane.

For example, the Water Sources hierarchical
block in the example at right contains three con-
nected blocks from the Value library: a Lookup
Table block labeled Rainfall, a Random Number
block labeled Stream, and a Math block set to
add its inputs.

Step 3: Modify the icon
The hierarchical block starts with a default icon, a white square. You can modify this icon, for
example by changing its shape or color, or you can delete it and create a new one. To do this, draw
an icon with the drawing tools in the toolbar, or paste a picture from another program. For infor-
mation on using the drawing tools, see “Graphic shapes, tools, and commands” on page 561.

Step 4: Add connectors
Since the model within a hierarchical block needs to be connected to the outside world, you must
add the appropriate connectors. Some hierarchical blocks have both input and output connectors,
while others have just one kind. Also, as is true for other blocks, hierarchical blocks use specific
types of connectors (value, item, flow, etc.) depending on what they are connected to.

The steps for adding a connector to a hierarchical block are:

1) Decide the type of connector to add.

2) Add the connector.

3) Determine if the connector should be an input or an output connector.

4) Connect the blocks in the submodel pane to the connector’s text label.

Choosing a connector type
When the hierarchical block’s structure window is the active
window, the Icon Tools popup button at the right side of
the ExtendSim toolbar is available.

The first six items add connectors: Value, Item, Flow, Uni-
versal, Array, and User defined. (Connector types are dis-
cussed at “Connector types” on page 498.)

Adding a connector
To add a connector, select the appropriate type of con-
nector from the Icon Tools popup menu in the toolbar.
For this example, select the Value connector.

Hierarchical block structure window with submodel
added

Portion of the Icon Tools menu

546 Presentation
Hierarchy

H
ow

 T
o

☞ The connector type must match the input or output connectors of the block in the submodel pane.

Click in the icon pane at the desired position near the edge of the hierarchical block’s icon. For
this example, click on the right side of the icon.

This creates the default Con1In connector on
the icon in the icon pane, lists it in the connec-
tor pane, and adds a red-bordered connector
text label (similar to a named connection) in
the submodel pane.

☞ If you choose the wrong type of connector, just
click on that connector on the icon pane to select
it, then select the correct connector type from the
Icon Tools popup menu.The connector will
change to the new type.

Changing to an output connector
By default, when a connector is first added to an
icon it is an input connector, as indicated by the
word In at the end of its name. To cause it to be
an output connector, the connector name needs
to end in Out. And, since Con1 isn’t very
descriptive, change the connector name to some-
thing more relevant, in this case “Water”. To do this:

Select the connector name in the connector pane (or double-click its text label in the submodel
pane) and change its name to WaterOut, then hit Enter.

☞ You can name a connector anything you want as
long as the name ends in In or Out and is 32
characters or less. Also, every connector must
have a unique name.

Connecting to the submodel
The next step is to connect the connector text
label to the appropriate block:

In the submodel pane, move the WaterOut
text label to the right of the Math block.

Drag a line from the output of the Math
block to the WaterOut text. Once the line
thickens, release the mouse and the connec-
tion is made.

☞ The Stomach, Absorption, and Bloodstream
blocks in the Drug Ingestion model are examples
of hierarchical blocks with connectors. The
model is located at \Examples|Continuous\Stan-
dard Block Models and is discussed on page page 73.

Value connector added to hierarchical block

Connector changed to output connector and added
to Math block

Presentation 547
Hierarchy

H
ow

 T
o

Step 5: Connect the block in the model
To connect the finished hierarchical block to the rest of the
model:

Close the structure window.

When you close the structure window of a new hierarchical
block, a dialog gives options to save the block, discard
changes, or cancel. These options are discussed in the follow-
ing topic. For this example:

Choose Save to this block only.

Connect the connector on the hierarchical block to other connectors in the model, just as you
would any other block. In the example, the hierarchical block is connected to a Holding Tank
block.

Note that there is only one output from this hierarchical block and it represents the total amount
of water from the two sources. You could also add connectors for the individual Rainfall and
Stream outputs so this block would more closely resemble the one created in the Tutorial.

Saving hierarchical blocks
By default, hierarchical blocks are saved with the model. You can also save a hierarchical block to a
library, which makes it easier to add them to new models.

Saving hierarchical blocks in a model
When you make a selection hierarchical, the hierar-
chical block is automatically saved with the model
when the model is saved.

If you make a new hierarchical block, or make
changes to the submodel pane window of an exist-
ing hierarchical block and then click the Close but-
ton in the structure window, the options are to
Save to this block only, Discard changes, or Can-
cel. This dialog does not enable the options for sav-
ing the block to a library; if you choose save, the
block exists only in the model.

You can copy such a hierarchical block to other
parts of the model or even to other models using
the Clipboard. Each instance of the block in the model can be then be made unique by modifying
it as described in “Modifying hierarchical blocks” on page 548. Because these hierarchical blocks
have not been saved in a library, when one of them is changed, the other blocks do not change.

Saving hierarchical blocks to a library
You can save a hierarchical block in a library, but what is saved in the library is only a “snapshot” of
the hierarchical block at the time you saved it.

☞ If you later modify that hierarchical block on the model worksheet, the changes will not be
reflected in the master block in the library unless you specifically tell ExtendSim to save those
changes.

To save a hierarchical block in a library or to cause changes made to a hierarchical block to be
reflected in its master block in a library:

Hierarchical block connected to
Holding Tank

Saving hierarchical block to model only

548 Presentation
Hierarchy

H
ow

 T
o

If it is not already open, open the structure window of a hierarchical block.

Choose File > Save Block to
Library as... In that dialog,
select a new or existing library
for the hierarchical block and
click Install in Selected
Library.

Do not save hierarchical blocks
in the libraries that come with
ExtendSim.

Close the hierarchical block’s
structure window and choose
one of the save options:

• Save to this block only
affects only this specific
instance of the block in
the model.

• Also save to library affects this instance of the block, the master block in the library, and
blocks placed from the library into the active model after the save.

• Also update blocks in open models also saves the changes to instances of this hierarchical
block in any open models.

• Discard changes

• Cancel
These options are also discussed in “Summary of results of modifying hierarchical blocks” on
page 550.

A hierarchical block that is saved in a library has its
name listed in the library preceded by the symbol >.
Like other blocks, hierarchical blocks that are saved in
libraries list the name of the library in their title bar. If
no library is listed, the hierarchical block is not saved in
a library. You can also get library information by select-
ing the block in the model window and choosing the
command File > Properties.

Modifying hierarchical blocks
How you modify a hierarchical block depends on
whether the block is saved in a library and the type of
modification you want to make:

• If you don’t want to save the changes to the master block in the library, simply double-click the
hierarchical block’s icon and change the settings for individual blocks or modify the layout and
appearance of the submodel (e.g. add blocks, clone items onto the submodel window, add text
and drawings, etc.).

Save Block to Library as... dialog

Hierarchical block in Library menu

Presentation 549
Hierarchy

H
ow

 T
o

• To save the changes to the master hierarchical block in a library, you must open the hierarchical
structure window. (You must also use the structure window to make any changes to the hierar-
chical block’s icon, connectors, or Help, even if you don’t want to save these changes to the
library.)

The following indicates where to make changes to a hierarchical block:

Changing the icon
To change the icon to better suit the purpose of the hierarchical block:

Open the hierarchical block’s structure window.

Click the icon in the icon pane.

Change the size, color or pattern of the icon, or delete it and create another icon.

To create a new icon, use any of the drawing tools or paste pictures from outside of ExtendSim
into the icon pane. See “Graphic shapes, tools, and commands” on page 561, for information on
how to use the drawing tools.

You need to delete the icon before creating a new one, but do not delete any connectors. If you do,
ExtendSim will warn you. If you accidentally delete a connector, undo the delete or add another
connector. Be sure to check the block’s connections in the model.

Optionally add alternate views using the Views menu at the top of the icon pane. An example of
this is the Markov Chain Weather model discussed on page 50. See “Icon views” on page 496
for more information.

Moving connectors
The icon pane has an invisible snap grid and the upper left-hand corner of the connector will auto-
matically snap to the grid as it is moved around the icon. To move a connector without using the
grid, hold down the Alt (Windows) or Option (Mac OS) key when moving the connector. Use the
Model > Align command to align two or more selected connectors.

Renaming the block
With the structure window of a hierarchical block open, rename it by choosing Develop > Rename
Block.

Submodel
Window

Structure
Window

Add blocks and connections X X

Change parameters in submodel blocks X X

Add text, drawing objects, and pictures X X

Clone dialog items X X

Change icon, add alternate views X

Rename the block X

Add Help X

Add animation X

550 Presentation
Hierarchy

H
ow

 T
o

Adding animation
Hierarchical block icons can be animated, as discussed on page 554.

Summary of results of modifying hierarchical blocks
There are different results when a hierarchical block is modified, depending on whether its sub-
model window or structure window was modified and whether the block is saved just in a model
or is also saved in a library:

• If you modify a hierarchical block’s submodel in the submodel pane window, those changes only
apply to that block. Changing a hierarchical block’s submodel is similar to changing parameters
in a regular block’s dialog: the changes affect only that instance of the block on the worksheet
and are saved with the model. This is true even for hierarchical blocks that were originally saved
in libraries.

• If you modify the structure of a hierarchical block that is not saved in a library, those changes
only apply to that block. This has the same result as modifying a hierarchical block’s submodel
pane window. For example, you can make several copies of that hierarchical block in a model,
but when you change one of the copies, the other blocks remain unchanged.

• If you modify the structure of a hierarchical block
that has been saved in a library, you can choose
how those changes should be reflected:

• Only to this instance of the block on the
model worksheet (choose Save to this block
only).

• Also in the master block in the library,
which only affects blocks placed in the
model from the library after the change has
been made (choose Also save to library).

• Also in all instances of the block in open
models (note that this does not affect mod-
els that are not open at the time); this is also called pure hierarchy (choose Also update
blocks in open models).

 Changing a hierarchical block that is saved in a library can have unintended consequences if the
block is used in multiple places. Do not make changes to the master block in the library unless you
understand the effect those changes could have on other models that use that block.

• To modify the structure of a hierarchical block saved in a library, copy a fresh hierarchical
block from its library window onto the model worksheet, then work on the block directly
in the model. Do not work on a hierarchical block that is already in the model or you
might overwrite the master hierarchical block with a block that has been customized for a
specific purpose in the model.

• If you change the hierarchical block’s submodel, rename the block and save it to the library
using the new name. This will prevent existing instances of that hierarchical block from
being changed.

Saving modified hierarchical block options

Presentation 551
Animation

H
ow

 T
o

• Use caution if you change a parameter in a block in a submodel, then save the hierarchical
block to the library with the “Also update blocks in open models” choice. In that
case, each instance of the hierarchical block will have the changed parameter value.

 Changes made to the structure of a hierarchical block that is saved in a library will not be reflected
in models that were not open when the change was made. In that case, open the model and replace
its hierarchical block with a new one from the library.

☞ The Constant block (Value library) has an option to Retain constant if updated from hierar-
chy. If that option is checked, the Constant will retain its value when the enclosing hierarchical
block is updated from a library and existing instantiations of the block will not be changed inside
of existing hierarchical blocks. This is useful if each hierarchical block needs a unique identifier
which does not reset if the hierarchical block is updated from a library.

Animation
When presenting models to others you can show how plotter values or cloned outputs change as
the simulation progresses. However, ExtendSim’s animation capabilities give a more visually
descriptive representation of what is happening in the model.

☞ This section of the User Guide discusses ExtendSim’s 2D animation capabilities. The ExtendSim
Suite product allows simulations to be run with 3D animation – see the E3D module of this man-
ual for more information.

Models can be animated using:

• Blocks that have built-in animation

• To animate a block’s icon

• To animate items traveling in discrete event models

• Specialized blocks for creating customized animation

• Animation functions programmed into blocks you create

To see animation in a model:

Choose Run > Show 2D Animation. The command is now checked.

Run the simulation.

Due to redrawing, animation tends to slow the simulation. You may want to leave animation on
while you are testing, debugging, or presenting your model and then turn it off when you are run-
ning the model for quicker results.

Use the Animation Faster (rabbit) and Animation Slower (turtle) buttons to
change the speed of the animation.

☞ If animation is running at its slowest speed, the Animation Slower button will
be grayed out. Likewise, if the animation is already running at the highest
speed, the Animation Faster button will not be available.

Blocks with built-in animation
Many of the ExtendSim blocks have animation built into them. A block’s online Help says
whether it is animated and, if so, which aspects are. The two types of built-in animation are:

• Animation of a block’s icon

• Animation of items traveling from block to block (discrete event models only)

Animation buttons
Left: Faster
Right: Slower

552 Presentation
Animation

H
ow

 T
o

Animation on a block’s icon
Some ExtendSim blocks show animation on their icons. The amount and type of animation is spe-
cific to the block and is described in the block’s Help. For example, the Holding Tank block (Value
library) shows its contents relative to a minimum and maximum, the Select Item Out (Item
library) shows which path items take, and the Convey Flow (Rate library) displays the distribution
of its contents as the simulation runs.

Open the Reservoir 1 model (ExtendSim7\Examples\Tutorial folder.)

Select Run > Show 2D Animation.

Run the simulation.

The icon for the Holding Tank shows the level of contents changing as the
simulation runs.

By default the option Automatically set max and min animation is selected in
the Holding Tank’s Animation tab. This causes the level to go from 0 to an esti-
mate of the maximum value in the first simulation run; later runs will use an
average of the preceding runs’ maximum as the level’s maximum value. Unselect this option to set
your own maximum and minimum levels.

Animating the movement of items between blocks (discrete event modeling only)
The blocks in the Item library can track the movement of items with animation pictures that
travel along connections between blocks.

To animate the flow of items along connection lines in a discrete event model:

Select the Run > Show 2D Animation command.

Choose the command Run > Add Connection Line Animation.

Run the simulation.

The Final Car Wash model, located in the folder \Examples\Tutorials\Discrete Event, shows cars
moving between blocks and along connection lines.

To see animation pictures also move along the paths of named connections:

Select the command Run > Add Named Connection Animation when Show 2D Animation is
checked.

Selecting an animation picture
When Show 2D Animation is enabled in a discrete event model, pictures representing individual
items pass from block to block. Initially, all items are represented by the default animation picture
(a green circle). You can cause a block to use any other animation picture included with
ExtendSim, existing clip art, or pictures created in an external drawing package. The selection is
made in each block’s Item Animation tab.

☞ To find out how to add your own animation pictures, see “Animation pictures” on page 556

Holding Tank icon
after animation

Presentation 553
Animation

H
ow

 T
o

For example, the screenshot at right shows
the Item Animation tab from an Activity
block (Item library). There are three
options for 2D and 3D animation of
item:

• Do not change item animation. In this
mode, items that leave the block would
have the same picture they had when
they entered.

• Change all items to. This activates the
2D picture popup menu for selecting a
picture to represent items as they leave
the block. This is especially useful for
showing the transformation of one type
of item (e.g. cans) into another (e.g.
cases of cans).

• Change item animation using property. With this choice, the item’s animation will change
depending on its property (attribute, quantity, or priority). For this option to work, the item’s
attribute, quantity, or priority must have been set in a preceding block. Then in this block you
create a lookup table with properties corresponding to the desired animation pictures.

To change the animation based on an attribute value:

Choose Change item animation using property in the popup.

From the popup menu to the right of
that popup, select a value attribute.

Click the green +/- box in the bottom
right of the table. In the dialog that
opens, enter the total number of
attribute values that you want to assign
animation pictures to. For example, if
you enter “3” and click OK, 3 rows will
appear in the table.

Enter values in the Property Value col-
umn, then use the 2D popup menu to
select which picture will animate the
item when its attribute has that value.

For information about creating attributes,
see “Attributes” on page 115.

☞ As discussed on page 554, the Animate Item block (Animation 2D-3D library) is also useful for
changing the animation picture of items that pass through it.

Blocks for customized animation
There are two ways to use blocks from the Animation 2D-3D library to add custom 2D animation
to a model without programming:

• Show animation when an item enters a block or when a block gets a value.

Item Animation tab, changing item picture

Item Animation tab, using value attributes

554 Presentation
Animation

H
ow

 T
o

• Animate the icon of a hierarchical block.

Showing animation in response to model conditions
When connected to other blocks in a model, the Animate Value and Animate Item blocks (Anima-
tion 2D-3D library) blocks show customized animation in response to model conditions.

Animate Value block
The Animate Value block can be connected to value
connectors. There are several choices for how this
block animates:

• Display the value that is input to the block.

• Move a level up and down between limits.

• Flash a box, text, picture, or circle when the input
goes above a specified value.

• For Mac OS only, play a movie when the input
goes above a specified value.

Displaying a value is similar to using the Display
Value block (Value library), except the value can be
displayed in a selected color.

If you choose to animate with a level, it can be displayed in a specific color and pattern that will
move between the top and bottom of the block’s icon. Be sure to specify maximum and minimum
values that represent the entire range of possibilities.

To flash animation when the input is greater than or equal to a value, select a box, text, picture, or
circle. The box and circle can have a color and pattern. Text must only be a few characters long so
that it fits within the block’s icon. To show an animation picture, select its name from the popup
menu.

To play a movie in Mac OS, the movie must be stored in the Extensions folder and must be a
QuickTime movie.

Animate Item block
The Animate Item block can only be connected to the item connectors of discrete event blocks.
Depending on choices in the Block tab, when an item enters the block a colored box, piece of text,
a selected picture, or a selected movie (Mac OS only) is shown on the block’s icon. The Item tab is
useful for changing the animation picture of the item traveling through the block.

Animating a hierarchical block’s icon
As shown below, the steps to animate a hierarchical block are:

1) Create an animation object on the hierarchical block’s icon.

2) Include the Animate Item or Animate Value block (Animation 2D-3D library) in the sub-
model.

3) Select options in the Animate Item or Animate Value block’s dialog.

The animation block in the submodel reads the values from other submodel blocks and, using the
animation object, controls the hierarchical block’s animation based on those values.

Animate Value dialog

Presentation 555
Animation

H
ow

 T
o

Step 1: Create an animation object on the hierarchical icon
Open the hierarchical block’s structure window:

Select the block in the model.

Choose Develop > Open Block Structure or right-click and select Open Structure.

Add an animation object to the icon:

Click the Icon Tools button in the toolbar.

Select the Animation Object at the bottom of the pull-down menu.

Click and drag on the icon to draw the animation object to the size you want.

Animation objects display as rectangular shapes on the icon.
You can add more than one animation object and you can
resize them. Each animation object is assigned a number start-
ing with 1. For example, a hierarchical block’s icon with an ani-
mation object near the output might look like the image at
right.

Step 2: Include an animation block in the model
Attach the Animate Value or Animate Item block (which-
ever is appropriate) to the output of the block you want to
animate in the submodel. In the example to the right, The
Animate Value block is used to animate the sum of the
two water sources in the Water Sources hierarchical block.

 The Animate Value block can be connected in parallel and its
output does not need to be connected, as shown in the
screen shot at right. However, items must pass through the
Animate Item block. That block cannot be connected in par-
allel and its output must be attached to the input of another block. Otherwise an item coming into
the Animate Item block would have no way to exit.

Animation object 1 added to
hierarchical block’s icon

Animate Value block added to
submodel

556 Presentation
Animation

H
ow

 T
o

Step 3: Select options in the animation block’s dialog
Choose the type of animation you
want from the Specify icon ani-
mation popup menu,

Enter the number of the anima-
tion object that the block is to con-
trol in the Animation object
number of enclosing H-block
field. For example, to animate
object number 1, enter “1” in the
field.

☞ If the animation object number can-
not be located on the hierarchical
block’s icon, ExtendSim will search
the icon of the next highest enclosing
hierarchical block. If it still fails to
locate that animation object number,
it will give an error message.

If you create custom blocks, includ-
ing hierarchical blocks, use this same process to add animation objects to those blocks.

For an example of an animated hierarchical block, see the “Markov Chain Weather model” on
page 50 or the “Animating Queue Contents model” on page 141 (that model is not available with
ExtendSim CP.)

Animation functions
If you build your own blocks, ExtendSim offers a suite of functions to design how the block will
animate. For example, the Planet Dance model (located in the folder \Examples\Continuous\Cus-
tom Block Models) shows three planets orbiting in space. Their orbits are determined by numbers
entered in the blocks’ dialogs. See the Developer Reference for a description of the animation func-
tions. Also, see “Animating a hierarchical block’s icon” on page 554 for an example of how to add
animation to a block. You use that same process to add animation to any blocks you create.

Animation pictures
ExtendSim includes a large number of animation pictures as bitmaps (Windows) or PICT
resources (Mac OS). These pictures are used by discrete event blocks to show the flow of items, by
the Animate Value and Animate Item blocks (Animation 2D-3D library) to show custom pictures,
and in any custom block that calls the appropriate animation functions.

To add your own animation pictures to the available list, they must be of the correct file format
and they must be stored in the ExtendSim7/Extensions/Pictures folder. After placing the anima-
tion pictures in the Pictures folder, restart ExtendSim and the pictures will be available in anima-
tion picture popup menus. For information about these and other extensions, see the Developer
Reference.

Picture file formats
ExtendSim running on a Windows operating system accepts three kinds of pictures:

• .WMF (Windows MetaFiles)

• BMP (Bitmap)

Animate Value dialog

Presentation 557
ExtendSim databases

H
ow

 T
o

• A Mac OS PICT (picture) resource file that has been converted to Windows format using the
ExtendSim Mac/Win converter.

ExtendSim for the Mac OS accepts only picture resources.

Displaying messages on a block’s icon
The Run > Debugging > Show Block Messages command is a type of animation used by block
developers when they step through models to debug blocks. It is discussed further in “Stepping
through the simulation” on page 619.

ExtendSim databases
Databases are very useful when presenting models to others because a model’s inputs and outputs
can be stored in a centralized location and data can be organized in a logical manner. Each model
can have one or more ExtendSim databases for storing, managing, and reporting information. For
more information, see “ExtendSim databases for internal data storage” on page 638.

Connections
Connections are the main method blocks use to send data, items, or flow between each other.
ExtendSim has two types of connections, line connections and named connections. The following
discussion shows how to format connection lines and discusses the use of named connections. To
learn how to create, move, and delete connections between blocks, refer to “Connecting blocks” on
page 27.

☞ The Value, Item, and Rate libraries each contain Throw and Catch blocks for sending data without
using connections. Use these blocks in situations where you cannot use a line or named connec-
tion, such as when you need to send data between hierarchical levels. For instance, see the example
at “Throw Item and Catch Item blocks for merging item streams” on page 148.

Connection lines
ExtendSim provides several formatting options to alter the appearance of connection lines. Some
default line options can be specified in the Edit > Options > Model tab. To change an existing line,
double-click to select it, then choose a connection line option.

Choose Model > Connection Lines to see the menu of options available.

558 Presentation
Connections

H
ow

 T
o

To use the command, choose an option from the menu and draw a new connection.

Styles
The first set of choices in the menu lets you specify the style of the connection lines, either right
angle or straight line.

Arrows
The second set of choices specifies whether or not you want arrows on your right-angle connec-
tions (arrows can only be used with right-angle connections). The direction of the top arrow head
follows the direction you draw the line when you make the connection; the bottom arrow head fol-
lows the opposite direction.

Attributes
The third choice gives the ability to make the line solid or dashed. (Dashed lines are only available
for right-angle connections.)

Colors
The fourth set of choices in the Connection Lines command deals with the color of connection
lines. Like text or drawing objects, connection lines can be any color you choose. There is no limit
to the number of different colors you can use for connection lines in a single model. Selecting
Black Connections in the Connection Lines command causes all new connection lines to be drawn
black regardless of the current color selected in the color palette. Choosing Color Connections will
cause all new connections to be drawn using the color currently selected in the color palette.

To change the color of an existing connection line, select the line and click a color in the
color palette window. See “Patterns and colors” on page 562 for more information about
working with colors.

Line types
If you don’t select the View Using Defaults option, the final connection line section lets you spec-
ify the type of line used for connections, such as thin, medium, or hollow. The View Using

Connection line choices

straight
right angle

right arrow
left arrow

default line types
thin

medium
thick

hollow

solid
dashed

black

colored

Presentation 559
Connections

H
ow

 T
o

Defaults option will cause a connection line to be displayed using its default line type, based on the
type of connector. The default connection line types are:

For instance, most discrete event models track flows of items as well as calculate and show values.
You can visually differentiate the flow of items from the processing of values by using the default
line types. When looking at such a model, it is much clearer which flows are those of items and
which are of values. For example, the beginning Car Wash model shown on page 101 uses the
default types to specify item and value connection lines.

To specify the default connection type, choose the Model > Connection Lines > View Using
Defaults command. You can also choose whether or not to use the default connection types in the
Options dialog. When you use this command, the thickness or hollow line types are ignored. You
can leave the View Using Defaults command on while you build a model, or only turn it on when
you are viewing the model. Note that this is only a view option, not a true line type; if you turn the
option off, the line will be thick or hollow depending on the selection in this section.

How to change line formats
By double-clicking on a connection line segment you can select all
segments between two blocks. This makes it easier to change the
entire connection (e.g. line width, color, etc.) at the same time. Any
other line segments that may be connected to additional blocks will
not be selected.

☞ This works with both regular connection lines and named connec-
tions.

To select all the connection line segments that connect from a single
output, double-click on a line segment while holding down the Alt
(Windows) or Option (Mac OS) key. Alternately, you can click on one
segment of the connection, then choose the Edit > Select All Segments
command.

☞ Clicking anywhere else on the model worksheet with deselect all the
selected line segments.

Type of connector Line type

Value

Item

Flow

Selecting entire connection
between two blocks

Selecting all line segments

560 Presentation
Model appearance

H
ow

 T
o

Named connections
Named connections are text labels
that are used to represent one out-
put at many locations in your
model. If you have two text labels
with the exact same text, you can
use these to have the data, items,
or flow jump from one part of the
model to another. Named connec-
tions are often used when you do
not want to clutter up your model
with many lines. You can place the
names near the blocks to which
they connect and leave much of
the area of your model free from
connection lines.

☞ Named connections are not case
sensitive and spaces and returns are ignored, but you must use identical spelling in the text names.

By using named connections, you can eliminate a lot of connection lines in your model, making it
easier to see which blocks are connected to each other and preventing lines from crossing over
blocks or other model elements.

To learn how to create named connections, refer to “Named connection” on page 33.

Named connections only connect within one level in a hierarchical model. This means that the
data will not flow between levels if you have a named connection on one level and a corresponding
named connection in a block at a lower or higher level. To connect between hierarchical levels, use
the Throw and Catch blocks in the Value, Item, or Rate libraries, or add connectors to hierarchical
blocks. For more information about using Throw and Catch blocks with hierarchy, see “Throw
Item and Catch Item blocks for merging item streams” on page 148. For more information on
adding connectors to hierarchical blocks, see “Step 4: Add connectors” on page 545.

Show Named Connections command
If you use many named connections in a model, you may accidentally connect a block to the
wrong named connection. The Model > Show Named Connections command draws a connection
line directly between all named connections. This helps you check that you made the connections
that you wanted.

With the Show Named Connections command selected, click on a connection line to highlight
the path between the named connections. If you click on one of the connection lines and then use
the Edit > Select All Segments command, all the connections for that particular named connection
will be highlighted.

Model appearance
Commands in the Model menu can change how model elements appear.

Showing and hiding connections and connectors
Choose the Model > Show/Hide Connections and Model > Show/Hide Connectors commands to
display or not display those elements of the model. This can be useful when you have a lot of con-

Predator Prey model using named connections

Presentation 561
Graphic shapes, tools, and commands

H
ow

 T
o

nections and blocks and you want to present the model to others without so much clutter in the
workspace.

Changing model styles
ExtendSim provides the capability for block icons to have alternate model styles that affect their
appearance in a model. This implementation depends on the block developer, so many libraries
have only one style - the default Classic style. If a library has multiple styles, use the Model >
Change Model Style command to choose a new style. If the library does not have multiple styles,
giving the command will have no effect on block appearance. Block developers can create libraries
with up to 8 model styles, as discussed in the Developer Reference.

Graphic shapes, tools, and commands
The six tools in the Shapes menu let you add drawing objects to the model. The Shuffle Graphics
tool lets you arrange drawing objects in layers. Use these tools to make your models easier to read
or to make them more aesthetically pleasing.

Drawing objects in the Shapes menu
Use the Rectangle, Rounded Rectangle, Oval, and Polygon tools to add those
shapes to your worksheet or Notebook. For example, to add a rectangle, select the
Rectangle tool, click in the model where you want one of the rectangle’s corners,
and drag to the diagonally opposite corner.

The Line tool will draw a line at any angle and the Draw Right Angle Line tool
restricts the lines to horizontal and vertical. You can also add colors and patterns to
the shapes and lines you draw, as described in “Patterns and colors” on page 562.

☞ To resize or reshape an object, click the shape then click the small rectangle in
the bottom right and drag to create the desired shape. If you hold down the Shift

key as you reshape a rectangle, rounded rectangle, or oval, the shape will become a square or a cir-
cle. If you resize a square or circle while holding down the Shift key, it will maintain its propor-
tional measurements.

Shuffling graphics
By default, new objects are created in front of existing ones. The Shuffle Graphics tool lets
you arrange drawing objects (not text) that are on top of each other. Click this tool, then
click on the object. If the object is in front, it will be sent behind. If it is not in front, it
will be brought to the front. Blocks, text, and cloned dialog items are always in front of

any drawing item and therefore cannot be shuffled.

☞ You can also right-click an object with the Draw layer or All layers tool and choose Bring To Front
or Send To Back to change the order of the objects.

Reservoir model with hidden connection lines (L) and hidden connectors (R)

Shapes menu

562 Presentation
Patterns and colors

H
ow

 T
o

Modifying objects
When an object is selected, the Model menu has additional commands available:

• Align left, right, top, or bottom (2 or more objects must be selected)

• Rotate shape

• Flip horizontally/vertically

• Border thickness

• Shape Fill/Border (Depending on the selection in this command’s hierarchical menu, the
selected color fills the shape or colors the shape’s border.)

☞ One or more objects must be selected for these commands to be enabled.

Patterns and colors
Every draw object has both a pattern and a color, chosen from the menu in the toolbar. The
default is solid pattern and black color. Text can have color but not a pattern.

Click the Color and Pattern toolbar buttons to open their respective palette windows.

Change the color of a piece of text or the fill color of a drawing object by selecting the
drawing object on the model worksheet or the text in the text box and choosing a color
from the palette. To change the color of the drawing object’s border, select the command

Model > Shape Fill/Border > Border Color before choosing the color from the palette. If you
change the color palette before you create the drawing object or start a text box, all new drawing
objects and text will be in that color.

When you select a color the hue, saturation, and value (brightness), or HSV, settings for the color
are listed at the bottom of the color palette window. This is helpful when you need to assign a
color using its HSV definition (in block code for example, as discussed in the Developer Refer-
ence.)

In the pattern palette, black gives a solid pattern, white gives an opaque white pattern, and
the “N” signifies no pattern, meaning transparent. Change a drawing object’s pattern by
selecting the object and choosing a pattern from the palette. If you change the pattern pal-

ette before you create the drawing object, all new drawing objects will be in that pattern.

Working with pictures
To add a picture to ExtendSim, create or open the picture in a painting or drawing program and
copy it to the Clipboard. With the ExtendSim window open (model worksheet, Notebook, or icon
pane) choose Edit > Paste Picture. ExtendSim pastes the picture into the window. For more infor-
mation, see “Copy/Paste and Duplicate commands” on page 674.

☞ It doesn’t matter what the original file format for the graphic was (JPEG, TIFF, GIF, etc.) Once it
has been copied into the Clipboard, ExtendSim treats it as a drawing object.

The screenshots that start on page 9 illustrate a use of pictures in ExtendSim models.

How To

Analysis
Making sense of your models

“Prediction is very difficult, especially if its about the future.”
— Niels Bohr

564 Analysis
Blocks that calculate statistics

H
ow

 T
o

Although simulation is a quantified subject, there is still room for analysis and judgmental proce-
dures. This is especially true when your purpose in building a model is to spot trends or identify
patterns of behavior, or when you must make an immediate “go, no-go” decision. How statistically
precise your models should be depends on several factors, including the nature of the problem, the
importance of the decision, the level of risk you are willing to accept, and the sensitivity of the sys-
tem to the input data.

One of the main benefits of ExtendSim is that it provides several methods for analyzing the results
of simulation runs. This chapter covers those techniques, including:

• Blocks for statistically analyzing data

• Confidence intervals for predicting the true mean value

• Sensitivity analysis to investigate the impact of making changes

• Optimization to determine the best values for a set of parameters

• Using Stat::Fit to determine the appropriate distribution for a set of data

• How to change parameters dynamically

• Plotters for displaying results

• Reporting model details and results

☞ Remember that when you use statistical methods to analyze simulation output, you are performing
the analysis only on model results, not on the actual system. It is important to ensure that the
numbers entered accurately represent the details of the actual system. The significance and rele-
vance of your analysis will depend on how closely the model’s inputs correspond with real-world
data (“garbage in = garbage out”).

Blocks that calculate statistics
Many ExtendSim blocks automatically calculate relevant statistics and display them on their
Results tab. For example, the Activity block (Item library) reports utilization, average wait, maxi-
mum length, and so forth.

You can also use blocks in the Value library, such as the Equation and Math blocks, to perform cal-
culations on model outputs.

As described below, other ExtendSim blocks are specially designed to report statistical information
for particular types of blocks or for items that pass through the block, or to refine statistical data
collection.

Statistics
The Statistics block (Value library) accumulates data and calculates statistics using a
specified statistical method. Place a Statistics block anywhere in the model and,
depending on selections made in its dialog, it will report statistics for the following
blocks and types of blocks:

• Activities (Activity, Convey Item, and Transport blocks in the Item library)

• Mean & Variance block (Value library)

• Queues (Queue, Queue Equation, and Queue Matching blocks in the Item library)

• Resource Item block (Item library)

• Resource Pool block (Item library)

• Mixed blocks (clone drop)

Analysis 565
Blocks that calculate statistics

H
ow

 T
o

• Workstation block (Item library)

• Convey Flow block (Rate library)

• Tanks (Tank and Interchange blocks in the Rate library)

For the Mixed type (clone drop)
type, drag cloned output fields (utili-
zation, length, etc.) from the dialogs
of any of the supported types of
blocks onto the Statistics block icon.
This causes the cloned output infor-
mation to be displayed in the table.
For instance, in the screenshot to the
right, the length and utilization from
an Activity block, as well as the utili-
zation of a Queue block, have been
cloned into the Statistics block and
are reported in the table.

Accumulating data
When a simulation is run, one row of information is recorded in the block’s table for each block of
the specified type each time an observation is made. Observations can be recorded continuously,
which significantly slows simulation time, or at the end of the simulation. They are also made in
response to an item or value arriving at the Go universal input connector. For instance, attach a
Pulse block (Value library) to the Go connector to force a periodic or scheduled update of statisti-
cal information.

☞ The first column of the table in the Statistics block’s dialog lists the block’s label. For a block with-
out a label, the first column gives the block’s name.

To immediately see the current statistics, click the Update Now button; this is also useful if you
want to see which blocks will have their statistical information collected during the simulation run.

Statistical methods
The Statistics block’s Options tab allows you to select one of three statistical methods:

• Multirun analysis

• Batch means

• Custom

Choosing one of the first two methods causes specific settings to be selected in the block’s Options
tab. For the “custom” option, manually select which settings you want.

Statistics block dialog, discrete event model

566 Analysis
Blocks that calculate statistics

H
ow

 T
o

Queue Statistics model
The Queue Statistics model uses the Statistics block to gather information about queues. This dis-
crete event model is located in the folder \Examples\Discrete Event\Statistics.

Clear Statistics
As discussed in “Non-terminating systems” on page 530, when you start a simula-
tion run there is no data in the model. After the model has been running for a while,
it gets to the point where it is functioning more like the real system. The interval
from when the model starts to when it is functioning in a steady or normal state is
called the warm-up period.

The Clear Statistics block (Value library) clears the statistics for selected blocks, eliminating the
statistical bias of a warm-up period. The type of blocks include:

• Activities (Activity, Convey Item, Transport, Workstation)

• Exit block

• Mean & Variance block

• Queues (Queue, Queue Equation, Queue Matching)

• Resources (Resource Item, Resource Pool)

• Information block

• Rate library blocks

The block can reset statistical accumulators at periodic intervals or in response to a system event.
The block can be placed anywhere in the model. Choose in its dialog which types of blocks will
have their statistics cleared. The Clearing Statistics example, a discrete event model shown on
page 239, uses the Clear Statistics block to restart model statistics after 40 seconds.

Mean & Variance
The Mean & Variance block (Value library) calculates the mean, variance, and stan-
dard deviation of the values that it receives during a simulation run, based on a spec-
ified confidence interval. Settings in the block’s dialog allow you to use time
weighted statistics, calculate a moving average for a selected interval, and calculate
the statistics over multiple runs.

Queue Statistics model

Analysis 567
Confidence intervals

H
ow

 T
o

The dialog provides two choices of behavior:

• Use number of inputs to calculate variance. The vari-
ance is computed as the sum of (valid inputs - mean)^2
÷ (number of inputs).

• Use number of inputs-1 to calculate variance. The
variance is computed as the sum of (valid inputs -
mean)^2 ÷ (number of inputs - 1).

The Mean & Variance block uses 1/(N-1) as an averaging
factor. If an input is a NoValue, it is ignored and does not
affect the statistics.

To use this block, connect a value output from of the
block of interest to the Mean & Variance block’s input.

The Monte Carlo model, located in the folder \Exam-
ples\Continuous\Standard Block Models and discussed on
page 47, is an example of using the Mean & Variance block.

Information
The Information block (Item library) reports statistics about the items that pass
through it. It is useful for counting the number of items and for determining cycle
time statistics and the time between item arrivals (TBI). The block reports the aver-
age and the current statistics, as well as the minimum and maximum.

The Information block can only be used in models that use item-based blocks, and it must be con-
nected to a block’s item output. This block is used to calculate cycle time in the section “Cycle tim-
ing” on page 254.

Cost Stats
The Cost Stats block (Item library) records in a table the input costs and total cost
generated by each costing block in a model. This block reports cost information for
item-based blocks, such as for a discrete event model. Information can be exported
to a spreadsheet. The block can be placed anywhere in the model.

Confidence intervals
Confidence interval estimation tells you, with a given level of probability or confidence, how close
the average simulation results are to the model’s true average or mean. The confidence interval is
the range within which it is predicted the true mean is located. This is expressed as the probability
that the true mean lies within interval x± y, where “x” is the average obtained by multiple observa-
tions and “y” defines the outer limits of the interval’s range. The confidence level is the probability
that the true mean will be located within the range. Typical confidence levels are 90%, 95%, and
99%. Notice that, at higher levels of probability, the interval gets wider.

The Statistics and Mean & Variance blocks (Value library) and the Cost Stats block (Item library)
provide the option to specify a confidence level in their dialogs. For example, the Statistics block
not only summarizes and reports statistical information, but also calculates confidence intervals for
the information given various levels of confidence.

To generate a confidence interval where each sample is the result from a single simulation run, in
the Run > Simulation Setup > Random Numbers tab do one of the following:

Mean & Variance dialog

568 Analysis
Sensitivity analysis

H
ow

 T
o

• Randomize the seed by entering a blank or zero random seed.
• Or, select Continue random number sequence in the popup.
• Or, select Use Database table __Seed for values in the popup.

 To obtain sufficient sample data to determine the confidence interval, multiple observations of
each statistic must be made and appended to the table of data. This is shown in the “Run for CI”
model located in the \Examples\Tips\Modeling Tips folder. The model runs repeatedly based on
the Mean & Variance’s Options tab settings Calculate for multiple simulations and Repli-
cate until relative error is <= 0.01.

Sensitivity analysis
Sensitivity analysis allows you to conduct controlled experiments to explore how much of an
impact a particular parameter has on model results. ExtendSim’s sensitivity analysis features make
it easy and convenient to specify a parameter to investigate and settings to use for the analysis.

Overview
You use sensitivity analysis to investigate the effect of changing one or more parameters upon an
area of interest. Sensitivity analysis works with all numeric parameter fields. It also works with
clones of those numeric items. You can add sensitivity to as many dialog values as you like. How-
ever, it is recommended that you only vary one or two dialog values at a time so as not to confuse
the analysis. Once a parameter has been sensitized, specify a multiple number of runs and run the
simulation.

The resulting values for the area of interest are usually plotted. Although you can use any of the
standard plotters from the Plotter library (such as the Plotter I/O or the Plotter Discrete Event), it
is more common to use a MultiSim plotter (to show up to four runs at a time in one plot window)
or an Error Bars plotter (to show the mean and standard deviation of the parameters over the
count of runs). The results of varying the parameter value over the selected settings will be dis-
played as the simulation is run multiple times.

Parameters are sensitized by right-clicking or by using the Edit > Sensitize Parameter command.
The Edit > Open Sensitized Blocks command shows all the dialogs for blocks that have sensitivity
settings, even if sensitivity analysis is not enabled. This is convenient if you have entered sensitivity
settings for many parameters in a large model.

☞ To utilize sensitized parameters, the number of simulation runs must be greater than one.

Steps for using sensitivity analysis
For this example, use the Reservoir 1 model discussed in the Tutorial module.

Open the Reservoir 1 model (located in the \Examples\Tutorials folder)

So that you don’t overwrite the original model, give the command File > Save Model As and
save the model as “Sensitivity”.

Analysis 569
Sensitivity analysis

H
ow

 T
o

Open the dialog for the Random Number block labeled
“Stream”.

Open the Sensitivity Setup dialog by doing one of the
following to the Maximum entry field:

• Click the entry field and choose the command
Edit > Sensitize Parameter.

• Or right-click the entry field and choose Sensitize
Parameter.

• Or click the entry field while holding down the
Control (Windows) or Command (Mac OS) key.

The Sensitivity Setup dialog appears with the
Enable sensitivity checkbox selected by default.

Enter Set Simulation Setup to: 4 runs.

☞ The number of runs can be set in either the Sensitiv-
ity Setup dialog or the Simulation Setup dialog.
Each controls the other so that the last value
selected in either of them controls the number of
runs.

Enter Starting at 1 and change by 0.5.

This will cause the stream’s flow to increase by 0.5
for each subsequent run.

☞ Parameter values can be sensitized using values from
a file, a specified range of values, a random distribu-
tion, or values from a database.The choices are
described in “Specifying the sensitivity method” on
page 570.

Close the Sensitivity Setup dialog.

In the Random Number block’s dialog, the parameter field
now has a green border around it, indicating that it has a
sensitivity setting and sensitivity analysis is active for the
parameter.

Add a Plotter, MultiSim block (Plotter library) to the
right side of the model and add a Contents named
connection to its input.

This plotter displays up to four runs of data on a single
graph, so you can see what impact changing the stream
flow has on the contents of the reservoir.

Ensure that the Run > Use Sensitivity Analysis com-
mand is checked (it is checked by default).

Run the simulation. ExtendSim runs the simulation four times, from run 0 to run 3.

Sensitize Parameter menu

Sensitivity Setup dialog

Sensitized parameter

Model with Plotter, MultiSim

570 Analysis
Sensitivity analysis

H
ow

 T
o

In the MultiSim Plotter, click the AutoScale Y tool to
rescale the vertical axis.

You can see the variation between the runs in the four
plotted lines. As expected, increasing the stream’s flow
increased the amount of water in the reservoir. In more
complex models, the effect of making a change would
not be so obvious.

Specifying the sensitivity method
The Sensitivity Setup dialog lets you specify that a sensi-
tized parameter will change from a list in a file, incre-
mentally, randomly, or from based on the value of a
database field. The choices are:

☞ If you are a developer, you can use the CurrentSense variable to control the order of use for the val-
ues set for specific runs from within a block. For example, you can cause the first simulation run to
use row 4 of a file, rather than the default use of row 1.

Turning sensitivity on and off
You can control sensitivity globally (for the model as a whole) or locally (at the dialog parameter
level for a specific block):

• Use the Run > Use Sensitivity Analysis command to turn sensitivity analysis on and off for the
model as a whole.

• Enable, disable, and delete sensitivity settings for a particular parameter using the Sensitivity
Setup dialog.

When you enter sensitivity settings for a value, sensitivity analysis is enabled as long as the Enable
sensitivity box is checked in the Sensitivity Setup dialog. If you uncheck the box, a dialog value’s

Option Description

Read from col-
umn x of file

Assigns the values from a text file. This is the option you will most likely use when
performing ad-hoc experiments. If the file has more than one column separated by
tab characters, specify the desired column. Starting with the first row of the speci-
fied column for the first run, this option uses the value of each successive row in
that column for subsequent runs.

Starting at...

change by...

Specifies the starting value and the amount of change. By default, the starting value
is the same as the parameter’s value in the dialog. Increase the variable with a posi-
tive number or decrease it with a negative number.

Random distri-
bution

Uses a random distribution to set the parameter. This is an easy way to make a sin-
gle value in a model change randomly over many simulation runs while keeping the
value constant within a single run. Choose from one of the five types of distribu-
tion and enter the distribution parameters in the options to the right of the distri-
bution. The seed is the number to use for the random number generator. As in the
Simulation Setup dialog, BLANK or 0 for the seed is random.

Database field Assigns values from the fields in an ExtendSim database. Starting with the first
record of the specified field for the first run, this option uses the value of each suc-
cessive record for subsequent runs.

Multisim Plotter results

Analysis 571
Sensitivity analysis

H
ow

 T
o

sensitivity is temporarily disabled so that you don’t have to re-enter the number for subsequent
analysis.

To remove sensitivity settings from a parameter (as compared to simply temporarily disabling the
settings by turning off the parameter’s Enable sensitivity box), open the Sensitivity Setup dialog
using any of the methods discussed on page 569, then click Delete.

☞ Editing a sensitized parameter in a block’s dialog disables the sensitivity settings for that block.
When this happens, ExtendSim automatically unchecks the Enable sensitivity choice.
ExtendSim assumes that if the value is edited, you want to use that new value, not the one that was
entered in the Sensitivity Setup dialog. If you want to turn off sensitivity analysis for a parameter
for the foreseeable future, open that item’s Sensitivity Setup dialog and click the Delete button.
This will help prevent accidentally changing the value in a future run of the simulation.

A parameter that has sensitivity settings has a frame inside of it. If sensitivity analysis is active for
the parameter (that is, if the Enable sensitivity choice is checked), the frame is green. If the sensi-
tivity analysis is inactive for the parameter or if it is turned off for the model as a whole, the frame
is red.

The Edit > Open Sensitized Blocks command shows the dialogs of all blocks with sensitized
parameters, regardless of whether or not sensitivity is enabled.

Reporting the results
In addition to MultiSim and Error Bar plotters, ExtendSim’s reporting and tracing features are use-
ful when analyzing output after using sensitivity analysis. The Reporting features show final values
and the Trace feature shows values at each step or event. For more information, refer to “Reports”
on page 596 and “Model tracing” on page 620.

Multi-dimensional scenarios
Sensitivity can be enabled on more than one item at a time. For instance, you may want to vary the
values of two Constant blocks and see the interaction between the two items. If you set the sensi-
tivity for the parameters with the Starting at option, both values will increment at the same rate.
For instance, if you have one parameter start at 5 and increment by 1, and the second parameter
start at 100 and increment by 50, and the simulation is run seven times the value pairings will be:

Run # Variable 1 Variable 2

0 5 100

1 6 150

2 7 200

3 8 250

4 9 300

5 10 350

6 11 400

572 Analysis
Optimization

H
ow

 T
o

Often, however, you want to look at all the possible pairings of the two (or more) variables. In this
example, you would want to run the model 36 times, with the following pairings:

In order to perform this kind of multi-dimensional analysis, you need to get the values from a file.
The most convenient way to do this is to create a file that has two columns separated by a tab char-
acter with all the desired pairings. For instance, the file for this example would start with:

5 100

5 150

5 200
...

In the Sensitivity Setup dialogs for the two parameters, choose Read from file and enter the file
name. For the first variable, enter 1 for the column number; for the second variable, enter 2 for the
column number.

When you run a multi-dimensional analysis, you usually use a Write block (Value library) to write
out the values to examine. In the Write block, select a data destination on the Send Data tab and
check Row (or record) index is equal to run number on the Options tab. If the data takes a long
time to transmit, you should check Only write to (data destination) at the end of the run on the
Send Data tab.

Optimization
Optimization is a powerful feature that can automatically determine ideal values for parameters in
a model. It does this by running the model many times using different values for selected parame-
ters, searching the solution space until it is satisfied that it has found an acceptable solution. It then
populates the model with the optimized parameter values.

ExtendSim facilitates optimization by making the optimization algorithm available within a block
that can be added to any model to control all aspects of the optimization. Furthermore, having a
block do the optimization increases flexibility and opens up the method and source code to users
who might want to modify or create their own customized optimization blocks. The Optimizer
block (Value library) uses an evolutionary algorithm to reduce the number of times the model has
to run before a solution is found.

Run # Variable 1 Variable 2

0 5 100

1 5 150

2 5 200

3 5 250

...

7 6 100

8 6 150

...

35 11 400

Analysis 573
Optimization

H
ow

 T
o

How optimization works
Optimization, sometimes known as “goal seeking,” is a useful technique to automatically find the
best answer to a problem. The “problem” is stated as an objective function or cost equation that
ExtendSim tries to minimize or maximize to save you going through the tedious process of manu-
ally trying different values with each model run.

Like most optimization algorithms, the ExtendSim Optimizer solves models using an initial popu-
lation of possible solutions. Each solution is explored by running the model several times using dif-
ferent values for some selected parameters, averaging the samples (for stochastic, random models),
and sorting the solutions. The best solution sets of parameters are then used to derive slightly dif-
ferent but possibly better solutions. Each new derived solution is called a generation. This process
continues for enough generations until the Optimizer determines that there are probably no better
solutions in sight. The Optimizer then terminates the simulation runs and populates the model
with the best solutions it has found.

The downside to optimization is that the model needs to run repeatedly and this can take a long
time with large models. Also, optimization algorithms have an inability to tell when the best solu-
tion has been found, or even if the best solution has been attempted. A good approach is to allow
the optimization to run for a sufficient number of cases and to then see if the population of solu-
tions has converged. Then try the optimization procedure several additional times to make sure
that the answers agree (or are close) and that the first answer is not a false or sub-optimal one.
There are no optimization algorithms that are guaranteed to converge to the best answer in a finite
time. The more time that you can give optimization to run, the better chance that it will provide
the optimum answer.

Steps for using optimization
The steps needed to optimize a model are listed below. The tutorial that follows illustrates these
steps.

1) Add an Optimizer block (Value library) to a model.

2) Define the form of the objective function.

3) Determine which variables the equation needs and “clone-drop” them onto the Optimizer.

4) Set the limits for those variables in the Optimizer’s Variables table.

5) Derive the equations for the objective function.

6) If variables need to constrained to certain values, add constraint equations.

7) Set the Optimizer’s Run Parameters for a random or non-random model, then run the optimi-
zation.

☞ The following tutorial assumes that you know how to clone parameters (see “Cloning” on
page 504) and that you are comfortable deriving equations (if not, see “Equation-based blocks” on
page 601).

Optimization tutorial
The model for this tutorial represents a drink stand at a county fair; it has these assumptions:

• Drinks are dispensed from beverage tanks that can range in size from 1000-8000 drinks. (In the
example model, 1000 is used for the initial tank size setting.)

574 Analysis
Optimization

H
ow

 T
o

• A truck delivers the beverage tank at the start of the day and exchanges it periodically through-
out the day. (The model is initially set to get a second tank after 240 minutes.)

• The truck exchanges the beverage tank for a new one of the same size. There is a $1 per drink
beverage charge plus a delivery charge of $1,000 per tank.

• So that the beverage company will know when to deliver tanks and what size tank you will use
for the day, arrangements regarding tank size and delivery frequency must be made at the begin-
ning of the day.

• People purchase drinks according to a random distribution; the cost per drink is $2.50.

• If the beverage tank becomes empty, you lose an estimated $100 per minute in sales because cus-
tomers already in line go to another stand and new customers are discouraged from getting in
line.

• If you exchange the tank too often, you lose money because the beverage inside the old tank gets
taken away along with the tank.

• This model ignores other expenses, such as labor.

• The model runs for a simulation time period of 480 minutes (8 hours).

The goal of this tutorial is to optimize both how big of a tank you should order and how often the
tanks are exchanged. It is a simple continuous model, but a good example to show some of the
optimization techniques you will use in any type of large model.

☞ For comparison purposes, the final model for this example, “Optimize 2”, is located in the \Exam-
ples\How To\Optimization folder.

Adding an Optimizer block
Open the Optimize 1 model from the \Examples\How To\Optimization folder.

To provide a starting point for the optimization, this model has been populated with initial
assumptions for the decision variables: deliveries are repeated every 240 minutes and the tank
size is 1,000 drinks.

So that the example file isn’t overwritten, give the command File > Save Model As and save the
model as “MyOptimizer”.

Analysis 575
Optimization

H
ow

 T
o

Place an Optimizer block (Value library) in a convenient place in the model.

You will be adding most variables to the Opti-
mizer block by doing a clone-drop.

To get an idea of what it looks like without
any entries, open the Optimizer’s dialog.

As seen to the right, the Optimize block’s
Objectives tab has two sections:

• A Variables table for entering variables and
specifying their limits

• An Equation pane for entering the objective
function.

Close the Optimizer’s dialog.

Determining the form of the function
The Optimizer block will try to reach a goal by
changing the values of model variables based on
an equation that measures how close the goal is.
The first step is to lay out the form of the objective function. This helps clarify what will be opti-
mized and which factors affect that goal. In most cases, you want to minimize a cost or maximize a
profit.

This model tries to maximize the beverage stand’s profit. The factors that affect profit are:

• Beverage costs ($1 per drink plus $1,000 per tank)

• The revenue for each drink sold ($2.50 per drink)

• A penalty or reduction in profit if you run out of drinks to sell ($100 per minute)

Using this information, the form for the objective function is:

MaxProfit = $2.50*#sold - #deliveries*($1000 + #drinks*$1.00) - time empty * $100

Adding variables to the Optimizer
The form for the objective function is the basis for the cost equation that you will enter in the
Optimizer’s dialog. Before you do that, you need to obtain the necessary model variables (called

Optimizer block added at lower left of MyOptimizer model

Objectives tab in Optimizer block

576 Analysis
Optimization

H
ow

 T
o

decision variables) so the equation can reference them. In some cases the required variable will be
a dialog parameter and in others it will need to be calculated based on a dialog parameter.

An Optimizer block’s access to model variables is accomplished by using the Clone Layer tool to
drag clones of the desired dialog variables onto the block’s icon. This operation, known as clone-
dropping, adds information about the variable to the Variables table. It also enables the Optimizer
block to remotely read and change the value of that variable in the model, so that it can explore
possible solutions.

Using the variables nomenclature from the form for the equation (MaxProfit = $2.50*#sold -
#deliveries*($1000 + #drinks*$1.00) - time empty * $100), the steps are:

sold
The total number of sales for the day is an output variable calculated by the model; it is directly
available in a block’s dialog.

Open the Holding Tank block labeled “Total sales”.

Using the Clone Layer tool, drag the Current level parameter value (but not its label) onto the
closed Optimizer block.

When the Optimizer block’s icon is highlighted, release the mouse.

This puts the variable into the first row of the Optimizer’s Variables table.

Close the Holding Tank’s dialog.

☞ The Optimizer block will highlight when a cloned variable can be dropped onto it. Starting with
the first row, each cloned item is automatically placed into successive rows of the Variables table.

deliveries
Unlike the other required variables for this example, the number of deliveries is not directly avail-
able as a dialog item. However, that value can be calculated using the frequency of deliveries, as
you will see on page 577.

To get the repeat delivery time, open the Lookup Table block labeled “Filler truck”.

From the Table tab, use the Clone Layer tool to drag the parameter value (but not its label or
checkbox) for the Repeat table every field onto the closed Optimizer block.

#drinks
The decision variable for the number of drinks per tank is also located in the Lookup Table block
labeled “Filler truck”.

Clone the data table from the Lookup Table block’s Table tab and drag it to the closed Opti-
mizer block.

Close the Lookup Table’s dialog

time empty
The model calculates the amount of time that the drink tank is empty; this is an output variable.

Open the Holding Tank block labeled “Empty time”.

Clone the parameter value for Current level onto the closed Optimizer block.

Close its dialog.

Analysis 577
Optimization

H
ow

 T
o

Setting limits for the variables
Now that the Optimizer has the necessary variables, you need to enter limits for some of the vari-
ables so the Optimizer will know that it should try to change them. (Variables without limits are
considered outputs from the simulation and the Optimizer will not try to change them.) For data
tables, you also need to specify which cell is to be used in the equation.

Open the Optimizer’s dialog so that the Variables table in the Objectives tab is visible.

On the first row of the Variables table (“Total sales”) do not enter any limits. This value is not
an input to be changed but rather an output value from the Holding Tank. So that it will be
more easily understood in the equation, in the Equation Variable column change the variable’s
name from Var0 to numSold.

On the second row (“Filler truck Repeat_prm”), which is the time between deliveries, enter a
Minimum Limit of 30 minutes (an estimated minimum) and a Maximum Limit of 480 min-
utes (the simulation end time). Also, in the Equation Variable column change the variable’s
name from Var1 to deliveryTimes.

On the third row (“Filler truck Data_tbl”), you need to tell the Optimizer which cell of the data
table to use and what its limits are:

Click on the “Filler truck” cell to open the Lookup Table block’s dialog. Notice that the cell
that holds the number of drinks per tank is at row 0 and column 1 of the data table (data
table rows and columns start at 0). For the Row, Col value in the Optimizer, enter 0,1.

For this variable’s limits, enter a Minimum Limit of 1000 and a Maximum Limit of 8000
drinks.

☞ Do not enter a decimal point. The absence of a decimal point tells the Optimizer that the value for
the number of drinks has to be an integer.

Change the variable’s name from Var2 to delTankSize.

On the fourth row (“Tot empty time”) do not enter any limits because this value is a model out-
put. Change the variable’s name from Var3 to emptyTime.

The columns of the
Objectives table
should now look
similar to the table
on the right.

Entering the objective function
Now that the limits have been entered, substitute each variable’s name for the row that holds the
value of interest. The result is:

MaxProfit = 2.50*numSold - #deliveries*(1000.0+delTankSize*1.00) -
emptyTime*100;

The only variable from this equation that has not yet been specified is the #deliveries factor, which
can be calculated using the deliveryTimes variable.

The form for an equation to convert the deliveryTimes variable to the #deliveries factor is:

#deliveries = int((endTime-1)/deliveryTimes + 1)

The explanation for how this equation is structured is as follows:

578 Analysis
Optimization

H
ow

 T
o

EndTime is a global variable representing the end time of the run, in this case 480 minutes. Deliv-
eryTimes is how frequently the deliveries are repeated, or every 240 minutes. If you were to divide
the endTime value of 480 by the deliveryTimes value of 240, it would result in 2 deliveries a day,
which appears correct. However, if you instead divide by 250, you get only 1.92 deliveries, even
though you still have 2 deliveries, one at the beginning of the day and one at 250 minutes. There
will always be a delivery at the beginning of the day, so you need to add 1 to deliveryTimes and
truncate any fractional result with the int() function. This results in 2.92, which when truncated
gives 2, the correct answer.

If you had a delivery every 480 minutes, there would be 2 deliveries, but the last one would hap-
pen at the same time as the stand closes. To remedy this, reduce the endTime by 1, preventing the
480 minute case (the maximum limit) from causing 2 deliveries.

The entire objective function can now be entered in the Optimizer block’s Objectives tab:

Delete the default equation from the Equation pane.

Define a new variable for the number of deliveries by entering it in the Equation pane (don’t
forget the semicolons that are needed to end the statement):

Integer numDeliveries;

Below that variable definition, enter the equation that converts deliveryTimes into numDeliver-
ies:

numDeliveries = int((endTime-1)/deliveryTimes + 1);

Below the conversion equation, enter the cost equation:

MaxProfit = 2.50*numSold - numDeliveries*(1000.0+delTankSize*1.00)
- emptyTime*100;

The variable definition and the two equations are the objective function for the Optimizer.

Analysis 579
Optimization

H
ow

 T
o

The finished Objectives tab for the Optimizer block looks like:

Running the optimization
Open the Optimizer block’s dialog.

Select the Run Parameters tab. Since this model has random elements, click the Quicker
Defaults button in the Random model section. This quickly sets up all the parameters for a sto-
chastic (random) model needing multiple samples, but limits the number of samples by default
so you can get results more quickly.

Run the optimization by clicking New Run in the Optimizer’s dialog, clicking the Run Optimi-
zation tool on the toolbar, or by giving the command Run > Run Optimization.

While the optimization run is progressing, notice how the MaxProfit value is increasing in the top
rows of the table in the Results tab. Notice also how the plotter shows the MaxProfit and conver-
gence values increasing.

☞ The optimization will complete faster if you close the Optimizer block. You can leave the Optimi-
zation Value plotter open to watch the values converge without slowing the run down.

Optimizer dialog, Objectives tab

580 Analysis
Optimization

H
ow

 T
o

When the run is finished, the Optimizer opens and displays the Results tab.

The best values for the selected parameters (drink size and delivery times) will have already been
placed into the model, the drink tank is never empty, and the profit will be maximized. The results
of the run as seen on the Objectives and Results tabs are:

• NumSold (total sales) is blank because it has not been changed; it is an output from the model.

• DeliveryTimes (Filler truck repeat prm) = around 250 minutes between deliveries (2 deliveries).

• DelTankSize (Filler truck data_tbl) = around 5200 drinks per tank delivered.

• EmptyTime (Empty time contents) is blank because it is an output value from the model.

• MaxProfit (on the Results tab) = around $12,000.

Your results will vary a little from those shown in this guide because of the randomness of the
model and because you have set the convergence and samples for a quick result.

☞ As mentioned earlier, it is a good idea to run the model with optimization additional times to make
sure that the answers agree or are at least close. This provides assurance that the first answer is not
a false or sub-optimal.

Adding constraints
The optimization results indicate that the profit would be maximized if you ordered tanks that
hold approximately 5200 drinks and if the second tank were delivered about mid-day. But what
would happen if the drink distributor only had specific size tanks and delivery times? By constrain-
ing a parameter, values that fall outside the constrained boundaries are not considered as part of
the possible solution space. You can constrain parameter values in almost an infinite number of
ways by entering constraint equations in the Optimizer’s Constraints tab.

Optimizer dialog, Results tab

Analysis 581
Optimization

H
ow

 T
o

There are two types of constraints:

• Individual constraints are applied only to the specific variable and cause it to be changed in
some manner. For example, an individual constraint could cause all tank sizes to be in incre-
ments of 1000.

• Global constraints can cause an entire set of parameters to be rejected so that the Optimizer will
try a different set. For instance, a global constraint could reject a solution set if the sum of all the
variables was greater than a certain value.

For this model the constraints to consider are:

• Delivery tanks only come in sizes that hold 1000, 2000, 3000, 4000, 6000, or 8000 drinks.

• Tanks can be exchanged every 30 minutes except...

• Tanks with 6000 drinks or greater can’t be exchanged more often than every 60 minutes.

☞ For comparison purposes, a model with constraints titled Optimize 3 is located in the \Exam-
ples\Tutorial\Optimization folder.

The constrained tank size
The individual constraint equation to granularize the drink tank sizes recalculates delTankSize as
follows:

// round to delivery amounts (e.g. 1k, 2k, 3k, 4k, 6k, 8k)

if (DelTankSize<=4000) DelTankSize = int(DelTankSize/1000.0 +
0.5)*1000.0;
else DelTankSize = int(DelTankSize/2000.0 + 0.5)*2000.0;

☞ Comments are preceded by // and are omitted from the calculation.

This equation puts the tank sizes of 4000 or less into multiples of 1000, and tanks sizes greater
than 4000 into multiples of 2000, using an individual constraint. For example, if the Optimizer
suggests a size of 3300, the equation would convert it to a potential tank size of 3000. If the sug-
gested size were 5200, the ELSE part of the IF statement would round it up to 6000.

The constrained delivery time
The individual constraint equation to granularize the delivery times is:

// round fillup time to listed delivery times (e.g. 30 minutes)

DeliveryTimes = int(DeliveryTimes/30.0 + 0.5)*30.0;

The delivery time is converted to multiples of 30 minute intervals using an individual constraint,
similar to how the delivery tank size was converted, above.

Global constraints for 6000 and 8000 drink tanks
Although the preceding equation constrains the delivery times for most cases, you also need to
reject cases where the drink tank is 6000 drinks or more and the delivery time is less than 60 min-
utes.

Rather than the individual constraints used in the previous two equations, for this equation you
need a global constraint. Delivery times for tanks of 6000 and 8000 drinks are not limited to mul-
tiples of a specific number as was true for the tank size; they can be any value as long as it is greater
than or equal to 60. So the solution space is somewhat unlimited. In addition, it would not be
valid to just round up a delivery time that is less than 60. If the equation rounded up all the poten-

582 Analysis
Optimization

H
ow

 T
o

tial delivery times below 60 to exactly 60, as the preceding delivery time equation does, it would
cause a severe bias toward getting deliveries every 60 minutes. Instead the equation needs to reject
the entire solution set if the delivery time is below 60. This will cause the Optimizer to use a new
random delivery time to generate a different set of solutions that will be less biased.

☞ If you use too many global constraints, or constraints that are too restrictive, the equation would
unnecessarily reject almost all cases and the Optimizer could take too long to run or might fail to
reach an acceptable solution.

The global constrained equation for deliveries of 6000 or more drinks is:

// can't deliver 6000 or more drinks sooner than 60 minutes apart

if (DelTankSize >= 6000 && DeliveryTimes < 60)

Reject = TRUE;

The Optimizer pre-defines “Reject” as a special variable to be used only with global constraints.
The Reject variable, if set to TRUE, will reject that case and cause the block to calculate another
possible case that could be acceptable. If Reject is not set to TRUE, the current case will be used
for the next series of runs.

Enter the constraint equations
In summary, the equations to enter on the Constraints tab of the Optimizer block are:

// round to delivery amounts (e.g. 1k, 2k, 3k, 4k, 6k, 8k)

if (DelTankSize<=4000) DelTankSize = int(DelTankSize/1000.0 +
0.5)*1000.0;
else DelTankSize = int(DelTankSize/2000.0 + 0.5)*2000.0;

// round fill up time to listed delivery times (e.g. 30 minutes)

DeliveryTimes = int(DeliveryTimes/30.0 + 0.5)*30.0;

// can't deliver 6000 or more drinks sooner than 60 minutes apart

if (DelTankSize >= 6000 && DeliveryTimes < 60)

Reject = TRUE;

Analysis 583
Optimization

H
ow

 T
o

After entering the equations in the Optimizer block, the Constraints tab should look like:

Running the optimization
Click the New Run button in the Optimizer dialog or give the command Run > Run Optimiza-
tion. It is a good idea to run the optimization with the new constraints multiple times to make sure
that the first answer is not a false or sub-optimal.

Because there are random elements in the model, the results will differ from, but should be close
to, the following:

• NumSold (total sales) is blank because it has not been changed; it is an output value from the
model.

• DeliveryTimes (Filler truck repeat time) = 270 minutes between deliveries (2 deliveries a day).

• DelTankSize (Filler truck data_tbl) = 6000 drinks per tank delivered.

• EmptyTime (empty time) is blank because it is an output value from the model.

• MaxProfit = around $10,500.

Note that the profit may have decreased slightly from the previous optimum results. This is due to
the constraints put on the model parameters.

Using the Optimizer block
This section examines, in detail, how to get the most out of the Optimizer block.

Variables table
When a dialog’s variable is dragged using the Clone Layer tool onto a closed Optimizer block, the
Optimizer block places that variable into its Variables table. This table holds the variables needed
in the Optimizer’s cost or profit equation. These variables can be of two types:

Optimizer dialog, Constraints tab

584 Analysis
Optimization

H
ow

 T
o

• Decision variables to be optimized. These need their lower and upper limits entered.

• Output variables from the model. These should have no limits entered.

Both lower and upper limits for a decision variable need to be entered directly in the Variables
table. Variables that are outputs from the model, such as Exited from an Exit block (Item library),
should not have any limits entered or the Optimizer will attempt to incorrectly change them.

☞ If the variable is an integer type, such as a number of machines, do not enter a decimal point in
the limits. Conversely, variables that need to have real values, such as a delay time that could vary
from 1.0 to 2.2, need both limits entered with decimal points.

Specifying data table cells in the Variables table
If a cloned data table is dragged to the closed Optimizer block, the Row,Col indexes need to be
entered, separated by a comma. Since data tables are zero-based and start at row 0 and column 0,
the first cell would start at 0,0.

For example, to use the first row and second column cell of a data table, enter the Row,Col value
0,1 where 0 is the first row and 1 is the second column.

☞ The Variables table’s Row,Col column is only used to access a cell within a data table.

Objective functions
Optimizations can maximize profit, minimize a cost, or approach a constant, depending on the
form of the equation. Just like the equation field of the Equation block (Value library), optimiza-
tion equations can be multi-lined, define variables, have control constructs (i.e. IF-ELSE, FOR...),
and call ModL functions. To see more information on equations, see “Equation-based blocks” on
page 601.

Maximizing profit or minimizing cost
For example, you may want to optimize the number of machines used to maximize the profit. In
that case, you can set up an equation:

MaxProfit = thruput*dollarsPerUnit - numMachines*dollarsPerMa-
chine;

Or, you might want to write the equation as a cost, and minimize that cost:

MinCost = numMachines*dollarsPerMachine - thruput*dollarsPerUnit;

The variable names used in the MaxProfit or MinCost equations come from the Equation Vari-
able column of the Optimizer’s Variables table. Depending on how you write the equation, the
Optimizer will either maximize or minimize the equation value by changing the values of the deci-
sion variables until the correct condition converges.

Approaching a constant
A special case for an objective function would be that the result needs to approach a constant K as
close as possible. In this case, you can write a profit equation.

For the case where the equation should approach a nonzero constant K, the form would be:

// maximizes when equation equals constant
MaxProfit = 1.0 - RealAbs(1.0 - equation/K);

Note that the RealAbs(x) function returns the positive absolute
value of x.

For the case where the equation should approach zero, the form would be:

Analysis 585
Optimization

H
ow

 T
o

// this becomes maximum when equation equals zero
MaxProfit = ConstantValue - RealAbs(equation);

In this case, ConstantValue should be small, but large enough so that most of the population Max-
Profit results are initially positive. If ConstantValue is too small, the convergence calculation will
fail because there will be both negative and positive values in the final population results. If Con-
stantValue is correct, all of the values will tend to become positive as the system converges, and the
convergence calculation will then be valid. If ConstantValue is too large, the convergence calcula-
tion will tend to be insensitive and high all of the time, causing a premature end of the optimiza-
tion run.

These techniques can be adapted to solve any “approaching a constant” type of problem.

Run Parameters tab
In most cases, clicking the default buttons for the type of model you are optimizing (random or
non-random) will quickly set all of the parameters in this tab to useful values.

Two of the parameters are especially important to convergence of the optimization:

• Maximum Samples per Case: The maximum number of runs averaged to get a member result.
For non-random models, this should be 1. For random models, this needs to be high enough to
get a useful mean value at the expense of run time. The Optimizer block starts the number of
samples at 1 and increases them with each generation until it reaches the maximum. Sometimes
it is useful to reduce the maximum number of samples (possibly to 5), to get a rough idea of the
best solution without spending too much time running samples. Most of the time, a useful
result will occur and, even if it is not the optimum one, it will be close.

• Terminate if best and worst within (percent): This value is used to examine the current popu-
lation of results to see if they are within a specified percentage of each other. The default of 0.99
might not be high enough for a precise answer in a noisy model. Increasing this value (i.e.
0.9999) will cause the optimization to continue until the population converges more closely,
increasing the likelihood of a more optimum answer at the expense of run time.

Constraints
When building a model, there are almost always some parameter constraints that have to be satis-
fied. The two types of constraints are individual constraints and global constraints. The Opti-
mizer block makes it easy to apply virtually any kind of constraint to a model’s parameters.

Individual constraints
Individual constraints are used to change a decision variable’s value if the value has to be limited or
if it depends on the values of other decision variables. These constraints are entered as equations,
usually with IF or IF-ELSE statements. For example:

if (NumQueueSlots > 7)

NumSlots = NumActivities+3; // change it

Sometimes you might need the IF-ELSE form:

if (Var2 >= 3)

Var2 = Var3-Var4;

else// var2 was less than 3

Var2 = Var5/2;

586 Analysis
Stat::Fit (Windows only)

H
ow

 T
o

In some cases you just need to modify the value of a variable. For example, if you need to constrain
its values to multiples of 0.5 (i.e. 1.0, 1.5, 2.0). You do this by multiplying the variable by 2, add-
ing 0.5 before the Int() function truncates it so that it rounds it to the nearest integer, and then
dividing by 2.0, forcing the result to floating point values that are granular to 0.5:

Var2 = Int(var2*2.0+0.5)/2.0; // 0.5 Granularity

In any case the newly calculated Var2 value will replace the old Var2 value.

Global constraints
Global constraints are useful to reject an entire case if any or all of the decision variables don’t meet
a specific criteria. Global constraints are entered as equations, usually with IF statements, to assign
the value TRUE to the variable REJECT if the variables are not within the constraint. They are
entered like this example:

if (Var4+Var5 > 7)

Reject = TRUE; // only reject if the sum is too large

☞ Reject is a special optimization variable for use with global constraints. If set to TRUE, it will reject
that case and cause the block to calculate another possible case that could be acceptable. If Reject is
not set to TRUE, the current case will be used for the next series of runs.

Sometimes you might need a more complex form:

if (Var4+Var5 > 7 || Var4 < 2) // the || means OR, && means AND

Reject = TRUE;

In any case, any global constraint will abort that particular case and the Optimizer block will keep
attempting to create cases until the global constraint doesn’t set REJECT to TRUE. It will try to
create 500 new cases before it gives up and prompts the user with an error message. If this occurs,
the global constraint is probably faulty.

Interpreting results
The Results tab shows the entire population of solutions, sorted with the best one on top (row 0).
As the optimization progresses, new and better solutions will replace inferior solutions in the pop-
ulation table.

If the optimization terminates for any reason, either via normal convergence or running for the
maximum number of generations, the best solution set found so far is automatically placed in the
model.

Stat::Fit (Windows only)
In simulation models, it is often useful to characterize a random input (for example, inter-arrival
times and demand rates) using a probability distribution. Typically, this involves obtaining histori-
cal data that documents the system’s behavior, then analyzing the data to determine an appropriate
distribution to represent it. There are two advantages to using statistical distributions rather than
raw historical data as inputs to a model:

• Values for input random variables are not limited to what has happened historically.

• For continuous distributions, an infinite pool of data exists. With historical data, there is seldom
enough collected data to support multiple simulation runs.

Stat::Fit is a software package from Geer Mountain Software (www.geerms.com) that helps the
analyst determine which distributions, if any, offer a good fit for the underlying data. ExtendSim
has an interface so you can easily access the power of Stat::Fit.

Analysis 587
Stat::Fit (Windows only)

H
ow

 T
o

☞ Stat::Fit is a Windows application included with the ExtendSim AT and ExtendSim Suite prod-
ucts. It can be purchased separately for use with other ExtendSim products.

Tutorial
The StatFit Example, shown on the right, is a discrete event
model. It has Stat::Fit choose a distribution for a Random
Number block (Value library) using a pre-built text file of data.

By default, the Random Number block is set to the Uniform
Real distribution with a Minimum of 0 and a Maximum of 1.
The 32 historical data points in this project will be used by
Stat::Fit to define which distribution and associated parameters
might be more appropriate.

Open the StatFit Example model located in the folder
\Examples\Tips\Modeling Tips.

In the Distribution Fitting tab of the Random Number block, click Open Stat::Fit.

The Stat::Fit application should appear on your screen with a new blank document.

In Stat::Fit, select File > Open.

Find and select the file StatFtEx.sfp. It should be in the same folder (\Examples\Tips\Modeling
Tips) as the StatFit Example model.

In Stat::Fit, choose Fit > Auto::Fit or click the Auto::Fit button in the toolbar.

In the Auto::Fit window, click OK to use the default settings.

After Stat::Fit does some computation, a window appears displaying a list of parameterized distri-
butions that have been ranked according to goodness of fit.

In Stat::Fit, choose File > Export > Export Fit or click the Export button in the Stat::Fit toolbar.

StatFit Example model

Stat::Fit application window

588 Analysis
Plotters

H
ow

 T
o

Select “Extend” under the application window (it should be the default), then choose the
desired distribution (there should only be one).

Click OK and return to ExtendSim. (You may exit Stat::Fit if you wish.)

The Random Number block’s dialog should reflect the Triangular distribution and parameters
Stat::Fit selected.

Additional Stat::Fit documentation is available in Stat::Fit’s Help menu and in the SF Manual
V2.pdf file located within the ExtendSim7\Documentation folder.

Plotters
Most of the ExtendSim plotters have many features in common. The Reservoir model in the Tuto-
rial module shows some basics of how to use plotters. This section describes the ExtendSim plot-
ters in more detail and shows how to make plots appear the way you want. All plotters are located
in the Plotter library.

Depending on their type, plotters allow you to plot from 1 to 6 traces (plotted lines) at a time. If
you build your own plotter using ExtendSim’s ModL language, you can plot up to 100 traces on a
single plotter. Your choice of plotter type depends on the type of model you build (continuous,
discrete event, or discrete rate) and how you want information plotted (such as batch runs, histo-
gram, and so on). Plotter types are described later in this chapter.

You can have more than one plotter in a model and you can place plotters at any location in the
model. Usually plotters open automatically when the simulation is run. If the plotter is set to not
open (as discussed in “Plotter dialogs” on page 592), you can open it by double-clicking its icon.

Plot and data panes
When you open most ExtendSim plotters, instead of
the typical dialog there is a plotter window with two
panes. The upper pane shows the plot (one or more
traces) and the lower pane shows the data for that plot
in a table. The two panes are separated by a split bar.
Initially, about two thirds of the window is devoted to
the plot and one third to the data. You can change this
by moving the cursor over the split bar until it changes
to , and dragging up or down.

Plot pane
The plot pane has four pages. If the plotter was open
during the simulation run, the four most recent runs
will automatically be saved on those pages.

☞ If the plotter was not opened during the simulation run,
only the current plot image is saved in the plot pane. In that case, use the Push Plot tool (described
on page 592) to save additional images.

Click on the number at the lower left of the plot pane to see each page. If the Key On/Off tool
(described on page 591) was on when the simulation ran, the key will be shown on the pages.

To see the exact numbers that generated a point, scroll through the numbers in the data pane. Or
simply put the cursor over the data item you want; the top row in the data pane displays the values
that match that point. (In scatter plots, this shows the X and Y values of that point.)

Change the plot axis labels and limits directly in the plot pane, as follows:

Plotter I/O panes

Analysis 589
Plotters

H
ow

 T
o

Select the item to be changed and type the new text.
For example, to change the maximum Y-axis value,
click that number and enter a new number.

To finish, press Enter or click somewhere else in the
window.

☞ To change many of the labels and limits, press Tab after
entering each new value. If you use the Tab method to
change items, the plot will redraw only after you press
Enter or click in the window.

Data pane
Resize the columns in the data pane by placing the cur-
sor directly over the column divide, and dragging the
divide to the desired location while holding down the
mouse. You can also tab through the data or use the
arrow keys. If you select a section of data, tabbing will move you just through the selection. Notice
that only the data for page 1 of the plot is displayed in the table.

If you change the data in the data pane, those changes are reflected in the plot. You can change
numbers, paste in rows, and so on. Use this capability to view how various data would be plotted,
or to plot a reference line.

The label headers for the columns are changed using the Trace properties tool, described on page
590. The color, pattern, and symbol for each trace is displayed to the left of its label.

Plotter tools
Note the tools at the top of the plot pane. These are used to change the traces and views for the
plots, change the labels and formatting for the data being plotted, and to control how and when
the data is displayed. Tools with arrows beneath them are popup menus with multiple choices. The
toolbar in plotter windows looks like:

Changing maximum Y-axis value

Plotter toolbar

Grid
 den

sit
y

Log

Key
 on-off

Autosc
ale

 X

Autosc
ale

 Y

Autosc
ale

 XY

Zoom in

Zoom out

Red
raw

 tr
ac

e

Push
 plot

Tra
ce

 propert
ies

Open
 dial

og

590 Analysis
Plotters

H
ow

 T
o

Trace properties tool
This tool lets you change many aspects of the traces and data. It brings up a small window that
looks like:

If you check the Delay changes until close checkbox, changes you make will occur in the plot only
after the Trace properties tool is closed. This is useful when you are making a lot of changes and
don’t want the traces to be redrawn after each change.

Below the checkbox are nine columns of choices.

The Trace Name text at the left describes the traces and is used to label the columns in the data
pane. In a discrete event plotter, each trace has two sets of labels: the name of the trace and Time.
In a continuous plotter, each trace will only have one label, as shown above. To change a label,
click on the text in the Trace Name area and type the text you want.

The Color, Width, and Pattern choices describe how the trace looks. To change one of these items,
click on the box and choose from the list. You can select from seven standard colors or choose a
custom color. There are also five line widths and four patterns available.

The Style choice affects the manner in which the trace is drawn.

• The top style indicates that the data points are connected by diagonal lines
(interpolated)

• The middle style (the default) indicates that points are connected by horizontal
and vertical lines (stepped).

• The bottom style indicates that you want the points plotted with no lines
between them.

There are also many Symbol types, such as dots, squares, and circles, as well as a trace numbering
choice (marked #). If you choose a non-numeric symbol, it will be drawn at each point on the
trace. If you choose the # symbol, the number for that trace will be spaced evenly along the trace.
Except for numbers, each symbol is drawn using the trace color, width, and thickness settings;
numbers are drawn in black.

The Format option sets the number format that is used for the data in the data pane, including
Time for discrete event plotters. The four choices are General, x.xx (decimal), xxx (integer), and
x.xex (scientific notation).

The Y1/Y2 choice tells which axis to plot the numbers against. The default choice, , plots values
on the Y1 (left) axis. Clicking this changes it to , the Y2 (right) axis.

Tra
ce

 N
am

e
Color

Widt
h

Styl
e

Form
at

Trace window

Patt
ern

Sym
bol

Y1/Y
2

Show Tr
ac

e

Trace style
choices

Analysis 591
Plotters

H
ow

 T
o

The Show Trace choice tells whether to display the trace at all. If you click on this choice, it turns to
a closed eye and the trace is not drawn. This is useful if you have many traces and you temporarily
want to hide one to make the chart clearer or if one trace is on top of another.

Log tool
The Log tool lets you choose whether to make one or both axes use a
logarithmic scale. Click the tool to display the popup menu.

Open Dialog tool
Click the Open Dialog tool to show the plotter’s dialog. You use this
tool to make changes to the way the plotter operates. For example,
to not have the plot show during simulation runs or to plot every
nth point. The Plotter, Discrete Event block, for instance, has one
tab that controls how and when data is displayed and another tab
that allows you to specify the granularity of the plotted data. The
choices in the plotter dialogs are described in their Help and in
“Plotter dialogs” on page 592.

Grid density tool
The Grid Density tool lets you specify the type of grid behind the plot. Click the
mouse on the tool to display the menu. The top choice indicates no grid, the mid-
dle choice a light grid, and the bottom choice a dense grid.

Key on-off tool
Clicking this tool turns on and off the key at the bottom of the plot pane. The
labels, colors, patterns, and symbols that the key shows come from the entries in
the Trace properties tool’s window. The key is handy if you are not viewing the data table at the
bottom of the plotter window or if you copy the plot to another document. If the key is on when
you run each simulation, the key will show on each plot page.

Autoscale tools
The three autoscale tools are used to manually scale the axes to fit the data after the simulation has
run. The first tool scales the X axis to fit all values that were measured in the simulation without
changing the Y axis. The second tool scales the Y axes to fit all values that were measured in the
simulation without changing the X axis. The third tool scales both axes at once. This is especially
useful if a run of the simulation goes off one side of the plot. You can manually autoscale the axes
while the simulation runs.

Log choices

Display and Data Storage tabs of Plotter, Discrete Event block

Grid choices

592 Analysis
Plotters

H
ow

 T
o

Note that you can also choose to have the data automatically scaled at the end of the simulation
run, during the run, or not at all. You do this using the “autoscale” popup menu in the Display tab
of the Dialog Open tool. By default, most plotters autoscale at the end of the simulation run.

Zoom in and Zoom out tools
There are many times you want to see a particular part of your plot in more detail, or want to
zoom out and look at a larger area of the plot. The Zoom in tool magnifies an area of the plot.
After you click this icon, the cursor becomes . Drag the cross-hairs over an area of the plot and
release the mouse to zoom in to match the described rectangle. The Zoom out tool zooms out by
changing the axes by a factor of 2 in each direction. After using the Zoom in or Zoom out tools,
you can use the Autoscale tool or the Edit > Undo command to reset your axes.

Redraw trace tool
The Redraw trace tool lets you change your data on the plot and see the results in the plotter’s data
table. Click and hold down the mouse on the tool to display the menu. Choose one of the four
traces that you want to change. The cursor becomes a pencil, . You use the pencil to redraw the
data that was plotted. After you are done drawing this, you can see the values for the drawn data by
looking in the data table. The Redraw trace tool is only available in continuous, non-scatter plot-
ters, like the Plotter I/O.

Push plot tool
Each time you run a simulation with the plotter open, the previous run is automatically saved onto
page 2 of the plot. Changes made to the plot after the simulation run (such as autoscale, magnify,
and turning the key on) are not automatically saved. Also, if the plot was closed during the simula-
tion run, the plot image from the last run will not be saved to page 2. After you change the view of
a plot or run a simulation with the plotter closed, you may want to save a copy of that plot in one
of the plotter’s plot pages. To do that, click the Push Plot tool.

For example, assume that you are looking at a magnified portion of the plot and you want to save
that magnified view before running the simulation again. Use the Zoom In tool, then click the
Push Plot tool to keep a record of that view. Then choose Edit > Undo Zoom in to restore your
original axis values, and run the simulation again.

When you use this tool, the current plot image is saved onto page 2. The previously saved images
are each pushed up one page so that the image that was on page 4 is discarded.

Plotter dialogs
ExtendSim comes with many types of plotters, as seen in “Types of plotters” on page 593. Plotters
have a dialog that you can access by clicking on the Open dialog tool at the top of the plotter.
Choices that some of the plotters have in common are:

Choice Description

Show plot during
simulation

Determines if the plotter window is automatically opened during the simula-
tion. For example, you probably do not want the plotter to open if you are run-
ning the model with animation on.

Show plot at end of
simulation

Display plotter window only when simulation has been completed.

Do not show plot Plotter window remains hidden until the plot icon is double-clicked.

Analysis 593
Plotters

H
ow

 T
o

Types of plotters
Plotters are located in the Plotter library. As indicated in the following table, each plotter has a dis-
tinct purpose. Some can only be used in continuous models (“C”), some only in discrete event or
discrete rate models (“DE/DR”), others in both (“Both”).

☞ Discrete Event plotters are used in discrete event models. However, since they plot values not
items, you must connect a value output (as opposed to an item output) to the Discrete Event plot-
ter. This tells the plotter what information about the items or about the status of the model you
want to plot.

The MultiSim and Error Bar plotters are specifically designed to be used when you run multiple
simulations for Monte Carlo or sensitivity analysis. You choose the number of times you want the
simulation to run in the Run > Simulation Setup dialog.

Show instantaneous
queue length

For discrete event plotters, plots additional data to show when a queue changes
length in zero time. For example, when an item enters and leaves the queue
during one event.

Don’t continue line
to Endsim

For discrete event plotters, stops drawing the plot trace at the last event, not at
the End Time of the model run.

Show plot Brings the plot window to the front if it is already open, and opens it if it is
closed.

Autoscaling Automatically resizes the Y-axis of the plot based on the maximum and mini-
mum values observed. The plot can automatically scale during the simulation,
at the end of the run, or not at all.

Insert plotter back-
ground

When checked, enables a popup for selecting a background for the plot pane.
You can copy custom plotter backgrounds into the Extensions\Pictures folder.
They must be windows metafiles (.wmf) or bitmaps (.bmp) for Windows or
PICT resources in a Macintosh resource file for Mac OS.

x axis shows Calen-
dar dates with

If Use Calendar dates is checked in the Run > Simulation Setup > Setup tab,
this option expresses time units on the plot pane in Calendar date format, dis-
playing full date and time, no time, or time only. For more information, see
“Calendar dates” on page 528.

Plot every nth point In continuous plotters, lets you specify that the plotter should only draw the
nth point of the data it receives. This is useful if there are many data points and
the points are all very close together, or to make the plot draw faster.

Data storage tab The choices on this tab are to plot all data, all important data, or reduced data.
This is useful if you have plotters that store too much data, as some of it may be
redundant. The Reduced data choice samples from the incoming stream, con-
serving memory.

Choice Description

594 Analysis
Plotters

H
ow

 T
o

Plotter Description Model

Bar Chart Windows only. Displays a bar graph of up to six input values. The
bars can change instantaneously or at regular intervals. Unlike other
plotters, the bar chart does not record any data. It uses the IOComp
ActiveX control to display the graph.

Both

Gantt Chart Windows only. Plots up to six Gantt chart bars. Each bar displays
one of the following types of information:

• The binary status of a variable (on or off)

• The level of a variable (the height of the bar varies with the
level)

• The status of an Activity or Workstation block (Item library)

It uses the IOComp ActiveX control to display the graph.

Both

Histogram Creates a histogram of all the values it receives. Each bin counts the
number of data values that fall within its range, or the amount of
time that the incoming value was in that bin (if the Time Weighted
option is used). The number of bins and the overall minimum and
maximum range values are specified in the plotter’s dialog. The max-
imum and minimum can be the entire range received or specified
numbers. You can specify in the dialog whether to plot the data from
each step or, if you run multiple simulations, to plot the final values
of each run. The dialog also displays the number of points that fall
within the specified range.

Both

Plotter,
DE Error Bars

Shows the mean and standard deviation of a value. This plotter is
used when running multiple discrete event or discrete rate simula-
tions, such as for Monte Carlo modeling or for sensitivity analysis.
The time line is divided into a number of equal intervals specified in
the dialog. You can also choose to use time-weighted statistics. The
plotter calculates the average mean of the value over each interval
and from this determines the mean and standard deviation over all
of the runs.

DE/DR

Plotter,
DE MultiSim

Accumulates the values from up to four runs of a discrete event or
discrete rate simulation on a single plot pane and table. In the dia-
log, you can choose to only plot values when they change or to plot
all values. You can also specify by number which trace to show the
current run on and whether to automatically increment the trace
number.

DE/DR

Plotter, Discrete
Event

Gives plots and tables of data for up to four value inputs in discrete
event and discrete rate models. Both the value and the time the value
was recorded are shown in the data table for each input. In the dia-
log you can specify whether to plot values only when they change or
to plot all values. Use the Show instantaneous length option if you
attach an input to the L connector of a queue-type block and you
want it to report on items that arrive and depart on the same time
step (these are items that stay in the queue for zero time).

DE/DR

Analysis 595
Plotters

H
ow

 T
o

Plotter, Error Bars Similar to the Plotter DE Error Bars except it is only used in contin-
uous models. As opposed to the Plotter DE Error Bars, this plotter
calculates the mean and standard deviations for the value at the exact
point or step in time rather than its average over the time interval.

C

Plotter, FFT A specialized plotter used by electronic engineers, it plots both the
data that is input and the FFT (Fast Fourier Transform) of the data.
When you double-click the FFT icon, it shows a dialog where you
can specify the number of FFT points and choose an FFT window.

C

Plotter, I/O Gives plots and tables of data for up to four time-associated inputs.
In the dialog, you can specify that only every “nth” point is plotted
and you can choose whether or not to autoscale the plot during the
simulation. The output connectors allow the data generated in one
simulation to be used as an input to another simulation. To do this,
run the simulation, then copy the plotter into the new model and
connect from its output connectors.

C

Plotter, MultiSim Accumulates the results of up to four runs of a continuous simula-
tion on a single plot pane and table. You can specify by number
which trace to show the current run on and whether to automati-
cally increment the trace number.

C

Plotter, Scatter Shows two sets of data plotted as x,y value pairs. You must connect
both the x and y inputs of at least one pair in order to plot data.

Both

Plotter, Scatter (4) The same as the Plotter, Scatter except that you can plot up to four
sets of data. You must connect both the x and y inputs of at least one
pair in order to plot data.

Both

Plotter, Strip Shows a moving strip chart of a specified number of data points
plotted over time. The strip chart moves left as the data appears on
the right side of the plotter. In the dialog, you can specify the num-
bers of points to show on the chart. Because it uses less memory than
the Plotter, I/O, this is especially useful if you are running a long
simulation and only need to monitor the current conditions.

C

Plotter Description Model

596 Analysis
Reports

H
ow

 T
o

Copying plotted information
You can copy the information from the plotter to the Clipboard. If the plotter is the front-most
window, simply choose Edit > Copy Plot to copy the picture of the plot into the Clipboard. To
copy the data, you must select it, then choose the Copy command.

Clearing plotted information
When the plotter is the active window, clear all the data associated with the current plotter by
selecting the Edit > Clear All Plots command. This is useful to reduce the size of a model for distri-
bution or archiving.

Reports
The report commands in the Run menu are for gen-
erating custom reports of model data. The com-
mands let you choose just the blocks you want in the
report, or you can choose to report on all the blocks
in a model.

☞ If you build your own blocks and want to use the
Report features for debugging, add special code to
the blocks as described in the Developer Reference.

Once the report is generated, you can view or edit the text file in ExtendSim or export the data
into another application for analysis or presentation. For example, if you have a discrete event
model with queues, you might want to check each queue to see what the maximum queue length
was. You could simply look in the report for those queues.

Types of reports
There are two types of reports that can be generated:

• The Dialogs report includes the final values for the input and output parameters of every chosen
block, as well as the information in each block’s comments field. Since this report includes the
values and settings for all of the parameters in each of the selected blocks, it is a good tool for
documenting a model.

• The Statistics report includes the final values for the output parameters only. This report
arranges the statistics in tabular form, allowing for easier comparison of block results and export-
ing to spreadsheets.

☞ Only one type of report can be generated for a given run.

The currently selected type of report is displayed as part of the Report Type command in the Run
menu. Both report types organize the data first by block category, then by block number, allowing
you to easily locate the results for a particular block. The reports are saved as text files and open

Plotter, Worm Shows two sets of data plotted as x, y value pairs for a specific num-
ber of points. You can specify how many points to show at a time
(the worm width) in the dialog. This is like the Plotter Scatter except
that points are deleted. Use this if you are generating a great deal of
data but do not need to see all of it. You must connect both the x
and y inputs of at least one pair in order to plot data.

Both

Plotter Description Model

Report options

Analysis 597
Reports

H
ow

 T
o

automatically when the simulation is finished. If you perform a multi-sim run by setting the Runs
parameter in the Simulation Setup dialog to a number greater than 1, each report is appended to
the current report file so that you can compare reports from earlier runs. However, if you perform
two consecutive single runs, the reports will be written to separate files or, if you specify the same
file name, written over.

Note that model reporting only tells you the final values of the blocks in the simulation. If you
want to see the values of the blocks during the simulation, use the tracing commands described in
“Model tracing” on page 620.

Generating reports
Before generating a report, you need to choose which blocks to report on. To include some blocks
in a report, select the blocks and choose Run > Add Selected to Report. To have all the blocks in a
model be included, choose Run > Add All To Report. To report on fewer blocks in the next simu-
lation run, select the blocks you want out of the report and select Run > Remove Selected from
Report; to start over on your selection of blocks, choose Run > Remove All from Report.

It’s highly recommended that you do not include a Plotter block in a report. Plotters write out all
report data to a very large file.

You can see which blocks are being reporting on by choosing Run > Show
Reporting Blocks; each block in the report displays the word Report on its icon.

Reports are opened, closed, and edited just like any other text file in ExtendSim.

Steps for reporting
Choose the blocks you want to report, as discussed above.

Select a report type using the Run > Report Type command.

Choose the command Run > Generate Report.

Run the simulation to generate the report. ExtendSim prompts you for a name for the report
file.

Reporting example
For example, the following (edited) reports were generated for Reservoir 1 model’s Random Num-
ber block for the first two simulation runs.

Dialogs report

ExtendSim Dialog Report - 8/27/2007 2:24:51 PM Run #0
Block Name: Random Number Block Number: 13 Block Label: Stream

DistType = Uniform Real
Argument1_prm = 0
Argument2_prm = 1
UseBlockSeed_chk = UnChecked
RandomSeed_prm = 14
RandomResult_prm = 0.396125656921534
GenerateOnce_chk = UnChecked

ExtendSim Dialog Report - 8/27/2007 2:24:51 PM Run #1
Block Name: Random Number Block Number: 13 Block Label: Stream

Icon for block in
report

598 Analysis
Reports

H
ow

 T
o

DistType = Uniform Real
Argument1_prm = 0
Argument2_prm = 1
UseBlockSeed_chk = UnChecked
RandomSeed_prm = 14
RandomResult_prm = 0.371057238775359
GenerateOnce_chk = UnChecked

Statistics report

ExtendSim Statistics Report - 8/27/2007 2:26:01 PM Run #0
INPUTS_________
Block Label Number Name Result
----------------------------- ------ ------------ ------- -------
Stream 13 Random Number0.22989

ExtendSim Statistics Report - 8/27/2007 2:26:01 PM Run #1
INPUTS_________
Block Label Number Name Result
----------------------------- ------ ------------ ------- -------
Stream 13 Random Number0.70181

For the Statistics report, “Inputs” is the block’s category in the Library menu.

You can edit the report files just as you would any text file in ExtendSim; this is described in “Text
files” on page 663. If you program custom blocks, you can specify what data gets written in the
report as discussed in the Developer Reference.

When printing the Statistics report onto a standard 8.5" by 11" sheet, to ensure that the entire
page width is printed, use the Text command to change the font from the default size 12 to size 9.
The default size is set for easy on-screen viewing, but will exceed the page margins.

☞ Reports can also be used as a debugging tool, but you can get more detailed information for debug-
ging by performing model tracing. See “Model tracing” on page 620.

How To

Math and Statistical Distributions
Working with equations and distributions

“I know that two and two make four - & should be glad to prove it too if I could –
though I must say if by any sort of process I could convert 2 and 2 into 5

it would give me much greater pleasure.”
— George Gordon Noel Byron

600 Math and Statistical Distributions
Blocks that represent functions

H
ow

 T
o

ExtendSim provides an extensive palette of tools for integrating mathematical equations and ran-
domness in a model. You can even control the exact moment that calculations will take place. This
chapter discusses:

• Blocks that provide mathematical functionality

• Using Equation blocks to create custom equations

• Incorporating randomness in models

• Selecting a probability distribution

• Determining when inputs should be integrated or summed

☞ See also the How To chapter titled “Analysis” on page 563.

Blocks that represent functions
ExtendSim libraries are toolkits of blocks for quickly building a graphical representation of model
logic. As shown below, some blocks have specific mathematical functionality and perform calcula-
tions automatically based on settings in their dialogs. Other blocks provide even more flexibility
and perform calculations based on equations you enter in their dialogs; they are discussed on
“Equation-based blocks” on page 601.

☞ For information about blocks that perform statistical analysis, see “Blocks that calculate statistics”
on page 564.

The following blocks may be used in any type of model to provide mathematical functionality
based on dialog selections:

Decision (Value library)
Compares the value at one input to the value at another input and reports a result.
For example, use this block to determine if one model value is greater than, less than,
or equal to another value during the simulation run.

Integrate (Value library)
Provides different integration methods to integrate the input value over time. You
can also set an initial value in the dialog.

Math (Value library)
Calculates a mathematical, financial, logical or trigonometry function depending on
the option selected in its dialog. Set the block to add a number to its input value and
output the result. Or have it calculate the exponent of the input value. Provides over
30 functions from a popup list.

Mean & Variance (Value library)
Calculates the mean, variance, and standard deviation of the input. You can set an
initial value in the dialog and select options to calculate a moving average, use a spec-
ified confidence interval, and use time weighted statistics.

Math and Statistical Distributions 601
Equation-based blocks

H
ow

 T
o

Random Number (Value library)
Generates random numbers for the distribution selected in the dialog. Select from
over 30 distributions or use an empirical table to create a custom distribution. This
block is discussed more in “Random numbers” on page 604.

Data Fitter (Utilities library)
Uses matrix techniques to obtain a least mean square curve fit to a set of data. Enter
or import the data into the dialog’s data table and select a fitting function to solve
for.

☞ In addition to the blocks listed above, most blocks automatically calculate and report statistical
information during or at the end of a simulation run. For example, the Math block (Value library)
reports the results of the selected mathematical calculation in its Options tab and the Queue block
(Item library) displays statistics about the queue length, average wait time, utilization and so forth
in its Results tab.

Other options
There may not be an ExtendSim block that provides the specific function or equation that you
want. Or, you may want to combine the functionality of several blocks into one. Some possible
solutions are:

• Select several blocks and make them into a hierarchical block, as discussed in “Hierarchy” on
page 540.

• Add features to an ExtendSim block by modifying the structure of a block (its dialog and code)
as discussed in the ExtendSim Developer Reference.

• Use the Equation block (Value library) or the Equation(I) or Queue Equation blocks (Item
library) to directly combine functions or to obtain behavior not available in other blocks. These
blocks are discussed in the next topic.

Equation-based blocks
The equation-based blocks calculate values for models based on formulas and
ModL code entered in their dialogs. There are three equation-based blocks:

• Equation block (Value library)

• Equation(I) block (Item library)

• Queue Equation block (Item library)

These blocks provide access to over 1,000 internal functions; you can also use
operators to enter logical statements, write compound conditions, and specify
loops. The equation can be as simple as performing a mathematical operation
on the value from an input connector or it could be as complex as a full pro-
gramming segment. The equation is automatically compiled when you click
OK in the block’s dialog.

The Equation(I) and Queue Equation blocks can only be used in non-continu-
ous (discrete event and discrete rate) models. They typically perform calcula-
tions when items arrive or depart. Although it is a continuous block, you can use the Equation
block in non-continuous models. This is common when you want the equation to calculate inde-
pendent of item status.

Equation (top),
Equation(I), and
Queue Equation
blocks

602 Math and Statistical Distributions
Equation-based blocks

H
ow

 T
o

Overview
An equation-based block takes input variables, uses those values in an equation, and outputs the
results of the calculation. Equation-based blocks are similar to the formula bar of a spreadsheet.
Most of the usual components (operators, values, functions, and so on) are the same. There are
two differences - instead of a cell reference, these blocks have input and output variables that are
identified by name in the equation, and the results of the equation can be output to different des-
tinations.

Equation components
The components of an equation are the inputs, the equation itself, and the outputs. The dialogs of
equation-based blocks have separate tables for specifying the input and output variables and a
scrollable pane for entering the equation.

Input variables
Input variables are the model values used in an equation.
Each row in the Input Variables table (shown on right) has
a popup menu for selecting the type of input variable and a
field for its name and value.

Add rows to the table by clicking the green +/- grow button
in the table’s bottom right corner; you can select a different
input option for each row.

The Variable Type popup provides several options for input
variables, as shown below. Each option is described fully in
the blocks’ Help.

Input Variable Type Equation Equation(I) Queue Equation

Input Connector X X X

Database value X X X

Database pointer X X X

Static first run initialization X X X

Static multiple run initialization X X X

Attribute of item X X

Item quantity X X

Item priority X X

Item index X X

Batch size X X

3D object ID X X

Item’s arrival time X

Best result X

Input Variables table

Math and Statistical Distributions 603
Equation-based blocks

H
ow

 T
o

For the Variable Name you can use the default names, assign names that have more relevance to
the model, or select a name from a popup, depending on the type of variable selected. The type of
input variable selected also determines the options for the Variable Value field: enter a value
directly, select the value from a database location, and so forth.

Output variables
Output variables are where the results are recorded when
the equation is calculated. Each row in the Output Vari-
ables table (shown at right) has a popup menu for selecting
the type of output variable and a field for its name and
value.

Add rows to the table by clicking the green +/- grow button
in the table’s bottom right corner; you can select a different
output option for each row.

The Variable Type popup provides several options for out-
put variables, as shown below. Each option is described
fully in the blocks’ Help.

For the Variable Name, use the default name, assign a name that has more relevance to the model,
or select a name from a popup, depending on the type of variable selected. The Variable Value field
reports the results for the selected output variable. In the Equation(I) block there is also a column
to specify what should happen to the result if an output is needed but there is no item to trigger
the equation’s recalculation.

Equation
An equation is a list of commands to be executed on one or more input variables, resulting in one
or more output variables. In the equation pane, enter an equation that uses the names of the input
and output variables and any of ExtendSim’s built-in functions and operators. The equation must
be of the general form output = equation; (the semicolon at the end is required).

For example, an equation that uses the values from input connectors named Input1 and Input2
and outputs the result to an output connector named OutputA would be:

if(Input1 > Input2)

OutputA = 2;

Output Variable Type Equation Equation(I) Queue Equation

Output connector X X X

Database value X X X

Attribute of item X X

Item quantity X

Item priority X X

3D object ID X X

Queue rank X

Select connector X

Output Variables table

604 Math and Statistical Distributions
Random numbers

H
ow

 T
o

else

OutputA = 5;

The equation does not have to use all the names assigned to the input and output variables. How-
ever, if an input connector is connected, ExtendSim assumes that you will want to use it in the
equation. If you don’t use it, ExtendSim will give a warning when the simulation runs. ExtendSim
will also warn if the equation uses a connector that is not named or is not connected.

☞ Equation-based blocks can calculate separate results and output them using any number of output
variables.

The timing and control of equation calculations
The equation-based blocks evaluate their equations:

• Equation. In a continuous model, at every step. In a discrete event or discrete rate model, when
a message is sent to its value input or output connectors. The frequency of calculations can also
be customized in the block’s Options tab.

• Equation(I). Each time the block gets an item at its item input connector.

• Queue Equation. Each time an item arrives or leaves and when a message is sent to one of the
value input connectors.

The timing of equation calculations can have significant consequence in a simulation, affecting
model behavior. To control when the equation is evaluated so that extraneous messages aren’t gen-
erated, see the Step Message block (Utilities library) or the Pulse block (Value library).

Equation block example
The topic “Simplifying the model” on page 68 demonstrates how one Equation block can replace
four blocks that calculate and remove overflow from a Holding Tank block.

Random numbers
The ability to include randomness and show dynamic aspects through time is one of the most
valuable characteristics of a simulation experiment. Introducing randomness into a model mimics
the patterns and unpredictability of the real world, increasing model accuracy. Since most models
have randomness, it is important to understand random numbers.

Original Reservoir model with overflow calculations (left) and using Equation block (right)

Math and Statistical Distributions 605
Random numbers

H
ow

 T
o

ExtendSim has blocks, features, and functions that provide randomness in models. For example,
the Random Number block (Value library) and the Create and Shutdown blocks (Item library) cal-
culate random numbers using random distributions accessed through ModL functions. You can
also specify random settings when using Sensitivity Analysis and for values in the ExtendSim data-
base, and developers can directly access several random number functions.

Random number generators
The random functions produce random numbers based on a repeatable algorithm known as a
pseudo random number generator. This generates the uniform random numbers used in the dis-
tribution functions. These 32-bit functions are seed-based and update their seed after being called.
ExtendSim supports two types of random number generators:

• The recommended, default generator known as the minimum standard random number genera-
tor initially by Lewis, Goodman, and Miller, using new coefficients by Gerald P. Dwyer, Jr. (See
Numerical Recipes in C, 2nd edition, pp.279 “A portable and reasonably fast minimum stan-
dard random number generator that uses Schrage's algorithm” and L'Ecuyer - Comm. of the
ACM, Oct. 1990, vol. 33 and L'Ecuyer and Cote, ACM Transactions on Mathematical Soft-
ware, March 1991.)

• An optional generator based on Schrage, “A More Portable Fortran Random Number Genera-
tor,” ACM Transactions on Mathematical Software, Vol 5, No. 2, June 1979, pages 132-138.

The first type of generator is specified by default in the Run > Simulation Setup >Random Num-
bers tab and is highly recommended for building models. The second generator is used mainly for
backwards compatibility, so that models developed before ExtendSim 4.0 will retain results that
are consistent with those older versions of ExtendSim.

Random seeds
A random number stream is a sequence of random numbers; the numbers in the stream are
derived based on seed values. The pseudo random number generator is the internal mechanism in
ExtendSim which calculates the numbers in the stream.

ExtendSim provides independent random number streams with the ability to specify a seed so that
sequences of random numbers can be repeated. A random number is generated based on a seed.

You can specify a seed for the model as a whole in the Run > Simulation Setup > Random Num-
bers tab. A seed value of 0 or blank uses a random seed; any other value causes repeatable sequences
of pseudo-random numbers. This gives repeatable results, allowing you to determine exactly how
changes affect the model.

ExtendSim automatically assigns a separate seed to each block in the model that generates random
numbers. To specify your own seed, enter a value in the Use block seed field in the dialog of those
blocks. Any number entered as a seed in a block dialog will result in an independent random num-
ber stream that will not change across runs. Since each stream of random numbers is based on a
seed, and you can have a separate seed for each block that generates random numbers, random
number generation in ExtendSim is independent. The blocks that generate random arrivals or
numbers are the Create and Shutdown blocks (Item library) and the Random Number block
(Value library).

Each cell in an ExtendSim database can have an independent seed for the selected distribution.
The database seed is dependent on what is set in the Run > Simulation Setup > Random Numbers

606 Math and Statistical Distributions
Probability distributions

H
ow

 T
o

tab. The seed field in the Sensitivity Setup dialog is independent of the seed that is set in the Ran-
dom Numbers tab.

Resetting random numbers for consecutive runs
The Run > Simulation Setup > Random Numbers tab has three options for when a model is run
repeatedly:

• Reset random numbers for every run

• Continue random number sequence

• Use Database table __Seed for values

These options are described in “Random Numbers tab” on page 519.

Probability distributions
In real life you cannot know exactly when an event is going to occur until it happens. For example,
you do not know when the next customer will enter your store. However, by using the correct sta-
tistical distribution you can approximate what happens in the real world.

A distribution (also known as a probability distribution or a random distribution) is a set of random
values that specifies the relative frequency with which an event occurs or is likely to occur.
ExtendSim’s random number distributions express both a probability that something will occur
and a range of values that specify the maximum and minimum value of occurrence.

Distributions represent the data observed in real-world situations. When you gather data for a sim-
ulation model, it is seldom in a useful form. By “filling in the gaps,” distributions help to compen-
sate for information which was overlooked during data collection. For example, distributions
account for extreme or outlying values which may have been missed during typically short data-
gathering intervals. Stochastic models use distributions as a handy method for converting data into
useful form and inputting it into models.

Characteristics of distributions
The functions that produce a distribution have one or more parameter arguments which define
and control its characteristics. The most important characteristics are a distribution’s shape, its
spread, and its location or central tendency. Shape is often used to identify distributions; for exam-
ple, the bell-shaped curve of a normal distribution is widely recognized. Shape can be characterized
according to skewness (leaning to one side or another) and kurtosis (whether it is peaked or flat).
You specify the characteristics for the selected distribution by the values you enter for these argu-
ments.

Choosing a distribution
Using random numbers means either choosing the theoretical distribution that best describes the
variability of the raw data, describing the data using a user-defined or empirical distribution (such
as the empirical distribution in the Create block), or fitting known data to a distribution. As seen
below, there are many distributions in ExtendSim and it also has the ability to interface with exter-
nal distribution-fitting software, as discussed in the next topic.

The choice of one distribution over another is not an exact science, but rather is dependent on the
type and extent of the data which is gathered, the detail required for the process being modeled,
and (in the case where little data is available), informed guesswork. If the data does not fit any of
the distributions described below as “typical” for your process, but fits a distribution which is not
typical, go with what your data tells you. It is usually better to use an approximate distribution
than it is to keep a value constant.

Math and Statistical Distributions 607
Probability distributions

H
ow

 T
o

Distribution fitting
There are also software applications which fit data to distributions. Use these tools in situations
where there is empirical data you want to model using random distributions, but the ExtendSim
distributions do not exactly fit. These products can help find the statistical distribution that best
emulates the real-world data.

Some ExtendSim packages come with the Stat::Fit distribution fitting application (see “Stat::Fit
(Windows only)” on page 586.) The Random Number block has a Distribution Fitting tab from
which to launch a distribution fitting package, analyze empirical data, and determine the appropri-
ate statistical distribution for a given data set.

ExtendSim distributions
When there is sparse or no data, this guide of common uses may help you select a plausible distri-
bution in the Create, Shutdown, or Random Number blocks, within the Sensitivity Setup dialog,
or when formatting a cell in the ExtendSim database:

Distribution Definition

Beta Distribution of random proportion, such as the proportion of defective items in
a shipment, or time to complete a task.

Binomial The number of outcomes in a given number of trials. Most often used to
express success/failure rates or the results of experiments, such as the number of
defective items in a batch or the number of customers who will arrive who are
of a particular type.

Cauchy Used to represent the ratio of two equally distributed parameters in certain cases
or wildly divergent data as long as the data has a central tendency. It has a sharp
central peak but broad tails that are much heavier than the tails of the Normal
distribution.

Chi Squared Used in statistical tests but, since it does not have a scaling parameter, its utiliza-
tion is somewhat limited. It is a subset of the Gamma distribution with beta = 2
and alpha = nu/2.

Constant This does not produce a random number, but a constant value which does not
change. Used when there is exactly the same amount of time between arrivals or
as a method to reduce the effects of randomness in the early stages of model
building.

Empirical Used to generate a customized or user-defined distribution with a special shape
when the probability of occurrence is known. The options are: discrete (the
block will output the exact values given in the table); stepped (values in the
table will be used as probabilities of ranges of data); and interpolated (the prob-
ability distribution will be interpolated between the data points).

Erlang Frequently used for queueing theory to represent service times for various activ-
ities or when modeling telephone traffic.

Exponential Primarily used to define intervals between occurrences such as the time between
arrivals of customers or orders and the time between failures (TBF) or time to
repair (TTR) for electrical equipment. Also used for activity times such as repair
times or the duration of telephone conversations.

608 Math and Statistical Distributions
Probability distributions

H
ow

 T
o

Extreme Value Type
1A

describes the limiting distribution of the greatest values of many types of sam-
ples. Used to represent parameters in growth models, astronomy, human life-
times, radioactive emissions, strength of materials, flood analysis, seismic
analysis, and rainfall analysis. Its peaked shape is always the same but it may be
shifted or scaled.

Extreme Value Type
1B

Describes the limiting distribution of the least values of many types of samples.
Represents parameters in growth models, astronomy, human lifetimes, radioac-
tive emissions, strength of materials, flood analysis, seismic analysis, and rainfall
analysis.

Gamma Typically used to represent the time required to complete some task. The distri-
bution is shaped like a decaying exponential for shape (2) values between 0 and
1. For shape values greater than 1, the distribution is shaped like a bell curve
skewed towards the low end.

Geometric Outputs the number of failures before the first success in a sequence of inde-
pendent Bernoulli trials with the probability of success on each trial. Typically
used for the number of items inspected before encountering the first defective
item, the number of items in a batch of random size, or the number of items
demanded from an inventory.

HyperExponential Usually used in telephone traffic and queueing theory.

Hypergeometric Describes the number of defects, x, in a sample of size s from a population of
size N which has m total defects. It is used to describe sampling from a popula-
tion where an estimate of the total number of defects is desired. It has also been
used to estimate the total population of species from a tagged subset.

Inverse Gaussian Originally used to model Brownian motion and diffusion processes with
boundary conditions. It has also been used to model the distribution of particle
size in aggregates, reliability and lifetimes, and repair time.

Inverse Weibull Describes several failure processes as a distribution of lifetime. It can also be
used to fit data with abnormal large outliers on the positive side of the peak.

Johnson SB Used in quality control to describe non-normal processes, which can then be
transformed to the Normal distribution for use with standard tests. It is a con-
tinuous distribution that has both upper and lower finite bounds.

Johnson SU Used in quality control to describe non-normal processes, which can then be
transformed to the Normal distribution for use with standard tests. It is an
unbounded continuous distribution.

Laplace Used in error analysis and to describe the difference of two independent, and
equally distributed, exponentials.

Logarithmic Describes the diversity of a sample, that is, how many of a given type of thing
are contained in a sample of things. For instance, this distribution has been
used to describe the number of individuals of a given species in a sampling of
mosquitoes, or the number of parts of a given type in a sampling of inventory.

Distribution Definition

Math and Statistical Distributions 609
Probability distributions

H
ow

 T
o

Logistic Most often used a growth model: for populations, for weight gain, for business
failure, etc. Can also be used to test for the suitability of such a model, with
transformation to get back to the minimum and maximum values for the Logis-
tic function. Occasionally used in place of the Normal function where excep-
tional cases play a larger role.

Log-Logistic For Shape = 1, it resembles the Exponential distribution. For Shape < 1, it tends
to infinity at Location, and decreases with increasing X. For Shape > 1, it is zero
at Location, and then peaks and decreases.

LogNormal Often used to represent the time to perform an activity (especially when there
are multiple sub-activities), the time between failures, or the duration of man-
ual activities. This distribution is widely used in business for security or prop-
erty valuation, such as the rate of return on stock or real estate returns.

Negative Binomial Number of failures before Sth success. P specifies the probability of success.

Normal The well-known Gaussian or bell curve. Most often used when events are due
to natural rather than man-made causes, to represent quantities that are the sum
of a large number of other quantities, or to represent the distribution of errors.

Pareto Represents the income distribution of a society. It is also used to model many
empirical phenomena with very long right tails, such as city population sizes,
occurrence of natural resources, stock price fluctuations, size of firms, bright-
ness of comets, and error clustering in communication circuits.

Pearson Type V A distribution typically used to represent the time required to complete some
task. The density takes on shapes similar to lognormal, but can have a larger
“spike” close to x = 0.

Pearson Type VI A distribution typically used to represent the time required to complete some
task. A continuous distribution bounded by zero on the left and unbounded on
the right.

Poisson Models the rate of occurrence, such as the number of telephone calls per
minute, the number of errors per page, or the number of arrivals to the system
within a given time period. Note that in queueing theory, arrival rates are often
specified as poisson arrivals per time unit. This corresponds to an exponential
interarrival time.

Power Function A continuous distribution with both upper and lower finite bounds. It is a spe-
cial case of the Beta distribution with q = 1. The Uniform distribution is a spe-
cial case of the Power Function distribution with p = 1.

Rayleigh Frequently used to represent lifetimes because its hazard rate increases linearly
with time, e.g. the lifetime of vacuum tubes. This distribution also finds appli-
cation in noise problems in communications.

Triangular Usually more appropriate for business processes than the uniform distribution
since it provides a good first approximation of the true values. Used for activity
times where only three pieces of information (the minimum, the maximum,
and the most likely values) are known.

Distribution Definition

610 Math and Statistical Distributions
Integration vs. summation in the Holding Tank block

H
ow

 T
o

These distributions and their arguments are described more fully in the Help of blocks that use
them.

Integration vs. summation in the Holding Tank block
As discussed on page 85, the Holding Tank block (Value library) has integration capabilities. The
block’s dialog gives the option to either sum or integrate its input. In general, a good rule of thumb
is:

• Integrate when the value going into the Holding Tank is based on simulation time units, such as
a rate. For example, you would integrate when the Holding Tank block’s input represents dollars
per year or gallons per hour.

• Sum when the value is to be added to the block at each step or dt calculation. For example, you
would sum when the Holding Tank block’s input is orders or people.

Summing adds the given input to the total at each step, regardless of the time units. Integration
considers the input to be spread evenly over each time unit; at each step integration adds a portion
of the input to the total. For example, the following table shows the effect of inputting $2000 to
the Holding Tank block when the time units are in years and dt (delta time) is set to 0.25 (for 1/4
of the year).

As seen in the table, if the Holding Tank is set to sum its inputs, it would be the equivalent of add-
ing $2000 to the account every quarter. If the Holding Tank is set to integrate, it would be the
equivalent of adding $500 per quarter.

• Summation occurs at each step so there is an amount calculated at time 0. Since summation
treats its input as an amount, the entire 2000 is added at each step.

Uniform Integer Describes a integer value that is likely to fall anywhere within a specified range.
Used to represent the duration of an activity if there is minimal information
known about the task.

Uniform Real Describes a real value that is likely to fall anywhere within a specified range.
Used to represent the duration of an activity if there is minimal information
known about the task.

Weibull Commonly used to represent product life cycles and reliability issues for items
that wear out, such as the time between failures (TBF) or time to repair (TTR)
for mechanical equipment.

Time Step Summed Integrated (delay) Integrated (no delay)

0 0 2000 0 500

0.25 1 4000 500 1000

0.50 2 6000 1000 1500

0.75 3 8000 1500 2000

1 4 10000 2000 2500

Distribution Definition

Math and Statistical Distributions 611
Integration vs. summation in the Holding Tank block

H
ow

 T
o

• The integrated (delay) choice treats its input as a rate and calculates a new result at the next
step. Because this backward Euler integration occurs during the interval between steps, there is
no amount at time 0.

• The integrated (no delay) choice also treats its input as a rate. However, it calculates a new
result at the current step. Because its integration occurs at each step, there is an amount at time
0.

It is also important to note that if you subsequently change the delta time to something other than
0.25, the total amount in the summed Holding Tank would be different from the amounts shown
above, but the total amount in the integrated Holding Tank would remain the same.

Your choice of integration methods depends on the model:

• You would generally use the integrated (delay) choice when there is only one integrating block
in the model, when the integrating blocks are not interdependent or cross-coupled, or when
there is no feedback.

• In models with more than one integrating block, where the integrating blocks are interdepen-
dent or cross-coupled, the feedback between the blocks is usually a correction factor. If this feed-
back is delayed, the system may correct too late or overcorrect, causing the model results to
become unstable. This is often observed as a graph where the traces oscillate with increasing
magnitude as time progresses. The integrated (no delay) choice compensates for the feedback
delays by outputting results one step earlier. For example, the Predator_Prey model discussed on
page 72 is an example of interdependent Holding Tank blocks.

612 Math and Statistical Distributions
Integration vs. summation in the Holding Tank block

H
ow

 T
o

How To

Debugging Tools
Learn how ExtendSim can

help find errors in your models

“If debugging is the process of removing bugs,
then programming must be the process of putting them in.”

— Unknown author

614 Debugging Tools
Debugging hints

H
ow

 T
o

Creating a model is not so fool-proof that your work is finished once the model has been built.
Two important steps in any simulation project are verification of simulation results (compare the
results to what was intended or expected) and validation of results (compare the model to the real
system).

ExtendSim provides several methods for detecting problems in models and for debugging models
that are not working as expected, including:

• Hints for debugging models

• Verifying results at each step of the model-building process

• Specific blocks used for debugging

• Getting the information you need to debug a model

• Using the Find command to easily locate blocks or dialogs that require attention

• Dotted lines to show unconnected connection lines

• Running with animation to see if a model is behaving as expected

• Using the Notebook to keep track of critical parameters in one location

• Stepping through the model as it progresses

• Show Simulation Order command

• Model tracing for comparison with the real system

☞ This chapter is concerned with debugging a model, not with debugging custom blocks. The
ExtendSim Developer Reference discusses in detail how use the ExtendSim Debugger to find bugs
in blocks you create.

Debugging hints
Efficient debugging of a simulation requires an organized, logical approach. Following the follow-
ing steps will shorten the process:

• Duplicate the bug. Fix the random number stream so that the problem occurs the same way and
at the same time whenever the model is run.

• Describe the bug. Defining the difference between the correct behavior and the observed behav-
ior can lead to insight into the source of the problem. This also helps in formulating a strategy
for locating the source of the bug.

• Assume the bug is yours. The vast majority of modeling errors are caused by the modelers them-
selves. It makes sense to start with the most likely source of the bug.

• Divide and conquer. Determine the source of the bug. And, determine where the bug is not.
Build the simplest model that duplicates the error. This will make the model run faster and there
will be fewer variables to consider in the debugging process.

• Think creatively. Bugs don't always come from the expected locations. If the source of the prob-
lem is not immediately evident, you may be looking at only a symptom. Look at other places in
the model that could be the actual source of the error.

• Leverage tools. ExtendSim comes with a variety of tools for debugging a simulation model. For
discrete event models, adding a History block (Item library) or Record Message (Utilities

Debugging Tools 615
Verifying results as you build a model

H
ow

 T
o

library) block can provide insight into the operation of the model. In continuous models, writ-
ing a sequence of values to the ExtendSim Database or to a global array is an easy way to record
the values at a specific point in the model. Trace files are also useful at this point.

• Start heavy debugging. Focus on the problem at hand and on how it can be fixed

• Learn and share. This may be a problem that could occur in someone else’s models. Share your
experiences with other modelers through the ExtendSim E-Xchange or the ExtendSim Aca-
demic E-Xchange as discussed in “User forums” on page 8.

Verifying results as you build a model
One of the most efficient methods for debugging models is to verify that the model is working cor-
rectly at each step during the model building process. It is a lot easier to find problems as you cre-
ate each section of the model than to try to debug a finished model. You can use almost any of the
debugging features discussed in this chapter, but the two most common methods to debug at each
step are by examining connector information and cloning dialog items.

Connector information
Connectors provide helpful information when you are debugging models. Run the model at any
point in the model building process. As the model runs, or at the end of a run, hover the cursor
over a connector to see its name and current value. You may also see additional information
depending on how the block is programmed.

Cloning dialog items
To focus on a particular parameter, clone it to the model worksheet and watch it change as the sim-
ulation runs. You can also turn animation on to compare the cloned parameter to the behavior of
the surrounding blocks. Cloning dialog items is discussed at “Cloning” on page 504.

Blocks for debugging
ExtendSim libraries have many blocks that are useful for debugging models either during or after a
simulation run, including:

Block Library Category Use

Display Value Value Inputs/
Outputs

Displays the value of its input connector at each simula-
tion step on the block’s icon and in the dialog. In the dia-
log, set the time between displays.

Notify Value Inputs/
Outputs

Plays a sound or stops the simulation when its input is ≥
0.5. Optionally displays a message set in its dialog.

Statistics Value Statistics Displays information about all blocks of a certain type,
such as all queues or all activity blocks.

History Item Information Displays statistics and history (arrival time, priority, and
attributes) of items that pass through it.

Information Item Information Counts items that pass through it and reports the time
between item arrivals and cycle time statistics.

Record Mes-
sage

Utilities Discrete
Event Tools

Records messages sent over value connectors in a discrete
event or discrete rate model.

616 Debugging Tools
Measuring performance to debug models

H
ow

 T
o

Measuring performance to debug models
ExtendSim provides several methods for obtaining model information when debugging models:

• Dialog boxes display data pertinent to the specific block and in some cases automatically per-
form statistical calculations. For instance, the dialog of the Queue block (Item library) reports
utilization and maximum queue length as well as the number of arrivals and departures.

• You can clone dialog parameters to the model window or to the Notebook to create customized
reports and control panels, as shown in “How to clone a dialog item” on page 504.

• Many of the blocks in the libraries have value output connectors that give direct access to spe-
cific information. For example, the U output connector on the Activity block outputs utilization
values. You can attach any value output to a plotter to display information about model perfor-
mance. You can also attach value outputs to value inputs on diagnostic-type blocks, such as to
the Display Value block (Value library) to display information about that output.

• Plotter blocks, from the Plotter library, conveniently display graphs and tables of data over time.
Plotters are useful not only for showing results but for identifying trends and anomalies. You can
choose what you want plotted and how you want it displayed, and you can use as many plotters
in a model as you want. See “Plotters” on page 588 for more information.

• Animation shows the flow of items in a model, levels of values, etc. ExtendSim blocks have
built-in customizable animation; you can also add custom animation using the Animate tabs in
block dialogs or by using blocks from the Animation 2D-3D library. Animation is especially
useful for verifying a model since it can show if portions of the model are operating as expected.
Since animation can slow model performance considerably, it is common that you would use
animation in the early stages of model-building or for presentations. See “Animation features for
debugging” on page 618 for more information.

• There are numerous blocks that can be used for debugging models and verifying results. For
instance, the Notify block (Value library) can stop the simulation and notify you when its input
goes above or below a specified level. The Information block (Item library) provides information
about the output of the block it is connected to (the interval between arrival times, how many
items are currently present at the output, and so forth).

Item Messages Utilities Discrete
Event Tools

Records the messages sent over item connectors.

Find and
Replace

Utilities Information Finds specified dialog items and replaces their values.
Drag a clone of a dialog item onto this block’s icon to
search for similar dialog items.

Pause Sim Utilities Model
Control

Causes the simulation to pause when certain conditions
are met. Click Resume to continue execution

any plotter Plotter Add a plotter block any place in a model and connect it to
the values you want to track.

Block Library Category Use

Debugging Tools 617
Find command

H
ow

 T
o

• Sensitivity analysis allows you to vary a parameter incrementally, randomly, or in an ad hoc
manner to determine how sensitive model results are to changes in one variable. See “Sensitivity
analysis” on page 568 for more information.

• Running simulations multiple times, such as for Monte Carlo simulations, gives ranges of values
indicating the possible outcomes for the model. See “Running a model multiple times” on
page 522 for more information.

• The Run > Generate Report command, discussed in “Model reporting” on page 620, instructs
ExtendSim to generate a text file of the final model results. You can report on all the blocks in a
model, or use menu commands to specify which blocks are included in the report. Reports are
especially useful for outputting to other applications, such as statistics packages, for further anal-
ysis.

• The Statistics block (Value library) reports and statistically evaluates results. For example, it can
display information about every queue-type block in the model and calculates the confidence
intervals based on the results. As discussed in “Clear Statistics” on page 566, the Clear Statistics
block resets statistical accumulators at random intervals or in response to a system event; this is
used to eliminate statistical bias during the warm-up period.

• The Utilities library contains two blocks that are useful for debugging discrete event models.
The Record Message block, when connected between two value connectors, shows all of the
messages, the values transferred, and whether the message came in the input or output connec-
tor. The Item Messages block records the message communication between two item connec-
tors. See “Messaging in discrete event models” on page 260 for a detailed discussion of the item-
based messaging system.

Find command
If a model is large, it might be difficult to find all the blocks
by sight. For example, you may see in the Trace file that a
particular block didn’t get the expected input. The Edit >
Find command lets you locate a block by its global block
number, name, label, or category, or find a text block by its
global block number or by the text within it.

Global block numbers are unique, permanent identifiers
for blocks and text blocks. Name means the name of the
block in the library menu (e.g. Equation). Block labels are
defined by the user in the block dialog and are especially
useful to find types of blocks. Category refers to how the
block is classified in the Library menu (e.g. Inputs).

The debugging blocks described above list the global block number in case you have many copies
of a block in the model. Use global block number and the Edit > Find command to quickly scroll
to a block and select it.

☞ You can also use the Find and Replace block, listed in the table of debugging blocks above, to find
blocks. It is even more useful for finding specific dialog items in the located blocks, so you can
replace their parameter values.

Find dialog

618 Debugging Tools
The Source Code Debugger

H
ow

 T
o

The Source Code Debugger
The ExtendSim Source Code Debugger is the ultimate model debugging tool. With the debugger
you can step through every statement, inspect the value of every variable, and view the sequences
of messages sent from one block to another. Using the debugger requires that you understand the
ModL language and how blocks interact with each other. For more information, see the Developer
Reference.

Dotted lines for unconnected connections
If a block is not getting an input or is not generating an output when you
think it should, it may not be connected properly in the model. This can
happen when connections run underneath blocks when you thought
that they were connected to the blocks. ExtendSim shows incomplete
connections as a red dotted line. To fix these, delete the incomplete con-
nections by double-clicking them and reattach them to where they are
supposed to be. Clicking one segment selects that segment; double-click-
ing a segment selects the entire connection line.

Animation features for debugging
Running the model with 2D animation on is useful for debugging. If the animation goes by too
quickly for debugging, slow down the process with the Animation Slower (turtle) button in the
toolbar. To resume speed, use the Animation Faster (rabbit) button.

To learn more about how models, blocks, and connection lines are animated see “Animation” on
page 551.

Animating the model
If you know how a block is animated (see the block’s Help), you can watch its icon to determine if
something is not acting as expected. For example, if a block indicates the status of its contents, you
can use that information to debug the model.

Discrete event models have additional animation capabilities and can show the flow of items along
connection lines and between named connections. This gives a visual representation of what is
happening in the model.

Animating item properties (discrete event models only)
Changing an item’s animation depending on a property (attribute, quantity, priority) is helpful
when debugging models. For example, in a block’s Item Animation tab you can visually differenti-
ate between types of items by setting separate animation objects for each attribute value. Then
observe the individual items as they flow through the model.

Notebook
The Notebook is a convenient way to see the final values for several dialog items in a model or to
compare inputs to outputs. This is useful in debugging because you can group the dialog items by
what their final values are expected to be.

For more information, see “Notebooks” on page 508.

Incomplete connection

Debugging Tools 619
Stepping through the simulation

H
ow

 T
o

Stepping through the simulation
The toolbar in the application window has buttons that help if
you are debugging a model. When the simulation is running,
the Stop, Pause, Animation Off/On, Animation Faster, and Ani-
mation Slower buttons are available.

When you click the Pause button, the simulation pauses, the
Pause button changes to the Resume button, and the Step but-
ton becomes available.

☞ Instead of using the Pause command, you can use the Pause Sim
block (Utilities library). It has additional options for triggering
when to pause the simulation.

The Step Entire Model, Step Next Animation, and Step Each Block commands in the Run >
Debugging menu tell ExtendSim how far to go when the Step button is clicked after pausing.

• The Step Entire Model command starts at the selected block and runs until that block would be
executed again. This is a good way to examine what happens in the intervals between when a
block is called.

• If you have animation turned on, the Step Next Animation command tells ExtendSim to step
until the next animation change. In models where there are many steps between animation
changes, this option makes going from visible change to visible change much faster.

• The Step Each Block command causes the Step button to simply go to the next block. It is usu-
ally used in conjunction with the Show Block Messages command, otherwise what is happening
in the model will not be apparent.

If you select Run > Debugging > Show Block Messages when you are stepping through a simula-
tion run, the block that is active will be highlighted with the current message name written on it. If
that block is not currently visible, the window will automatically scroll to the block if Scroll To
Messages is checked. You can also choose to only show the On Simulate messages.

The Run > Debugging > Pause at Beginning command automatically pauses the simulation after
the initial model processing (initialization, error checking, etc.) but before the first step. This gives
you a chance to step from the very beginning without having to guess when to click the Pause but-
ton.

Show Simulation Order command
ExtendSim normally determines the order that
blocks in a continuous model are executed by
following the path of connections. If a contin-
uous model is behaving in an unexpected man-
ner, you may want to see explicitly the order
ExtendSim is using to execute calculations in a
model. Selecting the Model > Show Simulation
Order command puts a small number on each
block indicating its order of execution.

☞ Although also accurate for groupings of contin-
uous blocks in non-continuous models, this

Debugging buttons while running

Debugging buttons when paused

Section of Reservoir model showing simulation order

620 Debugging Tools
Slow simulation speed

H
ow

 T
o

display will be inaccurate for discrete event (Item library) and discrete rate (Rate library) blocks in
those models. This is because discrete blocks can generate block-to-block messages and override
the system’s simulation order.

Slow simulation speed
There are many reasons why a simulation would not run as quickly as you might expect. Some
common causes, and the methods to detect and avoid them, are discussed in “Speeding up a simu-
lation” on page 531.

Model reporting
The report commands in the Run menu are for generating customized reports of data to help
debug models. However, model tracing (discussed in the next topic) can offer more detailed infor-
mation so you will probably use that option more for debugging, and the reports option for analy-
sis.

To learn more about how to generate reports in ExtendSim, see “Reports” on page 596.

Model tracing
Model tracing is useful for finding anomalies that occur as the simulation runs. The model tracing
commands act like the reporting commands, but the output is much more extensive. A trace text
file shows the details of block values at every step or event in the simulation.

Because of the large amount of information generated by the model tracing commands, most peo-
ple don’t use model tracing often. However, tracing is a highly effective method for following a sin-
gle block or a few blocks to watch for values that do not match expectations.

The trace is saved as a text file and opens automatically at the end of the run. If the Runs field in
the Simulation Setup dialog is greater than 1, each consecutive trace is added to the end of the file
so that you can compare traces from earlier runs.

Generating traces
The tracing commands are located in the Run >
Debugging menu. To generate a trace:

Select the blocks you want included in the trace:

To specify individual blocks for tracing, select
them and choose the Add Selected To Trace
command.

To get a trace on every block, choose Add All
To Trace.

Choose the Run > Debugging > Generate Trace command to create a trace the next time you
run the model.

Run the simulation to see the trace results. ExtendSim prompts you for a name and location for
the trace file. Trace reports are opened, closed, and edited just like any other text file in
ExtendSim.

To trace fewer blocks in the next simulation run, select the blocks you want out of the trace
report and select Remove Selected from Trace. To start over on the selection of blocks, choose
Remove All from Trace.

You can see which blocks are included in the trace by choosing Show Tracing Blocks; each traced
block in the model displays the word Trace on its icon.

Tracing commands

Debugging Tools 621
Model tracing

H
ow

 T
o

Tracing example
For the Math block from the Reservoir 1 model, the top of the tracing report is:

ExtendSim Trace - 8/16/2007 3:48:57 PM

Run #0

calculation at Math number 2. CurrentTime:0.

ValuesIn = 2.6

ResultOut = 3.1550072961999

---------------------- Step #1 -----------------------

calculation at Math number 2. CurrentTime:1.

ValuesIn = 4.4

ResultOut = 5.3917648062033

---------------------- Step #2 -----------------------

calculation at Math number 2. CurrentTime:2.

ValuesIn = 6.7

ResultOut = 7.1088551154443

---------------------- Step #3 -----------------------

calculation at Math number 2. CurrentTime:3.

ValuesIn = 3.4

ResultOut = 3.8298759283776

☞ If you build your own blocks and want to use the Trace features for debugging, add special code to
the blocks, as described in the Developer Reference.

622 Debugging Tools
Model tracing

H
ow

 T
o

How To

Data Management and Exchange
Managing and transferring data within ExtendSim
and between ExtendSim and other applications

“It is a capital mistake to theorize before one has data.”
— Sir Arthur Conan Doyle

624 Data Management and Exchange
User interfaces for data exchange

H
ow

 T
o

ExtendSim provides a variety of standards-based options for managing and sharing data internally
and with other applications. This chapter covers:

• User interfaces for exchanging data within ExtendSim and between ExtendSim and external
data structures:

• Copy/Paste

• Importing and exporting

• Read and Write blocks

• DDL to dynamically link to internal data structures

• DDE links to external data structures

• Internal structures for storing and managing data

• ExtendSim databases

• Global arrays

• Dynamic arrays

• Embedded objects

• Linked lists

• Exchanging data with external applications

• Blocks for accessing and managing data

• How data source types are indexed and organized

• Transferring data between ExtendSim and devices

• Standard communication technologies:

• Text files

• DDE

• ActiveX/COM/OLE

• ODBC

• DLLs and Shared Libraries

• FTP

• Mail Slots

 This chapter is concerned with the communication of data. For information about working with
2D graphic objects or pictures, see “Graphic shapes, tools, and commands” on page 561 or “Copy/
Paste and Duplicate commands” on page 674.

User interfaces for data exchange
The following sections discuss methods for exchanging data within ExtendSim and between
ExtendSim and external applications and devices. Some of these methods (such as Dynamic Data
Linking) are specific to ExtendSim, and some (such as DDE Linking) are industry standards for
inter-application communication. As discussed below and shown in the table that follows, each
method has its own specifications and properties:

• The flow of data can be one-directional or two-directional. With two-directional data flow, a
data change at the source affects data at the target and a change at the target affects data at the
source. One-directional data changes at the target do not affect the source.

Data Management and Exchange 625
User interfaces for data exchange

H
ow

 T
o

• Some methods require that two windows be open at the same time. Copy/Paste requires only
one window; you do not need to leave the ExtendSim dialog or application file open once the
data has been copied. On the other hand, DDE linking requires that windows in both
ExtendSim and the other application be open to complete the process.

• A communication method that has live links sends a data update message along with the data.
This means that as soon as the data at the source changes, the target is dynamically notified and
can take the appropriate actions to react to the new value.

• Dynamic data linking is only used to access ExtendSim internal data structures, such as
ExtendSim databases and global arrays. Other methods can be used either internally or exter-
nally (for instance, copy/paste from one ExtendSim dialog to another or copy/paste from
ExtendSim to Excel).

The information is summarized in the following table.

☞ Most of the above methods are supported by an underlying industry-standard technology, as dis-
cussed in “Data source indexing and organization” on page 661.

Copy/Paste
The Clipboard is useful for passing information within ExtendSim and between ExtendSim and
other applications on the same computer. The copy/paste action can occur before a simulation
run, after the run, or when the simulation is paused. While the Edit menu’s Copy, Paste, and
Duplicate commands work the same as in most applications, there are a few items you should
note:

• When copying/pasting data tables or database tables:

• To copy all the data in a specific column of a data table or database table, click in the col-
umn’s title field so that the entire column is selected. Then give the command Edit > Copy
Data.

• To copy all the data from all the columns in a data table or database table, click in the
upper left corner of the table so that the entire table is selected, then give the command
Edit > Copy Data.

• To paste data into a data table or database table, click in the upper left corner, in the upper
left cell, or in a desired starting cell and give the command Edit > Paste Data. The table
cells will be populated downward to the extent of the data in the Clipboard or the number
of rows in the data table.

Interface See Page
Data
Direction

Open
Window(s)
Required

Live
Link

ExtendSim or
External
Application

Copy/Paste 625 One way 1 No Both

Import/Export 626 One way 1 No Both

Read/Write blocks 628 Two way 1 Possible Both

Dynamic Data Link (DDL) 629 One way 1 Yes Internal

Dynamic Data Exchange (DDE) Link 636 Two way 2 Yes External

626 Data Management and Exchange
User interfaces for data exchange

H
ow

 T
o

• When an ExtendSim database or database tables are selected, the Copy Database/Paste Database
commands provide a convenient method to copy an ExtendSim database or tables from one
model or one database to another. The command Edit > Duplicate Database is useful for dupli-
cating an ExtendSim database within a model, so you don’t have to create a new database struc-
ture.

• Regarding “Allow data table titles copying” in the Edit > Options dialog:

• This option is off by default, because you typically would not want to also copy table titles
when copying data from a data table.

• To also copy row and column titles when copying tables from Plotter blocks, select the
option “Allow data table titles copying” in the Edit > Options dialog. ExtendSim will
prompt for the titles to be copied. This is helpful when you are copying into a word pro-
cessing program for presentation.

Importing and exporting data
Importing and exporting is similar to copying/pasting in that both methods involve copying data
from one location to another. However, importing/exporting provides additional capabilities:

• Some types of importing/exporting can be automated; copy/paste always requires user interac-
tion.

• You can import/export while the simulation is running.

• It might be faster than reading and writing data because you only import data once at the begin-
ning of the simulation or export once at the end, rather than reading and writing frequently.

• The information can be accessed even if it originated on a different computer or an external
device.

All the data that is imported/exported gets copied as one piece (a local copy). This means that,
whether the exchange happens before, during, or after a simulation run, all the data is made avail-
able to the target at the same time. This differs from, and is usually faster than, the Reading/Writ-
ing method (discussed later in this chapter) where the data is transferred piece by piece during a
simulation run.

Data can be imported from or exported to external applications such as spreadsheets and database
programs. Internally, you can import data to or export data from dialog or plotter data tables,
ExtendSim database tables, and global arrays.

In some cases the data is imported/exported directly within ExtendSim or directly between
ExtendSim and the other application. In other cases it is imported/exported in the form of text
files, a standard communication technology discussed in “Text files” on page 663.

Importing/exporting is one-directional; changing data at the target does not affect data at the
source and vice versa. The data can reside locally, be remotely accessed over a network, or accessed
via the internet using FTP protocols.

 ExtendSim provides the following methods to import or export data:

1) The File menu has Import Data and Export Data commands for exchanging data using text
files, as shown in the example that follows.

Data Management and Exchange 627
User interfaces for data exchange

H
ow

 T
o

2) The Data Import Export block (Value library) enables ExtendSim databases or global arrays to
directly import data from or export data to spreadsheets, external databases, or an FTP site.
Use of this block is described in detail on page 661.

3) Read and Write blocks (Value library) can import or export text files, ExtendSim database
tables, global arrays, or Excel worksheets as a local copy. See “Read and Write blocks” on
page 659.

4) You can use Database menu commands to:

• Create a new, or replace an existing ExtendSim database from an imported database text
file. The text file can be generated by a different ExtendSim database or by an SDI Indus-
try database.

• Export an entire ExtendSim database as a text file. The file can be imported into a different
ExtendSim database in the same model or in a different model

• Import tables from an ExtendSim or SDI Industry database as text files to an ExtendSim
database.

• Export tables as text files from an ExtendSim database to a different ExtendSim database.

5) The ExtendSim DB Add-In works with database text files to transfer data between an
ExtendSim database and Microsoft Excel. It is described fully in“Excel Add-In for ExtendSim
databases”.

How to import data using the File menu
The example that follows uses a menu command to import a text file of data into the Reservoir
model that was discussed in the Tutorial module. The imported data will be used as the monthly
rainfall values. The steps are:

Open the model and save it under a different name:

Open the Reservoir 1 model located in the folder \Examples\Tutorials.

So that you don’t overwrite the original file, save the model as Reservoir Import.

To import data into the data table:

In the Lookup Table block, click in the title field of the data table column labeled Rain
(inches); this selects that entire column.

☞ You must select the table column(s) to enable the Import Data or Export Data menu commands.

Give the command File > Import Data.

For Windows, choose Files of type: Text File as the type of file to open.

Find and open the “Rainfall.txt” file, located in the folder \Examples\How To.

628 Data Management and Exchange
User interfaces for data exchange

H
ow

 T
o

Since you are only importing one column of data, in the delim-
iter dialog (shown on the right) click OK to select the default
settings and import the data. (Delimiter settings are discussed
later in this section.)

This action replaces the data that had been in the “Rain (inches)” col-
umn with a local copy of the source data. This exchange is one-direc-
tional and not live; if the data in the originating text file is
subsequently changed, the text file must be re-imported to affect the
change in the block.

Use this same process to import data into any data table, ExtendSim
database table, or global array that is linked to a data table.

How to export data using the File menu
Exporting data using a menu command is similar to importing data, except in reverse. For exam-
ple, to export results from the Reservoir Import model:

Select the data to export:

In the Reservoir Import model from above, open the Plotter I/O block.

Click in the upper left corner of the plotter’s data table so that all columns are selected.

Export the data to a text file:

Give the command File > Export Data.

In the dialog that appears, name the file Export Text, then click Save.

In the delimiter dialog that appears, click OK to select the default settings and export the
data. (Delimiter settings are discussed later in this section.)

To see the exported file:

Give the command File > Open

For Windows, choose Text File or All Files as the type of file to open

Locate and open the file named Export Text. It will contain the three columns of data from
the plotter.

☞ To also copy row and column titles from Plotter blocks, select the option “Allow data table titles
copying” in the Edit > Options > Miscellaneous tab. ExtendSim will prompt for the titles to be
copied. This is useful when exporting to a word processing program, but including titles could
cause data errors if the text file is imported into a spreadsheet or an ExtendSim table.

Where to get more information
For more information about:

• Creating, saving, and using text files, see “Text files” on page 663.

• How to import and export data using the Data Import Export block, go to page 661.

• Read and Write blocks, see “Read and Write blocks” on page 659.

Read and Write
ExtendSim blocks can read data from internal and external sources, and write data to internal and
external sources, during a simulation run. The blocks for reading and writing are the Read and

Delimiter dialog

Data Management and Exchange 629
User interfaces for data exchange

H
ow

 T
o

Write blocks in the Value library and the Read(I) and Write(I) blocks in the Item library. The Read
and Write blocks read data from or write data to ExtendSim databases, global arrays, Excel work-
books, and text files. The Read(I) and Write(I) blocks read data from or write data to ExtendSim
databases.

These blocks are powerful tools for reading data from internal and external sources and writing
data into internal or external data destinations.

• In contrast to the importing/exporting described above, the Read and Write blocks are usually
used to exchange data piece-by-piece as required during the run, rather than by one exchange of
the entire data set. Even though it may slow simulation speed, models may need to write and
read data while a model is running if the data that is written is in turn read and used in another
part of the model.

• The Read and Write blocks can create a one-way live link between the target and the source. If
you write to a location in an ExtendSim database or global array, ExtendSim will send update
messages to all the Read blocks in the model linked to that location. When the Read block
receives the alert message, it will act on the fact that the data value changed, making the link
'live'. Writing to a cell in an Excel spreadsheet, or to a text file, will not have the same effect.

 A potential disadvantage of using the Read and Write blocks is that reading and writing the data
each time the block is calculated can have a significant impact on simulation speed. If the data to
be read or written will not change over the course of the simulation, you should import/export the
data as a local copy in the block before or after the run. If the data is not going to change at all,
consider using another method, like a one-time copy/paste or import/export.

For more information, see “Read and Write blocks” on page 659.

Dynamic linking to internal data structures
ExtendSim supports a comprehensive proprietary internal data linking method called dynamic
data linking (DDL). This application-level protocol tracks which dialog items (parameters and
data tables) are linked to which internal data structures. The internal structures that dialog items
can be dynamically linked to are:

• ExtendSim database tables

• Global arrays

• Dynamic arrays

The DDL technology has a user interface so you can easily link data tables and parameters in any
part of a model to ExtendSim database tables or global arrays. Dynamic arrays can only be linked
to dialog items through ModL code.

☞ Dynamic data links are live and bidirectional, so the value of a linked dialog item can change
immediately when the value of the data source changes, and vice versa.

You can use menu commands to dynamically link a dialog parameter or data table to an
ExtendSim database or global array. The clone of a parameter or data table can also be dynamically
linked. Linking a clone has the same effect as linking the original dialog item - both the original
and the clone will be linked to the data structure.

The sections that follow show how to create a dynamic link between dialog items (parameters and
data tables) and internal data structures (ExtendSim database tables and global arrays) through the
user interface. To learn how to use ModL code to dynamically link dialog items to internal struc-
tures, see the Developer Reference.

630 Data Management and Exchange
User interfaces for data exchange

H
ow

 T
o

 There is overhead associated with the process of accurately updating a linked dialog item with a
data structure. If you overload a model with links that frequently change, the model’s performance
can suffer. Consider the following suggestions: 1) Just link the data that is important to a model
and not link every piece of data to every possible source. 2) Import values into a Read block (Value
library) for use in the model, so they don’t have to be continuously updated. 3) Send or receive link
alert messages only at the start or end of the simulation as discussed in “Link dialog checkboxes”
on page 634.

Linking a parameter to an internal data structure
Unless it is already linked for sensitivity analysis (see “Sensitivity analysis” on page 568) or through
the DDE link feature (see “DDE links (Windows only)” on page 636), a dialog parameter can be
dynamically linked to a specific cell of an internal data structure.

Parameter fields that are dynamically linked to an internal data structure are outlined in light blue.
(Parameter fields are outlined in green for active sensitivity analysis, red for inactive sensitivity
analysis, and yellow for DDE linking (Windows only) to an external application.)

How to link a parameter to an ExtendSim database
The following example uses the Reservoir 1 model from the Tutorial module. It describes how to
dynamically link the Holding Tank’s “Initial Content” parameter to a cell in a database.

Open an existing model and save it under a different name:

Open the Reservoir 1 model located in the folder \Examples\Tutorials.

So that you don’t overwrite the original file, save the model as ReservoirDBLink.

In the ReservoirDBLink model, open the Holding Tank dialog.

Open the Link dialog by doing one of the following:

Click in the Holding Tank’s Initial contents parameter field and give the command Edit >
Create/Edit Dynamic Link

Or, right click the Initial contents parameter field and choose Create/Edit Dynamic Link.

In the Link dialog’s top popup menu (shown at
right with its default setting of “No User-Defined
Link”) choose Link to: Database Table. Link dialog popup menu, default option

Data Management and Exchange 631
User interfaces for data exchange

H
ow

 T
o

In the popup menu that appears below the
Link popup, select the database named Exam-
ple Database. (The Reservoir 1 model
already had a database, so you can concentrate
on learning how to create a dynamic link. For
information on creating a database, see “How
to create an ExtendSim database” on
page 640.)

Select the table named Example Data 1.

The field “Initial Values” is selected by default
in the Field Name popup menu, because there
is only one field in this database table.

Notice that the table viewer in the lower sec-
tion of the Link dialog displays two records
containing initial values.

Do one of the following:

Enter Record #: 2.

Or, select the initial value of 25.00 by
clicking on that cell in the table viewer;
the setting is in the second row of the table viewer.

Click the Link button to close the dialog and establish the link.

Save the model.

In the Holding Tank’s dialog there is now a light blue frame around the “Initial contents” parame-
ter, indicating that the field is dynamically linked. Mousing over the parameter field displays the
source and location of the linked cell. To open the Link dialog for viewing or changing the linked
settings, click in the parameter field and give the command Edit > Create/Edit Dynamic Link.

When the simulation is run the Reservoir will start with an initial contents of 25 inches; it gets
that value from a live link with the database.

☞ Since the link is a live link, changing the value of the “Initial contents” parameter in the Holding
Tank will change its record in the database table, and vice versa. If you do not want that behavior,
select the Read Only option in the Link dialog.

How to link a parameter to a global array
The following example uses the Reservoir 1 model from the Tutorial module. It describes how to
dynamically link the Holding Tank’s “Initial Contents” parameter to a cell in a global array.

Open an existing model and save it under a different name:

Open the Reservoir 1 model located in the folder \Examples\Tutorials.

So that you don’t overwrite the original file, save the model as ReservoirGALink.

In the ReservoirGALink model, open the Holding Tank dialog.

Open the Link dialog by doing one of the following:

Click in the Holding Tank’s “Initial contents” parameter field and give the command Edit
> Create/Edit Dynamic Link

Link dialog for Database Table

632 Data Management and Exchange
User interfaces for data exchange

H
ow

 T
o

Or, right click the “Initial contents” parameter field and choose Create/Edit Dynamic
Link.

In the Link dialog’s top popup menu choose Link to: Global Array.

In the popup menu that appears, select Array
name: Example Array 1. (The Reservoir 1 model
already had a global array, so you can concentrate
on learning how to create a dynamic link. For
information on creating a global array, see “How
to create and use a global array” on page 653.)

Since global arrays are zero-based, enter Column
#: 0 and Row #: 1. This selects the cell that con-
tains the initial value of 25.00.

Click the Link button to close the dialog and
establish the link.

Save the model.

In the Holding Tank’s dialog there is now a light
blue frame around the “Initial contents” parameter,
indicating that the field is dynamically linked.
Mousing over the parameter field displays the source
and location of the linked cell. To open the Link
dialog for viewing or changing the linked settings,
click in the parameter field and give the command Edit > Create/Edit Dynamic Link.

When the simulation is run the Reservoir will start with an initial contents of 25 inches; it gets
that value from a live link with the global array.

☞ Since this is a two-way live link, changing the “Initial contents” parameter in the Holding Tank
will dynamically change the value of its record in the database table. To disable that behavior, select
the Read Only Link checkbox in the Link dialog when you create the link.

Linking a data table to an internal structure
Many ExtendSim data tables have a Link button in their lower left corner. If the Link button is
not present for a table, the table does not support dynamic linking.

A data table linked to an internal data structure will have its upper left corner in light blue rather
than the grey of the table header.

• If the source is a database (DB) or global array (GA), those initials will be displayed in the cor-
ner

• If the link is to a dynamic array there will be no initials.

If a data table is linked to a database, double-clicking the DB initials in the upper left corner will
open the linked database table’s viewer.

 Because ExtendSim data tables and global arrays are zero-based, but databases are one-based, a data
table’s cell at row 0, column 0 (the top, leftmost cell) is linked to the database table cell at field 1,
record 1 (the top, leftmost cell) or the global array cell at row 0, column 0 (also the top leftmost
cell). For detailed information, see “Indexing and organization” on page 662.

Link dialog for Global Array

Data Management and Exchange 633
User interfaces for data exchange

H
ow

 T
o

How to dynamically link a data table to a database table
The following example uses the ReservoirDBLink model from the previous section that showed
how to dynamically link a parameter to a database. This example shows how to link a data table to
a database table. (So you can concentrate on learning how to do this, the model already has a data-
base table with the necessary data. For information on creating a database, see “How to create an
ExtendSim database” on page 640.)

In the ReservoirDBLink model you created on page 632, open the Lookup Table block’s dialog.

Open the Link dialog either by clicking the Link button in the lower left corner of the data
table or by selecting the data table and giving the command Edit > Create/Edit Dynamic Link.

In the Link dialog (shown at right):

Select Link to: Database Table.

In the popup menu that appears choose
Database name: Example Database.

Select the table named Example Data 2
from the list of tables.

Notice that the data for the selected table is dis-
played in the viewer pane at the bottom of the
Link dialog. This is the information that will
populate the Lookup Table block’s data table.

Click the Link button to close the Link dialog
and establish the link.

Save the model.

In the Lookup Table dialog notice that the upper
left corner of the data table now displays the ini-
tials “DB”, indicating that the data table is linked
to a database table. Mousing over that corner dis-
plays information about which database and
table it is linked to.

When the simulation is run, the model will get rainfall data from a live link with a database.

☞ Since this is a two-way live link, changing the value of one or more cells in the block’s data table
will change the values in the database table. To disable that behavior, select the Read Only Link
checkbox in the Link dialog when you create the link.

How to link a data table to a global array
The example that follows uses the ReservoirGALink model from the earlier section that showed
how to dynamically link a parameter to a global array. This example shows how to link a data table
to a global array. (So you can focus on learning how to do this, the model already has a global array
with the necessary data. For information on creating a global array, see “How to create and use a
global array” on page 653.)

In the ReservoirGALink model, open the Lookup Table block’s dialog.

Open the Link dialog either by clicking the Link button in the lower left corner of the data
table or by selecting the data table and giving the command Edit > Create/Edit Dynamic Link.

Link dialog for Database Table

634 Data Management and Exchange
User interfaces for data exchange

H
ow

 T
o

In the Link dialog:

Select Link to: Global Array (as shown
on the right).

In the popup menu that appears select
Array name: Example Array 2.

Click Link to close the dialog and estab-
lish the link.

Save the model.

As signified by the initials GA in its upper left
corner, the data table in the Lookup Table block
is now dynamically linked to the global array.
Mousing over the GA initials displays the name
of the linked global array.

When the simulation is run, the model will get
rainfall data from a live link with the global array.
(To make the difference more obvious, the global
array has 6.6 inches of rainfall for the first
month, rather than the 2.6 inches in the original
Reservoir 1 model.)

☞ Since the link is a two-way live link, changing the value of one or more cells in the block’s data
table will change the values in the global array, and vice versa. If you do not want that behavior,
select the Read Only option in the Link dialog.

The Link dialog
When you dynamically link a dia-
log item, the Link dialog opens
and displays the Link To popup
menu listing potential data
sources.

☞ When the Link dialog is first opened, the Link To popup menu displays the current linked data
structure (if the parameter or data table is already linked), or the term “No User-Defined Link” (if
it is not linked).

The Link To popup menu has three options: No User-Defined Link, Global Array, and Database
Table. The No User-Defined Link setting is informational only. The Database Table and Global
Array options are active options for changing, or adding, a dynamic link to the parameter or data
table. If you select either of those options, the dialog displays additional popup menus and fields to
further define the data source.

 A parameter or data table can only have one data source; if you change the option in the Link To
popup menu, the previously linked data source will be unlinked.

Link dialog checkboxes
Outside of a simulation run, blocks receive messages whenever dynamically linked data changes at
the source. To maximize simulation speed you may not want these update messages sent during
certain phases of a run. As shown on page 631 and page 632, when the Database Table or Global
Array option is selected in the Link dialog, the dialog displays four checkboxes:

Link dialog for Global Array

Data Management and Exchange 635
User interfaces for data exchange

H
ow

 T
o

• Init messages

• Sim messages

• Final messages

• Read-Only link

These allow you to control the link’s data update behavior, as discussed below.

The first three link options (Init messages, Sim messages, and Final messages) control whether or
not blocks receive update messages when linked values change during specific points in a simula-
tion run. For example, the “Init messages” option determines whether a block receives a message if
a linked value changes during the InitSim message.

These three options default to on. Turning an option off prevents ExtendSim from sending data
update messages to the linked blocks if the data source is updated during that phase of the simula-
tion. For example, if you know the dynamic link only updates during the FinalCalc message, it will
reduce the messaging and speed up the simulation to turn off the Init messages and Sim messages
options.

When the Init messages and Final messages options are turned on, linked blocks will receive an
additional message during InitSim and/or FinalCalc, causing an update of the linked dialog items
during those phases.

The fourth checkbox is the Read-Only link option, which is off by default. If checked, the linked
data can only be changed from the data structure side. In that case, you will not be allowed to edit
the parameter or the data table directly and the live link is only one-way (from the internal struc-
ture to the data table or parameter.

 Use these options carefully, since they can dramatically change linking behavior. You would proba-
bly only want to uncheck a message option (Init messages, Sim messages, or Final messages) if you
are sure that the source data won’t change during that message.

Finding linked dialog items
The command Edit > Open Dynamic
Linked Blocks opens the Find Links dia-
log, shown on the right. This is useful for
examining and locating linked dialog
items.

The options in the dialog allow you to
selectively choose which types of links
you want to open. Choosing Database
links, Global Array links, or Dynamic
Array links will specify whether or not
those types of links are located. The
User-Defined links checkbox determines
whether to locate the links defined by the user through the user interface or (if the checkbox is
unchecked) only the links that were defined by block developers through ModL code. The DB
selectors and the GA popup menu on the right of the dialog specify which database or global array
structure will be searched for. (Leaving the DB name or GA name popup menus to the default
choices seen above will find any linked database or global array.)

When the Find Links button is clicked, ExtendSim opens the dialog boxes of all the blocks with
the specified types of links.

Link dialog for Global Array

636 Data Management and Exchange
User interfaces for data exchange

H
ow

 T
o

☞ If the model is large and you specify all types of links this command can open many block dialogs.
It is usually advisable to search for specific types of links, so as not to have more dialogs open than
needed.

DDE links (Windows only)
One method of sharing data between ExtendSim and another application is by creating a DDE
link between the two applications. ExtendSim supports two types of DDE links:

1) As a client application, importing data into ExtendSim by linking an external application’s file
to an ExtendSim model.

2) As a server application, exporting data from an ExtendSim model to an external file.

The external application and ExtendSim communicate with each other in a type of data conversa-
tion, with one application (the server) sending the data and the other application (the client)
responding. A DDE link is a special registered Clipboard format that identifies the piece of data in
the conversation. These are “hot” links, causing the server to simultaneously notify the client of the
change and send the changed data to the client whenever the value of the specified data item has
changed.

☞ This communication is unidirectional; data changes made in the server file affect the client file, but
not vice versa.

The underlying technology that supports DDE linking is Dynamic Data Exchange (DDE), a
Windows operating system protocol through which applications can exchange data. It is described
fully at “DDE (Windows only)” on page 666. Microsoft Excel is an example of an external appli-
cation that support DDE links.

☞ For data to be exchanged, DDE linking requires that the windows of both the server and the client
files be open.

Creating a DDE link
DDE links from external applications are created and managed using DDE Link commands in
ExtendSim’s Edit menu. Use those commands to link a value or values from the external applica-
tion to parameters and data table cells in ExtendSim.

• To create an outgoing link from ExtendSim, use the Edit > Copy command in ExtendSim and
the external application’s linking commands, such as Paste Special.

• To create an incoming link to ExtendSim, use the Edit > Paste DDE Link command. This com-
mand will only be active if all of the following is true:

• The external application supports DDE links.

• Both the external file and the ExtendSim model have been named and saved.

• Both the external file and the ExtendSim model are open.

• The Clipboard contains data that has been copied from the external application.

• You have selected a location in the ExtendSim model to paste to.

Parameters or cells that have been linked with this command are outlined in yellow. ExtendSim’s
DDE links are saved with the model. When the model is opened, ExtendSim will attempt to re-
establish the associated links.

☞ An Excel worksheet embedded in an ExtendSim model can also be linked to ExtendSim data via
the Paste DDE Link command.

Data Management and Exchange 637
User interfaces for data exchange

H
ow

 T
o

How to create a DDE link to ExtendSim
The following example uses a Microsoft Excel workbook and the Reservoir 1 model from the
Tutorial module. It shows how to link a value from Excel to the Holding Tank’s “Initial contents”
parameter.

In Excel:

Open a new workbook.

Enter the value 10 at row 1, column 1.

Save the workbook as My Workbook.

☞ The workbook must be named and saved before the data is copied.

Copy the value (10) from cell; this places a 10 in the Clipboard.

Leave the Excel workbook open!

In ExtendSim:

Open the Reservoir 1 model located at \ExtendSim7\Examples\Tutorials.

So that you don’t overwrite the original file, save the model as ReservoirHotLink.

In the Holding Tank block, click in the Initial contents parameter field.

Give the command Edit > Paste DDE Link. A yellow outline appears around the parameter
field, indicating that the link has been created.

In the Holding Tank’s dialog, click OK to save changes and close the dialog.

When you open the Holding Tank’s dialog, the number 10 is in its Initial contents field. Mousing
over the field shows the location of the originating data.

How to create a DDE link from ExtendSim
To export data from an ExtendSim model to another application:

In ExtendSim:

Open a model.

Select the dialog parameter or data table values you want linked.

Select Edit > Copy.

Refer to the other application’s documentation to determine how to create a DDE link. Typi-
cally, you would choose Paste Special or Paste Link from the client application’s Edit menu.

Any changes made to the parameter in ExtendSim will now be reflected in the other application.
To remove the link, refer to the other application’s documentation.

Managing DDE links
To change a linked value, change the value in the Excel workbook, then save the workbook. For
instance, the Holding Tank’s Initial contents value in the previous example will change once the
value in My Workbook has been changed and the file has been saved. To remove linking from a
parameter, use the Edit > Delete DDE Link command.

The Show DDE Links command opens all the dialogs that are linked using that technology in a
model. If linked applications are open and the links don’t appear to be working correctly, or if the

638 Data Management and Exchange
Internal data storage and management methods

H
ow

 T
o

server application has been closed, the Refresh DDE Links command attempts to reestablish exist-
ing links between ExtendSim and the external application.

 If you directly change the value of an ExtendSim parameter or cell that has been linked, the field
will still be outlined in yellow but the model will use the value you entered instead of the link
value. The model will automatically refresh the link if the DDE value is changed and the external
file is saved.

Updating remote references
Creating a DDE link works in a fairly straightforward manner with the following exception: Excel
doesn’t support reconnecting links in embedded objects when they are reopened by default. There
is an option called Update Remote References in Excel’s Options dialog that will enable this behav-
ior. The following Excel VBA macro will turn this flag on:

Private Sub Workbook_Open()

With ThisWorkbook

.UpdateRemoteReferences = True

 End With

End Sub

Unfortunately the value of this option does not seem to be saved in embedded Excel worksheet
objects. This means that the macro above should be used in worksheets that are embedded into
ExtendSim models if they use DDE link connections to share data with ExtendSim.

Internal data storage and management methods
This portion of the chapter provides information about ExtendSim internal data structures. Other
parts of this chapter discuss methods (such as dynamic data linking or ExtendSim blocks) for
exchanging data with the internal data structures. For information about using ModL program-
ming to interface with internal data structures, see the Developer Reference.

As discussed in the following sections, ExtendSim provides several internal structures for storing
data for use in a model. See:

• ExtendSim databases that start on this page

• Global arrays starting on page 652

• Dynamic arrays on page 654

• Embedding an object that starts on page 655

• Linked lists as discussed on page 657

Access to internal data sources is accomplished through a user interface feature called dynamic data
linking (DDL), by the use of data access blocks, or by programming in ModL. Databases and glo-
bal arrays are accessible by the modeler and by block developers; dynamic arrays and linked lists are
only accessible by block developers coding in ModL.

ExtendSim databases for internal data storage
A database is a centralized repository for data. The ExtendSim graphical simulation database
(GSDB) feature allows you to create internal relational databases for storing, managing, and
reporting model data. ExtendSim databases also provide a convenient interface between models
and external applications, such as spreadsheets and external databases.

Data Management and Exchange 639
ExtendSim databases for internal data storage

H
ow

 T
o

Each model can have multiple databases associated with it and each database can contain multiple
tables of data. Each table has fields that represent columns of data, records that represent rows, and
cells that are the intersection of a field and a record.

 Following the standard convention for databases, ExtendSim databases are organized by field and
record (similar to being organized by column and row.) However, data tables, arrays, and external
spreadsheets are organized by row and column. This is important to remember if you transfer data
between ExtendSim databases and other data structures such as global arrays.

ExtendSim databases are stored with the model. They automatically open when the model opens
and are automatically saved or closed when the model is saved or closed.

Using ExtendSim’s data access blocks or the dynamic data linking interface you can link model
parameters to a database without writing any code. In this manner, parameter-based models can be
easily changed to database-driven models.

How this section is organized
Because the ExtendSim database feature is such an extensive system, this section of the manual is
divided into several topics:

• Advantages of using an internal database.

• Ways to create an ExtendSim database and methods for exchanging data with it.

• How to create an ExtendSim database.

• Establishing a parent/child relationship between two database table fields.

• Managing databases, tables, and fields.

• Database dialogs and popup menus.

• Using an Excel Add-In for ExtendSim databases.

For additional information, also see these sections of the chapter:

• “Dynamic linking to internal data structures” on page 629.

• “Blocks for data management and exchange” on page 659.

Advantages of using internal databases
There are many advantages to using an internal database. For instance, you can:

• Separate the data from the model for better project and experiment management.

• Organize information in a logical fashion, either within one database or across several databases.

• Create, view and manipulate data by product type, location, components, or any other common
characteristic.

• Provide a centralized location for information that is used in several parts of a model.

• Get easier access to different sets of data depending on model needs.

• Use database tables to provide outputs and reports throughout the model.

• Reuse common sets of data from one model to the next.

• Import model inputs from, or export results to, external applications.

While using a database to manage data is indispensable for large models, the user interface makes it
convenient to use an ExtendSim database even for small models.

640 Data Management and Exchange
ExtendSim databases for internal data storage

H
ow

 T
o

Creating and interacting with internal databases
There are three ways you can create an ExtendSim database:

1) Through the user interface, using menu commands to create a new database, as illustrated
starting on page 640, or by importing a database text file from an ExtendSim or SDI database.

2) Use database functions in an equation-based block from the Value or Item library. These
blocks are discussed in “Equation-based blocks” on page 601.

3) Program with ModL code. For more information, see the Developer Reference.

ExtendSim provides the following methods for models to interact with databases;

1) Through the user interface, using dynamic data linking to establish live links between dialog
items and databases. This is demonstrated in “Dynamic linking to internal data structures” on
page 629.

2) Using Read and Write blocks (Value library) or Read(I) and Write(I) blocks (Item library) to
exchange data between a model and a database. This is illustrated in “Read and Write blocks
for accessing a database” on page 645.

3) Using database functions in an equation-based block from the Value or Item library to manage
data. These blocks are discussed in “Equation-based blocks” on page 601.

4) Programming using ModL code. See the Developer Reference for more information.

How to create an ExtendSim database
The following example shows how to use menu commands to create a database for the Reservoir
model that was shown in the Tutorial module. While a database is obviously unnecessary for the
Reservoir model, the purpose of the example is to show how to create an internal database.

As illustrated in the example that follows, the steps are:

1) Open a new or existing model

2) Create a new database for the model.

3) Add tables and fields to the database.

4) Add database records.

5) If the database will be used to input values to the model: enter, paste, or import values for the
database cells.

Opening an existing model
Open the model Reservoir 1 from the \Examples\Tutorials folder.

So that you don’t overwrite the original file, save the model as ReservoirDB.

Data Management and Exchange 641
ExtendSim databases for internal data storage

H
ow

 T
o

Starting a new database
With the model window active, choose the command Database >
New Database.

The Create Database dialog opens with a field for naming the data-
base. (Note that an existing database is already listed in the scrollable
field at the top of the dialog. That Example Database is used for
illustrating features in other sections of this chapter.)

☞ ExtendSim assigns each database a unique index number, starting with
1. As seen for the Example Database, that number is appended to the
database name and enclosed in brackets. Index numbers are used for
referring to databases in equations or ModL code.

Name the new database My Database.

The name can be anything you want as long as it is not used by
another database and does not exceed 63 characters. Database names are not case sensitive; they
can contain spaces.

Click Save to close the dialog and save the new database.

The database win-
dow opens in struc-
ture mode, as
shown at right. The
header for the win-
dow displays the
name of the data-
base and its associ-
ated model. The
structure window is
where you create database tables, add fields to the tables, and create relationships between fields.

Adding tables and fields
With the database window active, create a new table using one of these methods:

Give the command Database > New Table.

Or, right click on the database window.

Or, click the New Table button in the database’s toolbar.

In the dialog that opens, name the table My Table and click Save.

The new table is
placed in the All
Tables tab. The
name of the table is
listed in the table
list pane at the left
of the tab and the
database structure
is shown in the
tables pane on the
right of the tab. As

Create Database dialog

Database window

Adding new database table

642 Data Management and Exchange
ExtendSim databases for internal data storage

H
ow

 T
o

is true for databases, after its name each table is assigned an index number enclosed in brackets.

Create a new field using one of the following methods:

Select the table named My Table and give the command Database > Append New Field.

Or, right click the table and choose Append New Field.

Or, select the table and click the Append New Field button in the database’s toolbar.

In the Field Properties dialog (shown at right):

Name the field My Field.

Choose the default choices: Field type:
Number, General Format and Decimals:
2.

Click Save Field.

Creating records
To access the table so you can create records, do
one of the following:

Double-click the table in the database win-
dow to open the viewer for that table.

Or, double-click the table name in a tab’s
list of tables to open the viewer.

Or, select the table and change the popup
menu in the database window’s upper left
corner from Structure mode to Viewer
mode. This opens a viewer pane for that
table within the database window.

Click the Append New Records tool in the
database toolbar, or give the command Data-
base > Append New Records.

In the dialog that opens, enter 2 for
the number of records and click Add
Records.

Entering values for the cells
In the viewer, enter 10 as record #1
and 20 as record #2.

If the table viewer window is open,
close it.

Close the database window and Save
the model. Databases are saved with
the model when the model is saved.

Notice that My Database is listed at
the bottom of the Database menu. If
the Navigator is opened to Database List mode, the database will also be listed there. Making a
copy of the ReservoirDB model causes the copy to also have a database named My Database.

Field Properties dialog

Table Viewer showing two records

Data Management and Exchange 643
ExtendSim databases for internal data storage

H
ow

 T
o

Establishing Parent/Child relationships
To illustrate another powerful database feature, the following example adds a new table to the data-
base created in the previous section and makes the table’s field the parent for the field in the origi-
nal table. This will establish a parent/child relationship, causing My Table to get its values from the
new table.

Establishing a parent/child relationship between fields is optional but powerful. It is useful for
many situations, such as providing a components list for a specific product, a selection of custom
colors for a particular model of car, or the properties of a material. Having a parent/child relation-
ship limits a field’s set of data to what is present in the parent. Instead of entering data directly into
the child field, you select the data from a popup data selector that shows all the possible values
from the parent field.

Parent fields have a red background and tables that have parent fields are listed in the database win-
dow’s tabs in red; child fields have green backgrounds and tables that have child fields are listed in
green.

How to create a parent/child relationship
The following example builds on the ReservoirDB model created in the example “How to create
an ExtendSim database” on page 640. It assumes you know how to add tables, fields, and records
to a database.

Open the ReservoirDB model you created earlier.

Open the window for My Database by selecting My Database at the bottom of the Database
menu. Or use one of the methods discussed in “Opening a database window” on page 646.

Create a new table and name it Parent.

Select the Parent table and:

Append a new field and name it Contents.

Leave the other settings in the Field Properties dialog at their default settings and click Save
Field.

Double-click the Parent table to open the viewer window.

Add 4 records to the Parent table.

Enter the values 5, 8, 10, and 15, one value for each record.

Close the viewer window so that the database window is active.

Notice that each field in a table has connector points on its left and right sides. These are used for
establishing parent/child relationships.

Draw a line from a connector point for My Field to a connector point for Contents.

☞ Draw the line so the arrow points to the parent, the source of the data.

Since the child field has existing data, the Parent/Child Relationship dialog opens with options
for how the data in the child field should be handled.

In the Parent/Child Relationship dialog, select the default (top) choice and click Set Relation-
ship. (The dialog is discussed later in this section.)

644 Data Management and Exchange
ExtendSim databases for internal data storage

H
ow

 T
o

This establishes the Contents field as a parent to
the field named My Field. Parent fields have a
red background and are listed in red; child fields
have green backgrounds and are listed in green.

Switch the database window to Viewer mode
so you can select values for the records in My
Field.

Select My Table in the table list pane at the left of the All Tables tab.

Click the arrow in record #1.

In the popup selector that appears, select the value 15.

The child cell for field 1, record 1 is now set to 15; it gets that value from the parent field. If the
parent value changes, the child value will change (but not vice versa.)

The Child popup selector
In Viewer mode, when you click the
down arrow in a child cell it displays a
popup menu with 3 types of options.
The choices are to select a value
(whichever number is listed), add a
“new value”, or choose “no value yet”.
Choosing “new value” allows you to
place a new value in the cell; the value
is appended to the parent field. The
“no value yet” option leaves the cell
blank.

The Parent/Child Relationship dia-
log

If there is existing data in a child
field, this dialog opens and allows
you to arbitrate what happens when
the relationship is made. If there is
no existing data, the dialog does not
open. The options are:

• Link and match existing data in
Child field to a record in the Par-
ent field. If existing data in the
child matches data in the parent,
the data is left unchanged. Other-
wise, it is cleared and the record is
left blank so the value can be
manually selected.

• Clear all current Child data. This
option clears all the existing data in the child.

Parent Child relation between fields

Child popup selector

Parent Child relationship dialog

Data Management and Exchange 645
ExtendSim databases for internal data storage

H
ow

 T
o

Linking a database to data
Databases are used to store data for use in the model or to store model outputs. A model can access
a database’s information by dynamically linking to it, by using data access and equation-based
blocks, and through ModL programming.

The following section discusses how to dynamically link a dialog item to a database. Using Read
and Write blocks to access database data is described below.

Dynamic data linking
The steps for dynamically linking a block’s dialog item to an ExtendSim database table are:

1) Create an ExtendSim database (see “ExtendSim databases for internal data storage” on
page 638.)

2) Link a parameter or data table, as illustrated in “Dynamic linking to internal data structures”
on page 629.

3) In the Link dialog, select Link To: Database
Table.

4) Choose a database from the popup menu of avail-
able databases.

5) Select a table from the list of Table Names.

6) For parameters only, choose a field from the Field
Name popup, then enter a number in the Record
field. Or, select the field and record by clicking
on a cell in the table viewer at the bottom of the
Link dialog.

☞ The table viewer displays the contents of the database
table you are linking to. It is also useful for selecting
the database field and record for a parameter.

 Dynamic linking should be used judiciously. Avoid
overloading models with dynamic links to data sources
that get frequently updated; it could slow simulation
performance as messages are sent to linked blocks
every time their linked data source is modified.

Read and Write blocks for accessing a database
Instead of dynamically linking a dialog’s parameter or data table to a database cell or table, the
Read and Write blocks (Value library) and Read(I) and Write(I) blocks (Item library) can access a
database cell, row, or column for use in a model. These data access blocks are useful when you
don’t want to, can’t, or shouldn’t dynamically link a dialog item. The advantages of using these
blocks rather than dynamic linking is:

• Using data access blocks gives more control over which database values get used, and where and
when they are used.

• Database usage is clarified visually. For example, instead of a blue outline around a parameter
field inside a block’s dialog, it is more obvious when the database value is coming from a Read
block.

Link dialog for Database Table

646 Data Management and Exchange
ExtendSim databases for internal data storage

H
ow

 T
o

• Dynamic linking is fixed point-to-point. While you can change the value at the data source, you
can’t dynamically control which database or table is accessed during a simulation run or in a
series of runs.

• In some blocks there is no dialog parameter or data table you can directly link to,

• It is easier to perform mathematical calculations on the database values.

• The data can be more easily accessed at several places in the model.

• It is more convenient for hierarchical blocks, allowing access to a different record for each
instance of the hierarchical block in a model.

The Monte Carlo model, located at \Examples\Continuous\Standard Block Models and described
on page 47 is an example of using Read and Write blocks to exchange data with an ExtendSim
database. For more information about these blocks, see “Read and Write blocks” on page 659.

Database management
This section provides additional information about using and managing ExtendSim databases,
database tables, fields, records, and data.

Opening a database window
To open a database’s window so that you can change its structure or data, do one of the following:

Select the database from the databases listed at the bottom of the Database menu.

Or, open the Navigator, select its Database List mode, and double-click the name of the data-
base in the list.

Or, select Window > Database List to open the Navigator in Database List mode, then double-
click the name of the database in the list.

Opening a database list
To access the Database List, give the command Window > Database
List. The database list is used to open a database or when copying,
renaming, or deleting a database.

Copying, renaming, or deleting a database
To copy or duplicate a database, select it in the database list and give
the command Edit > Copy (or Duplicate) Database. Give the Paste
command in the database list or on the model worksheet; you can
paste into the current model or a different model. Pasting or duplicat-
ing places a copy of the database in the database list with a different
index number and a modified name (if the database is copied into the
same model’s Database List) or with the same name (if the database is copied into a different
model).

☞ Giving the Paste command on the model worksheet places a copied ExtendSim database in the
Database List and makes it available to the model. It does not put a visual representation of the
database on the worksheet.

To move a database from one model to another, select the database in the Database List and use
the Edit > Cut Databases command, then paste the database into the other model.

Database list

Data Management and Exchange 647
ExtendSim databases for internal data storage

H
ow

 T
o

To rename a database, select it in the Database List and give the command Database > Rename
Database. To delete a database, select it in the Database List and give the command Edit > Clear
Database.

Importing or exporting a database
The command Database > Import New Database creates a new ExtendSim database by importing
an entire database from an exported ExtendSim or SDI Industry database. In the dialog, select the
database text file to import. This command imports all the tables, fields, records and so forth from
the exported file and creates a new database. If you choose the name of an existing database, it will
be replaced. To import tables to an existing database, such that the database tables are appended at
the end of the database, see the Import Tables command. See also “Excel Add-In for ExtendSim
databases” on page 650.

The command Database > Export Database is only active when an ExtendSim database window is
active. This command exports the entire ExtendSim database into a text file. You do this so you
can import the database into another model, send the database to another user, or to prepare a
database text file for use by the ExtendSim DB Add-In for Excel (discussed on page 650). To
export only specific tables from a database, see the Export Selected Tables command, discussed
below. To enable this command, bring a database window to the front, as described under Data-
base menu, above.

☞ Exported databases can only be imported to ExtendSim or to the ExtendSim DB Add-In for Excel.

Managing database tables and using tabs
Tabs are useful for organizing tables by category.
The All Tables tab will always contain a list of
all of a database’s tables in its table list pane. You
can also list some of those tables in other tabs.
The database window must be in structure
mode to add a tab. To create the tab, either dou-
ble-click the blank area of the tab bar (that is, to
the right of the All Tables tab) or give the com-
mand Database > New Database Tab. Clone a
table to the new tab by selecting the table in the
tables pane and giving the command Database >
Clone Selected Tables to Tab. In the dialog that
appears, select a tab to clone the table to.

Import and append tables into the current data-
base by giving the command Database > Import Tables when a database’s window is open. This
imports a database text file of tables from an ExtendSim or SDI Industry database.

Export selected tables by using the Database > Export Selected Tables command. The tables can be
exported as text files from one ExtendSim database to a different ExtendSim database.

To show/hide tables in the tables pane, unselect the table in the list of tables in any tab in the data-
base window.

To copy a table from one database to another, select the table in the database window, give the
command Edit > Copy Tables, and paste the table into the same or a different database’s window.

To move tables from one database to another, use the Edit > Cut Tables command instead of the
Copy Tables command.

Database window showing new tab with cloned table

648 Data Management and Exchange
ExtendSim databases for internal data storage

H
ow

 T
o

Managing fields
Fields are formatted using the Field Properties and Field Type dialogs, discussed in “Database dia-
logs and popup menus” on page 648.

To reorder fields in a table, with the database window in Structure mode, click and drag the fields.

To resize a field’s column width, put the database window in Viewer mode. Then hover the cursor
over the column divider until it turns into a resize cursor, then click and drag to resize.

Use the Sort Table tool in the Viewer toolbar to sort a table’s records by up to three fields; each
field can be sorted in either ascending or descending order. For example, use this to sort a table’s
records first by last name, then by first name, and then by city.

☞ To create a field with mixed formats (for instance, with both strings and numbers), set the field as a
string type in the Field Properties dialog. Enter numbers or strings into the cells.

Editing data
To access data for editing, in the database window do one of the following:

Double-click a table in the database
window to open its Viewer window.

Or, select the table in the tables pane
and change the database window’s mode
from Structure to Viewer.

The records and fields for the selected table
will be displayed.

To make a cell random, select the cell and
choose the Make Cell Random tool in the
Viewer toolbar. By default, all cells are con-
stant.

Finding data
To find a string or number within a data-
base, with the database structure window open, give the command Edit > Find. This command
opens the Find dialog. To only search a single table, select the table before giving the Edit > Find
command.

Database dialogs and popup menus
Most of the database dialogs are self-explanatory. The following are more unusual or complex and
require some explanation.

The Field Properties dialog
When you add a field to a database table, the Field Properties dialog presents formatting and other
options for the field, as described in the following table.

Option Description

Field name Enter any unique name, up to 63 characters. Spaces and characters are
allowed.

Field type Format for the field. See the following table.

Database table viewer window

Data Management and Exchange 649
ExtendSim databases for internal data storage

H
ow

 T
o

Field type popup menu
The following table describes the options for the “Field type” popup menu in the Field Properties
dialog.

Decimals For general format or scientific numbers, the number of digits to display.
For currency and percent, the number of digits to the right of the decimal
point.

Use separators Inserts commas and periods to separate digits.

Record ID field The field used as an index when searching for a record in this table.

Each value unique When checked, the number or string for each record in this field must be
unique.

Read only When checked, prevents the data from being changed after it has been
entered.

Initialize every record in
this field to:

If checked, initializes the data for all the records in the selected field to the
entered parameter value. If the parameter is left blank, initializes the field’s
records to a blank.

First run...Every run Specifies when the record initialization takes place.

Field type Description

Number An integer or double-precision floating point number. Choose general, sci-
entific, percent, currency or integer.

String An alphanumeric string up to 255 characters

Date/Time Calendar date and time

Data address Describes the coordinates of a cell in a database table

Boolean checkbox Places a checkbox to indicate yes or no, true or false, on or off, etc.

List of tables Provides a popup menu of all the tables in the database, so you can select a
table.

Option Description

650 Data Management and Exchange
ExtendSim databases for internal data storage

H
ow

 T
o

Database Random Distribution dialog
By default all database cells are con-
stant, but they can be formatted as
random numbers. To make one or
more cells random, select the cells in
the Viewer and choose the Make Cell
Random tool in the toolbar. Or right-
click the cell and choose Make Ran-
dom. This opens the Database Ran-
dom Distribution dialog, shown at
right.

The random distributions in this dia-
log are the same as for the Random
Number block (Value library). For a
complete list and short description, see
“Choosing a distribution” on
page 606.

☞ A special feature of this dialog is that
you can assign a name to a distribu-
tion in a database, allowing the distri-
bution to be selected by custom name
in that database. For example, enter typical values for an empirical table and name it Machine
Time Distribution. Or give a custom name to an exponential distribution with specific arguments.

Excel Add-In for ExtendSim databases
The ExtendSim DB Add-In allows an exported
ExtendSim database text file to be imported into Excel.
The data and structure of the ExtendSim database can
thus be edited in Excel, outside of the ExtendSim applica-
tion. After editing, the database can be exported from
Excel as an ExtendSim database text file and imported
into ExtendSim.

 The ExtendSim DB Add-In is only included in the
ExtendSim Suite and ExtendSim AT products. It may be
purchased separately for use with other ExtendSim prod-
ucts.

To install the add-in into Excel:

Follow Excel’s instructions for installing an Add-In.
These will differ depending on the version of Excel and
the platform you’re installing on.

In the Add-Ins dialog, click the Browse button and nav-
igate to the ExtendSim DB Add-In.xla file; it is located
in the ExtendSim\Extensions folder.

Select the ExtendSim DB Add-In.xla file and click OK. This returns you to the Excel Add-Ins
dialog and puts ExtendSim DB Add-In in the list of available Add-Ins. (Make sure the checkbox
next to ExtendSim DB Add-In is checked.)

Database Random Distribution dialog

Excel Add-Ins dialog

Data Management and Exchange 651
Other internal data storage and management methods

H
ow

 T
o

Click OK to close the Excel Add-Ins dialog. This action installs a new Add-In menu command
called “ExtendSim DB”.

To export an ExtendSim database file from ExtendSim so that Excel can import it, see “Importing
or exporting a database” on page 647. The exported file will be in text file format.

To import the exported ExtendSim database file into Excel, give the command ExtendSim DB >
Import Database in Excel. After importing the file, you can modify data in the tables, change the
number of records (rows) or fields (columns), change the field types, modify named and empirical
distributions. Although it is done infrequently and is much easier to do in ExtendSim, you can
even add or change relationships in the database.

• To modify field characteristics, click the Ungroup (+) button at
the left of a table. This expands the field properties so you can
change them as desired.

• To add rows or columns to a table that already has one or more
rows and columns, copy an existing row or column in the table
and paste rows at the bottom of the table or paste columns at the
right side of the table. This will enlarge the table. Then enter any
needed data into the new rows or columns. If the table doesn’t
have any rows, enter row numbers below the Field identifier. The
screenshot to the right has two rows (numbered 1 and 2) below
the Field identifier.

• To change relationships, enter the correct table and field names
into the Indexed Fields table at the bottom of the All Tables tab.

☞ When changing the number of rows in empirical distributions, be
sure to also change the value for the Number of Empirical Rows.

When you are finished making changes, export the database file
using the Excel command ExtendSim DB > Export Database. Then
import that file into ExtendSim using the command Databases >
Import New Database as discussed in “Importing or exporting a
database” on page 647.

Monte Carlo model
The Monte Carlo model (located in the folder \Examples\Continuous\Standard Block Models)
uses an ExtendSim database named “Scenarios” to store the inputs and results of the model. Using
a database allows the model to experiment with different scenarios. Rather than dynamically link-
ing model parameters and data tables to a database, the model uses Read and Write blocks (Value
library) to provide the interface to the database. The Read blocks get random values from a data-
base and use them to represent model parameters where the actual values are not known with cer-
tainty.

Other internal data storage and management methods
While ExtendSim databases will probably be your primary method of storing and managing data,
ExtendSim provides several other methods. These are:

• Global arrays discussed starting on this page

• Dynamic arrays on page 654

• Embedded objects starting on page 655

Grouped and ungrouped tables

652 Data Management and Exchange
Other internal data storage and management methods

H
ow

 T
o

• Linked lists discussed on page 657

Global arrays
A global array is a two-dimensional (row and column) array of data that is accessible by any block
in a model. Like ExtendSim databases, global arrays are user-accessible structures for internally
storing and managing data. Use global arrays to share information between blocks when a direct
connection is either inconvenient or impossible, to store information that can be accessed by a row
and column index, or to exchange data with external sources.

Global arrays provide many of the same modeling advantages that ExtendSim databases do; see
“Advantages of using internal databases” on page 639, but they differ from databases in some
important aspects. Compared to databases, global arrays have a simpler data structure and take less
time to access data. However, global arrays aren’t as flexible as databases, which allow mixed data
types, randomness, and parent/child relationships. It is also easier to add or remove fields in a data-
base than columns in a global array, and creating a global array requires adding a block to the
model.

☞ Unless you are using custom blocks that create global arrays, a Data Source Create block must be in
the model to initially create the global array. Since the global array is saved with the model, the
block can be removed after the array has been created.

While it is common to use a database for managing and exchanging data, global arrays are handy
in situations where:

• You just want a simple array structure of a single data type. For instance, to create an integer
array with 10 columns and 20 rows of data for use in a model.

• You program blocks that can use a more simple data structure than a database requires, and you
don’t need or want the data storage to be visible to the block user.

Creating a global array
There are three ways to create a global array:

1) Use the Data Source Create block (Value library) as illustrated later in this chapter.

2) Through global array functions in an equation-based block from the Value or Item library.
These blocks are discussed in “Equation-based blocks” on page 601.

3) Programing with ModL code. For more information, see the Developer Reference.

You can name a global array anything you want as long as the name is fewer than 32 characters and
it does not begin with the underscore character (_). Global array names are not case sensitive;
spaces between characters are allowed.

A global array can only be of one data type - either integer or real (if the data type is selected
through the user interface), or integer, real, or string (if the data type is selected through ModL
code.) Each model can have one or more global arrays associated with it and each global array can
have multiple rows and columns. Global arrays are stored and saved with the model, even if the
Data Source Create block that created the array is deleted.

 Following the standard conventions, ExtendSim databases are organized by field and record (simi-
lar to being organized by column and row.) However, arrays are organized by row and column.
This is important to consider when transferring data between databases and global arrays.

Data Management and Exchange 653
Other internal data storage and management methods

H
ow

 T
o

How to create and use a global array
The example that follows uses the Data Source Create block to create a global array for the
Reservoir 1 model. As illustrated below, the steps are:

1) Place a Data Source Create block in a model.

2) Build the global array in the Data Source Create block.

3) Populate the array with data.

4) Determine how the model exchanges data with the array.

Using an example model
Open the model Reservoir 1 from the \Examples\Tutorials folder.

So that you don’t overwrite the original file, give the command File > Save Model As and save
the model as ReservoirGA.

Place a Data Source Create block (Value
library) at any convenient location on
the model worksheet.

Creating the global array
In the dialog of the Data Source Create
block:

Choose Type: Global array.

In the “Create a new array” frame,
click the Integer Array button, indi-
cating that you want the values to be
integer.

In the three dialogs that appear, name the array My Array, give it 12 rows, and give it 2
columns. Click OK after each dialog entry.

ReservoirGA model

654 Data Management and Exchange
Other internal data storage and management methods

H
ow

 T
o

Notice that Viewer for the selected
array in the Data Source Create block
now displays 12 rows and 2 columns.
The table’s upper left corner is light
blue, indicating that it is a data source,
and it has the initials “GA”, indicating
that the data source is a global array.

Populating the array with data
Global arrays can be used as inputs to a
model or to store model results.

• A common method of populating an
array with data for use in a model is to
enter values or copy data directly into
the Data Source Create block’s Viewer
table when the array is created. You
can also use the Data Import Export
block (Value library) to import data to
the array from a spreadsheet or exter-
nal database, the web, or a text file.

• To store model results, it is most com-
mon to use a Write block (Value
library) to send data to a global array.

☞ The Data Init block (Value library) can be used to initialize a global array table, column, row, or
cell; it is described on page 660. The Data Specs block (Value library) gathers information about
the global array and puts it into a report; it is discussed in page 661.

Exchanging data with a global array
ExtendSim provides the following methods for models to interact with global arrays:

1) Through the user interface, using dynamic linking to establish live links between dialog items
and global arrays. See the examples “How to link a parameter to a global array” on page 631 or
“How to link a data table to a global array” on page 633.

2) With data access blocks, such as the Read and Write blocks (Value library), to exchange data
between a model and a global array. Data access blocks are discussed on page 659.

3) Using global array functions in an equation-based block from the Value or Item library to
manage data. These blocks are discussed in “Equation-based blocks” on page 601.

4) Programming using ModL code. See the Developer Reference for more information.

Dynamic arrays
A dynamic array is multi-dimensional internal data structure that is only accessible through pro-
gramming. A model user can resize a data table that is linked to a dynamic array and can link the
data in the table to an ExtendSim database or global array. However, the dynamic array itself can-
not be accessed outside of ModL code.

A data table linked to an internal data source will have its upper left corner in light blue rather
than the grey of the table header. If the source is a database (DB) or global array (GA), those ini-

Data Source Create after creating myArray

Data Management and Exchange 655
Other internal data storage and management methods

H
ow

 T
o

tials will be displayed in the corner. If the source is a dynamic array, the upper left corner will not
have any initials.

Since dynamic arrays are created and managed through ModL code, see the Developer Reference
for more information.

Embedding an object (Windows only)
Embedded objects allow applications to have new behaviors and functionality without needing to
custom program the behavior. An embedded object is an external software component created
with one application and embedded into a document created by another application. The compo-
nent could be an embeddable part of an existing application (such as a Worksheet object from
Excel), or a component specifically created for embedding (such as a Graphics Server ActiveX con-
trol). Embedding the object ensures that the object retains its original format and that it can be
modified with the original program. The underlying technology for embedded objects is OLE (see
“ActiveX/COM/OLE (Windows only)” on page 665.

ExtendSim’s support of this functionality allows model authors and block developers to incorpo-
rate objects and ActiveX controls that can do things that might otherwise be difficult or impossible
in ExtendSim.

☞ For purposes of this manual, the word “objects” will mean both “component objects” and “ActiveX
controls”.

As illustrated below, an object can be embedded into:

• A model worksheet

• A block’s dialog (if you program the block in ModL)

When an object is embedded into a model worksheet, ExtendSim creates a container object, a
worksheet object similar to a block or a hierarchical block. Each container object has a block num-
ber so that ExtendSim functions can reference it. A container object can be selected, moved around
the screen, and deleted in the same manner as a block.

☞ If clicking a container object causes any response other than selection, you need to select the com-
mand Edit > Design Mode to move it, as discussed on page 688.

Double-clicking an embedded object activates features of the originating program. For instance,
double-clicking an embedded Excel Chart provides access to Excel tools for selecting a chart type
and configuring its display.

A typical use of embedded objects would be to insert an Excel worksheet into an ExtendSim
model, then use DDE Linking (discussed on page 636) or the Value library’s Read and Write
blocks (discussed on page 659) to exchange data between the model and the embedded object.
This gives ExtendSim the added capabilities of Excel, without opening the Excel application.

How to embed an object into a worksheet
The example that follows embeds an Excel worksheet into an existing model and uses the Write
block to send results to the worksheet.

Open the Reservoir 1 model located in the folder \Examples\Tutorials.

So that you don’t overwrite the original file, save the model as ReservoirEmbed.

Select Edit > Insert Object. The Insert Object dialog appears. It lists the embeddable objects
that are available on your machine. The dialog is shown on page 657.

656 Data Management and Exchange
Other internal data storage and management methods

H
ow

 T
o

In the dialog, select the button Create New (the default choice) and choose Object Type:
Microsoft Office Excel Worksheet. Then click OK to close the dialog and place the embedded
object in the model.

If the Excel worksheet object is in an inconvenient location, click elsewhere on the model win-
dow to deselect it, then click back on the worksheet to select and move it.

Delete the Plotter I/O block on the right side of the model.

Add a Write block (Value library) to the model where the Plotter block was. Then open its dia-
log:

In the “Select destination type” frame, choose Send data to: Excel workbook, check Use
embedded workbook, and select Embedded workbook list: Worksheet in Reser-
voirEmbed.

In the “Specify Excel coordinates” frame, select Sheet: Sheet 1, Write: one row, and Col
end: 4.

Leave the other settings at their defaults and close the Write block’s dialog.

To the left of the Write block, add a Simulation Variable block (Value library) to the model.

In its dialog, select Current time.

Connect the output of the Simulation Variable block to the top input of the Write block.
In the finished model, this block will output current simulation time to the Excel work-
sheet.

Draw a connection line from the remaining inputs of the Write block to the Contents, Rainfall,
and Stream named connections. (Be sure to make a complete connection; if a line segment is
dotted, it is not connected.)

Add a second Simulation Variable block (Value library) to the model. In its dialog, select Cur-
rent step and specify that it adds 1 to the result.

Adding 1 is necessary because ExtendSim is zero-based and Excel is one-based, as discussed in
“The mailslots feature allows communication between two ExtendSim applications running on
different computers on the same local area network (LAN). Since mail slots involve program-
ming, they are described in the Developer Reference.” on page 668.

Extend the variable connector at the bottom of the Write block so that the R (row) input is dis-
played. Then connect the output of the second Simulation Variable block to the R input.

This causes the Write block to write the data to a new row at each step.

Run the model.

The Excel worksheet should show 4 columns of data. Simulation time is the first column and the
reservoir contents, rainfall amount, and stream contributions are the other three columns.

To access Excel’s formatting tools, double-click the embedded Excel object. This places Excel com-
mands and tools within the ExtendSim application window. Use these tools and commands to for-
mat the object’s data, chart the data, and so forth.

How to embed an object into a dialog
Block developers can embed objects into the blocks they create. They do this by selecting the
“Embedded Object” type of dialog item when creating the block. This places a rectangle in the
dialog editor for embedding an ActiveX control or other kind of object. The embedded object is

Data Management and Exchange 657
Exchanging data with external applications

H
ow

 T
o

referenced in the block’s code via a combination of its dialog item name and container object block
number, using ModL functions as described in the Developer Reference.

The Bar Chart and Gantt Chart blocks (Plotter library) are examples of Graphics Server ActiveX
controls embedded in ExtendSim block dialogs. For more information on ModL programming to
control embedded objects or how to use ExtendSim as an Automation Client or Server, see the
Developer Reference.

The Insert Object dialog
The Insert Object dialog appears when the com-
mand Edit > Insert Object is given; it is used for
selecting an object for embedding. A scrollable lists
displays the insertable objects that are available for
your machine.

If “Create New” is selected in the dialog, ExtendSim
will create a new object of the indicated type with no
data associated with it—basically an empty docu-
ment of the specified type. Selecting “Create from
File” creates an embedded object with the data from
that file as the starting point. If the “Display As
Icon” box is checked, the new object will only dis-
play in ExtendSim as an icon, rather than as the control’s interface.

The use of the Insert Object dialog will have different meanings depending on which ExtendSim
window is open. If a model or hierarchical worksheet window is open, issuing this command will
insert a Container Object on the model. If a dialog with an Embedded Object dialog item is open,
it will insert the embedded object into that dialog item.

Linked lists
A linked list is an internal data structure that allows the construction and manipulation of complex
lists of data. It can be accessed only through programming. Linked lists are queue-like structures of
multiple types that maintain internal pointers between different elements. This enhances the sort-
ing for complex structures by speeding the movement of the elements within the list.

ExtendSim implements linked lists:

• In the queue blocks (Item library)

• Extensively in the Rate library

• With the Linked List functions described in the Developer Reference.

Since this involves programming, linked lists are described in the Developer Reference.

Exchanging data with external applications
The means by which two or more applications communicate with each other and share data are
collectively known as interprocess communications (IPC). Some communication methods have
previously been discussed in this chapter. For example, the Clipboard provides convenient data
sharing between applications running on the same operating system. The following section focuses
on more extensive communication methods which allow ExtendSim to directly communicate with
other applications and with ExtendSim models running on other computers, while the simulation
is running. This allows ExtendSim to work on a wide variety of tasks jointly with external applica-
tions such as:

Insert Object dialog

658 Data Management and Exchange
Exchanging data with external applications

H
ow

 T
o

• Spreadsheets

• External databases

• Other applications, such as word processors and statistics packages

There are several ways you can incorporate IPC into models, including:

• With blocks from the Value library discussed on page 659.

• Using the DDE Link feature (Windows only) described on page 636.

• Embedding objects (Windows only) as seen on page 655.

• If you program, using the OLE and IPC functions discussed in the Developer Reference.

An application that communicates with another application can be categorized as either client or a
server. A client application requests a service from some other application and a server application
responds to the client’s request. Many applications, such as ExtendSim, can act as either a client or
a server depending on the circumstances.

Spreadsheets
You may want to use spreadsheet data as the input for an ExtendSim model. Likewise, you may
want to send output data to a spreadsheet for further analysis or presentation. For instance, if you
have a spreadsheet that performs calculations on large amounts of data, you may want that spread-
sheet to respond dynamically as you model real world conditions in ExtendSim.

ExtendSim facilitates communication with spreadsheets by:

• The Command, Data Import Export, Read, and Write blocks (Value library). These blocks can
send data to and from spreadsheet applications, send one value to a specified cell in a spreadsheet
and request the recalculated value from another cell, or send commands or a macro to a spread-
sheet. See “Blocks for data management and exchange” on page 659.

• DDE Link commands in the Edit menu. For more information, see “DDE links (Windows
only)” on page 636.

• The ExtendSim DB Add-in, which allows an exported ExtendSim database text file to be
imported into Excel. The data can then be stored in Excel, edited and exported to an external
database, or edited and exported back to ExtendSim as a database text file.

• Import Data and Export Data commands in the File menu to create text files that can be
imported into a spreadsheet or to import a text file that has been exported from a spreadsheet.
For more information, see “Importing and exporting data” on page 626.

• OLE and IPC functions to facilitate DDE or ActiveX/COM/OLE communication with spread-
sheets. For more information, see the Developer Reference.

External databases
In many situations, the historical data for a a model is stored in an external database. ExtendSim
models can share information with external database applications:

• With the Data Import Export block (Value library) to send data to or from ODBC database
applications. This block can import a block of data to, or export a block of data from, an
ExtendSim database or global array. See “Data access blocks” on page 660.

Data Management and Exchange 659
Blocks for data management and exchange

H
ow

 T
o

• By using Excel as an intermediary application between an ExtendSim database and an external
database. In this case, the data is imported from the external database to Excel, where it is
manipulated. The data is then exported from Excel to ExtendSim as a database text file using the
ExtendSim DB Add-in.

• Using the ExtendSim ODBC functions to initiate an SQL query or perform other functions.
For more information, see the Developer Reference.

Blocks for data management and exchange
Several ExtendSim blocks facilitate data storage and management. Some are used to establish and
control dynamic links between ExtendSim and internal or external sources. Others are useful for
importing or exporting data between ExtendSim and external applications.

In general there are several uses for data management and access blocks:

• Sharing information between blocks when a direct connection between them is inconvenient.

• Storing information which can be accessed by a row and column index.

• Accessing existing spreadsheets, either embedded in the model or imported as a file.

• Accessing existing databases using ODBC/SQL.

• Accessing internet-based data.

Most of the following blocks allow block-level access to data structures without having to program
with the ModL functions. An additional group of blocks are designed to help block developers,
serving as templates for custom-built data management blocks.

Read and Write blocks
The Read and Write blocks (Value library) and the Read(I) and
Write(I) blocks (Item library) are designed for exchanging
model data with a data structure. These data access blocks make
it easy to get data into or send data out of models.

Both of the Read blocks lookup information found in a speci-
fied data source; they can report the information found on their
value output connectors. The Read(I) block can also store the
information as an attribute on items passing through.

Both of the Write blocks send information to a specified data
destination; the information to be sent can come from their
value input connectors. The Write(I) block can also send the
attribute information that has been found on items passing
through.

Communicating with data structures
Depending on which library (Value or Item) the Read/Write blocks are from, they communicate
with different types of data structures.

Read and Write blocks (Value library)
As determined by selections in popup menus in their dialogs, the Read and Write blocks in the
Value library exchange data with:

• ExtendSim database

Top: Read(I) and Write(I) blocks
Bottom: Read and Write blocks

660 Data Management and Exchange
Blocks for data management and exchange

H
ow

 T
o

• Global array
• Excel workbook
• Text file
• Local table (information that is entered the block’s data table)

Read(I) and Write(I) blocks (Item library)
The Read(I) and Write(I) blocks in the Item library exchange data with an ExtendSim database;
data is updated only when an item arrives at the block.

Addressing the data structure
By definition Read and Write blocks are required to be interfaced to some type of data structure.
The pieces of information that are required to fully and properly specify where the information is
to be read from or written to (the “address”) depends on the type of data structure chosen, as
shown in the following table.

For instance, the fully specified address for accessing an Excel file would include the file name,
sheet, column, and row.

Interface methods
Once you have specified a data structure type to communicate with and determined what the fully
qualified address is, the next step is to determine where the data structure address is entered:

• In the block’s dialog or through value input connector for the Read and Write blocks (Value
library)

• In the block’s dialog, through value input connector, or by using attributes on items that pass
through the Read(I) and Write(I) blocks (Item library)

Triggers
The following table indicates the mechanism that will trigger when the data is sent or received.

Data access blocks
The following blocks are useful for creating global arrays and text files and for accessing data from
internal or external sources.

ExtendSim Database Global Array Microsoft Excel Text File

File name X X

Database name X

Table, array, or sheet X X X

Field or column X X X X

Record or row X X X X

Read Write Read(I) Write(I)

Connector message X X

Beginning of run only X

End of run only X

Item arrival at block X X

Data Management and Exchange 661
Data source indexing and organization

H
ow

 T
o

Data Source Create
The Data Source Create block (Value library) provides an easy method to create or
modify global arrays or text files. You can also use this block to resize or delete a global
array. For an example of how this block is used, see “How to create and use a global
array” on page 653.

Data Import Export
The Data Import Export block (Value library) is used for importing data from a data
source to an ExtendSim database or global array or for exporting data from an
ExtendSim database or global array to a data source. The supported data sources
include:

• Microsoft Excel

• ODBC technology (Windows only)

• FTP site (Windows only)

• Text files

Data Init
The Data Init block (Value library) uses a data source to initialize a target with values.
A popup menu in the block’s dialog allows you to choose as a target a database’s table,
field, record, or cell or a global array’s column, row, or cell. The data source can be a
value, a database’s table, field, record, or cell, or a global array’s column, row, or cell.
Each row of the block’ table defines one initialization record for one target. Each ini-

tialization record can be set up to initialize the data it refers to at every run, the first run only, or to
not initialize. Each cell in a given row of the table contains interface items that allow customization
of that particular initialization record.

Other blocks for modelers

Data Specs
The Data Specs block (Value library) reports information about a selected ExtendSim
database or global array. You can assign a name to the specification report, select its
components through popup menus, initialize the outputs, and display the specifica-
tion’s name and/or values on output connectors.

Command
When triggered by a value at its “send” input, the Command block (Value library)
sends a command, such as an Excel macro or DDE command, to a spreadsheet. You
can select a command to send and choose when the command is sent.

Blocks for developers
The Utilities and ModL Tips libraries contain several blocks to assist block developers, such as the
Object Mapper block in the Utilities library.

Data source indexing and organization
Communicating between various types of data sources has been greatly assisted by standardized
technologies, such as the ability of diverse applications to exchange data through a standard text
file format. However, it is important to keep in mind that each standard has its own conventions.
This can cause data-confusion when transferring data from one type of source to another.

662 Data Management and Exchange
Communicating with external devices

H
ow

 T
o

Transferring data between a data table and a spreadsheet
ExtendSim data tables have zero-based indexes and are organized by row and column –data starts
at row 0, column 0. Spreadsheets are also organized by row and column, but they are one-based –
data starts at row 1, column 1. When transferring data from an ExtendSim data table to an Excel
worksheet, the row and column numbers for Excel must both be increased by 1 compared to their
location in the ExtendSim data table.

Transferring data between a spreadsheet and a database
Databases are one-based like spreadsheets, but are organized by fields and records (equivalent to
columns and rows) rather than being organized by the spreadsheet convention of rows and col-
umns.

Indexing and organization
The following table lists indexing and organization conventions for different data source types.

Communicating with external devices
In some situations, you may want to obtain data for a model directly from an external piece of
equipment. For instance, when modeling a chemical process you might want to read the tempera-
ture of the actual process and compare it to simulated results.

If you create your own blocks with ModL code, there are two methods you can use to communi-
cate with external devices such as scientific equipment and other hardware:

• Dynamic Link Libraries (DLLs) on Windows or Shared Libraries for Mac OS. DLLs and Shared
Libraries are segments of code written in a language other than ExtendSim's ModL, such as
Visual Basic or C++. Their standardized interface provides a method for linking between other
languages and ModL. They can also be used to perform complex calculations utilizing special-
ized hardware. For more information, see “DLLs and Shared Libraries” on page 668 and the
Developer Reference.

• Serial port functions on Windows. To pass data through serial devices, use the serial port func-
tions. These functions can read and write any data (including real-time data) to and from the
computer’s serial ports. This is useful for transmitting and receiving data on a modem, for exam-
ple. For more information, see the Developer Reference.

Data Source Type Indexing How organized

Data Tables 0-based Row/Column

Spreadsheets 1-based Row/Column

Internal Databases 1-based Column/Row
(Field/Record)

External Databases 1-based Column/Row
(Field/Record)

Arrays 0-based Row/Column

Text Files N/A Row/Column

Data Management and Exchange 663
Technologies for communication

H
ow

 T
o

Technologies for communication
Many technologies have been developed as industry standards to allow applications to share and
access data both internally and with each other independent of programming language, operating
system, and file type. ExtendSim supports most of the standard types of communication technolo-
gies including:

In addition to the uses listed above, these technologies are supported for block development. This
is described in the Developer Reference.

Text files
A text file (also known as an ASCII file) is a file of unformatted information. Text files contain
written text with the styles removed and/or numerical data separated by some delimiter or separa-
tor (such as tabs or spaces).

You can create text files in another application such as a spreadsheet, database, or word processing
program, then read those text files into ExtendSim. Or create text files in ExtendSim, then read
them into the other programs.

Text files contain text, data, or both data and text. There are many uses for text files. For example:

• To supply internal data as the basis for analysis when using Sensitivity Analysis.

• To share data with an external database or spreadsheet program such as Microsoft Access or
Excel.

• To output model results to external applications, such as spreadsheets or word processing pro-
grams, for presentation or analysis.

• Text files of information are generated for model Reports or Traces.

• Most files transmitted from minicomputers and mainframes are text files.

Technology ExtendSim Use or Implementation

Text Files Import and export of raw data or ExtendSim
databases, Report and Trace files.

ActiveX/COM/OLE Embedding controls and objects. The Gantt
Chart (Plotter library) has an embedded
ActiveX control.

DDE DDE Link menu commands.

ODBC Import from, or export to, ODBC databases
using a “Data Import Export” block (Value
library).

DLLs (Windows)
Shared Libraries (Macintosh)

LPSolve used with the Rate library

FTP Import from, or export to, files located on a
server or on the web using a “Data Import
Export” block (Value library).

Mail Slots Functions for inter-computer communication

664 Data Management and Exchange
Technologies for communication

H
ow

 T
o

Text files can reside locally, be remotely accessed over a network, or accessed via the internet using
FTP.

Creating and opening text files
Some ExtendSim blocks automatically create text files. For example, selected blocks automatically
output information in the form of a text file when the Generate Report command is chosen for a
run. If you program custom blocks, you can include ModL functions to have the blocks create or
read text files. In addition, there are two methods to directly open or create a text file in
ExtendSim:

1) Use the File menu commands to create or open text files. This allows you to look at report files,
modify data input files, and so on, without having to open another application.

2) Use the Create or Open button in the dialogs of the Read and Write blocks (Value library)
when Text File is selected as the data type. This is useful if you want to create a file of data for
use in a model. The Read and Write blocks are discussed on page 659

Working with text files
• The File > Import Data and File > Export Data commands are useful to exchange text file data

from internal or external sources with dialog and plotter data tables or ExtendSim databases or
global arrays. To see how these commands are used, see “Importing and exporting data” on
page 626.

• The Read and Write blocks (Value library) provide an easy method for working with text files in
a model. With these blocks text files can reside locally in the model or be remotely accessed over
a network. These blocks also give added capability with text files in that they allow you to select
which column and row of data to access. They are discussed in “Read and Write blocks” on
page 659.

• When building custom blocks, use the file I/O functions described in the Developer Reference
to read and write text files.

How to create a text file
This example shows how to use menu commands to create a file with text and data:

Give the command File > New Text File.

In the Text File window, enter the information shown on the right into
two tab-delimited columns. For example,

Type January

Click the tab key

Type 2.6

Click the enter or return key to start a new row

Continue entering the information, clicking the tab key after each
month to separate the information into two columns and clicking
the enter key after each value to start a new row of information.

Give the command File > Save Text File As and name the text file My
Text.

Data Management and Exchange 665
Technologies for communication

H
ow

 T
o

☞ Because it is unformatted, the information in the text file will not be lined up as shown in the
screen shot above. It is important that you do not try to line up the data by adding extra tabs as
that will affect how the data is interpreted. There must be one, and only one, tab character separat-
ing the columns.

Delimiting text file data
Columns in text files can be separated by a tab, a space, or a comma. Carriage return characters are
always used to separate rows. When creating text files for use as inputs to ExtendSim blocks or
other applications, consider how the blocks or programs want the data presented. For example,
some ExtendSim blocks can take data columns separated a tab character, a space, or with another
character such as a comma. On the other hand, Sensitivity Analysis and many external applications
will only read files where the columns are delimited by tab characters. In general, it is best to use
tab characters.

Also, remember that programs expect only one delimiter (one tab, one space, or one comma)
between columns. For example, don’t put in extra tab characters in order to make columns line up
visually; if you do, the program is sure to get confused.

Changing text file font and size
Use the commands in the Text menu to temporarily improve the readability of a text file, for
example, by increasing the size of the text. However, Text menu changes are discarded when you
close the text file.

To permanently change the font or font size used when viewing text files, give the command
Edit > Options > Model tab and use the Text file font option.

ActiveX/COM/OLE (Windows only)
ActiveX is Microsoft’s set of object-oriented programming technologies and tools. There are two
main uses of the ActiveX technology in ExtendSim:

• ActiveX/OLE automation

• ActiveX/controls and embedded objects (COM)

ActiveX/OLE automation
ActiveX automation is the process of using ExtendSim’s OLE functions, or the scripting environ-
ment of another application, to communicate with, exchange data with, or control another appli-
cation. This is, for example, the technology used by the Read and Write blocks to communicate
with Excel.

When you use the OLE functions inside ExtendSim to communicate with another application,
ExtendSim is the Client in the automation communication and the other application is the server.
When the other application is using its scripting environment to communicate with ExtendSim,
ExtendSim is the Server.

When you develop custom blocks, automation is probably the most powerful tool that you can use
for interapplication communication. It does, however, come with a cost. Developing code to use
automation to control another application requires expertise with OLE/COM as well as knowl-
edge of the object model of the target application.

An object model is essentially a list of the methods and objects that an application supports with
regard to ActiveX automation. ExtendSim has a simple yet powerful object model that is described
in some detail in the Developer Reference. Other applications have more or less complex object
models. Excel, one of the more common target applications, has a quite complex object model; it

666 Data Management and Exchange
Technologies for communication

H
ow

 T
o

is quite complex to deal with. The Object Mapper block (Custom Blocks library) is a tool that can
be useful in learning more about the object model of an application or ActiveX control.

Automation is also the most common tool used to communicate with embedded objects or
ActiveX controls when they are added to the ExtendSim application. The Bar Chart and Gantt
Chart plotters (Plotter library) use ActiveX automation through ExtendSim OLE function calls to
communicate and exchange data with the embedded objects.

ActiveX controls and embedded objects
The main ActiveX technology is COM (Component Object Model). COM is the framework for
developing and supporting ActiveX controls and component objects.

☞ While the terms “component objects” and “ActiveX controls” are sometimes used interchangeably,
an object is often considered to have a source application that it derives from and a control is usu-
ally defined as a stand-alone object that doesn’t necessarily have an application behind it. For pur-
poses of this manual, the words “object” or “embedded object” applies to either a component
object or an ActiveX control.

A component object is an identifiable part of a larger program that provides a particular function
or group of related functions; it is roughly equivalent to a Java applet. ActiveX controls can be cre-
ated using one of several languages or development tools, or with scripting tools. In implementa-
tion, an ActiveX control is a dynamic link library (DLL) module. It runs in what is known as a
container, an application program that uses COM program interfaces.

OLE (Object Linking and Embedding) is Microsoft’s framework for a compound document tech-
nology for combining text, sound, animations, controls and so forth into a document. Each object
is an independent program component that can interact with the user and communicate with
other objects.

Whereas OLE provides services for the compound document that users see on their display; COM
provides the underlying services of interface negotiation, life cycle management (determining
when an object can be removed from the system), licensing, and event services (putting an object
into service as the result of an event that has happened to another object.)

ExtendSim supports embedding of COM/OLE objects and ActiveX controls in two places in the
application:

• At the worksheet/model level, where they can be included as a container object and be manipu-
lated much like blocks and other types of worksheet objects.

• At the block dialog level, where they can be inserted into a special type of dialog item called an
embedded object.

The Gantt Chart (Plotter library) uses an embedded ActiveX control. The Read and Write blocks
(Value library) uses OLE/COM to communicate with other applications. ExtendSim also has
many OLE/COM functions to facilitate ActiveX controls and COM objects.

☞ ExtendSim can be a container for objects embedded using the Insert Object menu command or
through ModL programming. It also has ModL functions to support its use as either an OLE auto-
mation client or server.

DDE (Windows only)
Dynamic Data Exchange (DDE) is a Windows operating system protocol through which applica-
tions can exchange data. DDE allows applications to form DDE links from one application (DDE
server) to another (DDE client) and obtain data in real time. As data changes at the server, the

Data Management and Exchange 667
Technologies for communication

H
ow

 T
o

server sends the new data to the client for processing. Once the link is established, the applications
exchange data without further user involvement.

Two applications linked by DDE are said to be engaged in a conversation. The server is the appli-
cation that initiates the conversation; the client is the application that responds to the server.
Unlike embedded objects, this conversation takes place between two windows.

DDE linking can be used for one-time data transfers and for continuous exchanges in which appli-
cations send updates to one another as new data becomes available. It is most appropriate for data
exchanges that do not require ongoing user interaction. Some areas where it is useful are:

• Performing data queries, such as an ExtendSim model requesting information from an Excel
worksheet.

• Linking to real-time data, such as scientific instruments, process control, or stock market
updates

• Creating compound documents, such as an ExtendSim model that includes an Excel chart.
In ExtendSim, DDE technology is implemented through:

• Menu commands that establish a connection between two pieces of data. (See “DDE links
(Windows only)” on page 636.)

• The Command block (Value library) for sending instructions to a spreadsheet, causing it to exe-
cute a macro. (See “Command” on page 661.)

• IPC functions that provide more flexibility than using just menu commands to create DDE
links, such as the ability to set a value in Excel without establishing a link. (See the Developer
Reference.)

ODBC/SQL
Open DataBase Connectivity (ODBC) provides a standard application programming interface
(API) method for accessing database data independent of programming language, operating sys-
tem, and database system. The goal is to enable access to data from any application, regardless of
which database management system (DBMS) is handling the data. It does this by inserting a mid-
dle layer between an application and the DBMS that translates data queries into commands under-
standable by the DBMS.

The ODBC API allows applications to access data in DBMS using SAG SQL (SAG = SQL Access
Group; SQL - Structured Query Language) as the standard for requesting information from a
database. SQL allows a single application to access different database management systems.

ODBC offers connectivity to a wide variety of data sources, including relational databases and
non-relational data sources such as spreadsheets and text files.

☞ To communicate using ODBC, use the “Data Import Export” block (Value library) or the
ExtendSim ODBC functions.

FTP
File Transfer Protocol (FTP) is used to connect two computers over the Internet or an intranet for
the purpose of transferring data and commands. In an FTP environment, one computer acts as a
server and the other acts as a client.

As a client, ExtendSim initiates a connection to the server. Once connected, ExtendSim accesses a
specified file on the server and either imports data from it or exports data to it.

ExtendSim implements FTP by:

668 Data Management and Exchange
Technologies for communication

H
ow

 T
o

• The Data Import Export block (Value library) can open a file on a remote computer and access
the data for use in an ExtendSim model.

• Internet Access functions provide more flexibility than using the Data Import Export block. See
the Developer Reference.

DLLs and Shared Libraries
Dynamic-Link Libraries (DLLs on Windows) and Shared Libraries (Mac OS) are segments of code
written in a language other than ExtendSim's ModL. This standardized interface provides a
method for linking between ModL and other languages. When and if a DLL or Shared Library file
is needed, it is loaded into memory and run by ExtendSim.

DLLs and Shared Libraries can contain code, data, and resources. They are used to provide access
to functions that are already written in another language or to solve problems that might be diffi-
cult or impossible to solve in ModL. Use a DLL or Shared Library to calculate some function, per-
form a task, access application programming interface (API) calls, or even control external
hardware devices.

ExtendSim implements DLLs and Shared Libraries by:

• The Rate library uses the LPSolve DLL or Shared Library.

• ExtendSim functions allow you to call the external code segments from within a block's ModL
code and perform operations. For example, a block can pass data to the DLL or Shared Library,
cause the DLL or Shared Library to calculate using that data, and get the results back from the
DLL or Shared Library. For more information, see the Developer Reference.

Mailslots (Windows only)
The mailslots feature allows communication between two ExtendSim applications running on dif-
ferent computers on the same local area network (LAN). Since mail slots involve programming,
they are described in the Developer Reference.

How To

Miscellaneous
Other important features

that didn’t fit somewhere else

“All truths are easy to understand once they are discovered;
the point is to discover them.”

— Galileo Galilei

670 Miscellaneous
Navigator

H
ow

 T
o

This chapter covers some additional ExtendSim features and topics, including:

• Using the Navigator to explore models and to access library or database windows

• Printing the model worksheet, Notebook, and block dialogs

• Copying model elements within ExtendSim and between ExtendSim and other applications

• Tool Tips

• Changing parameters dynamically

• Model sharing using the Lock Model command and the LT-RunTime version of ExtendSim

Navigator
The Navigator is an explorer-like window that provides easy access to different aspects of
ExtendSim. As discussed later in this section, it has three modes:

• Model Navigator mode. Lists the blocks in the active model, showing block icons, names,
labels, global block numbers, and any hierarchical levels. In this mode the word “Model” is dis-
played in the Navigator window’s leftmost popup menu.

• Database List mode. Provides a list of the databases the active model uses, if any. In this mode
the word “Database List” is displayed in the Navigator window’s leftmost popup menu.

• Library Window mode. Lists the blocks, including their icons and names, for a selected library.
In this mode all open libraries are listed alphabetically below the line in the Navigator window’s
leftmost popup menu.

Opening the Navigator
To open the Navigator:

Select Window > Navigator or click the Open Navigator
tool in the Toolbar.

By default, the Navigator opens in Model Navigator mode,
with the word “Model” selected in the window’s leftmost
popup menu. The name of the active model is listed at the
top of the window and below the Navigator’s leftmost
popup menu. Each block’s icon is shown, and its informa-
tion (global block number, name, and label) is displayed to
the right of the icon. If no model is open, the Navigator
opens in default “Unknown doc” mode.

A Navigator’s window has two popup menus:

• The popup menu on the left is for switching between
modes - Model Navigator (the default mode), Database
List, or Library Window. For instance, the Navigator win-
dow for the Reservoir 1 model is shown above, set to Model
Navigator mode.

• The popup menu on the right (Model Navigator mode only) is for changing the order for how
the model’s blocks are listed in the window. You can sort by Block Label, Block Name, Block
Number, hierarchical Depth, or Simulation Order (the default order).

Navigator for Reservoir 1 model

Miscellaneous 671
Navigator

H
ow

 T
o

To switch from one mode to the other, select the mode in the popup menu on the top left of the
Navigator window.

☞ You can have multiple Navigator windows open at the same time, all set to the same or different
modes. To open a new Navigator window, Navigator windows that are already open cannot be in
Model Navigator mode.

Model Navigator mode
The Model Navigator mode is especially useful for large models with many blocks or when a
model has several hierarchical layers. You use this mode to directly locate a block and open its dia-
log or to access submodels by drilling down through the hierarchical layers. For an example of
using the Navigator in Model Navigator mode, see “Navigating through the Reservoir model” on
page 38.

Database List mode
The Navigator displays the list of databases for a model (if any) and is one of the methods for
opening a database window, as well as copying, duplicating, and pasting databases between mod-
els.

☞ All the ExtendSim databases used in a model are automatically opened when the model opens. The
Navigator is used to open a database’s window, not the database.

To open a database window using the Navigator:

Open a model that uses a database, such as the Reservoir 1 model located at \Examples\Tutori-
als.

Open a Navigator.

In the Navigator’s leftmost popup menu, select Database List.

Any ExtendSim databases used in the model are listed below the model name.

To open a database’s window, double-click a database from the list.

Choosing Window > Database List is equivalent to choosing the Database List mode in the Navi-
gator. For more information about creating and using ExtendSim databases, see “ExtendSim data-
bases for internal data storage” on page 638.

Library Window mode
If a library is selected in the Navigator’s leftmost popup menu, the Navigator displays an alphabet-
ical list of blocks for that library. You can add blocks to a model from this list; this is often quicker
than using the Library menu.

To open a library window and add blocks to a model:

Open a model, if one is not already open.

Open the model’s Navigator.

In the Navigator’s leftmost popup menu, select a library from the open libraries listed below the
line.

This action opens the library window for the selected library, showing block icons and names in
alphabetical order.

Select a block’s icon in the library window. (To select multiple blocks at once use the Shift key.)

Drag and drop the block onto the model worksheet.

672 Miscellaneous
Printing

H
ow

 T
o

Opening a library window directly (by choosing Library > Open Library, then selecting the Open
Library Window command at the top of the selected library’s submenu) is equivalent to choosing
the Library Window mode in the Navigator.

☞ If a block has been compiled with external source code, it will be listed in the library window with
the designation CM (code management) on the right side of its icon. If a block has been compiled
with debugging code, its name and any additional information will be listed in the library window
in red and the block will display in the model with a red border around its icon. Compiling
options are used by block developers and are discussed in the Developer Reference.

Printing

Selecting what to print
ExtendSim gives you control over what appears on the printed page. The following table lists what
can be printed, depending on which window is active:

The Print command
ExtendSim decides which type of item to print based on what type of window is active when you
choose the Print command. For instance, if a plotter is active, the command becomes File > Print
Plotter.

When you select the Print command, if a Notebook or a Navigator window is active, the system’s
standard Print dialog appears. If another window (such as the model worksheet) is active, two dia-
logs open in sequence: an ExtendSim Print dialog and then the standard Print dialog.

• ExtendSim’s Print dialog is where you select what will be printed.

Active Window Printed

Model worksheet A picture of the worksheet as it appears on the screen. You can choose how many
hierarchical layers to print and to optionally print the contents of the dialogs and
plotters.

Dialog A picture of the dialog. If the dialog has a data table, you can select whether or
not to print all of the data in the table. You can choose to print just the top tab or
all tabs.

Plotter The plot and, optionally, the data table.

Navigator The contents of the Navigator as it appears on the screen.

Notebook The contents of the Notebook as it appears on the screen.

Hierarchical block
worksheet

A picture of the worksheet as it appears on the screen. If you print more than one
layer, it will also print the model worksheet.

Help text The text from the current Help choice.

Text file The text in the file.

Library window A picture of the library window.

Structure
window

All the panes from the structure window and the dialog editor window of a block
(see the Developer Reference for more information).

Miscellaneous 673
Printing

H
ow

 T
o

• After you have selected what to print, the system’s standard Print dialog allows you to specify
particulars about the print job. For example, you can set the number of copies to be printed and
(for model worksheets and Notebooks) the range of pages.

Worksheet, dialog, or plotter active
When you give the Print command with the worksheet, dialog, or plotter active, an ExtendSim
Print dialog opens.

The available options are:

Option Description

Print model
worksheet

Prints the contents of the worksheet.

Top hierarchical level
only

Only shows the worksheet’s top level (not the contents of hierarchical
blocks).

Levels Specifies how many levels of hierarchical blocks to print (each level will
print on a separate page).

Add frame Puts a border around the printed worksheet.

Print Notebook Prints the contents of the Notebook.

Print dialog boxes Prints the contents of the dialogs.

Selected blocks Specifies that only the dialogs of selected blocks will be printed.

All blocks Specifies that the dialogs of all blocks in the model will be printed.

Top tab Prints only the top tab of the dialogs.

All tabs Prints all tabs in the dialogs.

Top plot only Prints only the visible plot.

All plot pages Prints all four of the plot pages.

Include plot data tables Also prints the data tables in the plotters.

Include dialog data
tables

Also prints the complete data tables in the dialogs.

ExtendSim Print dialog

674 Miscellaneous
Copy/Paste and Duplicate commands

H
ow

 T
o

Structure or dialog window active
When a block’s structure or dialog window is the active window,
choosing the Print command gives you a special ExtendSim Print
dialog before the standard Print dialog. This special dialog is shown
on the right. The structure and dialog windows are only open if you
are working on the structure of a block - its code, dialog, icon or
help.

Printing and Print Setup hints
If you print the model worksheet, a hierarchical block’s structure
window, or the Notebook, the standard Print dialog allows you to print all or only some of the
pages. The File > Show Page Breaks command displays page breaks in an active worksheet or Note-
book window. It also shows the page numbers in the upper left corner of the displayed pages to
help you choose which pages to print. If the Show Page Breaks command is selected for a model,
that setting is saved with the model but is not saved for the model’s Notebook.

The Model > Show Block Numbers command causes block numbers to appear on their icons.
Block numbers are unique identifiers for each block and appear in the title bar of the block’s dia-
log. Choosing this command before you print the model worksheet and dialog boxes will help to
match dialogs of blocks with their icons in the model.

ExtendSim will automatically print default headers and footers on each page. The Options dialog’s
Misc tab contains a preference to enable or disable the printing of headers and footers (see
“Options” on page 688).

Copy/Paste and Duplicate commands
The Clipboard is useful for passing information within ExtendSim or between ExtendSim and
other applications. The information that is passed will be either in the form of ASCII text or
graphics (Windows: a Windows metafile; Mac OS: PICT graphics). ExtendSim uses the Cut,
Copy, Paste, and Duplicate commands in the Edit menu just like other programs. You can see the
contents of the Clipboard with the Edit > Show Clipboard command.

☞ Before you choose the Edit or Duplicate command, it is important to select the tool from the tool-
bar which will allow you to copy the desired items. For example, choosing the All Layers tool and
frame-selecting a section of a model causes all items in the frame (blocks, drawing objects, clones,
etc.) to be selected and available for copying. However, if you use the Block/Text Layer tool, only
blocks and text will be selected.

Copying within ExtendSim

Blocks
If you copy and paste or duplicate blocks within ExtendSim, the Clipboard also holds block
parameters and connections. This allows you to duplicate portions of models, including the vari-
ables in the dialogs of the blocks, to another section of a model or to other ExtendSim models.

Drawing objects and text
Copy or duplicate drawing objects and stylized text from one section of a model to another section
or from one model to another. To copy text, select the text as a block, rather than selecting the text
within the text box.

Miscellaneous 675
Copy/Paste and Duplicate commands

H
ow

 T
o

Data
Data can be copied from parameter entry fields and data tables and pasted into other entry fields
or data tables.

☞ When copying data tables within ExtendSim, Allow data table titles copying should not be
selected on the Misc tab of the Options dialog. If it is, the titles will be added to the data and will
cause the original data to be displaced.

Copying from ExtendSim to other applications

Data
Data from parameter fields and data tables can be copied from ExtendSim and pasted into other
applications such as word processors and spreadsheets. When you copy data, ExtendSim puts the
data into the Clipboard as unformatted text.

For more information, see “Copy/Paste” on page 625.

Pictures
Plot panes, Notebooks, parts of models, and dialogs are available as pictures to be copied from
ExtendSim into other programs:

• Copy an ExtendSim plot pane to other programs for use in reports or presentations. To do this,
simply click in the plot pane, then choose Edit > Copy Plot.

• Notebooks and models contain various types of items such as drawing objects, cloned dialog
items, and so forth. Before choosing the Copy command, it is important to select the tool from
the toolbar that will allow you to copy the desired items. For instance, to copy an entire Note-
book, choose the All Layers tool from the toolbar. Then frame-select the entire Notebook (or
choose Edit > Select All) and choose Copy.

• To copy all or parts of a block’s dialog, choose the Clone Selection tool from the toolbar and
select the dialog items you want to copy using any conventional method (frame-select, shift-
select, etc.). Then choose Edit > Copy to Picture. To paste the contents of the Clipboard into
Microsoft Word, for example, choose Edit > Paste Special.

☞ Copying an ExtendSim picture into the Clipboard changes it into a drawing object. To paste the
contents of the Clipboard into the receiving document, it is common to use the Edit > Paste Spe-
cial command.

When it is not possible to copy parts of a model directly using the Copy command (such as for the
entire plotter window), do the following:

• Windows: Use the Ctrl + Prnt Scrn key combination to save the entire screen as a bitmap. Or
use a capture program to capture specific parts of the screen.

• Mac OS: Use the Command + Shift + 3 key combination to save the selection as a picture. Or
use a capture program to capture specific parts of the screen.

Copying from other applications to ExtendSim

Data
You can copy data from other applications into an ExtendSim parameter field, data table, text file
or database. However, if there is a lot of data it is usually better to import the data into a data table

676 Miscellaneous
Tool tips

H
ow

 T
o

or into an ExtendSim database. For more information, see “Exchanging data with external applica-
tions” on page 657.

Pictures and text
Pictures and text can be copied into ExtendSim in color or black-and-white to use on model win-
dows, Notebooks, hierarchical windows, or in the icon pane of a block’s structure window. Create
a picture with a painting or drawing program and copy the picture to the Clipboard. Then paste
the copied picture into an ExtendSim window with the Edit > Paste Picture command.

☞ It doesn’t matter what the original file format for the text or graphic was (JPEG, TIFF, GIF, etc.)
Once it has been copied into the Clipboard, ExtendSim treats it as a drawing object.

In the model and Notebook windows, ExtendSim will paste the text or graphic object wherever
you last clicked on the window. Pictures and text pasted from another program into ExtendSim
become a drawing object which can be resized and repositioned using the Draw Layer tool.

Pictures are treated like other drawing elements. For example, use the Draw Layer tool to drag a
picture around the window and resize it however you want. Or use the Model menu commands to
rotate or flip the picture, To delete a picture, select it with the Draw Layer tool and choose Edit >
Clear or press the Backspace or Delete key. Pictures that are copied, like objects created with
ExtendSim’s drawing tools, always go behind ExtendSim blocks and text.

☞ Pictures can be proportionately resized. To do this, hold down the Shift key as you reshape the pic-
ture. It will resize with all dimensions proportional to the original.

Tool tips
Tool tips can be turned on or off in the Edit > Options dialog. They help to quickly identify block
information without having to open the block’s dialog.

• Resting the cursor above a block causes a small window to appear containing the block’s name,
its local and global numbers, and (if Include additional block information is selected) the first
sentence of the block’s online help.

• Placing the cursor over an input or output connector gives information about it, such as its
name and the number of items that have exited or the block’s constraining rate.

• Tool tips also exist to identify the variable name for block dialog items. This can be helpful when
programming custom blocks and is discussed further in the Developer Reference.

Changing parameters dynamically
Another name for the variable or constant number you input in a model‘s blocks is “parameter.”
Parameters that do not change during the entire simulation run are static. It is more likely that you
would want to have a model parameter change dynamically.

One of the most powerful features in ExtendSim is the ease with which you can dynamically
change the parameters of a block during the course of the simulation. This is usually done to rep-
resent the value of the parameter as a function of something else in the simulation model. You may
also want to change a parameter to allow someone else to “game” (modify a value manually) to see
how a change impacts the simulation.

Methods
There are a number of means for changing parameters dynamically:

• The most common method is to use the connector that corresponds to the dialog parameter
field. Connect this to a block that calculates the desired value, such as a Random Number or

Miscellaneous 677
Sharing model files

H
ow

 T
o

Lookup Table block (Value library). This approach visually shows the connection between the
parameter value and where the value comes from. In general, this is also computationally effi-
cient since only the blocks connected to the parameter are recalculated.

• A second approach is to link the parameter field with a record in an ExtendSim database. To do
this, right-click the parameter and select create/edit dynamic link. (You can also create this link
programmatically by creating a custom block that links the parameters of other blocks with an
ExtendSim database or global array.) Whenever the linked value in the database changes, the
parameter will change as well. This method hides the relationship between the parameter and
where it is calculated, however it is very useful for centralizing the location of certain parameters
in the database or for broadcasting the same value at the same time to a number of blocks
throughout the model.

• In a discrete event model, some blocks (such as the Activity or Equation (I) block) allow you to
specify a property value for a parameter. Using an item’s property is an easy way to make the
parameter value a function of the item in the block.

• Sensitivity analysis allows you to change a parameter from one simulation run to the next. Sensi-
tized parameters change values at the start of each new run. They can change randomly, based
on a value in a file, or by a fixed increment. Changing parameters is useful for sensitivity analysis
and Monte Carlo simulation. To utilize sensitized parameters, the number of simulation runs
must be greater than one. For a complete discussion, see “Sensitivity analysis” on page 568.

• Some blocks allow you to specify that a parameter is random. While this is not directly changing
the parameter dynamically, this feature allows you to simulate a parameter that changes ran-
domly each time the block is recalculated.

• There are other methods, such as calling the SetDialogVariable function in an equation block or
custom block, but these are generally just used for specific situations.

Sharing model files
You may want to provide access to models you have built, without giving users the ability to
change the models. ExtendSim provides two methods for preventing changes being made to mod-
els:

• Locking a model to prevent anything other than parameter changes when the model is run in
the full version of ExtendSim.

• Using the LT-RunTime version of ExtendSim to open and run models.

Locking the model
Locking a model is especially useful when giving the model to others who may accidentally move
or delete blocks or anytime you want to prevent changes to a model’s layout. The Model > Lock
Model command prevents any modification of a model other than changing dialog values. Since
this command hides many of the tools in the toolbar, the user also cannot add or change connec-
tion lines, drawing elements, and so forth.

This command does allow the user to save the model and any dialog value changes. If they give the
command File > Save Model As, the new model will also be locked.

When this command is selected, a dialog opens for entering an optional password to further pro-
tect the model. To lock a model without using a password, leave the password fields blank and
click OK. (Note that, if a password is not used, any user can unlock the model.) To unlock a
model, simply choose the Lock Model command again and enter the password, if any.

678 Miscellaneous
Sharing model files

H
ow

 T
o

The Lock Model dialog also has a Lock H-Blocks checkbox. Select this to prevent a user from dou-
ble-clicking a hierarchical block to see the underlying submodel.

Once you have locked a model with a password, you must have that password to unlock the
model. Always make unlocked copies of models before you lock them.

The ExtendSim LT-RunTime version
If you develop models for others, the intended user may not have a need for the full version of
ExtendSim. For instance, you might want to distribute a model as part of the response to a
Request for Proposal or to showcase your consulting capabilities to potential clients. Or you may
want to provide models to your company’s sales staff so they can show customers the outcomes of
various equipment or service options. The ExtendSim LT-RunTime version provides a low-cost,
convenient method for distributing the models you build (and your libraries, if you program).

The LT-RunTime version allows users who do not have the full version of ExtendSim to:

• Run models of any size

• Enter or import parameter values into a model

• See and export results

• See animation in the model, if the model includes that feature

• Build small models for a limited time (up to 75 blocks for up to 180 days)

• Save changes (except to models that are locked)

• Print models, dialogs, and so forth

☞ To prevent end users from using the LT-RunTime version to make changes to your models, use the
Lock Model command discussed on page 677.

The limitations of the LT-RunTime version are:

• The model-building capability is limited to models of 75 blocks and expires after 180 days.
While a model larger than 75 blocks is running, or after the expiration period, the application
changes to RunTime mode. At that point, end users can only run models. They will no longer
be able to build a model, add or remove blocks from models, or alter connections between the
blocks.

• Libraries converted to RunTime format cannot be used for model building. So that the end user
can run models you give them, but not use your libraries to build models, convert your libraries
to RunTime format using the full version of ExtendSim (see “Convert Library to RunTime For-
mat” on page 697).

• The scripting functions that place or create blocks are not enabled.

• As with any other application, distribution and usage rights are limited.

 The ExtendSim LT-RunTime version is licensed to a single user for that user’s personal use on a
single computer. For information about any other use, such as distributing an LT-RunTime ver-
sion on a CD or from your web site (“right to distribute”), or distributing ExtendSim’s functional-
ity or use to others on an intranet or through the internet (“ASP license”), contact Imagine That
Inc.

Reference

Menu Commands and Toolbars
A reference section describing

each menu item and tool

“I wish it, I command it. Let my will
take the place of a reason.”

— Juvenal

680 Menu Commands and Toolbars
ExtendSim menu (Mac OS only)

A
pp

en
di

x

This chapter explains all the commands that appear in the menus and the circumstances in which
you might use them. At the end of this chapter is a description of the tools in the application tool-
bar and ExtendSim database.

ExtendSim menu (Mac OS only)
The ExtendSim menu is used to Quit ExtendSim or to Hide its windows. An additional choice,
About ExtendSim, opens a window that lists the ExtendSim product, version and serial number
and the registered user of the license. If you open the About ExtendSim window, click on the win-
dow to close it.

File menu
The File menu lets you open, save, close, and print model
and text files. Most of the commands in this menu act just
like they do in other applications.

☞ Library files are opened from the Library menu, shown on
page 695. Databases open when the model opens, as
described at “Database menu” on page 700.

New Model
Opens an untitled model window.

New Text File
Opens an untitled text file window. You can use this to create
text files for the Read and Write blocks, as input to sensitized
blocks, or for any other ExtendSim feature that uses a text file
as input. See “Text files” on page 663 for more information.

Open
Opens an existing model or text file. (Any libraries and data-
bases that the model uses open when the model opens. To
open a library file, use the Open Library command described
on page 695.) You can also open a model by double-clicking
the model file; this action will launch ExtendSim before
opening the model.

You can have any number of models open at the same time;
open models are listed at the bottom of the Window com-
mand. When ExtendSim opens the model, it also opens any
libraries that are used by the model.

☞ If ExtendSim can’t find a library used by a model, the message Searching for library... will appear
as described in “Searching for libraries and blocks” on page 491. If ExtendSim cannot find all of
the blocks used in the model, the missing ones will be replaced with text blocks. When this occurs,
ExtendSim will open the model as Model-x to prevent accidentally saving over the old model.

Close
Closes the active window. For example, closes a model if the model worksheet is the active window
or closes the model’s Notebook, if the Notebook is the active window.

Menu Commands and Toolbars 681
File menu

A
ppendix
Revert Model/Revert Text File
Depending on whether a model or a text file is the active window, reverts the model or text file to
the version saved on disk, discarding any changes since the last save. ExtendSim warns you before
it completes this command.

Save Model and Save Model As
Saves the model in the active window to disk. Choose Save to save the file under the current name
or Save As to give a new model a name or to save a model under a new name.

☞ If a crash occurs during the save process, your original file could get corrupted. To protect against
file corruption, prior to saving any new changes ExtendSim makes a copy of the previously saved
version of the model and saves it as ModelName.BAK. To recover a model from a backup file,
add a .MOX extension after the .BAK, then open the backup file from the File menu. You may
choose to have ExtendSim automatically save backup files or delete them when a save is successful
(see “Options” on page 688).

Save Text File and Save Text File As
Saves the text file in the active window to disk. Choose Save to save the file under the current name
or Save As to give a new text file a name or to save a text file under a new name.

Update Launch Control (Windows only)
Select this command to cause the currently active Extend or ExtendSim application to open when
a model (.mox) or library (.lix) file is double-clicked. This is only applicable if you have more than
one instance of the Extend or ExtendSim application on your computer and you want to cause a
specific instance of the application to open when you double-click files. For example, you would
use this command if you have both ExtendSim 7 and Extend 6 installed, and you want model files
to automatically launch ExtendSim 7 when they are double-clicked.

The application in which this command was last given will control the launching of the model and
library files. To switch applications that will launch those files, just give the command in the Edit
menu of whichever application you want to be in control of launching.

Import Data Table
Copies data from a text file into the selected table. After choosing
the file to be imported, the Column Separator dialog appears.

You must specify how the columns in the text file are delimited
(separated); rows are automatically separated by returns. Most
text files that are exported from other applications have columns
delimited by tabs; check the format of the text file before choos-
ing Import Data. For more information, refer to “Importing
and exporting data” on page 626.

☞ A table from a database, dialog or plotter must be selected before
this command can be used.

Export Data Table
Copies data from a selected table to a text file. It works the oppo-
site of the Import Data command. After you give the file name,
ExtendSim puts up the column separator dialog (as shown in the previous section), so you can
specify what type of separator to use in the text file. You can read the text file in ExtendSim or in a

Column Separator dialog

682 Menu Commands and Toolbars
File menu

A
pp

en
di

x

word processing or spreadsheet application. For more information, refer to “Importing and export-
ing data” on page 626.

☞ A table from a database, dialog or plotter must be selected before this command can be used.

Import DXF File (Windows only)
Imports CAD drawings in standard DXF format from AutoCAD v13 or earlier or other CAD pro-
grams. The drawing becomes a graphic image which can be used as a background picture in the
model, the notebook, or on an icon.

Show Page Breaks
Causes ExtendSim to draw a set of page boundaries on the active window and place page numbers
in the upper left hand corner of each page. These page boundaries show where page breaks will
occur if you print the window. Since the size of a page is dependent upon the settings in the Print
Setup (Windows) or Page Setup (Mac OS) command, it is recommended that you make your
Print or Page Setup choices before showing page breaks.

When you choose Show Page Breaks, this menu item has a check mark next to it. To hide page
breaks, select this command again.

☞ This command works independently for each active window (each model worksheet, Notebook,
dialog window, and so forth). If the command is selected for a model, that setting is saved with the
model but is not saved for the model’s Notebook.

Print Setup (Windows) and Page Setup (Mac OS)
Sets the printing parameters (paper orientation, reduction or enlargement, etc.) for the printer you
are using. Choose this command after changing printers or whenever you want to change the
printing parameters. Printing parameters are saved with a model.

Print
Prints various ExtendSim docu-
ments. If the worksheet, dialog,
or plotter is the active window,
ExtendSim first displays the
Print Options dialog.

As discussed in “Printing” on
page 672, you can choose to
print the model itself, its Note-
book, and/or the dialogs of the
blocks in the model. For models
with hierarchical blocks you can
print just the top level or any
number of hierarchical levels. Selecting Add frame causes ExtendSim to print a border around the
worksheet.

With block dialogs, you can specify to print them for just the selected blocks or for all of the
blocks in the model. You can also choose to print just the top tab or all the tabs in block dialogs.
Since some dialogs have long data tables, you can specify whether or not to print the entire data
table. If you choose Show Block Numbers or Show Simulation Order from the Model menu
before you choose Print, the blocks will print with that information on them.

Print Options dialog

Menu Commands and Toolbars 683
File menu

A
ppendix
For plotters, you can print just the top plot page or all pages, and you can also print the (usually
lengthy) data tables from the plotters.

If you program, the structure and dialog windows have their own print dialog that lets you choose
to print the ModL code, the dialog window, the connector names, the icon, or the help text.

The Print command also lets you print individual windows, such as the Notebook, the dialog, or
the plotter window. When one of these windows is the active window, the Print command will
print the contents of that window.

Network License (Windows only; network license only)
This command is only enabled if the ExtendSim application is a
concurrent-user network license.

Network licenses require that the ExtendSim Network License
Manager software be installed on a server as a Service. The
ExtendSim application and files are then either installed on the
server (such that client computers use ExtendSim in memory) or on
the hard drives of individual client computers (such that the client
computers use a local installation of ExtendSim).

License Info (Network license only)
Provides information about the network license, such as the maximum number of concurrent users
allowed, the number of current users, utilization, and the name of the server that has the license
management file.

Check Out License (Network license only)
Allows you to temporarily check out a license on a client computer, such as for a laptop that is to
be used offsite. Checking out a license reduces the maximum number of concurrent users the
server will allow. That number will be restored when the license is properly checked back in.

 To permanently remove a client computer from the license network, see the Remove License com-
mand, below.

Check In License (Network license only)
After reconnecting the client computer to the license network, use this command to return a
license that had been temporarily checked out from the network. This also restores the number of
concurrent users the server allows.

Remove License (Network license only)
Use this command to permanently remove a client computer from the license network. This action
deletes the information that would enable the client installation of ExtendSim to connect to the
server’s license management application. You can then uninstall ExtendSim from that client. (If
you don’t uninstall ExtendSim from the client computer, the next time ExtendSim is launched it
will not be able to run unless you supply the connection information.)

☞ To temporarily remove a client computer from the license network, see the Check Out License
command above.

Properties
Shows information about the selected block or blocks, including Controls, hierarchical blocks,
size, X-Y pixel location, creation and modified dates, and which library (if any) the selection came
from.

Network License menu

684 Menu Commands and Toolbars
Edit menu

A
pp

en
di

x

Five most recent models or text files
The five model or text files with which you have most recently worked are listed near the bottom
of the File menu. To open, select one of the files.

Exit/Quit
Leaves ExtendSim. If there are any model files with unsaved changes, you are first prompted
whether you want to save them.

Edit menu
The Edit menu contains the standard Cut, Copy, and Paste
commands as well as commands for directly linking with
internal data sources and external applications, performing
sensitivity analysis, and specifying global options.

Undo
Reverses the most recent action. You can undo commands,
moving blocks, and so on.

Cut
Removes the selected item (such as a block, some text, or
numeric data from a data table) and places it on the Clip-
board. You can see the current contents of the Clipboard by
choosing Edit > Show Clipboard.

Copy
Copies the selected item to the Clipboard. You can see the
current contents of the Clipboard by choosing Edit > Show
Clipboard. Copying is useful for duplicating parts of a model
as well as for exporting to other applications. You can copy a
single block, a piece of text, a group of blocks and text,
graphical objects, or numeric values from a data table. You
can also copy sections of the Notebook or dialog box as a
picture.

☞ The items copied (blocks and text, drawing objects, etc.)
depend on the selection tool used to make the selection.

Copying data and pictures is discussed in “Copy/Paste” on
page 625.

Paste
Copies the contents of the Clipboard to the model. If the
Clipboard contains text, a block, or a graphic item, the cop-
ied item is placed at the insertion point. For example, if you copy a block, click on the model
worksheet, and then use the Paste command, the block will be pasted where you clicked the
mouse. If there is no insertion point, the item is placed in the upper left corner of the window.

Clear
Removes the selected item. The menu changes to indicate what is selected, such as “Clear Data” or
“Clear Blocks”.

Menu Commands and Toolbars 685
Edit menu

A
ppendix
Delete Selected Records
Removes the selected records from the currently active ExtendSim database table.

Select All
Selects all the items, such as all the blocks in a model or all the text in a field. The items selected
(blocks and text, drawing items, and so on) depend on the selection tool chosen in the tool bar.

Duplicate
Makes a copy of the selected item and puts it near the original item. This is faster and often more
convenient than copying and pasting an item.

Find
This command displays a different dialog
depending on whether or not text (such as
text within a text box or within the code pane
of a block’s structure window) is selected.

If text is not selected, the dialog to the right
appears. This dialog finds a block by its global
block number, name, label, or category, or
locates a text block by its global block number
or by the text contained within the text block.
Global block numbers are unique, perma-
nent identifiers for blocks and text blocks.
Name means the name of the block in the
library menu (e.g. Equation). Block labels are
defined by the user in the block dialog and are
especially useful to find types of blocks. Cate-
gory refers to how the block is classified in the
Library menu (e.g. Inputs).

You can also choose to open the dialog of the block once it is located. This command is useful for
large models when you are looking for specific blocks.

If text is selected (such as within a text box or within the code pane of a block’s structure window),
this command presents the following dialog.

Find text dialog

In this dialog, enter the text you want to search for in the Search for: edit box. The Match
Words option tells ExtendSim to match whole words only. In that situation, for example, boxer
would not be found by a search specifying box as the Search for: string. The Wrap Around
choice tells the command to begin searching from the top of the ModL code if it did not find the
text before the end.

The Replace with: edit box is used for finding and replacing at the same time (see Replace).

Find block dialog

686 Menu Commands and Toolbars
Edit menu

A
pp

en
di

x

ExtendSim searches for text starting at the current selection and going to the end of the text. If the
specified string is found, the string is selected. If it is not found, the insertion point is not moved.

☞ See the Find and Replace block (Utilities library) for additional block search capabilities, including
the ability to find a dialog value and replace it with another value.

Find Again
Repeats the most recent find operation using the same search string.

Replace
Replaces the currently selected text with the text in the Replace with: edit box from the Find dia-
log. (Note that you can select text directly, in which case the text contained in the Search for: box
in the Find dialog may not be the same as the text you have selected and are replacing.) If there is
no text in the Replace with: edit box, the selected text is deleted.

Replace, Find Again
Replaces the currently selected text with the contents of the Replace with: box in the Find dialog,
then performs another Find command. Note that, if there is no text in the Replace with: edit box,
the selected text is deleted.

Replace All
Replaces every instance of the text in the Search for: box with the text in the Replace with: edit
box in the Find dialog.

 You cannot undo a Replace All command, so use it with caution.

Enter Selection
Chooses the selected text to be the search string. This puts the text in the Search for: edit box of
the Find dialog and also determines the search string to be used for the Find Again command. This
is useful if you want to find the next instance of some text that is already in the code.

Create/Edit Dynamic Link
Links a block’s parameter field or data table to an internal data structure (ExtendSim database or
global array). This action creates a two-way dynamic link between the data structure and the dialog
item. Dialog parameters can be linked to a cell in a global array or database table; dialog and plot-
ter data tables can be linked to a global array or database table. Although you can link data tables
to a database table, you cannot link an individual cell in a data table to a cell in a database.

☞ The Create/Edit Dynamic Link command is only used for linking parameters and tables to inter-
nal data structures. Use the DDE link commands, discussed at “Paste DDE Link (Windows
only)” on page 687, to link parameters and cells to external applications

When you give the Create/Edit Dynamic Link command, a dialog appears with a popup menu to
select the data structure. Depending on the structure selected, other options are presented. To
delete a dynamic link, click the linked parameter or select the linked data table and give the Cre-
ate/Edit Dynamic Link command. In the dialog, choose Delete Link.

The command is equivalent to right-clicking the dialog item and choosing Create/Edit Dynamic
Link, or (for a data table) clicking the Link button. Dynamically linked parameters are outlined in
light blue. Dynamically linked data tables display the words DB (database) or GA (global array) in
their upper left corner. For more information, see “Dynamic linking to internal data structures” on
page 629.

Menu Commands and Toolbars 687
Edit menu

A
ppendix
.☞ Another type of internal data source is a dynamic array, which is implemented through a block’s
code. You cannot use the Create/Edit Dynamic Link command to link to a dynamic array. How-
ever, if a data table is already linked to a dynamic array, its upper left corner will be blue.

Open Dynamic Linked Blocks
Depending on options selected in the dialog, opens the dialogs of all blocks that have a parameter
field or data table dynamically linked to an internal data structure (ExtendSim database, global
array, or dynamic array). For more information, see “Finding linked dialog items” on page 635.

Sensitize Parameter
If a dialog parameter is selected, this command opens the Sensitivity Setup dialog, which lets you
set values for sensitivity analysis. An alternate method of opening the Sensitivity dialog is to click
on the dialog parameter once while holding down the Control (Windows) or Command (Mac
OS) key.

A parameter that has sensitivity settings has a frame inside of it. If sensitivity analysis is active for a
parameter (that is, if the Enable sensitivity choice is checked in the Sensitivity Setup dialog), the
frame is green. If the sensitivity analysis is inactive for the parameter or if it is turned off for the
model as a whole, the frame is red.

Sensitivity analysis is discussed in “Sensitivity analysis” on page 568.

Open Sensitized Blocks
Opens the dialogs of all blocks that have sensitized parameters. This is useful for finding which
blocks are used in the scenario. The command opens dialogs with sensitized parameters even if
sensitivity has been disabled for a parameter or is not active for the entire model. For more infor-
mation, see “Sensitivity analysis” on page 568.

Paste DDE Link (Windows only)
Copies the contents of the Clipboard to the selected parameter fields or data table cells. This
action creates a DDE link so that data from an external application is live-linked to ExtendSim.

This command will only be active if all of the following is true:

• The external application supports linking through DDE

• The external file has been named and saved, but is open

• There is data in the Clipboard that has been copied from the external application

• You have selected a dialog parameter or group of data table cells in ExtendSim to paste to

Parameters or data table cells that have been linked with this command are outlined in yellow. For
more information, see “DDE links (Windows only)” on page 636.

☞ The DDE Link commands only relate to ExtendSim’s interaction with external applications. See
the command “Create/Edit Dynamic Link” on page 686 for linking parameters and tables to
ExtendSim’s internal data structures.

Delete DDE Link (Windows only)
Unlinks the selected parameter field or cell from the external application. This action does not
change the value in the field or cell, but the field or cell will no longer be linked to the other appli-
cation.

688 Menu Commands and Toolbars
Edit menu

A
pp

en
di

x

Show DDE Links (Windows only)
Opens any block dialogs that have DDE links to external applications.

Refresh DDE Links (Windows only)
If linked applications are open and links appear to be working incorrectly, this command will
attempt to reestablish existing links between ExtendSim and the external application.

Insert Object (Windows only)
Brings up a list of registered embeddable objects - OLE component objects or ActiveX controls
from an external application that can be inserted into an ExtendSim worksheet or block’s dialog.
For information about the options in this dialog or about embedded objects in general, see
“Embedding an object (Windows only)” on page 655. For information about OLE or ActiveX, see
“ActiveX/COM/OLE (Windows only)” on page 665.

Design Mode (Windows only)
The way embedded objects behave in and out of Design Mode is dependent on the type of object.
In general, this command causes the external source application to open when an embedded object
is double-clicked. For an embedded object that is activated by a single click, Design Mode changes
the single-click behavior from activation to selection, allowing the embedded object to be selected
and moved without activating it.

For example, clicking a Graphics Server control object when you are not in Design Mode will have
the effect of “in-place-activating” it. In Design Mode, double-clicking the object opens a Property
Pages Graphics Server dialog for customizing its settings.

Object (Windows only)
Some embedded objects from external applications have options that can be supported in
ExtendSim. Selecting an object enables this menu command. The contents of it submenu depend
upon the type of embedded object; many objects do not have options.

Show Clipboard
Shows the contents of the Clipboard in its own window.

Options
Lets you specify how you want ExtendSim to behave. Note that this is different from the Simula-
tion Setup command which only affects the running of a specific model. The Options command
controls actions for all models and has six tabs: Model, Libraries, Programming, Model Style, 3D,
and Misc.

Menu Commands and Toolbars 689
Edit menu

A
ppendix
Model tab

Option Description

Use default connection
line types

Specifies whether or not ExtendSim uses the default connection line types
when creating new connections (see “Connection lines” on page 557).

Default connection line
style is right angle

Sets the default for the Connection Lines command from the Model menu
to be right-angle connections instead of straight line connections.

Hierarchical blocks
have drop shadows

Determines whether there is a shadow around hierarchical blocks.

Tool Tips on worksheet Causes the block name, number, and library to be displayed when the cur-
sor is hovered over a block on the model worksheet. If you hover the cursor
over a connector, the connector name and value are displayed. Note that
Help captions for the tool bar stay on even if this choice isn’t selected.

Include additional
block information

In addition to the block name, number and library, when a cursor is hov-
ered over a block this command will cause additional information, such as a
description of the block, to be displayed.

Play sound at end of
run

Causes ExtendSim to play the default system sound at the end of every sim-
ulation run.

Metric distance units Specifies that default distance or length units in the Convey Item and
Transport blocks (Item library) is meters instead of feet. In the Convey Flow
block (Rate library), distance and length units are specified directly in the
block’s dialog and this setting is ignored.

Text file font Lets you specify the font and size of the characters for viewing and printing
text files.

Default model path If a model pathname is entered here, that model will open when ExtendSim
is launched (when ExtendSim is installed, Demo.mox is the default model.)
If no path is specified, ExtendSim will look for the model in the application
directory or folder.

Model tab of Options dialog

690 Menu Commands and Toolbars
Edit menu

A
pp

en
di

x

Libraries tab

Option Description

Automatic search Causes ExtendSim to automatically find and open the libraries used in a
model. If this is not selected, ExtendSim prompts you for the location of
each library that a model uses. See also “Substituting one library for
another” on page 495.

Alternate path By default, ExtendSim searches for libraries in the Libraries folder. This
choice specifies an alternate path for library searches. See also “Library
searches” on page 491.

Show library window
dates

Displays the modified and compiled dates for each block in the library win-
dows.

List blocks by category
in menu

Causes blocks in each library to be listed in hierarchical menus by category.
Deselect this choice if you want all of the blocks listed alphabetically.

Preload libraries Enter names of libraries you want automatically opened when ExtendSim
starts. Type in the name or use the Browse button to locate a library and
cause its name to be entered in the selected field. Note that ExtendSim will
still ask for the location of any libraries located outside of the active applica-
tion’s Libraries folder.

Open library window Opens the window of the library listed directly to the left of the checkbox
when ExtendSim is started.

Libraries tab of Options dialog

Menu Commands and Toolbars 691
Edit menu

A
ppendix
Programming tab

Option Description

Tool Tips on block dia-
logs

Displays the variable/message dialog names when the cursor is hovered over
dialog items in a block’s dialog.

Tool Tips on dialog edi-
tor

Displays the variable/message dialog names when the cursor is hovered over
dialog items in a block’s dialog editor window.

Structure window
opens in front

Opens the structure window in front of its dialog editor window. Deselect
this choice to cause the dialog window to open in front.

ModL font Specifies the font and size of the characters for viewing and printing the text
in the code pane of the structure window.

Programming tab of Options dialog (Windows)

692 Menu Commands and Toolbars
Edit menu

A
pp

en
di

x

Model Style tab

If a block developer provides for this feature, blocks can have alternate styles that affect their
appearance in a model. Model styles are saved as indexes so the developer can rename the style and
it will still work on a different computer. The radio button selects the style that will be used as a
default when a new model is created. This does not affect models that are open or already built.

3D tab

Option Description

Shadows Displays shadows on objects in the E3D window. Can cause animation to
slow down, since calculating shadows for many objects can be computation-
ally intensive.

Sounds Turns on the sounds for 3D objects, such ambient sounds, footfalls, vehicle
tire squeals, and sounds produced by calling the E3DPlaySound function.

Model Style tab of Options dialog (Windows)

3D tab of Options dialog

Menu Commands and Toolbars 693
Edit menu

A
ppendix
The 3D options only apply to ExtendSim products that include 3D animation. For more informa-
tion about the 3D animation, see the E3D module that starts on page 390.

Foot prints & vehicle
trails

Displays foot prints following the movement of people objects and vehicle
trails that follow vehicle movement.

MiniMap Displays a reduced map of the entire E3D window, including location
information. Especially useful when building a model.

3D window outside
application (after
restart)

Windows only. Specifies whether or not the E3D window is a child win-
dow of the ExtendSim application. If checked, the E3D window will be a
separate window that can be behind or in front of the ExtendSim applica-
tion window. Otherwise, the E3D window is contained within the applica-
tion window, like the model worksheet. Note: This option only becomes
active after ExtendSim is restarted.

Level of detail Controls the level of detail with which 3D objects are displayed in the win-
dow. You would only need to change from the default setting of Very High
if there are many objects on the screen and the display is slow.

Option Description

694 Menu Commands and Toolbars
Edit menu

A
pp

en
di

x

Miscellaneous tab

Option Description

Save Print Setup set-
tings

Windows only. Causes models to retain the settings specified in the Print
Setup dialog. Caution, this may not transfer successfully from one com-
puter to another because of differences in printer drivers.

Print header/footer Prints the header and footer information for all files.

Allow data table titles
copying

Specifies whether or not the Copy command copies row and column titles
when copying from a data table. Select this option if you want to copy the
titles, such as when you are copying to another program. Do not select this
if you are copying into another table within ExtendSim.

Plotter traces default to
patterns

Draws plotter traces with a pattern, allowing traces to be visible on a black
and white monitor.

Save backup model files When a Save command is given, renames the existing model to “Model-
Name.BAK”, then saves the model. This is a precautionary measure, so the
original model file won’t be overwritten when it is saved. See also “Save
Model and Save Model As” on page 681.

MDI Interface (after
restart)

The MDI (Multiple Document Interface) is off by default.

Misc tab of Options dialog

Menu Commands and Toolbars 695
Text menu

A
ppendix
Text menu
The Text menu is used to set the style of text in the model and
to temporarily set the style of text in text files. The choices are
the same as in most applications. The Border command draws
a shadowed border around the text box. The Transparent
command causes the background of the text to be transparent.
If the Transparent command is not selected, the background of
the text is white. For more information about using text, see
“Working with text” on page 538.

☞ If you make changes to the settings in the Text menu before you
enter text, those changes will apply to all text entered after the
changes. To change only an existing piece of text, select the text
within its text box, then change the Text menu settings. In that
case, Text menu changes will apply only to that existing piece of
text, and not to text you subsequently enter.

Library menu
ExtendSim opens libraries automatically when you open models. To
open or close a library manually, use the Library menu. For more infor-
mation about libraries and their usage, see “Using libraries” on
page 490.

Open Library
Opens a library file. This causes the library’s name to appear in the
Library menu in alphabetical order. To view the blocks in the library,
click the Library menu and drag down to the name of the library.
When the library name is selected, blocks will be listed to the right of
the menu either alphabetically or by category, depending on the option
selected in Edit > Options >Libraries tab. The first choice in each list is Open Library Window
to open a window listing the blocks in the library, as discussed at “Library windows” on page 493.

Close Library
Closes an open library. This command displays a dialog of the open libraries; select the library or
libraries to be closed from the list and click Close. Libraries that are in use cannot be closed. To
close multiple libraries, Shift select the libraries (or use the Ctrl (Windows) or Command key
(Mac OS)), then click Close.

New Library
Creates a new library. When you select this command, you will be presented with a dialog to spec-
ify the name of the new library.

Tools
Allows you to protect the code of blocks, set library versions, convert libraries to RunTime format,
and edit the Startup Screen for the LT-RunTime version.

696 Menu Commands and Toolbars
Library menu

A
pp

en
di

x

☞ Other than the two RunTime commands, the following commands are of interest only to block
developers.

Open All Library Windows
Opens all the library windows for libraries currently open in ExtendSim.

Compile Open Library Windows
Causes all libraries whose library windows are open to be recompiled. To activate the command,
open the library window for the desired library.

Compile Selected Blocks
Causes the selected blocks in the library to be recompiled. To activate the command, open the
library window for the desired library and select the desired blocks.

Add Debug Code to Open Library Windows
Causes all libraries whose library windows are open to be recompiled with Debugging code. To
activate the command, open the library window for the desired library and select the desired
blocks.

Remove Debug Code in Open Library Windows
Causes all libraries whose library windows are open to be recompiled without Debugging code. To
activate the command, open the library window for the desired library.

Add External Code in Open Library Windows
For each library whose library window is open, moves the source code for each block in the library
into a separate text file. This is useful for source code control. For more information, see the
Developer Reference.

Remove External Code in Open Library Windows
Moves the external source code back into each library’s blocks, for all libraries whose library win-
dows are open. For more information, see the Developer Reference.

Protect Library
Removes the ModL source code from all the blocks in a library so users cannot access block code.
This is discussed in the ExtendSim Developer Reference.

Library Tools choices

Menu Commands and Toolbars 697
Library menu

A
ppendix
 You would only use this command to protect libraries of blocks you build yourself. Do not use this
command with the libraries that are included with ExtendSim.

Set Library Version
Allows you to set the long and short version strings for the library. This is useful if you are pro-
gramming your own libraries and are concerned about version control.

Convert Library to RunTime Format
Changes a copy of a selected library to RunTime format. This removes the ModL code, as dis-
cussed in the Protect Library command, above. It also limits the use of the library:

• A RunTime formatted library can be read by an ExtendSim LT-RunTime version to run models,
but that library cannot be used to build models. (The ExtendSim LT-RunTime version is dis-
cussed on page 678.)

• The full version of ExtendSim cannot read libraries that are in RunTime format. Thus RunTime
formatted libraries cannot be used to run or build models in the full version.

Converting to RunTime format provides an easy method for providing libraries to others for eval-
uation or model running, while preventing those libraries from being used to build models.

RunTime Startup Screen Editor
Allows you to customize the startup screen of an LT-RunTime version of ExtendSim so that users
know who to contact if they have questions. To use this command, you must have an ExtendSim
LT-RunTime application installed on your hard drive. Note that you cannot personalize the star-
tup screen of the Demo-Player version.

MacWin Conversion (Mac OS only)
The libraries and extensions that come with ExtendSim are already formatted correctly for your
operating system. However, if you build your own libraries or create your own extensions, and
want to transfer them to a computer running a different operating system, you must convert the
files to the appropriate operating system format. Use this command on a Macintosh computer to
convert libraries and extensions to the specified operating system format, either Windows or Mac
OS.

List of libraries
As libraries are opened, they will be listed at the bottom of the Library menu in alphabetical order.

698 Menu Commands and Toolbars
Model menu

A
pp

en
di

x

Model menu
The commands in this window affect the parts of the
model window and the way that the window is viewed.

Make Selection Hierarchical
Encapsulates selected blocks into a single hierarchical
block and replaces those blocks on the model worksheet
with the hierarchical block. This is described in “Hierar-
chy” on page 540.

New Hierarchical Block
Starts a new hierarchical block. This prompts you for the
name of the new hierarchical block, then opens a blank
hierarchical block structure window for building the
model. This is described in “Building a new hierarchical
block” on page 543.

Open Hierarchical Block Structure
Opens the structure of a hierarchical block so you can
edit its icon or Help. Note that the hierarchical block
must be selected on the model worksheet. This command
is equivalent to holding down the Alt (Windows) or
Option (Mac OS) key while double clicking a hierarchi-
cal block on the model worksheet. See “Modifying hierar-
chical blocks” on page 548.

Connection Lines
Sets the format of the connection lines. These are described in detail in ““Connection lines” on
page 557.

Show Named Connections
Shows the connections between named connections. This is useful to show data flow in complex
models with many named connections. Named connections are discussed at “Named connections”
on page 560“.

Hide Connections
Hides the connecting lines between blocks. This is a cosmetic change that is mostly used to
enhance presentations. Select the command again to show the connecting lines.

Hide Connectors
Hides the connectors visible on blocks. This is a cosmetic change that is mostly used to enhance
presentations. Select the command again to show the connectors.

Controls
Allows you to add a control to the model. You can add a Slider, a Switch, or a
Meter. These are described in “Controls” on page 509.

Align
If two or more graphic objects, pieces of text, clones or blocks are selected, allows
you to align the objects on the left, right, top, or bottom.

Controls

Menu Commands and Toolbars 699
Model menu

A
ppendix
Rotate Shape
Rotates the selected shape or picture by 90 degrees clockwise. Especially useful when creating
rotated views for icons.

Flip Horizontally/Flip Vertically
These commands flip (reverse) the shape or picture either horizontally or vertically.

Border Thickness
Puts a border of specified thickness, or of no thickness, around shapes. The default is a black bor-
der; change border color using the Shape Fill/Border command, below.

Shape Fill/Border
Determines whether the color selected from the Color Palette is used to fill the shape or to color its
border. See also Border Thickness, above

Change Model Style
If a library developer has implemented this feature and blocks have more than one style, this com-
mand changes the visual style of blocks in the entire model. The command can also be accessed by
right-clicking the model. To set a default model style for new models, go to Edit > Options and
select the Model Style tab.

☞ If the developer has not implemented this feature in the libraries, changing model styles will have
no effect on the model. Most ExtendSim v7 libraries do not use this feature.

Lock Model
Prevents any modification to a model other than changing dialog values. Can also be used to lock
a hierarchical block. Locking models and hierarchical blocks is useful if you are giving the model to
others who are unfamiliar with ExtendSim’s features and may accidentally move or delete blocks.
For more information, see “Locking the model” on page 677.

 Once you have locked a model with a password, you must have that password to unlock
the model. Always make unlocked copies of models before you lock them.

Use Grid
Creates an invisible snap grid on the model worksheet, Notebook, or icon pane to help you draw,
move, and resize objects and blocks. The grid spacing is 4 pixels. While the grid is enabled, you
can snap the upper left hand corner of an item to the grid. To override the grid, hold down the Alt
(Windows) or Option (Mac OS) key as you move the object.

Show Block Labels
Shows the block labels below the blocks in the model. For more information, see “Working with
block dialogs” on page 29.

Show Block Numbers
Puts the block numbers in square brackets on the blocks in the model. Block numbers are unique,
permanent identifiers. Each block and text block in ExtendSim has a global block number. The
blocks inside a hierarchical block show two numbers - the first is the block’s global block number
and the second is the block’s local number within the hierarchical block.

700 Menu Commands and Toolbars
Database menu

A
pp

en
di

x

Show Simulation Order
Puts the number of the block’s order of execution on the blocks in the model. Hierarchical block
internals have their own simulation order relative to the parent block. Simulation order is dis-
cussed at “Simulation order” on page 86.

Because blocks can override the system’s simulation order, this display may be inaccurate for dis-
crete event (Item library) and discrete rate (Rate library) blocks that send block-to-block messages.

Set Simulation Order...
Sets the number of the block’s order of execution in the model. See “Simulation order” on page 86.

Database menu
You can create relational databases in ExtendSim to store
data for use in a model and to store model outputs. Data-
bases are especially useful for managing data in complex
models.

☞ Databases are stored with the model. Databases automati-
cally open when the model opens and are automatically
saved or closed when the model is saved or closed.

To bring a database window to the front, do one of the fol-
lowing:

• Click its name at the bottom of the Database menu.
• Select the Navigator tool and choose its Database List

mode. Then double-click the database you want to
access.

• Go to Window > Database List and double-click a data-
base in the list.

☞ The tools for the database window are shown on page 714.
For more information about creating and using ExtendSim
databases, see “ExtendSim databases for internal data stor-
age” on page 638.

New Database
Opens a dialog for naming and creating a new ExtendSim Database for the model. The dialog also
shows a list of the model’s current databases so you can avoid using a duplicate name (ExtendSim
will warn you if you try to use a duplicate name.) After naming the database, select OK to go to
the database window.

Import New Database
Creates a new ExtendSim Database by importing an entire database from an exported ExtendSim
or SDI Industry database. In the dialog, select the database text file to import. This command
imports all the tables, fields, records and so forth from the exported file and creates a new database.
If you choose the name of an existing database, it will be replaced. To import tables to an existing
database, such that the database tables are appended at the end of the database, see the Import
Tables command, below.

Menu Commands and Toolbars 701
Database menu

A
ppendix
Export Database
Exports the entire ExtendSim Database into a text file. You do this so you can import the database
into another model, to send the database to another user, or to prepare a database text file for use
by the ExtendSim Excel Add-In. To export only specific tables from a database, see the Export
Selected Tables command, below. Exported databases can only be imported to ExtendSim or to
the ExtendSim Add-In for Excel. To enable this command, bring a database window to the front,
as described under Database menu, above.

Rename Database
Renames an existing ExtendSim database. The database renaming dialog shows a list of the model’s
current databases, so you can avoid duplicating a name (ExtendSim will warn you if you try to
duplicate a name.) To enable this command, open an existing database by clicking its name at the
bottom of the Database menu when the model window is active or select a database in the list
when you go to Window > Database List.

New Table
Creates a new table for an ExtendSim Database and adds it to the list of tables in the database’s All
Tables tab. The dialog that appears displays a list of the database’s existing tables. After naming the
table, click OK. To enable the New Table command, bring a database window to the front, as
described under Database menu, above.

☞ To delete a table from a database, select the table and use the Delete or Backspace key or go to Edit
> Clear Table. A dialog displays the delete options and, if there is data dynamically linked to the
table, warns you before deleting it.

Import Tables
Imports tables from an exported ExtendSim or SDI Industry database and appends the tables to an
existing database. To create an entirely new database using imported files, see the Import New
Database command, above. Give the Import Tables command after opening an existing database.
In the dialog, select a file to import. This command imports all the tables from the exported file
and places them below the existing tables. If you end up with unneeded tables, you can delete
them; see also the Export Selected Tables command, below. To enable this command, bring a data-
base window to the front, as described under Database menu, above.

☞ To import data into a specific table from a tab delimited text file, such as from Excel, go to File >
Import Data.

Export Selected Tables
Creates and exports a ExtendSim Database text file containing only the selected tables. Use this
command instead of the Export Database command, when you want a file that contains only a
portion of the database. To enable the command, select one or more tables in a database window.

Rename Table
Renames the selected table in an ExtendSim Database. A dialog opens with a list of the database’s
existing tables and a field for entering the new name. To enable this command, bring a database
window to the front, as described under Database menu, above. Then select a table in the database
window.

702 Menu Commands and Toolbars
Database menu

A
pp

en
di

x

New Tab
Places a tab in the database window, to the right of any previous tabs. This is equivalent to double-
clicking the blank area to the right of existing tabs. To enable this command, bring a database win-
dow to the front, as described under Database menu, above.

Rename or Delete Tab
Allows you to rename or delete the tab that is in the active database window. This is equivalent to
double-clicking the tab to rename or delete it. To enable this command, bring a database window
to the front, as described under Database menu, above. Then select a tab to bring it to the front.

Clone Selected Tables to Tab
Clones the table or tables to another tab. Select one or more tables, then give the command. In the
dialog, select the tab to copy the table to. (Or right-click a selected table and choose “clone table to
tab”.) To enable this command, bring a database window to the front, as described under Database
menu, above. Then bring a tab to the front and select the tables to clone using the Block/Text layer
tool.

☞ A cloned table will behave exactly like the original table and will change when the original table
changes. Likewise, changes made to the cloned table will be reflected in the original table. Cloning
is different than copying and pasting a table using the Edit menu. Tables that are copied and
pasted are neither linked to each other nor to the original table.

Menu Commands and Toolbars 703
Database menu

A
ppendix
Append New Field
Creates a new field for the selected table and puts the field below any other fields in the list.

The dialog gives options for setting the field’s properties, such as its name, type, and initialization.
To enable this dialog, bring a database window to the front, as described under Database menu,
above. Then select a table and give the command.

☞ To delete a field, use the Delete or Backspace key or go to Edit > Clear Fields. A dialog displays the
delete options and, if there is data dynamically linked to the field, warns you before deleting it.

Insert New Field
Works like the Append New Field command, except inserts the new field above the selected field
in the table.

Append New Records
Creates new records for the selected field and puts the records below any other records in the field.
A dialog appears requesting the number of records to add. To enable the command, select the table
when the database window is in structure mode or select the table from the list when the database
window is in viewer mode.

☞ To delete a record, use the Delete or Backspace key or go to Edit > Clear Record. A dialog displays
the delete options and, if there is data dynamically linked to the record, warns you before deleting
it.

Field Properties dialog

704 Menu Commands and Toolbars
Develop menu

A
pp

en
di

x

Insert New Records
Works like the Append New Records command, except inserts the new record above the selected
record.

Develop menu
The Develop menu is used when creating or modifying
blocks in libraries. See the ExtendSim Developer Refer-
ence to learn how to create your own libraries of blocks
and for additional information on using these com-
mands.

New Block
Creates a new block. In the initial dialog, you specify the
block’s name and the library in which you want to save
the block. Use the Open Library or New Library buttons
in the dialog to open or create a library for the new
block.

After naming the block and selecting the library, you are
presented with the default dialog and structure windows.
For a quick overview on building a new block, see the
Developer Reference.

Open Block Structure
Opens the structure of the selected blocks. This command is equivalent to holding down the Alt
(Windows) or Option (Mac OS) key while double clicking a block in the library window or on the
model worksheet.

Rename Block
Changes the name of the block, including a hierarchical block. The block must be either selected
in the library window or its structure window must be the active window.

Set Block Category...
Sets a block’s category. This serves two functions:

• To organize blocks within the Library menu by functionality.
• To organize blocks within statistical reports by functionality.

New Block dialog

Menu Commands and Toolbars 705
Develop menu

A
ppendix
This command is only available when the block’s structure window is the active window. If Show
category in Library menu is not checked in the Set Block Category dialog, the block name will
be listed in alphabetical order directly under the library’s name in the Library menu. Note that you
cannot change the categories of ExtendSim blocks.

Compile Block
Compiles the ModL code for the block. This is useful for checking the syntax of the code that you
are working on without having to close the structure or dialog editor windows. The Compile com-
mand is only available when the structure window of a block is the active window. You can also
choose to compile the block with debugging information and with external source code, as dis-
cussed below.

Generate Debugging Info
When the block is compiled, generates debugging information for the block. This allows you to
debug block source code using breakpoints, watch points, and so forth. Blocks with debugging
code run slower. Their names and any additional information will be listed in the library window
in red and they will show in a model window with a red border around them.

To remove debugging code from a block, open the block’s structure window and uncheck the Gen-
erate Debugging Info command, or right click the block on a model worksheet and select Remove
Breakpoints. To remove debugging code for an entire library, see “Remove Debug Code in Open
Library Windows” on page 696.

External Source Code
When the block is compiled, generates a text file containing the block’s source code. This is used
for version control. If a block has been compiled with external source code, it will be listed in the
library window with the designation CM (code management) on the right side of its icon.

706 Menu Commands and Toolbars
Develop menu

A
pp

en
di

x

New Dialog Item
Adds a dialog item (such as a button, some text, and so on) to the block’s dialog window. This
command is only enabled when a block’s dialog window is the active window. Dialog items, and
the use of this command, are covered in detail in the ExtendSim Developer Reference.

New Dialog Item dialog

New Tab
Adds a new tab to the block’s dialog window. This is equivalent to double-clicking the blank area
to the right of existing tabs. This command is only enabled when a block’s dialog window is the
active window.

Rename or Delete Tab
Allows you to rename or delete a tab. This is equivalent to double-clicking the tab or rename or
delete it. This command is only enabled when a block’s dialog window is the active window.

Move Selected Items to Tab
Allows you to move the selected dialog item to a specific tab in the block’s dialog. This command
is only enabled when a block’s dialog window is the active window and a dialog item is selected in
that window.

New Include File
Creates a new Include file window. This command is only enabled when a block’s structure or dia-
log window is the active window.

Open Include File
Opens an existing Include file window. This command is only enabled when a block’s structure or
dialog window is the active window.

Menu Commands and Toolbars 707
Develop menu

A
ppendix
Delete Include File
Deletes an Include file. This command is only enabled when a block’s structure or dialog window
is the active window.

Shift Selected Code Left
Moves the selected lines of the ModL code one tab stop to the left. This command is only enabled
when a block’s structure window is the active window.

Shift Selected Code Right
Moves the selected lines of the ModL code one tab stop to the right. This command is only
enabled when a block’s structure window is the active window.

Go To Line
Allows you to quickly move to a specific line in the block code. This command is only enabled
when a block’s structure window is the active window.

Go To Function/Message Handler
Jumps to where the function or message handler is defined in the code. Select the function or mes-
sage handler name where it is used in the code, then give the command. This is equivalent to hold-
ing down the Alt (Windows) or Option (Mac OS) key while double clicking the function or
message handler name, or right-clicking on the function or message handler name. This command
is only enabled when a block’s structure window is the active window and the function or message
handler name is selected in the code.

Match Braces
Highlights the area between the start and end of braces or parentheses in block code. Click after
the opening brace or parenthesis, then give the command. This is equivalent to right-clicking after
the brace or parenthesis. This command is only enabled when a block’s structure window is the
active window.

Match IFDEF/ENDIF
Highlights the area between a #IFDEF or #IFNDEF and its corresponding #ENDIF in block
code. Click after the #IFDEF, then give the command. This is equivalent to right-clicking after the
#IFDEF. This command is only enabled when a block’s structure window is the active window.

Set Breakpoints
Opens the Set Breakpoints window for the selected block or brings it forward into view if it is
already open. This window shows the source code for the block, along with a breakpoint margin
on the left of the window. If needed, the block is automatically recompiled in debugging mode.
This command is only enabled when a block is selected on the model worksheet.

Open Breakpoints Window
Opens the global breakpoints window, showing all breakpoints from all blocks in the model. This
command is only enabled when a model window is the active window.

Open Debugger Window
Opens the source debugger window or brings it forward if it is already open. This command is
only enabled when you are debugging the source code of a block.

708 Menu Commands and Toolbars
Run menu

A
pp

en
di

x

Continue
Continues execution from a breakpoint. This command is only enabled when you are debugging
the source code of a block and you are stepping through the code.

Step Over
Steps over a function call when stepping after a breakpoint. This command is only enabled when
you are debugging the source code of a block and you are stepping through the code.

Step Into
Steps into a function call when stepping after a breakpoint. This command is only enabled when
you are debugging the source code of a block and you are stepping through the code.

Step Out
Steps out of a called function to return to the caller when stepping after a breakpoint. This com-
mand is only enabled when you are debugging the source code of a block and you are stepping
through the code.

Run menu
The Run menu lets you modify the way your simula-
tion runs, show 2D and 3D animation, and generate
model reports. A hierarchical menu at the end provides
commands for debugging models. For more informa-
tion about running models, see “Model Execution” on
page 515.

Run Simulation
Starts a simulation. The command first checks every
block in the model to see that it has been compiled.

You can run multiple models at the same time; proces-
sor speed will be divided equally between the simula-
tions. See also “Prioritize Front Model”, below.

Continue Simulation
This continues a simulation run in an opened model
that was previously paused and saved during a simula-
tion run. See “Saving intermediate results” on
page 525.

Run Optimization
Runs an optimization. Alerts the user if there is no
Optimizer block (Value library) on the model. See
“Optimization” on page 572.

Simulation Setup
Modifies the start time, end time, and other settings for
a simulation run, and provides options for setting ran-
dom number seeds and showing 3D animation. The dialog is described in detail in “Simulation
setup” on page 516.

Menu Commands and Toolbars 709
Run menu

A
ppendix
Prioritize Front Model
If running multiple models simultaneously, choose this to cause the frontmost model to have pro-
cessor preference over the background models. Running multiple models is discussed at “Working
with multiple models” on page 533.

Use Sensitivity Analysis
Causes ExtendSim to use sensitivity analysis settings when you run the simulation. Only enabled if
a dialog parameter value has sensitivity settings. For more information, see “Sensitivity analysis” on
page 568.

Show 2D Animation
Causes blocks in the model that have animation to animate when the simulation is run. This is dis-
cussed in“Animation” on page 551. Note that some blocks can show some animation, such as text
on the icon reporting final values, even if Show Animation is not selected. You can also choose to
animate along connection lines or between named connections, as discussed below.

Add Connection Line Animation
This option controls whether or not 2D animation will be displayed along connection lines in dis-
crete event models. If this is on, blocks from discrete event libraries, such as the Item library, will
display their item animations as discussed in “Animating the movement of items between blocks
(discrete event modeling only)” on page 552. If it’s off, only animations on block icons will be dis-
played. This command requires that Show 2D animation be checked and is only available for dis-
crete event models.

Add Named Connection Animation
For named connections (text labels indicate the path and connection line does not appear on the
worksheet), this option will cause the animation picture to travel in a straight line between the two
text labels. If this option is turned off, the animation picture will disappear when it has reached a
text label and reappear at the matching text label. This command requires that Show 2D anima-
tion be checked and is only available for discrete event models.

Show 3D Animation
Opens the E3D window for showing 3D animation. If the window is subsequently closed, it will
reopen when the simulation run begins. This is the same as choosing Run > Simulation Setup >
3D Animation tab and selecting “Show 3D animation during simulation run”. Note that only
models using libraries that support 3D animation, such as the Item library, will animate in this
window. For more information, see the E3D module that starts on page 389.

Show Movies (Mac OS only)
Causes blocks that have QuickTime movies to show their movies when you run the simulation. In
addition, the Animate Value block (Animation 2D-3D library) has a dialog option to play a movie
when it gets a value at its input. Movies must be stored in the Extensions folder and be QuickTime
movie files. This command requires that you have QuickTime installed.

Launch Proof (Windows only)
Opens the Proof Animation application. This command is only enabled if Proof Animation is
installed. Proof Animation is only available with certain ExtendSim products.

710 Menu Commands and Toolbars
Run menu

A
pp

en
di

x

Launch StatFit (Windows only)
Opens the Stat::Fit application. This command is only enabled if Stat::Fit is installed. Stat::Fit is
included with the Windows version of the ExtendSim AT and ExtendSim Suite products; it can be
purchased separately for use with other ExtendSim products. For more information about
Stat::Fit, see “Stat::Fit (Windows only)” on page 586.

Generate Report
Causes ExtendSim to generate a report file when the simulation is run. ExtendSim will prompt for
a name for the new report file when the model is run. Report files show final results of the simula-
tion for selected blocks. They are described in “Reports” on page 596. Use the commands that fol-
low to specify which type of report to generate and which blocks to include in the report.

Report Type
Allows you to choose which report type, Dialogs or Statistics, to generate when Generate
Report is checked and the model is run. The current selection is shown in parenthesis following
the command.

Add Selected To Report
Causes blocks selected in the active model window to be included in the report when Generate
Report is checked and the model is run.

Add All To Report
Causes all blocks in the active model window to be included in the report when Generate Report is
checked and the model is run.

Remove Selected From Report
Causes blocks that have been selected in the active model window to be removed from the report.

Remove All From Report
Causes all blocks in the active model window to be removed from the report.

Show Reporting Blocks
Causes blocks that have been included in a report to show the word Report on them in the model
window.

Stop
Stops the simulation. This is the same as the Stop button in the toolbar. As an alternative, you can
hold down the Control (Windows) or Command (Mac OS) key while pressing the period (.) key.

Pause
Halts the simulation temporarily. This is the same as the Pause/Resume button in the toolbar.
When you give this command, the word Paused appears in the model’s status bar until the simu-
lation is resumed. To restart the simulation, give the Resume command, below, or click Pause/
Resume.

Step
Steps the simulation depending on which mode (Step Each Block, Step to Next Animation, or
Step Entire Model) is selected in the Debugging menu as discussed at “Debugging” on page 711.
This is the same as the Step button in the toolbar.

Menu Commands and Toolbars 711
Run menu

A
ppendix
Resume
Restarts a paused simulation. This is the same as clicking the Pause/Resume button in the toolbar.

Debugging
This hierarchical menu lets you modify the way your simula-
tion runs and facilitates finding a modeling problem. The
three “Step...” commands in this menu determine how the
Step command in the Run menu performs during a simulation
run. The Trace commands are used to generate a Trace file of
the values for each selected block in the active model at each
step of the simulation. For debugging hints, see “Animation
features for debugging” on page 618.

Pause At Beginning
If this is enabled, pauses the simulation after it starts so that
the user can step through the run from step zero. When the
simulation is paused, the word Paused appears in the model’s
status bar.

Step Each Block
Controls the behavior of the Step command or button so that
you can step through a simulation block by block. This com-
mand is only active when the Pause command or Pause button
have been activated.

Step Next Animation
Controls the behavior of the Step command or button so that you can step through a simulation,
pausing only at animation changes. In models where there are many steps between animation
changes, this option makes going from visible change to visible change much faster. This com-
mand is only active when the Pause command or Pause button have been activated.

Step Entire Model
Controls the behavior of the Step command or button so that you can step through an entire cycle
of all blocks in the model. Each Step command starts at the selected block and continues the sim-
ulation run until the execution order returns to the original block. This command is only active
when the Pause command or Pause button have been activated.

Show Block Messages
Used in conjunction with the preceding Step Each Block, Step Next Animation, or Step Entire
Model commands to show system messages on the blocks. When you are stepping through a sim-
ulation and choose Run, the simulation automatically pauses between step cycles (defined by the
three preceding commands.) This command causes the block that is active to be highlighted with
the current message name written on it. If that block is not currently visible, the window will auto-
matically scroll to the block if Scroll To Messages (see below) is checked. Block messages are dis-
cussed “Block messages” on page 535.

Only Simulate Messages
When the Show Block Messages command is active, causes only the messages that occur during
the Simulate stage of the run to be shown. This saves time by not showing all the initial and final
messages.

Debugging menu

712 Menu Commands and Toolbars
Window menu

A
pp

en
di

x

Scroll To Messages
When the Show Block Messages command is active, causes the window to scroll automatically, fol-
lowing the path of messages so that the user can quickly step through the model.

Generate Trace
Causes ExtendSim to generate a trace file during the simulation. ExtendSim will prompt for a
name for the new trace file when the model starts running. The content of the trace file depends
on which blocks have been selected to be included. For more information, see the following com-
mands and “Model tracing” on page 620.

Add Selected To Trace
Causes blocks that have been selected in the active model window to be included in the trace file.
Trace files are generated if Generate Trace is checked when the model is run.

Add All To Trace
Causes all blocks in the active model window to be included in the trace file. Trace files are gener-
ated if Generate Trace is checked when the model is run.

Remove Selected From Trace
Causes blocks that have been selected in the active model window to be removed from the trace
file.

Remove All From Trace
Causes all blocks in the active model window to be removed from the trace file. Use this before
starting a new type of trace.

Show Tracing Blocks
Causes blocks that have been included in a trace to show the word Trace on them in the model
window.

Profile Block Code
Generates a text file showing the percentage of time that each block spent executing during the
simulation run. See “Inefficient settings or block code” on page 532 for more information about
profiling a model.

Show Debug Messages
Allows the user to turn on and off the messages created using the debugMsg() function.

Window menu
In addition to the standard (Windows only) commands for arranging the
windows in ExtendSim, the Window menu lists ExtendSim windows such as
the Notebook and Navigator. The window also lists all open models, dialogs,
and library windows at the bottom. To bring a window to the top of your
workspace, select it from the menu.

Notebook
Opens or brings forward the Notebook for a model. This is the same as
choosing the Open Notebook tool. Notebooks are used for controlling model
parameters, reporting simulation results, and documenting the model. The
words (has data) after the Notebook command indicates it has content. For
more information, see “Notebooks” on page 508.

Menu Commands and Toolbars 713
Help menu

A
ppendix
Navigator
Opens or brings forward a Navigator window for a model. This is the same as choosing the Open
Navigator tool. The Navigator has three modes: an explorer-type interface for the model; a list of
databases used in the model, and a library window for open libraries. For more information about
the Navigator, see “Navigator” on page 670.

Database List
Opens or brings forward a window showing the databases (if any) used in the model. This is the
same as choosing the Open Navigator tool and selecting Database List in the Navigator’s popup
menu. Databases and their usage are discussed at “ExtendSim databases for internal data storage”
on page 638.

Calendar
Opens or brings forward a Calendar. If you run a model and are using Calendar dates in the
model, the calendar will automatically scroll from the beginning simulation date until the end.
This window is only available if Use Calendar Dates is selected in the Setup tab of the Run > Sim-
ulation Setup command.

E3D Window
Opens or brings forward the E3D window for showing 3D animation. This is the same as selecting
the Open E3D Window tool. The command is only enabled if your ExtendSim product has 3D
animation capabilities. For more information, see “The E3D environment” on page 396.

Help menu
This menu has commands for accessing ExtendSim Help and useful
web sites.

ExtendSim Help
Shows a list of available Help topics. Select a topic from the list and
click Help for more information. You can search for key words within
any Help topic.

Support Resource Center
Uses your current browser to open an ExtendSim web page with
many types of support resources, including example models, FAQs,
and downloadable manuals.

Downloads and Updates
Uses your current browser to open the ExtendSim product updates web page.

User Forum
Uses your current browser to open the ExtendSim user group home page.

What’s New
Uses your current browser to open the ExtendSim web page describing the features in the newest
ExtendSim release.

ExtendSim Product Line
Uses your current browser to open the ExtendSim web page that describes the ExtendSim products
and versions.

714 Menu Commands and Toolbars
Toolbar buttons

A
pp

en
di

x

Imagine That Inc. Online
Uses your current browser to open the Imagine That, Inc. home page at www.thatinc.com.

About ExtendSim (Windows only)
Opens a banner window that lists the ExtendSim product, version and serial number and the reg-
istered user of the license. Click on the window to close it.

Toolbar buttons

ExtendSim database tool bars

New model

Open model

Save model

Print

Cut

Copy

Paste

Undo

Zoom

Navigator
Notebook

Hide/Show connectors

Run
Optimize

Stop

Pause/Continue

Step

Animation on/off

Animation faster

Animation slower

Graphics layer

Clone layer

All layers

Block/text tool

Colors

Patterns

Shapes popup menu

Shuffle graphics

Cursor position

Icon tools popup menu

Rectangle

Round rectangle

Oval

Polygon

Line

Rt angle line

3D Window

Structure/viewer mode popup

New table

Append new field

Insert new field

Show all tables

Hide all tables

Append records

Insert records

Delete records

Make cells random

Make cells constant

Sort records

Database window toolbar Database Viewer toolbar

Reference

Value Library Blocks
A detailed description of the

building blocks in the Value library

716 Value Library Blocks
Submenus

A
pp

en
di

x

This chapter provides tables of the blocks in the Value library, separated by category. Each Value
library block has an icon that represents its function, predefined input and output connectors for
quick model building, and a dialog for entering parameters and viewing results.

The tables have brief descriptions and are useful to get an idea of a block’s functionality in your
model. For more details about the usage of a block:

• Click the Help button in the lower left of the block’s dialog

• Look in the index of ExtendSim’s online Help for the block’s name

Submenus
The blocks are listed by the block categories displayed in hierarchical submenus of the Value
library menu:

• Data Access: Accessing global data

• Holding: Accumulating or storing values

• Inputs: Generating values

• Math: Calculating values

• Optimization: Finding the best solution

• Outputs: Writing data to files or display

• Routing: Routing or deciding which value to use

• Statistics: Calculating mean, variance

Data Access
The blocks in this category are used to access and store data in your models.

Block Function

Data Import Export Imports and exports data from and to external data sources such as
Microsoft Excel, ODBC compatible databases, text files, and files from the
internet via FTP.

The data can reside in ExtendSim database tables and global arrays.

Data Init Defines any values needed to initialize multiple database tables and global
arrays before a simulation run starts.

Data Source Create Creates, resizes, deletes, and views global arrays and text files. Global arrays
are general purpose arrays available anywhere in the model. Text files are
ascii files containing text data, used as a data source, that can be saved on
the computer's local hard drive or on the network.

Note: If you are interested in creating, editing, or viewing database tables,
use the commands in the database menu.

Value Library Blocks 717
Holding

A
ppendix
Holding
The blocks in this category are used to accumulate or store contents.

Data Specs Outputs selected specifications on data sources. Data sources can be either
ExtendSim databases or global arrays.

Each row in the table defines a specification whose value will be output on
the corresponding variable output connector on the block.

Read Reads data from a data source to be used in a model. The data sources sup-
ported are the ExtendSim database, global arrays, Excel workbooks, Text
Files, and local tables.

You can specify whether you want to read a single number or a row or col-
umn of data and you can specify when the data should be read.

Write Writes data from a model to a data destination. The data destinations sup-
ported are: ExtendSim databases, global arrays, Excel Workbooks, Text
Files, and Local Tables.

You can specify whether you want to write a single number or a row or col-
umn of data, and when the data should be written.

Block Function

Holding Tank Accumulates the total of the input values, and allows you to request an
amount to be removed if it is available. You can also choose to allow a
request that would make the contents go negative (such as an overdraft).

You can specify that the inputs are summed or integrated.

Wait Time Holds its inputs for a specified amount of simulation time (the delay)
before passing them to the output. This block works like a conveyor with
slots: values come into a slot, advance position based on an advance in sim-
ulation time, then exit when their slot reaches the end of the conveyor.

Note: This block should not be used in a discrete event model.

Block Function

718 Value Library Blocks
Inputs

A
pp

en
di

x

Inputs
The blocks in this category generate values to be used as inputs for other blocks.

Math
The blocks in this category are used to perform mathematical calculations and functions.

Block Function

Constant Generates a constant value at each step. You specify a constant value in the
dialog (the default constant is 1.0). This block is typically used for setting
the value for inputs to other blocks. For example, you can use it for a
steady flow of fluid, cash, or a delay time value.

If the ValueIn input on the left is connected, the input value is added to
the constant in the dialog and the sum of those two numbers is output.

Pulse Outputs a true value (1) at specified times, and a false value (0) at all other
times. In the dialog, you specify the time between outputting true values
(the delay or time out); the dialog value is overridden by the D connector.
The R connector resets the block back to the beginning of the delay
period.

Random Number Generates random integers or real numbers based on the selected distribu-
tion. You can use the dialog or the three inputs, 1, 2, and 3 to specify argu-
ments for the distributions. You can select the type of distribution or use
an Empirical Table. The Empirical distribution uses a table to generate a
discrete, stepped, or interpolated distribution.

Simulation
Variable

Outputs the value of a simulation variable. It is usually used in conjunction
with a decision-type block, for example, to halt a process after current time
reaches a certain value. The variables you can use are: current run number,
current step, current time, end time, number of runs, number of steps,
start time, time step, and random seed.

Block Function

Decision Makes a decision and outputs TRUE or FALSE values based on the inputs
and defined logic. The dialog lets you perform the following tests compar-
ing A to B: greater than, greater than or equal to, equal to, less than, less
than or equal to, and not equal. You can also test for A being an invalid
number (noValue). The block can be set to use hysteresis.

Equation Outputs the results of the equations entered in the dialog. You can use
ExtendSim's built-in operators, functions, and some or all of the input val-
ues as part of the equation. The equations can have any number of inputs
and any number of outputs.

Value Library Blocks 719
Optimization

A
ppendix
Optimization
The block in this category is used to find the optimum values for your simulation.

Integrate Integrates the input values over time using either Euler or Trapezoidal inte-
gration methods. If present, an initial value is added to the outputs.

Lookup Table Acts as a lookup table (x in and y out) that are used to calculate what the
output value would be for the given input. Input values can come from an
input connector (the default) or can be simulation time. The output can
be discrete, interpolated or stepped.

Math Performs a selected mathematical operation on its inputs and outputs a
result.

Max & Min Determines the maximum and minimum values from among the values
input. The dialog shows the maximum and minimum values and the input
connectors they came from. The block outputs the maximum or mini-
mum values and the respective connector number.

Time Unit Converts the value at the input connector from one time unit to another.

Block Function

Optimizer Searches for the best set of model parameters that maximizes profit or min-
imizes cost, given parameter limits and any entered constraints. Uses evolu-
tionary strategies that are similar to genetic algorithms.

Block Function

720 Value Library Blocks
Outputs

A
pp

en
di

x

Outputs
The blocks in this category output data to files or to display.

Routing
The blocks in this category route values or decide which values to use.

Block Function

Command Sends Excel macro or general DDE commands to a spreadsheet application
when triggered by the “Send” connector.

Display Value Displays the value at the input connector on each simulation step. This is
useful for debugging models and scripts because you can display the value
of a block's value output connector at any time.

Notify Notifies the user when an event occurs. The notification can take the form
of playing a sound, stopping the simulation, or querying the user for a new
input value.

Block Function

Catch Value Outputs values thrown from a Throw Value block. You specify in the dia-
log of the block which throw block(s) this block is connected to. This
block is typically used for passing a value from one point in a model to
another without using connectors, in conjunction with Throw Value
blocks.

Select Value In Selects its output value to be one of its inputs according to the value of the
select connector. Up to 253 inputs can be used.

Select Value Out Sends its input value to one of its outputs according to the value of the
select connector. Up to 253 outputs can be used.

Throw Value Throws a value to one or more catch blocks in the model. You specify in
the dialog of the block which catch block(s) this block is connected to.
This block is typically used for passing a value from one point in a model
to another without using connectors, in conjunction with Catch Value
blocks.

Value Library Blocks 721
Statistics

A
ppendix
Statistics
The blocks in this category report and clear statistics on various blocks.

Block Function

Clear Statistics Clears the statistics in various blocks in a model at a specific time or event.
Useful in reducing the effects of warm-up in a model.

Mean & Variance Calculates the mean, variance, and standard deviation of the values input
during the simulation.

Statistics Collects common statistics from blocks in a model into a single table. You
can select which types of blocks will have their information collected. The
choices are Activity, Mean & Variance, queue, Resource Item, Resource
pool, or mixed.

722 Value Library Blocks
Statistics

A
pp

en
di

x

Reference

Item Library Blocks
A detailed description of the

building blocks in the Item library

724 Item Library Blocks
Submenus

A
pp

en
di

x

This chapter provides tables of the blocks in the Item library, separated by category. Each Item
library block has an icon that represents its function, predefined input and output connectors for
quick model building, and a dialog for entering parameters and viewing results.

The tables have brief descriptions and are useful to get an idea of a block’s functionality in your
model. For more details about the usage of a block:

• Click the Help button in the lower left of the block’s dialog

• Look in the index of ExtendSim’s online Help for the block’s name

Submenus
The blocks are listed by the block categories displayed in hierarchical submenus of the Item library
menu:

• Activities: Processing items

• Batching: Joining and dividing items

• Data Access: Accessing global data

• Information: Getting information about items

• Properties: Assigns and displays properties for items

• Queues: Holding, sorting, and ranking items

• Resources: Representing items as resources

• Routing: Moving items to the correct place

• Executive: Needed in every discrete event and discrete rate model to handle events

Activity
The blocks in this category are used to process items in the model.

Block Function

Activity Holds one or more items and passes them out based on the process time
and arrival time for each item.

Convey Item Behaves as a conveyor (accumulating or non-accumulating) that moves
items from one location to another.

Transport Transports item from one point to another based on distance and speed
information. Useful in creating models with 3D animation as this block is
the primary way to model multiple 3D objects moving at the same.

Item Library Blocks 725
Batching

A
ppendix
Batching
The blocks in this category are used to join and divide items.

Data access
The blocks in this category are used to access and store data in your models.

Workstation Behaves as a workstation that has both processing and queueing aspects.

Block Function

Batch Allows items from several sources to be joined as a single item. Useful for
synchronizing resources and combining various parts of a job (“kitting”).

Unbatch Produces multiple items from a single input item. This block can be used
to disassemble a kit, break a message packet into component messages,
route the same message to several places, or distribute copies of invoices.

Block Function

Read(I) Reads data from a database when an item arrives. You can define an indefi-
nite number of reads to be made by the block when an item passes
through.

Write(I) Writes data to a database when an item arrives. You can define an indefi-
nite number of writes to be made by the block when an item passes
through.

Block Function

726 Item Library Blocks
Information

A
pp

en
di

x

Information
The blocks in this category provide information about the blocks in your model.

Properties
The blocks in this category assign and display item properties.

Block Function

Cost By Item Views and displays the cost of the cost accumulators that pass through it.
By using a sorting attribute or the row connector, the throughput, average
cost, and total cost can be calculated for different item types.

Cost Stats Reports Statistics for costing blocks in a model. Place this block anywhere
in the model and it will report the following statistics for all costing blocks
in the model: Block Number (or label, if a label is entered in the block),
Block Name, Cost Per Item, Cost Per Time Unit, and Total Cost.

History Views and displays information about the items that pass through it. You
specify which properties will be displayed. Properties can be attributes on
the item, priority values, or other more obscure values that are available on
the item.

Information Reports statistics about the items that pass through it, such as cycle time
and TBI (Time Between Items).

Block Function

Equation(I) Calculates equations when an item passes through. The equations can use
multiple inputs and properties of the item as variables, and the result(s) of
the equations can be assigned to multiple outputs and properties of the
item.

Get Displays and outputs properties from items that are passing through. The
property value is shown in the dialog and output at the value output con-
nector. You can specify multiple properties and multiple output connec-
tors.

Set Sets the properties of items passing through the block from input connec-
tors, values in the dialog, or databases.

Item Library Blocks 727
Queues

A
ppendix
Queues
The blocks in this category hold, sort, and rank items.

Resources
The blocks in this category represent items as resources.

Block Function

Queue Queues items and releases them based on a user selected queuing algo-
rithm, such as Resource pool queue, Attribute value, First in first out, Last
in first out, and Priority. Options include reneging and setting wait time.

If you need more advanced control over the queueing algorithm, consider
using the Queue Equation block, below.

Queue Equation Queues items and releases them based on the results of user entered equa-
tions. The result(s) of the equations can optionally be assigned to proper-
ties of the item

Queue Matching This block is useful for matching one type of item with another, such as in
reassembling parts in the correct order or to insure that subassemblies are
correctly matched with each other. Has a specified number of internal
queues for holding items in separate groups. Releases a group when there is
downstream capacity and the group requirements have been met.

Block Function

Resource Item This block holds and provides items (cars, workers, orders, and so forth) to
be used in a simulation. It can be used as part of an open or closed system.

Resource Pool This block holds resource pool units to be used in a simulation. These
units limit the capacity of a section of a model. For example, this could be
used to represent a limited number of tables at a restaurant. The Resource
Pool block works with the Queue block in Resource Pool mode and the
Resource Pool Release blocks.

Resource Pool Release Releases a resource back to its resource pool as an item passes through.

728 Item Library Blocks
Routing

A
pp

en
di

x

Routing
The blocks in this category move items to the correct place.

Shift Generates a schedule over time which can be used to change the capacity of
other blocks in the model. Multiple Shift blocks can be connected together
to create complex shift patterns. For example the typical 40 hour work
week can be built with two connected Shift blocks, the first containing the
work days, the second contains the work hours.

Shutdown Generates shutdown information for activities in the Item library and
valves in the Rate library according to inputs or distributions specifying
time between failures and time to repair.

Block Function

Catch Item This block catches items sent by Throw Item blocks without using connec-
tion lines. Any number of Throw Item blocks can send items to a Catch
Item block.

Create Provides items or values for a discrete event simulation at specified interar-
rival times. Choose either a distribution or a schedule for the arrival of
items or values into the model.

Exit Passes items out of the simulation. The total number of items absorbed by
this block is reported in its dialog and at the value output connectors.

Gate Limits the passing of items through a portion of the model, either by
demand or by using a sensor connector to monitor how many items are in
a section of the model.

Select Item In Selects items from one input to be output based on a decision.

Block Function

Item Library Blocks 729
Executive

A
ppendix
Executive
The block in this category is needed in every discrete event and discrete rate model to handle
events.

Select Item Out Selects which output gets items from the input, based on a decision

Throw Item This block throws items to a Catch block without using connection lines.
Any number of Throw blocks can send items to a single Catch block. You
could use the Throw and Catch blocks instead of using Combine blocks,
even from inside one hierarchical block to inside another one.

Block Function

Executive This block must be placed to the left of all other blocks in discrete event
and discrete rate models. It does event scheduling and provides for simula-
tion control, item allocation, attribute management, and other discrete
event and discrete rate model settings.

Block Function

730 Item Library Blocks
Executive

A
pp

en
di

x

Reference

Rate Library Blocks
A detailed description of the

building blocks in the Rate library

732 Rate Library Blocks
Block descriptions

A
pp

en
di

x

This chapter provides a brief description of the blocks in the Rate library. There are no block cate-
gories used in this library. For more details about the usage of a block:

• Click the Help button in the lower left of the block’s dialog

• Look in the index of ExtendSim’s online Help for the block’s name

Block descriptions
The following table is useful to get an idea of a block’s functionality in your model. More details
about usage of a block can be obtained in two ways:

• Look in the index of ExtendSim’s online Help for the block’s name

• Click the Help button in the lower left of the block’s dialog

Block Function

Bias Prioritizes the flow going through it, and thereby allows you to specify a
preference for where the model’s flow should be directed. The bias from a
Bias block is by definition stronger than the bias from any Merge or
Diverge block.

Catch Flow Receives flow from non-connected Throw blocks. The Throw Flow and
Catch Flow blocks (and the Merge and Diverge blocks in certain modes as
well) can be used to move flow without the use of connection lines.

Change Units Changes the flow unit of measurement. Blocks that are connected together
through flow connections and share the same flow unit are called a unit
group. The Change Units block uses the conversion factor to create a new
unit group. This causes the blocks downstream of the Change Units block
to be in a unit group different from its upstream blocks.

Convey Flow Add a delay to the flow available at the output of the block. The Convey
Flow is FIFO and can be accumulating or non-accumulating.

Diverge Distributes the input flow to two or more outputs. Systems modeled using
discrete rate technology frequently have one flow stream that needs to be
split (or diverged) into multiple streams (referred to as branches). It has
seven different rule-based options that define how the inflow will be dis-
tributed across the outputs.

Interchange Acts as a Tank interfacing between Flow and Items. The Tank acts as
source, intermediate storage, or sink.

Rate Library Blocks 733
Block descriptions

A
ppendix
Merge Merges flows from multiple inputs into one output. Systems modeled
using discrete rate technology frequently have multiple flow streams
(referred to as branches) that need to be merged into one stream. It has
seven different rule-based options that define how the inflow will be
merged from all inputs.

Sensor Displays potential upstream supply and potential downstream demand in a
Flow branch.

Tank Acts as source, intermediate storage, or sink. As a residence type block the
Tank has the capacity to hold defined amounts of flow as time advances. If
a Tank has no outflow connection, by definition it is being used as a sink.
Conversely, if a tank has no inflow connection, by definition it is being
used as a source.

Throw Flow Sends flow to non-connected Catch blocks. The Throw Flow and Catch
Flow blocks (and the Merge and Diverge blocks in certain modes as well)
can be used to move flow without the use of connection lines.

Valve Controls, monitors, and transfers flow. This block places an upper bound
on the rate at which flow is allowed to pass through. Goals can be set up to
control flow.

Block Function

734 Rate Library Blocks
Block descriptions

A
pp

en
di

x

Reference

Utilities Library Blocks
A detailed description of the

building blocks in the Utilities library

736 Utilities Library Blocks
Submenus

A
pp

en
di

x

This chapter provides tables of the blocks in the Utilities library, separated by category. Each Utili-
ties library block has an icon that represents its function, predefined input and output connectors
for quick model building, and a dialog for entering parameters and viewing results.

The tables have brief descriptions and are useful to get an idea of a block’s functionality in your
model. For more details about the usage of a block:

• Click the Help button in the lower left of the block’s dialog

• Look in the index of ExtendSim’s online Help for the block’s name

Submenus
The blocks are listed by the block categories displayed in hierarchical submenus of the Utilities
library menu:

• Developer Tools: Provides information about OLE objects

• Discrete Event Tools: Managing and reporting on discrete event models

• Information: Getting information about the model

• Math: Performing mathematical calculations

• Model Control: Controlling how the model runs

• Time: Working with time functions

Developer Tools
The block in this category provides information about OLE objects.

Discrete Event Tools
The blocks in this category are used to manage and report on discrete event models.

Block Function

Object Mapper Gets information about IDispatch properties and methods exported by
activeX controls or objects that have been embedded or automated. It is
useful for those needing to navigate the object model of an outside applica-
tion or an embedded object via Extend's OLE programming capabilities.

Block Function

Item Messages Displays detailed information about the messages used to pass items. This
block is “invisible” to the items and messages and passes each message it
gets on to the next block. Also see the Record Message block, below.

Queue Tools Views and optionally initializes the contents of a queue via tables. Connect
the input connector to the length (L) connector on a queue (this is the
only type of connector that can be connected to this block).

Utilities Library Blocks 737
Information

A
ppendix
Information
The block in this category provides general model information to the user.

Math
The blocks in this category perform mathematical functions.

Model Control
The blocks in this category provide various means of controlling the simulation run.

Record Message Records all the messages that pass between two value connections in a dis-
crete event model. Also see the Item message block, above.

Stop Message Transfers the value from the input to the output without relaying any dis-
crete event messages. The output connector is set equal to the input con-
nector, but the message is not sent out through the output connector.

Block Function

Count Blocks Calculates the number of blocks of each type in the model.

Find and Replace Drag a clone of a dialog item onto this icon to search for similar dialog
items. You can also manually enter search criteria into the dialog.

Block Function

Data Fitter Uses matrix techniques to obtain a least mean square curve fit to a set of
data. Both the data and the fitted curve are output during a simulation
through the output connectors (D and F, respectively).

Block Function

Buttons Creates a pushbutton interface for a model. An equation is executed when-
ever the button is pushed. The button itself can be cloned to the model
worksheet, notebook, or hierarchical block to create a user interface for the
model.

Block Function

738 Utilities Library Blocks
Time

A
pp

en
di

x

Time
The blocks in this category work with time functions in the model.

Feedback Helps resolve feedback calculation order issues in continuous models. This
is only for advanced use and only to be used in situations where you know
that you have a calculation problem that is based on the simulation order
of a feedback loop.

Pause Sim Causes the simulation to pause when certain conditions are met.

Popups Allows you to define a custom popup menu that you can clone to the
worksheet and also use as a numeric input to your model. Outputs the
value of the popup defined in the dialog, which is usually cloned to the
worksheet.

Run Model Primarily used to clone out the Run Simulation Now button onto the
worksheet or notebook. This can also be done with the Buttons block.
Runs the simulation when the “Run Simulation Now” button is pressed.

Switch Defines a switch for use on a model worksheet. Differs from the use of the
switch control defined in the model menu in that it sends out a message if
it is in a discrete event model.This will have the effect of making the other
blocks in the model react immediately to the switch click.

Block Function

RealTimer Shows the duration of a simulation in real time. It should be placed at the
far right side of the model worksheet.

TimeSync Synchronizes the model to run in real time. It does this by pausing on each
simulation step until the amount of simulation time that has passed equals
the amount of real time that has passed. This is only effective if the model
is running faster than real time.

Block Function

Reference

Upper Limits
A list of the maximum numbers of things

that you can do at one time

740 Upper Limits

A
pp

en
di

x

Like every program, ExtendSim has its limits. It is unlikely that you will find them in your normal
work, but it is good to know what they are. Note: Some limits depend on available memory.

Steps in a simulation run 2 billion

Number of simulations in a multiple run 2 billion

Block name or label length, characters 31

Blocks in a model 2 billion

Blocks in a library 200

Libraries open at one time 40

Text files open at one time 200

Databases per model 2 billion

Tables per database/fields per table/records per table 2 billion/1,000/2 billion

Output connectors in a model (nodes) 2 billion

Connectors per block 255

Length of a block’s ModL code (characters) 4 megabytes

Dialog items in a block 1024

Dynamic arrays (each array) 2 gigabytes

Number of array dimensions 5

Maximum index for array dimensions 2 billion elements total

Dynamic arrays per block 255

Columns in a table 255 (data table); 255 (text table)

Total table size (cells) per block for static data tables 3260 (data table); 2030 (text table)

Total table size (cells) each, for dynamic data tables 2 billion

Variable name length, characters 63

Maximum popup menu length 5100 characters or 20 strings

User defined function arguments 127

Nested loops 32

Maximum, minimum of real numbers ±1E±308

Maximum, minimum of integer numbers ±2,147,483,647

Significant figures in real calculations 16 (double)

Number of attributes for discrete event item 500

Reference

Cross-Platform Considerations
File conversion, file name comparisons, and keyboard shortcuts

for the Windows and Macintosh operating systems

742 Cross-Platform Considerations
Libraries

A
pp

en
di

x

Libraries
Libraries are located in the ExtendSim7\Libraries folder, but can be in subfolders within that
folder. Libraries needed by a model can also be at the model file location.

Windows: ExtendSim supports library file names up to 64 characters. Library names must end in
the “.LIX” extension.

Mac OS: Library names can be up to 31 characters long and usually end in “Lib”, although this is
not required.

Models
For Windows, ExtendSim supports long file names. All Windows models must end in the
“.MOX” extension. Mac OS model names can be up to 31 characters.

Menu and keyboard equivalents
The following table lists some common actions and keyboard shortcuts under the Windows and
Mac OS systems. “Appendix A: Menu Command Reference” starting on page 680 contains pic-
tures of the ExtendSim menus, including the keyboard equivalents for the menu commands.

Action Command Windows keyboard Mac OS keyboard

Open a model File > Open CTRL+O CMND+O

Open a library Library > Open Library CTRL+L CMND+L

Save a model File > Save Model CTRL+S CMND+S

Close the active
window

File > Close CTRL+W CMND+W

Run a simulation Run > Run CTRL+R CMND+R

Stop a simulation Run > Stop CTRL+period (.) CMND+period (.)

Stop a library search CTRL+period (.) CMND+period (.)

Select a parameter
for sensitivity analy-
sis

Edit > Sensitize
Parameter

(Select parameter first)

Hold down the CTRL
key and click once on
the parameter

Hold down the CMND
key and click once on the
parameter

Open a hierarchical
block’s structure to
edit the icon, etc.

Develop > Open Block
Structure

(Select block icon first)

Hold down the Alt key
while double-clicking
on the block’s icon

Hold down the Option
key while double-clicking
on the block’s icon

Open a library
block’s structure to
edit the Modl code
or icon

Develop > Open Block
Structure

(Select block icon first)

Hold down the Alt key
while double-clicking
on the block’s icon

Hold down the Option
key while double-clicking
on the block’s icon

Remove the grid
when aligning draw-
ing objects, connec-
tors, etc.

Hold down the Alt key
while moving the
object

Hold down the Option
key while moving the
object

Cross-Platform Considerations 743
Transferring files between operating systems

A
ppendix
Transferring files between operating systems
The Windows and Mac OS versions of ExtendSim are cross-platform compatible. For example, if
you build a model or a library on your Windows computer, you can move it to a Mac OS com-
puter and ExtendSim will read it, and vice versa.

There are three considerations when transferring ExtendSim files between Windows and Mac OS
systems: file name adjustments, physical transfer, and file conversion.

☞ Models and libraries developed in an older version and different platform may not transfer success-
fully. It is strongly recommended that you upgrade to the latest version on the source platform, re-
save the structure of any hierarchical blocks stored in libraries (see “Saving hierarchical blocks to a
library” on page 547) and recompile any libraries that you have created. Then re-save your models
before transferring your files.

File name adjustments
• Windows to Mac OS: If you are transferring files from a Windows computer to a Mac OS, you

do not need to change the file name or delete the extension; the Mac OS system can read names
up to 31 characters long.

☞ It is important that you do not delete the MOX extension from a Windows model file name before
transferring the model to your Mac OS system. The MOX extension is required so ExtendSim can
identify the file as a Windows model. After ExtendSim has converted the Windows model to Mac
OS format, save the model under the same name or a new name.

• Mac OS to Windows: If you transfer files from a Mac OS to a Windows computer, you may
need to change the name of your file before you transfer it. ExtendSim supports file names of up
to 64 characters for Windows. File names must end in a three-character extension (the exten-
sions are “.MOX” for ExtendSim model names, “.LIX” for library names, and “.TXT” for text
file names). To change your file names to Windows format, change the name of the file on the
Mac OS computer using ExtendSim’s Save As command (if the file is open) or using the Finder
(if the file is not open).

Physically transferring files
Once you have made any necessary file name adjustments, physically transfer the files between
Windows and Mac OS computers. This process depends on your system resources and is indepen-
dent of ExtendSim. For example, you might copy the file onto a memory stick. Or you could send
the files directly from one computer to the other if the computers are networked.

☞ Libraries and extensions created on a Mac OS computer need to be converted before being physi-
cally transferred to the Windows system, as discussed below.

File conversion
Depending on the type of file, file conversion may be handled automatically by ExtendSim or may
involve using a conversion application. As discussed below, ExtendSim automatically converts
model files when they are opened on a different platform. If you program your own blocks, the

Proportionately
scale drawing object

Hold down the Shift
key while resizing the
object

Hold down the Shift key
while resizing the object

Action Command Windows keyboard Mac OS keyboard

744 Cross-Platform Considerations
Transferring files between operating systems

A
pp

en
di

x

ExtendSim for Mac OS package includes a file conversion utility which you can use to convert
libraries and picture resource extensions from one operating system format to another. Other
extensions that you build, such as QuickTime movies, DLLs, and Shared Libraries require more
extensive conversion. Include files are, of course, already cross-platform compatible.

Model files
The Windows version of ExtendSim can read ExtendSim model files created on the Mac OS as
long as the name format is correct, as discussed above. The Mac OS version of ExtendSim can read
ExtendSim model files created under Windows without file name modification (in fact, as dis-
cussed in the Note above, the MOX extension should not be removed.) When you open a model
file that was created on another operating system, ExtendSim will notify you that it is converting
the file from that system to the current one. Once you save the model file, it will be in the format
of your current operating system.

If your models (including hierarchical blocks) use libraries that you have created yourself, and you
have changed the name of those libraries, ExtendSim will not be able to locate the library. In this
case, ExtendSim will ask you to find and select the correct library as described in “Searching for
libraries and blocks” on page 491. Keeping all your libraries in the Libraries folder will make this
search process easier. Saving the model will cause the new libraries to be used from then on.

For model files that have blocks that access text files (such as the Read block from the Value
library), you may need to change the name of the text file that is being read to conform to platform
requirements, as discussed above. Be sure to also change the name of the file in the Read block’s
dialog to correspond to the new file name.

☞ The first time you run a model that has been transferred from one operating system to another, any
Equation blocks in the model will recompile to the format of the new system at the beginning of
the simulation run. Messages that report this process may appear too quickly for you to read.

Hierarchical blocks in libraries
If you have a hierarchical block saved in a library and you have renamed any of the libraries of the
blocks inside the hierarchical block (for example, to comply with Windows format), you need to
update the hierarchical block’s information so that it can locate the renamed libraries. The easiest
way to do this is to drag hierarchical blocks from their libraries, place them on a worksheet, and
update their structure, as discussed below.

☞ This is only required for hierarchical blocks saved in libraries; hierarchical blocks saved only in a
model get updated with the model.

When you add a hierarchical block from a library to a model worksheet, the hierarchical block
causes ExtendSim to open the libraries of the blocks inside it. Since you have renamed those librar-
ies, ExtendSim will not be able to locate them. In this case, ExtendSim will ask you to find and
open the correct libraries. Note: keeping all your libraries in the Libraries folder will make this
search process easier.

If you save the model worksheet that contains the hierarchical block, the location of the renamed
libraries is saved for the model only. Before you close the model worksheet, you also need to
update the hierarchical block’s library information. To do this, open the hierarchical block’s struc-
ture window and then close it, causing the hierarchical block’s Save dialog to appear. In the dialog,
choose Also save to library. This process is described in “Summary of results of modifying hierar-
chical blocks” on page 550.

Cross-Platform Considerations 745
Transferring files between operating systems

A
ppendix
Libraries
The libraries that come with your ExtendSim package are already formatted correctly for your
operating system. However, if you build your own libraries, and want to transfer them to a com-
puter running a different operating system, you must convert them to the appropriate operating
system format. You do this on the Mac OS computer using the Libraries > Tools > MacWin Con-
version command (See “MacWin Conversion (Mac OS only)” on page 697). This converts librar-
ies to the specified operating system format, ensures that the file names are properly formatted,
and so forth.

After the libraries have been converted to Windows or Mac OS format, physically transfer them to
the target computer (that is, keep them on the Mac OS or transfer them to a Windows computer).
Then recompile the libraries under the target computer’s operating system using the Library >
Tools > Compile Open Library Windows command.

The MacWin Conversion converts libraries to either Windows or Mac OS format. After conver-
sion, you must recompile the library on the target computer. When you do this, the library will
compile to native code for the target system. For example, if you compile on a Windows computer,
the library will be in native Windows mode. If you compile on a Power Mac OS computer, the
library will be in native Power Mac OS mode.

Blocks that use the equation functions
If you build blocks that use the equation functions, your code needs to detect if the model is being
opened on a different platform. See the ExtendSim Developer Reference for more information.

Extensions
Extensions are files (such as pictures and DLLs) that can be accessed by ExtendSim to fulfill spe-
cialized tasks. Like libraries, the extensions that come with your ExtendSim package are formatted
correctly for your operating system. However, if you build your own extensions, and you want to
transfer your extensions or blocks to a computer running a different operating system, you will
need to do some conversion:

• Pictures: As discussed in the Developer Reference, ExtendSim for Windows accepts three kinds
of pictures: WMF (Windows MetaFiles), BMP (Bitmap), and a Mac OS picture resource file
that has been converted to Windows format. ExtendSim for the Mac OS accepts only picture
resources. To convert Mac OS picture resource files to Windows format, use ExtendSim’s
MacWin Converter utility on the Mac OS. To convert Windows pictures to Mac OS format,
use a graphics conversion application.

• Sounds: Shareware utilities are available to convert Mac OS sound resources (SNDs) to Win-
dows sound files (.WAV) and vice versa.

• DLLs and Shared Libraries: On Windows the DLL functions will search the ExtendSim
Extensions folder for a DLL file. For the Mac OS those same calls will search for a Shared
Library file.

For more information, see the Developer Reference.

☞ The following ModL constants return TRUE or FALSE depending on the platform: PLAT-
FORMMAC; PLATFORMWINDOWS; PLATFORMPOWERPC. You can use these constants
in an if statement to make your code be cross-platform capable. For
example:

746 Cross-Platform Considerations
Transferring files between operating systems

A
pp

en
di

x

if (PLATFORMWINDOWS)

windows specific code

else if (PLATFORMMAC)

macintosh specific code

Index

Symbols
_3D objectID property 126

ObjectID 463
_Animation property 200
_cost attribute 126, 227, 231
_Item priority property 122
_Item quantity property 125, 200
_rate attribute 126, 227, 231
3D Animation tab (Simulation Setup) 477, 521
3D Bank Line Advanced model 429
3D Bank Line Final model 416
3D Bank Line Start model 417
3D camera 397
3D Controller block 411, 449, 482
3D Options tab of 3D Controller block 482
3D Position (X, Y, Z) option 480
3D Scenery block 447, 483
3D tab (Options command) 449, 476, 692
3D Text block 447, 483
3D window outside application option 399, 476, 693

A
ABC (activity based costing) 224
About ExtendSim command 714
accumulate data 241, 565

with Holding Tank block 241
accumulating conveyor

Convey Flow block 344
Convey Item block 188

accumulation point 345
Action menu (E3D Editor) 470, 485
ActiveX 665

automation 665
COM (Component Object Model) 666

activities
definition 91
scheduling 173

activity based costing 224–236
Activity block 724

Item Animation tab 479
multitasking 183
Preempt tab 178
preemption options 178

processing items 164
processing options 167
Shutdown tab 179
tutorial 101

ad hoc experiments 570
Add All To Report command 597, 710
Add All To Trace command 620, 712
Add Connection Line Animation command 709
Add Debug Code to Open Library... command 696
Add External Code in Open Library... command 696
Add Named Connection Animation command 709
Add Selected To Report command 597, 710
Add Selected To Trace command 620, 712
address (of a data structure) 660
agent-based modeling 51
Airline Security model 401
Align command 562, 698
allocate item availability 255
Allow data table titles copying option 694
Alt key 698, 707
Alternate path option 491, 690
anchor point 33
Animate 3D block 483
Animate Item block 554
Animate Value block 554
Animating Queue Contents model 141
animation

2D 551–557
3D 390–486
Block Animation tab 410, 480
Change all items to option 553
Change item animation using property option 553
debugging with 557, 616, 618
Do not change item animation option 553
functions 556
Item Animation tab 478, 552
pictures (adding) 556

animation (2D) 551–557
Animate Item block 554
Animate Value block 554
animating item movement 552
faster button 551
for Item library blocks 552
for Rate library blocks 370
hierarchical block’s icon 554

In
de

x

748
Item Animation tab 552
object 555
pictures (selecting) 552
Show 2D Animation command 709
slower button 551

animation (3D) 390–486
3D Animation tab (Simulation Setup command) 521
and hierarchical blocks 474
Block Animation tab 480
Buffered mode 477
changing the resolution of the window 396
collidable objects 479
Concurrent mode 409, 477
controlling 482
conversion ratios 521
custom paths 467
displaying text 483
environmental effects 448
executing actions 483
features 391
internal animation 412
introduction 390
Item Animation tab 478, 552
linking objects to block positions 413
mode selection 521
modes 400
mounting objects 412
objects (creating and using) 442–463
objects to represent blocks 410
objects to represent items 409
opening the E3D window 396
performance considerations 475
prerequisites for 393
QuickView mode 477
QuickView mode vs Concurrent/Buffered mode 400
rotation of objects 412
running a model with 402
saving changes after modifying objects 459
scenery 411, 446, 483
Show 3D Animation command 709
speed controls 397
Terrain modes 438
Torque Game Engine 392
Transport Animation tab 481
tutorial 406
using an equation-type block 474
World modes 436

Animation 2D-3D library 488, 554
Animation Faster button 533, 551
Animation library (legacy) 490

animation object for 2D animation 555
Animation Slower button 533, 551, 618
Antithetic random variates option 520
Append New Field command 642, 703
Append New Records command 703
application areas

continuous modeling 61, 72
discrete event modeling 96
discrete rate modeling 266

application messages 534
link alerts 534

arguments for distributions 606
Array connector 498, 545
arrays

dynamic 654
global 652–654

arrival times 111–115
Arrivals and Activity model 222
Arrows option (connection lines) 558
ASCII files

text files 663
assumptions, changing 19
attributes 115–122

_cost 227, 231
_rate 227, 231
arrays 121
costing 231
DB address 116, 119
deleting 255
example of use 106
for setting processing time 170
introduction to 94
managing 255
removing 214
renaming 255
resource blocks 214
string 116, 119, 255
string, creating a 106
stripping 214
system 231
to hold cumulative values 241
types 116
using 117
value 116, 119

Attributes for Routing model 156
attribute-sorted queue 129
AutoCAD files 682
Automatic search option 491, 495, 690
automation (ActiveX) 665

749

Index
Autoscale tools 591
autoscaling 35
Autostep options 518
axis (changing) 35

B
backup files 681, 694
BAK files 681, 694
balking 131
Balking model 131
Bar Chart block 594
Batch and Unbatch Variable model 203
Batch block 195, 725

batching items 194
Item Animation tab 479
Mount objects option 479
options for 3D animation 479

batch into one item 195
Batch means 565
Batch Mode Merge model 321
Batch on Demand model 199
batch size 203
batch/unbatch mode 321
batched value 204
batching 194–201

_Animation property 200
_Item quantity property 200
attribute options 200
batch size 195
Batch tab 195
delay kit at... 201
item properties 199
matching items 197
on demand 199
Options tab 195
priority options 200
Properties tab 200
resources with items 213
simple 197
using attributes 197
variable number of items 198, 203

Batching and Unbatching model 202
Batching Variable model 198
beta distribution 607
Bias block 361, 732
bias order 327, 361

displaying 366
effective rate calculations 361

in Merge and Diverge blocks 362
setting 363

biasing flow 360
binomial distribution 607
bitmap pictures 745
Black Connections command 558
block 496–502

adding to a model 20, 26
adding to a model using the Library Window 671
arranging in libraries 495
bad 502
categories (Value library) 716
category 690
category (finding) 617, 685
code management (CM) 672
compiling 494, 696, 705
connecting blocks 28
connection methods 32
connectors 15
continuous 60
copying to another library 502
corrupted 502
custom block models 79
custom continuous blocks 60
customizing 496
debugging code 672
decision type 256
deleting 20
dialog items (new) 706
dialogs 16
duplicating 39
duplicating in libraries 502
equation-based 601–604
for data management and exchange 659
help 8
Help block (creating) 514
Help button 16
help text 496
icons 15, 496
information about 683
labels 15, 740
labels (finding) 617, 685
labels (showing) 699
linked to 3D object 413
messages 260, 387, 535
modifying 704
moving 27
MYO (make your own) 92
names 15, 617, 740
names (finding) 685

In
de

x

750
new 704
number (global) 685
numbers (finding) 617, 685
numbers (showing) 699
passing type 256
profiling code 712
programming 60
property aware 111
random number generator 605
red border around icon 672
removing block from model 20
removing from libraries 502
renaming 502, 704
residence type 256
searches 492
Sensor 373
statistics 564
storing in libraries 26
structure 704
structure window opens in front 691
submenus for Item library 724
submenus for Value library 716
substituting one for another 492
types 256
types (mixing) 87

Block Animation tab 480
selecting an object to represent the block 410
waypoints to represent blocks 410

block messages
in discrete event models 260
in discrete rate models 387

block number
global 617
local 501
showing 699

block type table 256
block units 297

defining 299
introduction 271

blocking 154, 166, 183
definition 131
due to shutdown 183
in a Valve 365
in the Select Item Out block 150
using buffers to prevent 162

blocking of items 166
BlockNumber property of 3D objects 463
blue frame around parameter field 632
BMP (Bitmap) 556

Boids model 54
Boolean checkbox option 649
Border command 695
Border Thickness command 562
BPR library (legacy) 490
Breakout model 54
Brush menu (E3D Editor) 470, 485
Bucket Elevator 1 model 356
Bucket Elevator 2 model 357
Buffered mode 477, 521
Buffering Operations model 159
building a model 25
buttons

Database (ExtendSim) 714
Open Notebook command 19
Pause/Resume 20
Run Simulation 18, 32

Buttons block 507, 737

C
CAD files (importing) 682
Calendar command 713
Calendar date definition option 517
calendar dates 217

defining non-calendar date 517
enabling 528

calendar format example 217
calendar of events 259
camera 397
Camera menu (E3D Editor) 485
capacity

full and not-full 291
in a Tank block 291
in Convey Flow block 293
in Interchange block 292
maximized in Convey Flow block 293
Rate library blocks 291

Car Wash model 100
Catch Flow and Diverge model 332
Catch Flow and Throw Flow model 331
Catch Flow block 329, 732
Catch Item block 148, 156, 728

groups 149
routing items 144

Catch Value block 720
categories of blocks 690

Item library 724

751

Index
Utilities library 736
Value library 716

Cauchy distribution 607
central tendency of distribution 606
Change all items to option 478, 553
Change item animation using property option 478,

553
Change Model Style command 561, 699
Change Rate model 232
Change Units block 281, 283, 732

changing flow units 300
relational constraints 307

Changeover Quantity Goal model 336
Changeover With Only Goals model 339
changing

assumptions 19
libraries 690
parameters 20
text 686

Check blocks for duplicate random number seeds op-
tion 520

Check In License command 683
Check Out License command 683
Chi Square distribution 607
Child popup selector (for database) 644
City Planning model 77
Clear command 676, 684
Clear Database command 647
Clear Statistics block 239, 566, 721
clearing data from plotters 596
Clearing Statistics model 239
client application 658, 665

for DDE link 636
Clipboard 674, 684, 688
Clone layer tool 39
Clone Selected Tables to Tab command 647, 702
clones 504–506

deleting 505
finding original dialog item 505
introduction 38
moving 505
resizing 505
unlinked 506

cloning dialog items 38, 504
Close command 680
Close Library command 695
closed systems 95, 216

partially closed 96

CM (code management) 672, 705
code management (CM) 672, 705
Collidable option 479, 480
collision of 3D objects 462
color (HSV) 562
Color Connections command 558
Color popup menu 562
column index 662
column separators 681
COM (Component Object Model) 666
Combine Priority Sensing model 385
Combine Sensing Priority model 386
Combined Rule model 138
combining resources with cost accumulators 234
Command block 661, 720
Competing Requests for Flow model 327
Compile Block command 494, 705
Compile Open Library Windows command 494, 696
Compile Selected Blocks command 494, 696
compiling

blocks 494, 705
libraries 696

Concurrent mode 409, 477, 521
concurrent users 683
conditional routing 157
Conditional Routing model 158
confidence interval 567
confidence level 567
connection lines 557–559

changing formats 559
Flow connection line types 559
Item line types 559
making a multi-segment connection 33
making a right angle connection 28
making a straight connection 32
selecting 559
types of 28, 558
Value line types 559
View Using Defaults option 558

Connection Lines command 557, 698
connections 557–560

anchor points 33
arrows option 558
checking 618
color options 558
connection lines 557–559
daisy-chaining 87
dashed option 558

In
de

x

752
default types of lines 689
definition 15
deleting 670
flow type 270
hiding 560, 698
incomplete 618
line types 558
lines 16
multi-segment 33
named 33, 560
right angle as default style 689
right angle option 558
showing 560
straight 32
styles 558
to multiple item inputs 248
to multiple value inputs 87
types 28

connector
Array 498
arrays of connectors 498
common for Rate library blocks 368
common Item library connectors 257
compatible 500
connecting 28
definition 15
description 28
diamond 545
Flow 270, 498
hiding 698
Item 95, 498
item index 95
messages of item connectors 260, 262
messages of value connectors 261
names 546
text object 546
tool tips 8, 689
types 498, 545
Universal 498
User Defined 498, 545
Value 87, 498
variable 498

connectors 497–500
BatchQuantityIn 195
D input 173
demand 158, 174, 176, 196, 199, 247
down 182
F 183
G 338
GS 337

hiding 560
PE 178
preempt 353
PT 241
R 309
S (sensor) 345
S (status) 365
SD input 179
SD output 180
select 250
sensor 247
showing 560
start 176
start (on Valve) 341
StatusIn 219
StatusOut 219
TR 216

conserving resources 201
Constant block 718
constant distribution 607
constant values

definition 57
constraining resources 209
constraints (discrete rate)

critical 307
impact on effective rates 315
relational 307
varying over time 278

constraints (optimization) 585
adding 580
equations for 582
global 581, 586
individual 581, 585

contents
empty and not-empty 294
Rate library blocks 293

context-sensitive help 8
Continue command 708
Continue sequence of random numbers option 519
Continue Simulation command 708
continuous

application areas 61
blocks 60
libraries 60
models 60
programming 60
tab for setting steps 518

continuous blocks
in discrete event models 250

753

Index
continuous modeling 60
definition 44
feedback 85
messaging 535
step size 83
timing 82, 526

Continuous tab 518
control panel 508
Controlling Shifts model 222
controls 509

Meter 510
Slider 509
Switch 510

Controls command 509, 698
conversion ratios (3D Animation tab) 478
Convert Library to RunTime Format command 697
Convey Flow block 342–346, 732

accumulate-fill empty segments 344
accumulate-maximum density 344
accumulation point 345
animation 373
behavior 342
capacity 293
critical constraints 311
dialog settings 343
Indicators tab 346
initial contents 295
Initialize tab 295
length units 298
modeling with 282
non-accumulating 344
Sensors tab 345
when to avoid using 346

Convey Item block 188, 724
3D animation 481
accumulating 188
capacity 414
distance ratio 188
from and to locations 187, 481
item length 413
move time 186
non-accumulating 188
processing items 164
speed and calculated distance 186
speed and distance 186
Stretch 3D object to conveyor’s length option 480
using for 3D animation 413

Copy (or Duplicate) Database command 646
Copy command 675, 684

for DDE linking 636
Copy Plot command 596
Copy Tables command 647
copy/paste 625
copying 674–676

data 625
dialogs 675
from ExtendSim to other applications 675
notebooks 675
plotter data 596
plotters 675
text to Notebooks 538
within ExtendSim 674

cost accumulator 225
cost array 234
Cost By Item block 233, 726
cost equation 584
cost rates 226
Cost Stats block 234, 567, 726
costs 224–236

assigning 228
calculating 235
direct materials 227
drivers 224
fixed 224, 234
per time unit 228
per use 228
storage 227
variable 224
variable cost 234
waiting 227

Count Blocks block 737
Create block 101, 125, 728

arguments of the distributions 251
generating items 110
Item Animation tab 479
options for 3D animation 479
setting processing time 164

Create Database dialog 641
Create new 3D animation object option 479
Create/Edit Dynamic Link command 633, 686
Creator Tree pane of WEC 438
critical constraints 307, 379

Convey Flow block 311
defining 308
determining 315
Diverge block 311
meeting requirements 312
Merge block 311

In
de

x

754
cross-platform compatibility 743
Cumulative Time model 172
cursor (drawing pen) 28
Custom Blocks library 489
Custom order 86
Custom statistical method 565
Custom Time model 170
Cut command 684
Cut Databases command 646
Cut Tables command 647
cycle time 254

tracking from other than origin 255
tracking item from origin 254

Cycle Time 1 model 254
Cycle Time 2 model 255
cycling

fixed number of items 175
fixed period of time 177

D
D input connector 173
daisy-chaining 87
dashboard 506
data

blocks for data access 660
clearing from plotters 596
copying/pasting 625
databases for storing 638
editing in database 648
exchanging (ActiveX) 665
exchanging with external applications 657
global arrays for storing 652
import/export methods 626
importing/exporting 626
management 624–668
management and exchange using blocks 659
managing 638
raw historical 586
reading 628
repository 638
sharing with external applications 636
source (organizing) 661
source indexing 661
structures (addressing) 660
structures (communicating with) 659
writing 628

data accumulation 241
Data address option 649

data exchange
copy/paste 625
user interfaces for 624

Data Fitter block 737
data fitting 607
Data Import Export block 661, 716
Data Init block 654, 661, 716
data organization 19
Data Source Create block 653, 661, 716
Data Specs block 654, 661, 717
data structures 659

addressing 660
internal (linking to) 686

data tables
linking to an ExtendSim database table 633
linking to internal structures 632
printing 673, 683
row and column titles (printing) 694

database
external (exchanging data with) 658
external (opening links to) 687
Industry 647
internal (ExtendSim) 686

Database (ExtendSim) 638–651
accessing with Read and Write blocks 645
advantages of using internal databases 639
commands 700
copying, renaming, or deleting 646
creating a new database 641
creation methods (overview) 640
database management 646
Database Random Distribution dialog 650
database window 700
DB address attribute 116
editing data 648
exporting 647
ExtendSim DB Add-In 650
Field Properties dialog 648
field type popup menu 649
formatting options 648
importing 647
importing an Industry database 647
index number 641
linking to 686
names 641
new database 641
number of databases per model 740
opening linked blocks 687
parent/child relationships 643

755

Index
random number seed 520
random numbers for cells 650
toolbar buttons 714

database list
accessing 646
mode in Navigator 671

Database List command 646, 713
Database List mode 671
Database menu 700
Database Random Distribution dialog 650
Database table

linking to 630
database window

opening 646, 700
opening with Navigator 671
structure mode 641
viewer mode 642

Date/Time option 649
Day Shift Capacity Change model 220
DB address attribute 116

defining 118
DDE (Dynamic Data Exchange) 636–638
DDE (dynamic data exchange) 687

updating Excel’s remote references 638
DDE linking 667
DDL (dynamic data linking) 629–636
debugger

Add Debug Code... 696
Continue 708
Generate Debugging Info 705
open breakpoints window 707
open debugger window 707
set breakpoints 707
Step Into 708
Step Out 708
Step Over 708

debugging 614
blocks for 615
hints for debugging 614
red border around block icon 672
source code debugger 618
using animation 557

Debugging command 523, 711
Decimals option 649
Decision block 158, 718

controlling the flow of items 144
decision type blocks 256
Default connection line style is right angle option 689

Default model path option 689
default view 16
default view reverse 16
Define conversion ratios option 478, 521
delay kit... 201
Delete DDE Link command 687
Delete Include File command 707
Delete Selected Records command 685
delimiters 681
delta connector 173
delta time 83

definition 82
determining 83
other than 1 83
setting 83, 518

DeltaTime variable 518
demand connector 158, 174, 176, 247
demand scarcity 324
Demand Sensing Mode Diverge model 326
density (maximum) 343
Design Mode command 688
deterministic models 58
Develop menu 704
dialog items

cloning 504
finding clones 505

dialog window
printing 674

dialogs 501
copying 675
open when running 501
opening 16, 501
printing 672, 673
title bar 501

Dialogs report 596, 710
discrete event

processes 91
systems 91

Discrete Event library (legacy) 490
discrete event modeling 94, 224

activity-based costing 224–236
animation (2D) 552
application areas 96
architecture 93
batching items 194
blocks for 92
closed and open systems 95
continuous blocks in 87, 250

In
de

x

756
cycle time 254
definition 44
event scheduling 258
events 94
Executive block 255
item generation 111–115
Item library 92
item movement 246
items 93
layout 93
messaging 260, 535
overview 93
posting events 259
preprocessing 249
processing items 164
queueing 128
resources 105, 208
restricting items 249
routing items 144
running 100
statistics 238
terminology 93
time-based parameters 251
timing 526
tips 246
travel time 248
tutorial 100
values 94
zero time events 259

discrete rate modeling 297
2D animation of blocks 370
application areas 266
bias order 327, 361
bias order when merging/diverging 362
biasing flow 360
building a model 274
capacity 291
compared to other methods 267
competing requests for flow 327
contents 294
declaring flow units 277
defining bias order 328
definition 45
downstream demand 322, 383
dynamic constraint 278
event messages 387
Executive block flow messages 388
fixed flow rules 319
flow connector messages 388
flow rules 306

heterogeneous flows 267
homogeneous flows 267
hysteresis 341
indictors of flow 295
inflow branches 319
introduction 266
item connector messages 388
LP area 306, 377
LP technology 376
messages 387
messaging 386
outflow branches 319
overview 268
rate block flow messages 388
rate sections 305
rates (introduction) 271
throw and catch 329
time units 298
units and unit groups 271
upstream supply 322, 383
value connector messages 387

Display Value block 532, 615, 720
distance

metric 689
Distance (m) option 479
distance ratio (3D animation) 521
distribute properties option 204
distribution

arguments 251
central tendency 606
list of distributions 607–610
location argument 606
shape argument 606
shape of exponential 112
skewness 606
spread 606
theoretical 606
varying the arguments 251

distributional mode 324
bias order determination 366

Distributional Mode Diverge model 324
Distributional Mode Merge model 325
distributions

beta 607
binomial 607
Cauchy 607
Chi Square 607
constant 607
empirical 606, 607
Erlang 607

757

Index
exponential 112, 607
Extreme Value Type 1A 608
Extreme Value Type 1B 608
gamma 608
geometric 608
hyperexponential 608
Hypergeometric 608
inverse gaussian 608
Inverse Weibull 608
Johnson SB 608
Johnson SU 608
Laplace 608
Logarithmic 608
Logistic 609
loglogistic 609
lognormal 609
negative binomial 609
normal 609
Pareto 609
Pearson type V 609
Pearson type VI 609
Poisson 609
Power Function 609
Rayleigh 609
triangular 609
uniform integer 610
uniform real 610
user-defined 606
Weibull 610

Diverge block 732
bias order 327, 362
bias order table 364
critical constraints 311
displaying bias order 366
features 327
fixed rule modes 362
modes (mixed in model) 385
modes (summarized) 319
non-fixed rule modes 363
requirements for critical constraint 313
setting bias order 363
throwing flow 329

DLLs 513, 668, 745
Do not change item animation option 478, 553
down connector 182
Downloads and Updates command 713
downstream demand 322

cautions when determining 383
definition 383
discrepancy with upstream supply 324

scarcity of demand 324
drag and drop editing 539
Draw Right Angle Line tool 561
drawing pen cursor 28
drawing tools 561

colors 562
patterns 562

drivers (cross-platform) 745
drop shadows in hierarchical blocks 689
Drug Ingestion model 73
dt (delta time) 82, 526

stepsize 83
Duplicate command 34, 39, 685
duration goal 338
Duration Goal model 339
duration of simulation 82, 526
DXF files 682
dynamic arrays 654

linking to 687
number per block 740

Dynamic Data Exchange (DDE) 636–638, 666, 687
Show DDE Links command 637

dynamic data linking (DDL) 629–636
dialog item to database table 645
finding linked dialogs 635
link dialog 630
link dialog (description) 634
linking a parameter to a global array 631
linking parameter to an ExtendSim database 630
linking to a database table 633
linking to a global array 633
to a global array 633

Dynamic Link Libraries (DLLs) 513, 662, 668, 745
dynamic links to internal data structures 686
dynamic values 676
dynamically changing parameters 676

E
E3D Editor 433–440

creating scenery with 447
Gizmo 435
menu commands 484
mode categories 435
Terrain modes 438
World Editor Inspector (WEI) mode 434
World modes 436

E3D environment
controlling 393

In
de

x

758
opening the E3D window 396
overview 391
selecting the environment file 521

E3D window
3D Animation tab 477
3D window outside application 693
associated model 398
camera for E3D window 397
closing 399
conversion ratios 478
creating paths 467
definition 391
E3D Editor 433
environment file 432, 478, 521
exploring 396–400
ExtendSim icon 397
foot prints 693
interface controls 396
level of detail 693
MiniMap 397
MiniMap option 693
mouse-look toggle 399
navigation within the window 398
opening 396, 399, 412, 475
outside the application window 399
scenery 411
shadows 692
sounds in 462, 692
title bar 397
vehicle trails 693

E3D Window command 399, 476, 713
Each block defines its own bias order 328
Each value unique option 649
Edit menu 684
Edit menu (E3D Editor) 485
Edit or Delete Tab command 706
Editor command 397
effective rate 303

defining a zero effective rate 365
impacted by constraints 315

Electronics library 488
embedded objects

behavior 688
commands 688

empirical distribution 607
empty and not-empty 294
Enable animation of 3D object option 412, 480
End time 25, 530

manually controlling 255

End time option 517
ENDIF 707
Enter Selection command 686
environment file 432–433

Extend3Dl.mis 432
mis (mission) file 432
saving 459
selecting 521
ter (terrain) file 432

Environment file option 478, 521
Environment objects 438
Equation block 512, 601, 718, 744

example of use 68
input variables 602
output variables 603

Equation(I) block 241, 512, 601, 726
example of use 253
input variables 602
output variables 603
properties of items 110

equation-based blocks 601–604
equations

blocks for 600
in 3D animation 474

Erlang distribution 607
Euler integration 85, 611
event calendar 259
event scheduling 258
Event Scheduling model 259
events 16, 91, 94, 258, 387

calendar 259
current 260
future 260
generating 258
messages in discrete event models 260
posting 259
zero time 259

Excel 663
and DDE linking with ExtendSim 637
exchanging data with 658
ExtendSim DB Add-In 650
ExtendSim DB command in 651
updating remote references for DDE linking 638

Excel Add-In 701
exchanging data

dynamic data linking (DDL) 629–636
piece-by-piece 629

Executive block 729
advanced options 366

759

Index
Attributes tab 106
bias information for calculation 380
bias order definitions 363
bias order determination 366
description 255
Discrete Rate tab 364
global options 364
in discrete rate model 270
infinite rate 364
infinite rate setting 304
introduction 93
properties of items 110
update flow status 365
Valve options 365
zero effective rate 365

Executive block flow messages
in discrete rate models 388

Exit block 102, 728
removing items 110

Exit command 684
Explicit Ordering model 155
explicit shutdown 183
Explicit Shutdown model 183
exponential distribution 112, 607
Export Data command 628, 664
Export Data Table command 681
Export Database command 647, 701
Export Selected Tables command 647, 701
exporting data 626–628

methods 626
Extend3D.mis file 432, 478
ExtendSim

architecture 5
capabilities for modeling 4
databases 638–651
Excel Add-In 701
Help 8, 713
icon in E3D window 397
launching an alternate Extend application 681
legacy libraries 488, 489
levels of use 5
libraries 488
LT-RunTime version 678
messaging in models 533
network licenses 683
Options command 688
source code debugger 618
support 713
updates 713

upper limits 740
what’s new 713

ExtendSim DB Add-In 650
ExtendSim Help command 713
ExtendSim menu 680
ExtendSim Product Line command 713
extensions (converting) 745
External Source Code command 705
Extreme Value Type 1A distribution 608
Extreme Value Type 1B distribution 608

F
F connector 183
feedback 85

delays 85
loops 85

Feedback block 738
Field name option 648
Field Name popup menu 631
Field Properties dialog 648
Field type option of Field Properties dialog 648
Field type popup menu (for database) 649
fields (database) 632

adding to a table 642
field types 642
for DB address attribute 116
in database table 639
managing 648
parent/child 643

fields (parameter)
blue frame 632
linking to a database or global array 630
outlined in green 630
outlined in red 630
outlined in yellow 630

FIFO queue 129
file conversion 743
file format

of original graphic 562
pictures 556, 745

File menu 680
File menu (E3D Editor) 484
file names 742
File Open command 15
files

backup 681, 694
exporting data 681
importing CAD 682

In
de

x

760
importing data 681
importing DXF 682
opening most recent 684
sharing 677
transferring 743

filter options
block type filter 330
group filter 330
only connected blocks filter 330

Final messages, in Link dialog 635
Find Again command 686
Find and Replace block 616, 737
Find command 617, 685
finding 617
First run...Every run option 649
Fish Pond model 80
fixed costs 224, 234
fixed flow rule 319, 322
Fixed Items model 175
fixed rule modes 362
Fixed Time model 177
Flip Horizontally command 562, 699
Flip Vertically command 562, 699
flow

accumulation point 345
biasing 360
catching 329
competing requests for 327
connectors 270
controlled by items 348
controlling flow 334
controlling items 349
definition 268
delaying 334
indicators 295
Interchange block 352
levels 295
LP technology 376
managing units 366
maximized 268
options when goal is off 335
preference 361
ranges 295
rate 268
rules 306
status 365
streams (merging and diverging) 318
throwing 329
units 271, 297

flow connector messages
in discrete rate models 388

Flow connectors 498, 545
Flow Control tab 334

goals 335
hysteresis 341

Flow Controls Item model 350
Flow library (legacy) 490
Flow order 86
flow rates

effective 303
infinite 304
maximum 303
overview 303
types 303

flow rules
critical constraints 307
fixed 319, 322
information to Executive 379
relational constraints 307

flow units 271
changing 300
declaring 277, 299
group selector button 299
managing 299, 366

fonts for ModL code 691
Foot prints & vehicle trails option 449, 476, 693
footers 674
formats

data sources 661
for database fields 642, 648
of embedded objects 655
of scaled objects 458

From and To locations options 481
FTP (File Transfer Protocol) 667
full and not-full 291
functions (calling from blocks) 600

G
G (goal) connector 338
Game of Life model 52
gamma distribution 608
Gantt Chart block 594
Gate block 174, 249, 728

controlling the flow of items 144
Generate Debugging Info command 705
Generate Report command 664, 710
Generate Trace command 620, 712

761

Index
generating events 258
generating items 111–115
Generic library (legacy) 490
Generic time unit 526
geometric distribution 608
Get block 120, 726

properties of items 110
Get distance from 3D path length button 429
Get Info command 683
Gizmo 435, 452
global arrays 652–654

advantages of using 652
creating and using 653
data types 652
interacting with 654
linking a parameter to a global array 631
linking to 686
linking to a data table 633
methods for creating 652
opening links to 687
populating with data 654

global block numbers 617
global time units

converting from local time units 517
definition 526
setting 25

Global time units option 517
Go To Function/Message Handler command 707
Go To Line command 707
goal

duration 338
options when off 335
quantity 335
starting 337
status 337

goal seeking 573
graphics 561

file formats 562
graphs 18
green background on database fields 643
green parameter fields 630
grid

icon 699
model worksheet 699
notebooks 699

Grid density
tool for plotters 591

groups

for Catch Item block 149
GS connector 337

H
headers 674
help 713

blocks 8
getting technical support 8
printing the text 672
technical support 8
tool tips for connectors 8
user forums 8

Help block 514
Help button 16
Help menu 8, 713
Hide Connections command 698
Hide Connectors command 698
hierarchical blocks 540–551

animation of icon 554
cautions when using 550
changing 548
characteristics 541
commands for 698
connecting 547
connectors 545
creating 541
creating a new 543
drop shadows 689
icon, modifying 545
introduction 36
library (converting) 744
library (saving in) 547
locking 678
Make Selection Hierarchical command 543
making a selection into a 542
modifying 548
New Hierarchical Block command 543
password protecting 678
pictures, adding 496
printing 672
printing by level 673
Rename Block command 549
renaming 704
Save Block to Library As command 548
saving 547
structure window 541, 548
submodel pane 541
submodels 545

hierarchy 540–551

In
de

x

762
commands 698
introduction 36
physical 542
pure 542
uses 540

Histogram block 594
History block 239, 615, 726
History model 240
holding items 246
Holding Tank block 21, 717

accumulating values 252
integration in 610
summation in 610

HSV 562
hyperexponential distribution 608
Hypergeometric distribution 608
hysteresis 176

in discrete event models 175
in discrete rate models 341

Hysteresis model 341

I
icon

changing the appearance (hierarchical block) 549
custom 496
grid 699
views 16, 496

IFDEF 707
IFNDEF 707
Imagine That Home Page command 714
Imagine That, Inc. 8
Import Data command 627, 664
Import Data Table command 681
Import DXF File command 682
Import New Database command 647, 700
Import Tables command 647, 701
importing data 626–628

methods 626
Include additional block information option 689
include files 706
indexing

table by data source type 662
indexing (data source) 661
indicators 295, 346

in Bucket Elevator 2 model 357
Indicators tab 296, 346
Industry database 647

infinite checkbox in Tank block 277
infinite rate 304, 364
inflow branch 319
Information block 254, 567, 615, 726
Init messages, in Link dialog 635
initial bias 531
initial conditions 530
initial contents

Rate library blocks 293
initial maximum rate 309
Initialize every record in this field to option 649
Initializing and Viewing model 140
Input Line Balancing model 147
input variables in equation-based blocks 602
Insert New Field command 703
Insert New Records command 704
Insert Object command 688
Inspector pane of the WEI 437
Integrate block 719
integration

definition 85
in the Holding Tank block 610

interactive simulation 16, 501, 509, 510
importing/exporting data 626

interarrival time 111
Interchange block 284, 352, 732

animation 371
behavioral rules 352
block units 297
capacity 292
critical constraints 310
initial contents 294
maximum rate 303
modes 354
preemption 353
release options 353
Tank is separate... 292, 295, 355
Tank only exists... 292, 294, 354

interface 506
buttons 507
On/Off Switch block 508

interface controls (in E3D window) 396
Interiors category of WEC 438
internet access 659
Interprocess communication (IPC)

definition 657
Inventory Management model 76
Inverse Gaussian distribution 608

763

Index
Inverse Weibull distribution 608
Item Animation tab 478, 552
item connector messages

in discrete event models 262
in discrete rate models 388

Item connectors 498, 545
Item Controls Flow model 349
item index 95
Item library 488, 724–729

3D animation in 390
and continuous models 500
connectors 257
description 92
moving items 246
pitfalls to avoid 247

Item Messages block 616, 617, 736
item properties 94
Item Templates library 489
items

allocate availability 255
as cost accumulators 225
attributes 115–122
attributes (overview) 94
attributes example 106
balking 131
batching 145, 194
batching properties when unbatching 204
blocking 131, 154, 166
connector 95
controlled by flow 349
controlling flow 348
cost accumulators 225
costing 225
definition 93
delay time 167
distribute properties when unbatching 204
generating 111–115
holding 246
index 95, 126
Interchange block 352
jockeying 132
joining 145, 194
matching 197
merging streams 145
moving 246
parallel processing 149
predicting the path of 151
preempting 178
preserving properties when unbatching 204

priority (overview) 94
processing 164–191
processing by type 161
processing time 167
properties 94, 115–126
properties when batched 199
properties when unbatched 204
pulling 247, 263
pushing 246, 262
quantities (overview) 94
quantity, using 125
reneging 131
resource constraints 209
resource vs cost accumulators 225
routing 149
scaling a large number 249
selecting 145
travel time 248
unbatching 149
values (informational) 94
viewing 247

Items (DB) library (legacy) 490

J
JIT 185
Jockey model 133
jockeying 132
Johnson SB distribution 608
Johnson SU distribution 608
just-in-time system 185

K
Kanban model 185
kanban system 185
keyboard shortcuts 742

L
labels for blocks 15
Laplace distribution 608
Launch Proof command 709
Launch StatFit command 710
layout

of a discrete event model 93
of a discrete rate model 270

least dynamic slack 135
Least Dynamic Slack model 135
Left to right order 86

In
de

x

764
legacy libraries 488, 489
Animation 490
BPR 490
Discrete Event 490
Flow 490
Generic 490
Items (DB) 490
Mfg 490
Quick Blocks 490
SDI Tools 490

length units 271, 298
Level of detail option 476, 693
levels of use 5
Lib extension 742
libraries 488–496

automatic search for 491
block categories 690
block storage 26
changing 690
closing 491, 695
compiling 696
compiling with debugging code 696
conversion to Run Time format 697
converting 745
copying blocks between 502
corrupted blocks 502
discontinued 489
example libraries 489
ExtendSim 488
file name size 742
legacy 488, 489
MacWin conversion 697
maintaining 695
new 493, 695
number of blocks per 740
open when ExtendSim launches 690
opening 26, 490, 695
preload 690
protecting block code 495, 696
removing blocks from 502
RunTime format 496
saving blocks in 494
saving hierarchical blocks in 547
searching for 491, 690
size 740
substituting 491, 495
transferring between platforms 697, 745
types 488
uses 26
version strings 697

window 493, 671
Libraries tab of Options command 690
library

Animation 2D-3D 488
Custom Blocks library 489
Electronics 488
Item library 92, 488, 724–729
Item Templates library 489
ModL Tips library 489
Plotter library 489
Rate library 269, 489, 732
third-party libraries 61
Tutorial library 489
Utilities library 489, 736
Value library 60, 489, 716–721

Library menu 695
library window 493

blocks in categories 705
dates option 690
mode in Navigator 671
opening 671, 696
opening at startup 690
printing 672
to copy blocks 502

Library Window mode 671
License Info command 683
LIFO queue 129
Lighting Tools menu (E3D Editor) 485
limiters 665
limits of ExtendSim 740
Line Balance with Activities model 160
line balancing 147, 158
Line tool 561
linear programming 376
Link 2D/3D positions 413, 425, 451, 480
link alerts 534
Link button 631, 632, 633
Link dialog 630

checkboxes 634
Find Link command 635
Link To popup menu 634
No User-Defined Link setting 634
popup menu 630

Link to enclosing H-block option 480
linking 636–638
List blocks by category in menu option 690
List of tables option 649
LIX extension 742

765

Index
local block number 501
local time unit 527
location of distribution 606
Lock H-Blocks checkbox 678
Lock Model command 677, 699
locking a model 677
LOD (level of detail) 476
Logarithmic distribution 608
Logistic distribution 609
loglogistic distribution 609
lognormal distribution 609
Lookup Table block 20, 252, 719

time units 169
time-based parameters 251

Lookup Table model 252
loop, empty 367
LP area 306, 377

flow rules 306
precision 360

LP calculation 382
bias information 380
flow rules 379
sequence of events 377
table summarizing information 381

LP Solver 376
LP technology 376

introduction 269
LP area 306
LP Solver 376

M
M/M/1 queue 130
Macintosh

file conversion 743
keyboard shortcuts 742

Macintosh to Windows 743
MacWin Conversion command 697, 745
mailslots 668
mainframes 663
Make Selection Hierarchical command 543, 698
Make Your Own block 92
Manufacturing library (legacy) 490
markers in the E3D window 467
Markov chain 50
Markov Chain Weather model 50
Match Braces command 707
Match IFDEF/ENDIF command 707

match into one item 195, 197
Matching Item model 197
material handling 185
Math block 21, 719

controlling the flow of items 145
Max & Min block 147, 160, 719

controlling the flow of items 145
Maximize Service Level model 137
maximized capacity in Convey Flow block 293
maximizing service levels 136
maximum density 343
maximum rate 303

dynamically changing 309
Interchange block 310
Tank block 310

MDI interface option 694
Mean & Variance block 242, 566, 721
menu command shortcuts 742
Merge block 279, 733

bias order 327, 362
bias order table 364
catching flow 329
critical constraints 311
displaying bias order 366
features 327
fixed rule modes 362
modes (mixed in model) 385
modes (summarized) 319
non-fixed rule modes 363
proportional mode and empty loop 367
requirements for critical constraint 313
setting bias order 363

Merge Proportion Setting model 367
Merging Inputs model 147
messages 262

application 534
block 260, 535
block-to-block 264
during simulation run 533
in discrete rate models 386, 387
item connector 262
link alerts 534
needs 262
rejects 262
value connector 261

Meter control 510
Metric distance units option 689
Mfg library (legacy) 490
minicomputers 663

In
de

x

766
MiniMap 397
MiniMap option 476, 693
Minimize Setup model 136
minimizing setup 136
Minimum Value model 314
Miscellaneous tab of Options command 694
Mission objects 438
Mission Objects category of WEC 438

Environment objects 438
Mission objects 438
System objects 438

Mixed type (clone drop) statistical method 565
MM1 model 130
model 166

adding blocks 26
agent-based 51
associated with E3D window 398
backup files 681, 694
balking of items 131
basics 15
before you start 55
block definition 15
blocking of items 131
blocks that represent functions 600
building 25
closing 680
comparison of types 44
connection lines 16
connectors 15
continuous 60
continuous (definition) 44
converting for cross platform use 744
copying 675
cross-platform 742
debugging hints 614
definition 42
deterministic 58
differential equation 83
discrete event (definition) 44
discrete rate (definition) 45
distributions 606–610
file names 742
goals 54
grid 699
icons 15
initial conditions 530
integration methods 85, 611
item quantities 125
jockeying of items 132

layout for discrete event 93
locking 677, 699
logical models 43
Macintosh file name 742
measuring model performance 616
messages 533
Monte Carlo 47, 522
multiple runs 522, 531
multiple windows 533
names 742
non-terminating systems 530
notebook 508
number of runs 530
open a new model 25
opening 15, 680
order of calculation for blocks 86
parts of a model 15
password protection 677
path options 689
pictures in 562
preemption 178
printing 673
process of creating models 54
profiling 532
random number generator 605
random number seed 519
refining 56
reneging of items 131
reporting 596–598
resources 209
reverting 681
run length 530
running 18
running multiple models simultaneously 533
saving 27, 681
sharing models 677
size 740
sound at end of run 689
starting 680
state chart 49
State/Action 49
statistical analysis 564
status bar 524
stochastic 58
styles 692, 699
systems 42
table of different types 45
terminating systems 530
Tool Tips 689
tracing 620–621

767

Index
uncluttering 88
validation 57
verification 56, 615
warm-up period 531
Windows file name 742

Model menu 698
Model Navigator mode 38, 671
Model Style tab for Options command 692
Model tab of Options command 689
model worksheet

printing 672
modeling

continuous 60
discrete event 90
discrete rate 266

modes (3D animation) 400, 521
Buffered 477
Concurrent 477
QuickView 477

modes (for database)
structure 641
viewer 642

modes (Merge/Diverge) 319
mixed mode situations 385
sensing 383

modes (Navigator)
Database List mode 671
Library Window mode 671
Model Navigator mode 38, 671

ModL
Develop menu 704
protecting block code 495
saving code as text file 696

ModL font option 691
ModL Tips library 489
Monte Carlo model 47
Monte Carlo simulation 47, 522
most recent files 684
Mount item while activity is ongoing option 419, 479
Mount objects option (Batch block) 479
mounting 3D objects 460

mount object (definition) 460
mount point 460
mounting node 460
rider object 460
steps 423

mouse-look toggle 399
Move Selected Items to Tab command 706

moving blocks 27
MOX extension 742
multi-dimensional analysis 571
Multiple Cost Accumulators model 236
Multiple Document Interface option 694
Multiple Pools model 211
Multiple Resources model 230
multiple scenarios 522
Multirun analysis 565
multitasking 183

N
named connections 33, 560

Show Named Connections command 560
names of blocks 15

length of name 740
Navigator 670–672

Database List mode 671
introduction to 37
Library Window mode 671
Model Navigator mode 38, 671
printing 672

Navigator command 713
negative binomial distribution 609
Network License command 683
neutral mode 326
New Block command 704
New Database command 641, 700
New Database Tab command 647, 702
New Dialog Item command 706
New Hierarchical Block command 543, 698
New Include File command 706
New Library command 494, 695
New Model command 25, 680
New Tab command 706
New Table command 701
New Text File command 664, 680
Noisy FM model 75
non-accumulating conveyor

Convey Flow block 344
Convey Item block 188

Non-Calendar date definitions 517
non-fixed rule modes 363
Non-Processing model 241
non-terminating system 530
normal distribution 609
Notebook command 712

In
de

x

768
has data (after command) 712
notebooks 19

as control panel 508
copying 675
copying text to 538
grid 699
printing 672

Notify block 511, 615, 720
Number of steps option 518
Number option for field type 649
Number shift 218

O
Object command 688
Object Mapper block 666, 736
object model 665
ObjectID 126, 424, 463
objective function 584
objects (3D) 442–463

actions table 443
changing property values 452
collision 462
creating 444–449
deleting 449
gravity, friction, and momentum 462
inspecting, using the E3D Editor 434
mounting 412, 460
moving 451
properties 443
rotation 412, 455
scaling 457
scenery 446
showing and hiding 453
skins 450
unlinking 2D/3D positions 425
waypoints 410, 459

objects (embedded)
using COM/OLE 666

objects (graphic)
aligning 698
colors 562
copying 674
drawing 561
drawing tools 562
patterns 562
rotating 699

observed statistic 242
ODBC (Open DataBase Connectivity) 667

OLE (Object Linking and Embedding) 666
On/Off shift 218
Only Simulate Messages command 711
Open All Library Windows command 696
Open Block Structure command 704
Open Breakpoints Window command 707
Open command 680
Open Debugger Window command 707
Open Dialog tool 591
Open Dynamic Linked Blocks command 635, 687
Open E3D Window button 402
Open E3D Window tool 476
Open Hierarchical Block Structure command 698
Open Include File command 706
Open Library command 26, 695
Open Library Window command 493, 695
Open library window option (Libraries tab) 690
Open Navigator tool 670
Open Sensitized Blocks command 687
open systems 95, 216
opening a model 15
opening libraries 26, 490
optimization 572–586

adding variables 575
algorithms 573
clone-drop 575
constraint equations 582
constraints 580, 585
cost equation 584
determining the form of the function 575
entering the objective function 577
maximum samples 585
objective function 584
overview 573
profit equation 584
setting limits for the variables 577
steps for using 573
terminate if best and worst 585
tutorial 573
variables table 583

Optimize 1 model 574
Optimizer block 575, 583, 719

Results tab 586
Run Parameters tab 585

Option key 698, 707
Options command 688

3D tab 692
Libraries tab 690

769

Index
Miscellaneous tab 694
Model Style tab 692
Model tab 689
Programming tab 691

order
bias 327
of simulation 86

outflow branch 319
Output Line Balancing model 159
output variables in equation-based blocks 603
Oval tool 561

P
page breaks 682
page numbers 682
Page Setup command 682
parallel processing 149, 166

buffering 158
examples 103
explicit ordering 155
line balancing 158
simple parallel connections 166
successive ordering 154
using one Activity block 166

parameters
arguments 606
blue frame 632
changing 20
changing dynamically (methods for) 676
definition 57
green 630
linking to a global array 631
linking to an ExtendSim database 630
red 630
yellow 630

parent/child relationships (for database) 643
green background on field 643
red background on field 643
relationship dialog 644

Pareto distribution 609
passing blocks 256
password protection 677
Paste command 684
Paste DDE Link command 636, 687
Paste Picture command 562
paths for 3D animation 467

creating a custom path 426
creating markers 428

looping paths 469
selecting the path in the Transport block 428
visible or colored paths 469

Pattern popup menu 562
Pause at Beginning command 619, 711
Pause command 20, 523, 525, 710
Pause Sim block 523, 525, 616, 738
Pause Simulation button 523
Pause/Resume button 20
PE input connector 178
Pearson type V distribution 609
Pearson type VI distribution 609
PICT (picture) resource 557
pictures 745

bitmap 745
copying 675
file formats 556, 562
from other applications 676
Windows MetaFiles 745
working with 562

Planet Dance model 79
Play a sound 511
Play sound at end of run option 689
plot tools 589
plotter 588–596

autoscale (manual) 591
Autoscaling option 593
axis (Y1/Y2) 590
clearing data 596
closed during simulation 591
color, pattern, and width 590
copying 675
copying data 596
data pane 589
Data storage tab 593
dialogs 592
displaying results 18
Do not show plot option 592
Don’t continue line to Endsim option 593
for debugging 616
Grid Density tool 591
Insert plotter background option 593
Key on-off tool 591
lines as reference 88
log tool 591
multiple axes 35
name 590
number format 590
Open Dialog tool 591

In
de

x

770
open during simulation 591
options in dialog of 592
Plot every nth point option 593
plot pane 588
point style 590
printing 672, 673, 683
printing top plot 673
Push Plot tool 592
Redraw trace tool 592
saving plots 592
scaling axes 591
second plotter 39
Show instantaneous queue length option 593
Show plot at end of simulation option 592
Show plot button option 593
Show plot during simulation option 592
Show Trace tool 591
split bar 588
symbols 590
tools 35, 589
Trace properties tool 590
traces default to patterns 694
types of 593
X axis shows calendar dates option 593
Zoom in tool 592
Zoom out tool 592

Plotter library 489
Plotter traces default to patterns option 694
Plotter, DE Error Bars block 594
Plotter, DE MultiSim block 594
Plotter, Discrete Event block 102, 594
Plotter, Error Bars block 595
Plotter, FFT block 595
Plotter, I/O block 88, 595
Plotter, MultiSim block 88, 569, 595
Plotter, Scatter (4) block 595
Plotter, Scatter block 595
Plotter, Strip block 595
Plotter, Worm block 596
Poisson distribution 609
Poll constraint every... 309
Polygon tool 561
Popups block 738
post versions of E3D functions 474
Power Function distribution 609
precision in LP area 360
Predator/Prey model 72
Predict the path of the item 151

preempt connector 353
Preempt tab 178
Preempting model 178
preemption 178

definition 177
options in Activity block 178

preferences for ExtendSim 688
Preload libraries option 690
preprocessing 249
preserve uniqueness 204

in both Batch and Unbatch 204
in either Batch or Unbatch 205

preserved value 204
Print and Page Setup hints 674, 682
Print command 672, 682
print dialog 673, 682
Print header/footer option 694
Print Setup command 682
printing 672–674, 682

add frame 673
header and footer options 694
headers and footers 674
hierarchical blocks 673
page breaks 682
page numbers 682
Print and Page Setup hints 674
Print Setup settings (saving) 694
selecting what to print 672

priorities 122–124
overview 94
used for routing 155

Prioritize Front Model command 533, 709
Prioritize With Bias Blocks model 362
priority mode 322

bias order determination 366
Priority Mode Diverge model 323
Priority Mode Merge model 324
Priority model 130
priority-sorted queue 129, 130
probability distributions 606–610
processes

costs 229
discrete event 164
examples 164
interrupted 177
parallel 166
serial 165

Processing by Type model 161

771

Index
processing items 164–191
fixed number of items 175
for a fixed period of time 177
hysteresis 175
interrupting 177
just-in-time (JIT) 185
Kanban system 185
multitasking 183
scheduling 173
setting the time 167
shutting down the process 179
time sharing 171

processing time
custom 170
fixed 168
implied 171
random 169
scheduled 168
setup time 172

Production Line Final model 412
Production Line Start model 407
Profile Block Code command 712
profiling 532, 712
profit equation 584
programming

profiling 712
protecting block code 696

Programming tab of Options command 691
Prompt for output value 511
Proof Animation 709
properties 115–126

_3D objectID 126
_Animation 200
_Cost 126
_item index 126
_Item quantity 125, 200
_Rate 126
attributes 115–122
batched value when unbatching 204
distribute when batching 204
item index 126
of items 94
of items when batched 199
of items when unbatched 204
options when batching 200
preserved value when unbatching 204
priority 122–124
Properties tab in Batch/Unbatch blocks 200
quantity 124

Properties command 683
Properties tab of Batch/Unbatch blocks 200
proportional mode 321
Proportional Mode Diverge model 322
Proportional Mode Merge model 322
Protect Library command 495, 696
PT connector 241
pulling items 247, 263
Pulse block 718
pushing items 246, 262

Q
quantity goal 335
Quantity Goal model 336
quantity of items 125, 200

overview 94
queue

animating contents 140
attribute-sorted 129
FIFO (first in, first out) 129
initializing contents 139
jockeying 132
least dynamic slack 135
LIFO (last in, first out) 129
M/M/1 queue 130
manipulating contents 139
matching by attributes 138
maximizing service levels 136
minimize setup 136
priority-sorted 129, 130
reneging 131
resource pool queue 212
server systems 129
sorting mechanisms 128
user-defined sorting 129
viewing contents 139

Queue block 101, 727
in resource pool queue mode 208
queuing 128
resource pool queue mode 209

Queue Equation block 133, 601, 727
input variables 602
output variables 603
queuing 128
tie breaking capabilities 137

Queue Matching block 138, 727
queuing 128

Queue Matching model 138

In
de

x

772
Queue Statistics model 48, 566
Queue Tools block 139, 736

queuing 128
queue/server systems 129
queueing disciplines 128
Quick Blocks library (legacy) 490
QuickView mode 409, 477, 521
Quit command 684

R
R connector 309
Random Activity model 169
random distributions 606–610
Random Intervals model 112
Random Number block 21, 718

setting time-based parameters 251
random number generator 519, 605

optional 605
recommended 520, 605

random number stream 605
random numbers 604–606

for database cells 650
resetting 606

Random Numbers tab 519
and confidence intervals 567

random seed 519, 605
Random seed option 519
Random Shutdown model 182
random variables (definition) 57
randomness 58
ranking rules 135

least dynamic slack 135
maximizing service levels 136
minimize setup 136
tie-breaking 137

rate block flow messages
in discrete rate models 388

Rate library 489, 732
animation 370
common connectors 368
overview 269

rate sections 305
boundaries 305
determining 315

rates
effective 303, 365
flow 268
goal 335

in discrete rate models 271
infinite 304
maximum 303
precision 306
sections 305
types in discrete rate model 303

rates of flow 303
Rayleigh distribution 609
Read block 628, 659, 664, 717

addressing the data structure 660
communicating with data structures 659
for accessing a database 645

Read only option 649
Read(I) block 628, 659, 725

addressing the data structure 660
communicating with data structures 659

Read-Only link, in Link dialog 635
RealTimer block 525, 738
Receive Inventory model 229
Record ID field option 649
Record Message block 615, 617, 737
records

creating (for database) 642
Rectangle tool 561
red background on database fields 643
red parameter fields 630
Redraw trace tool 592
reductio-ad-absurdum 56
reference line 88, 589
Refresh DDE Links command 688
relational constraints

definition 307
determining 315
permanent 380
state sensitive 380

Remove All From Report command 710
Remove All From Trace command 620, 712
Remove Debug Code in Open Lib ... command 696
Remove External Code in Open Lib... command 696
Remove License command 683
Remove Selected From Report command 597, 710
Remove Selected From Trace command 620, 712
Rename Block command 502, 704
Rename Database command 647, 701
Rename or Delete Database Tab command 702
Rename Table command 701
reneging 131
Reneging model 132

773

Index
Replace All command 686
Replace command 686
replace with 685
Replace, Find Again command 686
Report Type command 597, 710
reporting 596–598

commands 710
Dialogs report 596
report types 710
Statistics report 596
steps 597

Reservoir 1 model 14
Reservoir 2 model 68
Reservoir 3 model 70
Reset random numbers for every run option 519
residence blocks 256
resolution popup menu (in E3D window) 396
Resource Item block 213, 228, 727

advantages and disadvantages 213
creating resources as items 209

Resource Pool block 209, 727
advantages and disadvantages 210
creating resources 208

Resource Pool Release block 209, 727
releasing resources 208

resources 91, 95
attributes for tracking information 214
batching method 213
combining with cost accumulators 234
conceptual 215
conserving 201
constraining flow of items 209
costing 225
for costing 229
from different resource pools 211
implicit 215
limited 209, 213
modeling methods 209
number available 209, 213
Resource Pool method 209
scheduling 216
scheduling using other methods 217
scheduling using Shift block 218
scheduling using TR connector 216
used in multiple places 212

Resources model 221
restraints on resources 209
results (displaying on plotters) 18
Resume command 20, 711

Revert Model command 681
rider object 460
Rotate Shape command 562, 699
rotating a 3D object 455
Rotation option 480
Rounded Rectangle tool 561
routing

based on priority 155
conditional 157
explicit 104, 155
implicit 151
implied 104
remotely 156
sequential 154
using Throw Item and Catch Item blocks 148, 156

row index 662
run length 530

determining 531
Run menu 522, 708
Run Model block 525, 738
Run Optimization command 579, 708
Run Optimization tool 579
run parameters 25, 516
Run Parameters tab 585
Run Simulation button 18, 32
Run Simulation command 18, 708
running a model 18, 522–526
runs

multiple (resetting random numbers) 606
setting the number of 517

Runs option 517
RunTime format 678, 695, 697
RunTime Startup Screen Editor command 697

S
S (sensor) output connector 345
S (status) connector 365
Save backup model files option 694
Save Block to Library As command 548
Save Model As command 681
Save Model command 681
Save Print Setup settings option 694
Save Text File As command 681
Save Text File command 681
saving

a hierarchical block 547
a library 494

In
de

x

774
a model 27, 681
an environment file 459

Scale option 480
scaling

number of items 249
scaling a 3D object 457

format of scale property 458
scattergram 595
scenarios 522
scenery for 3D animation 411, 446
Scenery tab of 3D Controller block 482
Scheduled Intervals model 114
Scheduled Shutdown model 181
Scheduled Time model 169
scheduling

activities 173
events 258
labor 218
resources 218
shutdown 181

Scheduling Activities 1 model 174
Scheduling Activities 2 model 175
scheduling algorithms 128
Scheduling Resources model 217
scrap generation 153
Scrap Generation model 153
Scroll To Messages command 712
SD input connector 179
SD output connector 180
SDI Tools library (legacy) 490
search for 685
seed 519, 605
Select All command 685
select connector 250
Select Item In block 145, 728

routing items 144
selection options 146
starving conditions 146

Select Item Out block 729
blocking conditions 150
routing items 144
selection options 149

Select mode (in Merge/Diverge block) 319
Select Mode Diverge model 320
Select Mode Merge model 320
Select mode option (3D Animation tab) 477, 521
Select Value In block 720

Select Value Out block 720
selection options for Select Item Out block 149
selection options in Select Item In block 146
sensing mode 325, 383

bias order determination 366
sensitivity analysis 568–572

disabling 570
enabling 570
multiple dimensions 571
opening sensitivity blocks 687
overview 568
Sensitize Parameter command 569, 687
settings 570
steps 568

Sensitivity Setup dialog 570
Sensitize Parameter command 687
Sensor block 383, 733

animation 373
sensor connector 247
Sensors tab 345
sequential routing 154
serial port 662
serial processing 165
Serial Processing model 165
server application 658, 665
server application for DDE link 636
Set block 118, 726

properties of items 110
Set Block Category command 704
Set Breakpoints command 707
Set Library Version command 697
Set Simulation Order command 700
Setup tab 25, 517
setup time 172
Setup Time 2 model 173
Shadows option (3D tab) 449, 476, 692
Shape Fill/Border command 562
shape of distribution 606
Shapes category of WEC 438
Shared Libraries 513, 662, 668
sharing files

model locking 677
Sheep and Wolves model 54
Shift block 175, 218, 728

adding to a model 342
in discrete rate model 342
managing resources 209
Number shift 218

775

Index
On/Off shift 218
shift types 218
status connectors 219

Shift On and Off model 220
Shift Selected Code Left command 707
Shift Selected Code Right command 707
Shipping model 354
Show 2D Animation command 551, 709
Show 3D Animation command 709
Show 3D animation during simulation option 521
Show block in 3D window as option 480
Show Block Labels command 699
Show Block Messages command 711
Show Block Numbers command 674, 699
Show Clipboard command 674, 688
Show DDE Links command 637, 688
Show Debug Messages command 712
Show library window dates option 690
Show Movies command 709
Show Named Connections command 34, 560, 698
Show Page Breaks command 674, 682
Show Reporting Blocks command 597, 710
Show Simulation Order command 619, 700
Show Tracing Blocks command 620, 712
Show/Hide Connections command 560
Show/Hide Connectors command 560
Shuffle Graphics tool 561
shutdown 179

definition 177
explicit 183
options for items 180
options in Activity block 180
scheduled 181

Shutdown block 728
controlling item processing 164
time between failures (TBF) 182
time to repair (TTR) 182

Shutdown tab 179
Sim messages, in Link dialog 635
Simple Batching model 197
Simple Connections model 151, 166
Simple Resource Pool model 210
Simple Routing model 152
Simple Routing One Queue model 152
Simulate Multitasking Activity model 184
simulation

agent-based 51

beep at end of run 689
benefits 4
continuous modeling 60
controlling the run 525
Custom order 86
definition 43
deterministic 58
discrete event modeling 93
discrete rate modeling 266
duration 82, 526, 531
events 16
Flow order 86
importance 4
integration methods 85
interactive 16
Left to right order 86
messages 533
monitoring the run 525
Monte Carlo 47
multiple 522, 531
number of runs 517
number of runs (maximum) 740
order 86
order of execution 619
parameters 25
pausing 522, 525, 710
process 55
prompt for user input 511
results 18
running 18, 32, 522–526
running multiple models simultaneously 533
running with Equation/Equation(I) block 744
runs 25
runs (determining) 531
saving intermediate results 525
slowing down a 533
sound 511
speeding up a 531
state chart 49
State/Action 49
status bar 524
stepping through 522
steps 16
stochastic 58
stopping 511, 710
time 82
timer inconsistencies in discrete event models 524
timing 526

simulation order 86, 700
Simulation Setup command 25, 82, 516, 708

In
de

x

776
3D Animation tab 477, 521
Continuous tab 518
Random Numbers tab 519
Setup tab 517

Simulation Variable block 718
skewness of distribution 606
skins of 3D objects 409, 450

skin types 450
Slider control 509
Sort By Type model 233
sounds 462, 511, 689, 745
Sounds option (3D tab) 449, 476, 692
source code

control 696
external 705
protection 696

speed and calculated distance 186
speed and distance

in a Convey Flow block 343
spread of distribution 606
spreadsheets 658
SQL (Structured Query Language) 667
standard line 88
start connector 114, 176
start connector (on Valve) 341
start time

absolute vs. relative 114
Start time option 517
Starting seed used in last model run option 519
starving

in a Valve block 365
in Select Item In block 146

State Action model 49
state chart modeling 49
State/Action modeling 49
StatFit 586–588, 710

tutorial 587
StatFit Example model 587
static values 676
statistical analysis 564
statistical bias 239, 566
statistical data fitting 607
statistical method 565
statistics 564–567

Batch means method 565
bias 239
blocks for discrete event models 238
clearing 239

custom method 565
cycle time 254
multirun analysis 565
observed 242
sensitivity analysis 568–572
time weighted 242
warm-up period 239

Statistics block 238, 564, 615, 721
Statistics report 596, 710
status bar 524
steady-state systems 530
Step command 710
Step Each Block command 619, 711
Step Entire Model command 619, 711
Step Into command 708
Step Next Animation command 619, 711
Step Out command 708
Step Over command 708
Step The Flow Process model 350
steps 16

number of 83, 518
number of (maximum) 740
size 83

Stepsize calculations option 518
stepwise refinement 4
stochastic models 58
Stop command 710
Stop Message block 254, 737
Stop the simulation 511
storage costs 227, 235
string attributes 106, 116

declaring 255
defining 118

String option 649
structure mode (in database) 641
structure window 691

hierarchical blocks 548
printing 672, 674

structure window of hierarchical blocks 541
Structure window opens in front option 691
Styles option (connection lines) 558
submodels 36, 545
Supply & Demand Warning model 384
supply scarcity 323
Supply Sensing Mode Merge model 326
Support Resource Center command 713
Switch block 508, 738

777

Index
Switch control 510
system attributes 231
System objects (E3D animation) 438
systems

continuous 61
definition 42
discrete event 164
discrete rate 267

T
tab delimited files 665, 681
tabs

deleting dialog 706
moving dialog items to 706
new database 702
new dialog 706
renaming dialog 706

Tank block 276, 733
animation 370
block units 297
capacity 291
critical constraints 310
direction animation 371
infinite checkbox 277
initial contents 294
level animation 370
maximum rate 303

Tank Constraint model 311, 315
Tank Flow Unit model 300
technical support 713

documentation 7
help 8
how to get 8
information to provide 8
resources 7

terminating systems 530
Terrain Editor mode 438
terrain height in E3D window 439
Terrain modes of the E3D Editor 438
Terrain Texture Painter mode 439
terrains for the E3D window 470–471
text 538–539

as a connector in hierarchical blocks 546
as a named connection 34
border 539, 695
box 538
copied as picture to Notebook 538
copying 538

drag and drop 539
duplicating 34
entering 538
finding 685
formatting 539, 695
in E3D window 483
labels 34
transparent 539, 695

Text file font option 665, 689
text files

changing the font 665
closing 680
creating 664, 680
exporting 681
font option 689
importing 681
internet access 659
opening 664, 680
printing 672
reverting 681
saving 681

text label 34
Text menu 695
Texture pane of Terrain Texture Painter mode 440
Throw & Catch model 148
Throw Flow block 329, 733
Throw Item block 148, 156, 729

popup list of Catch Item blocks 148
routing items 144

Throw Value block 720
throw/catch

filters in discrete rate models 330
in discrete event models 148
in discrete rate models 329

throw/catch connection 330
time

between arrivals 111
between failures (TBF) 182
to repair (TTR) 182

Time per step option 518
time ratio (3D animation) 521
time sharing 171
Time Sync block 525
Time Unit block 719
time units 298, 526–529

generic 526
global 25, 517
in discrete rate model 300
local 527

In
de

x

778
Time Weighted Statistic model 242
time weighted statistics 242
time-based parameters 251
timer 524
TimeSync block 738
Tool Tips 8

additional block information 689
on block dialogs option 691
on dialog editor 691
setting the option 689
uses 676

toolbar
buttons (list) 714
database tools 714
plotter 589

tools
autoscale plotter manually 591
color 562
drawing 561
Grid density (plotter) 591
Key on-off (plotter) 591
log (plotter) 591
open dialog (plotter) 591
patterns 562
plotter 589
Push Plot tool (plotter) 592
Redraw trace (plotter) 592
shuffling graphics 561
Trace properties (plotter) 590
Zoom in (plotter) 592
Zoom out (plotter) 592

Tools command 695
Torque Game Engine (TGE) 392
total cost 235
TR connector 216
tracing 620–621

steps 620
Transparent command 695
Transport Animation tab 481
Transport block 724

3D animation 481
adding to a model 419
distance ratio 188
from and to locations 187, 481
Get distance from 3D path length 429
move time 186
processing items 164
selecting a path 428
speed and calculated distance 186

speed and distance 186
transportation 185
Transportation 1 model 190
Transportation 2 model 191
travel time 248, 419

move time setting 420
options 186, 421
speed and calculated distance setting 422
speed and distance setting 426

Tree pane of the WEI 437
Tree pane of WEC 438
triangular distribution 609
Tutorial library 489

U
Unbatch block 201, 725

unbatching items 194
Unbatch Mode Diverge model 321
unbatch/batch mode 321
unbatching 149, 201–204

batch size 203
batched value 204
create multiple items 202
distribute properties 204
item properties 204
preserve uniqueness 204
preserved value 204
release cost resources 202
variable number of items 203

Undo command 684
Uniform Integer distribution 610
Uniform Real distribution 610
unit groups 271, 298
units

block 271, 297
group 271, 298
length 271, 298
managing flow units 366
metric 689
time 298, 300

Universal connector 498, 545
Unmount option in Activity and Workstation blocks

479
unmounting 419
update flow status 365
Update Launch Control command 681
updates to ExtendSim 713
upper limits 740

779

Index
upstream supply 322
cautions when determining 383
definition 383
discrepancy with downstream demand 324
supply scarcity 323

Use database table _Seed...option 520
Use default connection line types option 689
Use Grid command 699
Use recommended random number...option 520
Use Sensitivity Analysis command 709
Use separators option 649
User Defined connector 498, 545
User Forum command 713
user forums 8, 713
user interface 504–514

for data exchange 624
user-defined queue 129
Utilities library 489, 736

V
validation 57, 66
value attributes 116

defining 118
value connector messages 250, 261

in discrete rate models 387
Value connectors 87, 498, 545
Value library 60, 489, 716–721

blocks in non-continuous models 500
values

definition 57
dynamic 676
informational 94
static 676

Valve block 276, 733
animating blocking/starving status 372
animating goal 373
animating hysteresis 373
animating limiting status 371
animation 371
critical constraints 309
duration goal 338
Flow Control tab 334
goal for rate 335
GS (goal status) connector 337
hysteresis 341
maximum rate 303
maximum rate initialization 309
polling constraints 309

quantity goal 335
status options 365

variable branches 319
variable connectors 498

collapsing 500
contracting 499
expanding 499

variable cost rate 234
variable costs 224
variables

input, in equation-based blocks 602
output, in equation-based blocks 603

variables (definition) 57
variables table 583
verification 56, 615
Verifying Information model 240
View Using Defaults option 558
viewer mode (in database) 642
viewing items 247
views (icon) 496

W
Wait Time block 717
waiting costs 227, 235
wants 262
warm-up bias 531
warm-up period 239, 531, 566
waypoints 410
WEC (World Editor Creator) mode 437
Weekly and Daily Shifts model 221
WEI (World Editor Inspector) mode 434, 436
Weibull distribution 610
What’s New command 713
window

database 700
E3D Window 399
library 695
Navigator 670

Window menu 712
Window menu (E3D Editor) 485
Windows

file conversion 743
keyboard shortcuts 742

Windows MetaFiles 745
Windows to Macintosh 743
WMF (Windows MetaFiles) 556
worksheet

In
de

x

780
grid 699
Workstation block 725

Item Animation tab 479
processing items 164

World Editor Creator (WEC)
mode 437
panes 438

World Editor Inspector (WEI)
mode 434, 436
moving objects with 451
panes 437

World Editor mode of the E3D Editor 436
World menu (E3D Editor) 485
World modes of the E3D Editor 436
Write block 628, 659, 664, 717

addressing the data structure 660
communicating with data structures 659
for accessing a database 645

Write(I) block 628, 659, 725
addressing the data structure 660
communicating with data structures 659

Y
yellow outline around field 637
yellow parameter fields 630
Yogurt Changeover model 355
Yogurt Production model 274, 355

Z
Z is ground level option 480
zero effective rate 365
zero time events 259
Zoom in tool 592
Zoom out tool 592

	USER GUIDE
	Table of Contents
	About ExtendSim
	Preface
	Introduction
	Why simulation is important
	Simulation with ExtendSim
	What ExtendSim can do
	Modeling capabilities
	Simulation architecture

	Levels of use
	About this User Guide
	Additional resources
	Electronic documentation
	ExtendSim Help
	Context-sensitive help
	Block help
	Tool tips

	User forums
	Support
	How to get technical and modeling support
	Contacting Imagine That Inc. Technical Support

	Model illustrations

	Tutorial
	Running a Model
	Opening the Reservoir model
	Model basics
	Blocks
	Icons
	Connectors
	Dialogs

	Connections

	Blocks used in the Reservoir model
	Running the Reservoir model
	Displaying the results on the Plotter
	Notebooks
	Making changes to the model
	Adding and removing blocks
	Changing dialog parameters
	Lookup Table block (Rainfall)
	Random Number block (Stream)
	Math block
	Holding Tank block (Reservoir)

	Other modifications

	Building a Model
	Steps to create the Reservoir model
	Opening a new model worksheet
	Setting the simulation parameters
	Building the model
	Basic steps
	About libraries
	Opening the relevant libraries

	Adding blocks to the model
	Connecting blocks
	Connectors
	Types of connections
	Connecting the Lookup Table block to the Math block’s variable connector
	Connecting from the Random Number block
	Connecting the remaining blocks

	Working with block dialogs
	Rainfall source
	Stream source
	Combining the sources
	Water in the reservoir
	Displaying the results

	Running the simulation
	Additional ways of connecting blocks
	Straight line connection
	Multi-segment line connection
	Named connection
	Creating a named connection between the Lookup Table and the Plotter
	Named connection between Random Number and Plotter

	Plotting against multiple axes
	The final Reservoir model
	Additional enhancements
	Introduction to hierarchy
	Creating a hierarchical block from existing blocks

	The ExtendSim Navigator
	Navigating through the Reservoir model

	Cloning
	Other modifications
	Next steps

	Simulation Concepts
	Systems, models, and simulation
	Systems
	Models
	Simulation

	Modeling methodologies
	Comparison of main modeling methodologies
	Comparison table
	Table of continuous, discrete event, and discrete rate differences

	Other modeling approaches
	Monte Carlo modeling
	Monte Carlo model
	Queue Statistics model

	State/Action models
	State Action model
	Markov Chain Weather model

	Agent-based models
	Programming for agent-based models
	The Game of Life
	Boids
	Other agent-based models

	The modeling process
	Goals of modeling
	The simulation process
	Before you build a model
	Refining models
	Model verification
	Model validation

	Additional modeling terminology
	Model parameters, variables, inputs, and outputs
	Constant values and random variables

	Continuous Modeling
	Introduction
	How the Continuous module is organized
	Blocks for building continuous models
	Using the ExtendSim blocks
	Building custom continuous blocks
	Third-party libraries

	Application areas
	Next steps

	Tutorial
	Removing overflow from the Holding Tank
	Setting the maximum capacity
	Determining if there is too much water
	Comparing contents to overflow limit
	Validating intermediate results

	Calculating how much water to remove
	Removing the overflow

	Simplifying the model
	Adding an Equation block
	Specifying input variables
	Specifying output variables
	Entering the equation

	Improving the accuracy of the model
	Next steps

	Areas of Application
	Scientific
	Predator/Prey
	Model assumptions
	Model details
	Further exploration

	Drug Ingestion
	Model assumptions
	Model details
	Variations

	Engineering
	Noisy FM system
	Model assumptions
	Model details
	Variations

	Business
	Inventory Management
	Model assumptions
	Model details
	About the model
	Variations

	Social sciences
	City Planning
	Model assumptions
	About the model
	Variations

	Custom blocks
	Planet Dance
	About the model
	Variations

	Fish Pond
	About the model
	Variations

	Concepts, Tips, and Techniques
	Simulation timing
	Delta time
	Delta times other than 1
	Determining which dt to use
	Specifying dt or the number of steps
	Setting the end time when delta time is 1
	Setting the end time when delta time is other than 1

	Feedback and delays
	Feedback
	Delays in feedback loops

	Integration
	Simulation order
	Flow order
	Left to right order
	Custom order

	Mixing block types
	Connections to multiple inputs
	Using plotters as inputs
	Using a plot line as reference or standard
	Uncluttering models

	Discrete Event Modeling
	Introduction
	About the Discrete Event module
	How the Discrete Event module is organized
	What the Introduction to the Discrete Event module covers

	Discrete event systems and processes
	Blocks for building discrete event models
	Item library
	Third-party libraries
	Creating custom discrete event blocks

	Terminology and architecture
	Overview of a discrete event model
	Layout of a discrete event model
	Executive block
	Items and informational values
	Item properties
	Attributes
	Priorities
	Quantities

	Events
	Activities
	Resources
	Connectors
	Closed and open systems
	Closed systems
	Open systems

	Types of item handling blocks

	Application areas
	Next steps

	Tutorial
	A basic discrete event model
	About the model
	Starting a model and setting simulation parameters
	Start small
	Modeling a waiting line with a single server
	Entering dialog parameters and settings
	Making connections and running the simulation
	Verifying results
	Animating the model

	Adding complexity
	Creating a second wash bay
	Explicit routing
	Requiring resources
	Item attributes
	Creating a string attribute
	Generating the correct types of cars
	Checking the attribute
	Final model

	Further exploration

	Items, Properties, and Values
	Blocks of interest
	Item generating and removing
	Create (Item > Routing)
	Exit (Item > Routing)

	Item properties
	Get (Item > Properties)
	Set (Item > Properties)
	Equation(I) (Item > Properties)
	Executive

	Property-aware blocks

	Item generation
	Generating items at random intervals
	Example model
	Choosing a distribution in the Create block

	Random intervals with dynamic parameters
	Random Intervals model
	Specifying the dynamic parameters
	Choosing time units for the columns
	Making sure the arrival occurs when expected

	Generating items according to a schedule
	Scheduled Intervals model
	The Start connector

	Item properties
	Attributes
	Attribute names and values
	Number of attributes in a model
	Attribute types
	Using attributes
	Adding attributes to a model
	Selecting attributes and attaching them to items
	Getting attribute values and reporting changes
	Modifying attribute values
	Attribute arrays

	Priority
	Setting, getting, and using priorities
	Priorities model

	Quantities
	How blocks treat items with quantities other than 1
	Setting an item’s quantity
	Quantities model

	Other item properties

	Queueing
	Blocks of interest
	Queue (Item > Queues)
	Queue Equation (Item > Queues)
	Queue Matching (Item > Queues)
	Queue Tools (Utilities > Discrete Event Tools)

	Queueing disciplines
	Queue/server systems
	M/M/1 queues
	MM1 model

	Priority queues
	Priority model

	Queueing considerations
	Blocking
	Balking
	Reneging
	Reneging model

	Jockeying
	Jockey model

	Sorting items using the Queue Equation block
	Variables and rules
	Input variables
	Output variables
	Ranking rules

	Least dynamic slack
	Least Dynamic Slack model

	Minimizing setup
	Minimize Setup model

	Maximizing service levels
	Maximize Service Level model

	Combined rules
	Combined Rule model

	Matching items using the Queue Matching block
	Queue Matching model
	Other models that use the Queue Matching block

	Advanced queue topics
	Viewing and manipulating queue contents
	View tab of Queue Tools block

	Initializing a queue
	Initializing and Viewing model

	Animating queue contents
	Animating Queue Contents model

	Routing
	Commonly used blocks
	Blocks that route items
	Catch Item (Item > Routing)
	Select Item In (Item > Routing)
	Select Item Out (Item > Routing)
	Throw Item (Item > Routing)

	Blocks that affect the flow of items
	Decision (Value > Math)
	Gate (Item > Routing)
	Math (Value > Math)
	Max & Min (Value > Math)

	Items from several sources
	Select Item In dialog
	Selection options
	Starving conditions

	Merging several item flows into one stream
	Merging Inputs model

	Balancing multiple input lines
	Input Line Balancing model

	Throw Item and Catch Item blocks for merging item streams
	Throw & Catch model
	Catch Item groups

	Items going to several paths
	Select Item Out dialog
	Selection options
	Blocking conditions
	Predicting the path of the item before it enters the block

	Implicit routing
	Simple routing
	Simple Routing model
	Simple Routing One Queue model

	Scrap generation
	Scrap Generation model

	Sequential ordering
	Sequential Ordering model

	Explicit ordering
	Explicit Ordering model

	Routing decisions based on properties
	Attributes for Routing model
	Throw and Catch Attributes model
	State Action model

	Conditional routing
	Bringing a system on-line
	Balancing multiple output lines

	Machines that can only process certain types of items
	Processing by Type model

	Processing
	Commonly used blocks
	Activity (Item > Activities)
	Convey Item (Item > Activities)
	Create (Item > Routing)
	Shutdown (Item > Resources)
	Transport (Item > Activities)
	Workstation (Item > Activities)
	Systems and processes

	Processing in series
	Processing in parallel
	Parallel processing using one block
	Simple parallel connections

	Setting the processing time
	Processing time for an Activity
	Processing time for other activity blocks
	Fixed processing time
	Scheduled processing time
	Scheduled Time model

	Random processing time
	Random Activity model

	Custom processing time
	Custom Time model

	Implied processing time
	Cumulative processing time: time sharing
	Cumulative Time model

	Adding setup time
	Setup Time 1 model

	Bringing an activity on-line
	Scheduling activities
	Scheduling Activities 1 model
	Scheduling Activities 2 model
	Shift block used to schedule

	Controlling the flow of items to an activity
	Fixed number of items
	Fixed Items model

	Fixed period of time
	Fixed Time model

	Interrupting processing
	Preemption
	PE input connector
	Preemption options
	Preempting model

	Shutting down
	SD input connector
	Shutdown options
	Item options
	SD output connector
	Scheduled Shutdown model
	The Shutdown block
	Model-related shutdown

	Multitasking
	Simulate Multitasking Activity model

	Kanban system
	Kanban model

	Transportation and material handling
	Travel time
	Transport blocks
	Travel time options
	Calculated distance

	Convey Item blocks
	How the length is calculated
	Transportation models
	Transportation 1 model
	Transportation 2 model

	Batching and Unbatching
	Blocks of interest
	Batch (Item > Batching)
	Unbatch (Item > Batching)

	Batching
	Batch dialog
	Batch tab
	Options tab

	Simple batching
	Simple Batching model

	Batching by matching items
	Matching Items model

	Batching a variable number of items
	Batching Variable model
	Batch on Demand model

	Properties when items are batched
	Property options

	Delaying kits
	When the kitting starts

	Unbatching
	Simple unbatching
	Variable batching and unbatching
	Batch and Unbatch Variable model

	Properties when items are unbatched

	Preserving the items used to create a batch
	Both blocks choose to preserve uniqueness
	Either block chooses to preserve uniqueness

	Additional models

	Resources and Shifts
	Blocks of interest
	Resource pool blocks
	Resource Pool (Item > Resources)
	Queue (Item > Queues)
	Resource Pool Release (Item > Resources)

	Other resource blocks
	Resource Item (Item > Resources)
	Shift (Item > Resources)

	Modeling resources
	How to model resources
	Resource Pool method
	Advantages and disadvantages of using resource pools
	Simple Resource Pool model
	Resources required from different pools
	Same resource used in multiple places

	Resource Item method
	Advantages and disadvantages of using resource items
	Air Freight model
	Stripping attributes from resource items

	Other methods for modeling resources
	Implicit resources
	Conceptual resources

	Closed and open systems
	Scheduling resources
	Scheduling resource pools and resource items
	Using the TR (Total resources) connectors

	Scheduling resource items

	The Shift block
	Shift types and what they control
	Status connectors
	Shift models
	On/Off type example
	Number type examples
	Complex patterns

	Activity-Based Costing
	Blocks of interest
	Cost by Item (Item > Information)
	Cost Stats (Item > Information)

	Modeling with activity-based costing
	Item types
	Cost accumulators
	Resources

	Defining costs and cost rates
	Costs for cost accumulators
	Costs of resources
	Activities

	Combining resources with cost accumulators
	Batching and unbatching resources with cost accumulators
	Cost accumulators and the resource pool blocks

	Combining cost accumulators
	Costing attributes when items are unbatched

	Working with cost data
	Viewing Cost Data
	Changing Cost Data
	Gathering and Analyzing Cost Data

	How ExtendSim tracks costs
	Setting the _cost and _rate attributes
	Combining resources with cost accumulators
	Calculating costs
	In the Create block
	In activity-type blocks
	In queue-type blocks
	In resource-type blocks

	Combining multiple cost accumulators
	Multiple Cost Accumulators model

	Statistics and Model Metrics
	Commonly used blocks
	Clear Statistics (Value > Statistics)
	Display Value (Value > Outputs)
	History (Item > Information)
	Information (Item > Information)
	Mean & Variance (Value > Statistics)
	Statistics (Value > Statistics)

	Gathering statistics
	Clearing statistics
	Clearing Statistics model

	Using the History block to get item information
	History model
	Verifying Information model

	Accumulating data
	Non-Processing model
	Processing model

	Time weighted versus observed statistics
	Time Weighted Statistics model

	Timing the flow of items in a portion of the model

	Tips and Techniques
	Moving items through the simulation
	How items move through the simulation
	Holding and pushing
	Pulling and viewing

	Connections to multiple item input connectors
	An item’s travel time
	Using scaling for large numbers of items
	Preprocessing
	Restricting items in a system
	Connecting to the select connector

	Continuous blocks in discrete event models
	Setting time-based parameters using connectors
	Random Number block
	Lookup Table block

	Varying a distribution’s arguments
	Lookup Table example

	Using the Holding Tank block to accumulate values
	Incorrect approaches
	Solution #1: two Holding Tank blocks
	Solution #2: the Equation(I) block
	Solution #3: the Stop Message block

	Cycle timing
	Using the Timing attribute feature
	Using a Set or Equation(I) and Information blocks

	Item library blocks
	Executive block
	Block types
	Why block types matter
	Table of block types

	Common connectors on discrete event blocks

	Event scheduling
	Event calendars
	The Executive
	Internal event calendars

	Zero time events
	Event Scheduling model

	Messaging in discrete event models
	Block messages
	Event messages
	Value input and output connector messages
	Item connector messages
	Block-to-block messages

	Discrete Rate Modeling
	Introduction
	What this chapter covers
	Discrete rate application areas
	Simulating discrete rate systems
	Comparison to discrete event and continuous modeling
	Discrete rate models

	Blocks for building discrete rate models
	Rate library
	Creating custom discrete rate blocks

	Terminology and architecture
	LP technology
	Layout of a discrete rate model
	Executive block
	Connectors and connections
	Units and unit groups
	Rates

	How the Discrete Rate module is organized

	Tutorial for Discrete Rate Systems
	A basic discrete rate model
	About the model
	Starting a model and setting simulation parameters
	Start small
	Creating a model of the simple yogurt production process
	Making connections
	Entering dialog parameters and settings
	Verifying results

	Add a dynamic constraint
	Add a fruit processing line
	Add maintenance
	Change the flow unit to containers for the filling process
	Cool the mixture
	Package the containers
	Add a palletizing area
	Interchange block
	Adding a palletizing area to the model

	Add a second palletizing area

	Further exploration

	Sources, Storage, and Units
	Blocks of interest
	Residence blocks for holding flow
	Convey Flow
	Interchange
	Tank

	Changing the flow unit group
	Change Units

	Capacity
	Full and not-full
	Tank block’s capacity
	Interchange block’s capacity
	Tank only exists while item is in it
	Tank is separate from item

	Convey Flow block’s capacity

	Setting an initial contents
	Empty and not-empty
	Tank initialization
	Interchange initialization
	Tank only exists while item is in it
	Tank is separate from item

	Convey Flow initialization

	Indicators
	Setting indicators
	Getting information about levels
	Tank Flow Units model

	Units and unit groups
	Definitions
	Flow units
	Block units
	Time units
	Length units
	Unit groups

	Declaring and selecting flow units
	Where to declare a flow unit
	Declaring a flow unit
	Managing flow units in the Executive block

	Defining block units
	Tank Flow Units model

	Time units

	Changing the unit group
	Change Units block
	Yogurt Production model

	Rates, Constraints, and Movement
	Blocks of interest
	Convey Flow
	Interchange
	Tank
	Valve

	Rates, rate sections, and the LP area
	Types of rates
	Maximum rate
	Effective rate
	Infinite rate
	Upstream supply/downstream demand

	Rate sections
	Rate precision
	LP area

	Flow rules
	Critical and relational constraints
	Critical constraints
	Relational constraints
	Comparison of constraints

	Defining a critical constraint
	Valve
	Dynamically changing the maximum rate
	Controlling how and when the Valve applies its maximum rate

	Tank and Interchange
	Convey Flow
	Merge and Diverge

	Meeting the critical constraint requirement
	Valve or Convey Flow
	Tank or Interchange
	Merge or Diverge blocks
	Proportional mode
	Priority mode

	Comprehensive example
	Rate sections
	Critical constraints
	Relational constraint
	Simulation’s impact on the effective rates

	Merging, Diverging, and Routing Flow
	Blocks of interest
	Catch Flow
	Diverge
	Merge
	Throw Flow

	Merging and diverging flow
	Mode table
	Characteristics

	Select mode
	Select Mode Diverge model
	Select Mode Merge model

	Batch/Unbatch mode
	Batch Mode Merge model
	Unbatch Mode Diverge model

	Proportional mode
	Proportional Mode Diverge model
	Proportional Mode Merge model

	Priority mode
	Priority Mode Diverge model
	Priority Mode Merge model

	Distributional mode
	Distributional Mode Diverge model
	Distributional Mode Merge model

	Sensing mode
	Demand Sensing Mode Diverge model
	Supply Sensing Mode Merge model

	Neutral mode

	Features of the Merge and Diverge blocks
	Bias Order - resolving competing requests for flow
	Competing Requests for Flow model

	Internal throw and catch
	Changing decision rules dynamically
	Limiting the number of recalculations

	Throwing flow and catching flow remotely
	Creating a throw/catch connection
	Choosing the connector position for Merge and Diverge blocks

	Filter options to facilitate throw/catch connections
	Group filter
	Block type filter
	Only unconnected blocks filter

	Examples of throw and catch connections
	Catch Flow and Throw Flow model
	Catch Flow and Diverge model

	Delaying Flow
	Blocks of interest
	Convey Flow
	Valve

	Controlling a Valve’s maximum rate
	Using the Flow Control tab
	Observing the maximum rate for a goal
	Options when goal is Off

	Setting a Valve’s quantity goal
	Quantity Goal model
	Changeover Quantity Goal model

	Setting a Valve’s duration goal
	Duration Goal model
	Changeover With Only Goals model

	Setting hysteresis in a Valve
	Hysteresis model

	Delaying flow with the Shift block
	Adding a Shift to a model

	Convey Flow block
	Dialog settings
	Determining speed and distance
	Convey Flow behavior

	Constraining rates
	Convey Flow information
	Distribution of flow
	Accumulation point
	Sensors
	Indicators

	When to avoid using the Convey Flow block

	Mixing Flow and Items
	Controlling flow with items and items with flow
	Items controlling flow
	Item Controls Flow model

	Flow controlling items
	Flow Controls Item model

	Flow controlling items and items controlling flow
	Step The Flow Process model
	Flow controlling the item
	Item controlling the flow
	Stage 1: Open Valve 1 and release flow to Reception
	Stage 2: Open Valve 2 and release flow to Processing
	Stage 3: Process the flow
	Stage 4: Open Valve 3 and release the flow

	Using the Interchange block to mix items with flow
	Behavioral rules
	The flow connector configuration
	Item release conditions
	Scheduled releases
	Preemption

	Interchange modes
	Tank only exists while item is in it
	Tank is separate from item

	Miscellaneous
	Precision
	Biasing flow
	Bias order
	Bias block
	Dialog settings and bias order
	Calculation of the effective rate
	Prioritize With Bias Blocks model

	Merge and Diverge blocks
	Fixed rule modes
	Non-fixed rule modes
	Setting a Merge or Diverge block’s bias order
	Bias order table
	Competing preferences

	Global and advanced options in the Executive
	Global options
	Infinite rate
	Zero effective rate
	Update flow status
	Valve animates and reports blocking and starving information
	Manage flow units for discrete rate models

	Advanced options
	Merge or Diverge blocks in Distributional, Priority, or Sensing modes
	Merge blocks in Proportional mode

	Common connectors on discrete rate blocks
	Animation
	Tank
	Level information
	Direction information

	Interchange
	Valve
	Displaying limiting and non-limiting status
	Also displaying blocking and starving status
	Goal and hysteresis animation

	Sensor
	Convey Flow
	Mode animation
	Distribution of flow and other information

	Advanced Topics
	What this chapter covers
	LP technology
	Overview
	The LP area
	The sequence of events
	Types of information provided to the Executive
	Flow rules
	Bias information
	Table summarizing constraint and bias information
	The relational constraint calculation

	The LP calculation

	Upstream supply and downstream demand
	Definition
	Requirements for the supply/demand calculation
	Cautions when using potential rates
	Issues when relying on the Sensor to report potential rates
	Mixing Merge/Diverge block modes
	Unexpected effects of bias order

	Messaging in discrete rate models
	Block messages
	Event messages
	Value connector messages
	Item connector messages
	Flow connector messages
	Rate block flow messages
	Executive block flow messages

	3D Animation
	Introduction to E3D
	What this chapter covers
	Blocks and objects for 3D animation
	Item library blocks
	Animation library
	Custom 3D objects and blocks

	Overview
	Features
	Animation modes
	Blocks appear as objects in the E3D window
	3D items appear as objects and travel on pathways
	3D objects have collision capabilities
	3D objects can mount other objects
	E3D environment is modifiable
	Torque Game Engine

	Controlling the E3D environment

	Prerequisites
	Software and hardware
	Preparation

	How the E3D module is organized

	Tutorial I
	The E3D environment
	Opening the E3D window
	Exploring the E3D window
	Interface controls
	Title bar
	MiniMap and camera
	Animation area
	Selecting and moving

	Changing the associated model
	Navigating within the E3D window
	Manipulating the E3D window
	Opening the window
	Moving the window
	Changing the window size
	Closing the window

	3D animation modes
	Mode descriptions
	QuickView versus Concurrent or Buffered

	Running a model with 3D animation
	Opening the model
	About the model
	Accommodations for the 3D world

	Running the model with 3D animation

	Next step

	Tutorial II
	Adding 3D behavior to an existing model
	The goal
	Open the starter model
	Model particulars
	Running the 3D animation
	Save a model to explore

	Cause objects to move simultaneously
	Create objects to represent items
	An object for the Create block’s items
	Objects for the items that go to the branches
	Save the model

	Create objects to represent blocks
	3D objects to represent blocks
	Waypoints
	Save and run the model

	Enhancing the model
	Add scenery
	Adding workers

	Add a 3D Controller block
	Launch with the E3D window

	Some things to notice
	Internal animation
	Rotation of 3D objects
	Mounting objects
	Moving blocks linked to objects
	Conveyor
	Item length
	Conveyor capacity

	Tutorial III
	Animating a bank line
	The goal
	Open the starter model
	Animate the model in 2D
	Model particulars
	Differences from typical discrete event models

	Animate the model in 3D
	Accommodations for 3D animation
	What this model needs
	Save a model to explore

	Unmount the Activity blocks
	Add Transport blocks
	Animating the travel time
	What the model needs
	Walking and waiting in a line
	Leaving the bank
	Minimizing the icons of the existing Transport blocks
	The model so far

	Block positions to determine a path’s length
	Setting the speed and determining the distance
	Walking to the front of the line
	Walking to the teller
	Leaving the bank
	Run the animation and save the model

	Mounting objects
	Steps for mounting an object
	Create the object
	Create an attribute
	Mount the object on the item
	Create a hierarchical block

	Unlinking objects from blocks
	Unlinking positions

	Creating custom pathways
	Use the correct Transport behavior
	Creating paths
	Create a new environment file
	Create a path object
	Create path markers
	Create Point1
	Create the remaining markers
	Position the markers

	Select the path
	Repeat the process for another path

	Enhancing the model

	Environment Files & E3D Editors
	Environment files
	Modifying the environment

	The E3D Editor
	Learning about the E3D Editor
	Accessing the Editor
	Exiting and closing
	Exploring the Editor
	Inspecting objects
	The Gizmo
	Modifying object properties

	E3D Editor modes
	Mode categories
	World modes
	World Editor
	World Editor Inspector
	World Editor Creator

	Terrain modes
	Terrain Editor
	Terrain Texture Painter

	Editor menus and commands

	3D Objects
	3D objects
	Types of objects
	Object properties
	Actions

	Creating objects
	Create an object that represents a block
	Using an Item library block

	Create an object that represents an item or other moveable entity
	Using an Item library block

	Create a 3D object as scenery
	Using an Animation 2D-3D library block
	Using the E3D Editor to create scenery

	Create an environmental effect
	Options dialog
	3D Controller block

	Deleting objects
	Changing object properties
	Changing skins
	Skin types
	Using an Item library block

	Move an object
	Move a block in the 2D model
	Change settings in the Block Animation tab
	Move the object in the World editor
	Change object property values

	Show or hide objects
	Hiding an object
	Hiding a group of objects
	Showing an object
	Conditionally showing and hiding

	Rotate an object
	Use the Block Animation or Item Animation tab
	Rotate the object using the World editor

	Scale an object
	Using the Block Animation or Item Animation tab
	Scale the object using the World editor

	Saving changes
	Saving an environment file

	WayPoints
	Creating a waypoint
	Create a waypoint object in an Item library block
	In the E3D Editor

	Choosing a waypoint as a destination

	Mounting objects
	Item object on block object
	Object on item object
	Scenery object on scenery object

	Other object information
	Collision
	Gravity, friction, and momentum
	Sound
	Object ID
	BlockNumber
	GroupTag and UserTag

	Movement, Paths, and Terrains
	Traveling time
	Setting travel time in a Transport or Convey Flow block
	Simultaneous item movement

	Creating paths
	Paths and markers
	To create an environment file
	To create a path object
	To create markers
	To modify path properties (optional)
	To store the path (optional)
	To set the item or moveable entity on the path

	Terrains
	Modifying the terrain

	Tips and Reference
	Tips
	Using an Equation block to call E3D functions
	3D objects that represent items
	3D objects that represent blocks or scenery

	Hierarchical blocks and 3D animation
	Items stack on top of each other
	Performance Considerations
	Suggestions for improving performance

	E3D commands, options, and settings
	Opening the E3D window
	3D tab in Options dialog
	3D Animation tab of Simulation Setup dialog

	Dialog tabs for animation
	Item Animation tab
	Core options
	Create blocks
	Batch blocks
	Activity and Workstation blocks

	Block Animation tab
	Core options
	For activity type blocks

	Transport Animation tab

	Animation 2D-3D blocks
	3D Controller block
	3D Options tab
	Scenery tab

	3D Scenery block
	3D Text block
	Animate 3D block

	E3D Editor menu commands
	File
	Edit
	Camera
	Window
	Lighting Tools
	World
	Action
	Brush

	How To
	Libraries and Blocks
	The ExtendSim libraries
	Animation 2D-3D library
	Electronics library
	Item library (not available in ExtendSim CP)
	Plotter library
	Rate library (not available in ExtendSim CP or ExtendSim OR)
	Utilities library
	Value library
	Example Libraries folder
	Custom Blocks library
	ModL Tips library
	Item Templates library (not available in ExtendSim CP)
	Tutorial library

	Legacy folder

	Using libraries
	Opening a library
	Closing a library
	Searching for libraries and blocks
	Library searches
	Block searches

	Library windows

	Creating and maintaining libraries
	Creating a new library
	Saving and compiling libraries
	Substituting one library for another
	Arranging blocks in libraries
	Protecting the code of library blocks
	Converting libraries to RunTime format

	Working with blocks
	Customizing block icons
	Icon views
	Connectors
	Connector types
	Variable connectors
	Expanding or contracting a variable connector
	Collapsing a variable connector

	Connecting to different connector types
	Dialogs
	Animating blocks

	Hierarchical blocks
	Managing blocks
	Copying blocks
	Changing a block’s name
	Removing blocks
	Corrupted blocks

	Creating a Custom User Interface
	Cloning
	How to clone a dialog item
	Using cloned items
	Unlinked clones

	Centralizing data in a database
	Hierarchy
	Creating a dashboard interface
	Buttons
	Popup menus
	On/Off Switch
	Additional blocks to control model execution

	Notebooks
	Controls
	Slider
	Switch
	Meter

	Interacting with the model user
	Notify block
	Play a sound
	Prompt for output value
	Stop the simulation

	Equation blocks
	Additional interactive features if you program

	External applications as an interface
	Documenting models
	Text and graphics
	Help block

	Model Execution
	Simulation setup
	Setup tab
	Continuous tab
	Random Numbers tab
	3D Animation tab
	Comments tab

	Running a model
	Menu commands and toolbar buttons
	Running a model multiple times
	Stepping through a model
	Other points when running models
	Status bar
	Timer inconsistencies (event-based models only)

	Blocks that control or monitor simulation runs
	Buttons (Utilities library)
	Pause Sim (Utilities library)
	RealTimer (Utilities library)
	Run Model (Utilities library)
	Time Sync (Utilities library)

	Saving intermediate results

	Timing
	Continuous simulation timing
	Discrete event simulation timing

	Simulation order (continuous models)
	Time units
	Global time unit
	Using the generic global time unit
	Using a specific global time unit

	Local time unit
	Calendar dates
	Time unit conversions (non-Calendar dates)

	Other Units
	Flow units
	Length

	Length and number of runs
	Terminating systems
	Non-terminating systems
	Determining the length and number of runs

	Speeding up a simulation
	Displaying data or movement
	Inefficient settings or block code
	Other factors that affect simulation speed

	Slowing down simulations
	Working with multiple models
	How ExtendSim passes messages in models
	Application messages
	Link alerts
	Continuous model messaging

	Block messages
	Discrete event block messaging
	Discrete rate block messaging

	Presentation
	Working with text
	Entering text
	Moving and copying text
	Drag and drop text
	Formatting text

	Navigator
	Hierarchy
	Uses for hierarchy
	Hierarchical blocks
	Characteristics of hierarchical blocks
	Important notes about hierarchical blocks

	Making a selection into a hierarchical block
	Building a new hierarchical block
	Step 1: Open a structure window for the hierarchical block
	Step 2: Build the submodel
	Step 3: Modify the icon
	Step 4: Add connectors
	Step 5: Connect the block in the model

	Saving hierarchical blocks
	Saving hierarchical blocks in a model
	Saving hierarchical blocks to a library

	Modifying hierarchical blocks
	Changing the icon
	Moving connectors
	Renaming the block
	Adding animation
	Summary of results of modifying hierarchical blocks

	Animation
	Blocks with built-in animation
	Animation on a block’s icon
	Animating the movement of items between blocks (discrete event modeling only)

	Blocks for customized animation
	Showing animation in response to model conditions
	Animating a hierarchical block’s icon

	Animation functions
	Animation pictures
	Picture file formats

	Displaying messages on a block’s icon

	ExtendSim databases
	Connections
	Connection lines
	Styles
	Arrows
	Attributes
	Colors
	Line types
	How to change line formats

	Named connections
	Show Named Connections command

	Model appearance
	Showing and hiding connections and connectors
	Changing model styles

	Graphic shapes, tools, and commands
	Drawing objects in the Shapes menu
	Shuffling graphics
	Modifying objects

	Patterns and colors
	Working with pictures

	Analysis
	Blocks that calculate statistics
	Statistics
	Accumulating data
	Statistical methods
	Queue Statistics model

	Clear Statistics
	Mean & Variance
	Information
	Cost Stats

	Confidence intervals
	Sensitivity analysis
	Overview
	Steps for using sensitivity analysis
	Specifying the sensitivity method
	Turning sensitivity on and off
	Reporting the results
	Multi-dimensional scenarios

	Optimization
	How optimization works
	Steps for using optimization
	Optimization tutorial
	Adding an Optimizer block
	Determining the form of the function
	Adding variables to the Optimizer
	Setting limits for the variables
	Entering the objective function
	Running the optimization

	Adding constraints
	The constrained tank size
	The constrained delivery time
	Global constraints for 6000 and 8000 drink tanks
	Enter the constraint equations
	Running the optimization

	Using the Optimizer block
	Variables table
	Specifying data table cells in the Variables table
	Objective functions
	Run Parameters tab
	Constraints
	Interpreting results

	Stat::Fit (Windows only)
	Tutorial

	Plotters
	Plot and data panes
	Plot pane
	Data pane

	Plotter tools
	Trace properties tool
	Log tool
	Open Dialog tool
	Grid density tool
	Key on-off tool
	Autoscale tools
	Zoom in and Zoom out tools
	Redraw trace tool
	Push plot tool

	Plotter dialogs
	Types of plotters
	Copying plotted information
	Clearing plotted information

	Reports
	Types of reports
	Generating reports
	Steps for reporting
	Reporting example
	Dialogs report
	Statistics report

	Math and Statistical Distributions
	Blocks that represent functions
	Decision (Value library)
	Integrate (Value library)
	Math (Value library)
	Mean & Variance (Value library)
	Random Number (Value library)
	Data Fitter (Utilities library)
	Other options

	Equation-based blocks
	Overview
	Equation components
	Input variables
	Output variables
	Equation
	The timing and control of equation calculations
	Equation block example

	Random numbers
	Random number generators
	Random seeds
	Resetting random numbers for consecutive runs

	Probability distributions
	Characteristics of distributions
	Choosing a distribution
	Distribution fitting
	ExtendSim distributions

	Integration vs. summation in the Holding Tank block

	Debugging Tools
	Debugging hints
	Verifying results as you build a model
	Connector information
	Cloning dialog items

	Blocks for debugging
	Measuring performance to debug models
	Find command
	The Source Code Debugger
	Dotted lines for unconnected connections
	Animation features for debugging
	Animating the model
	Animating item properties (discrete event models only)

	Notebook
	Stepping through the simulation
	Show Simulation Order command
	Slow simulation speed
	Model reporting
	Model tracing
	Generating traces
	Tracing example

	Data Management and Exchange
	User interfaces for data exchange
	Copy/Paste
	Importing and exporting data
	How to import data using the File menu
	How to export data using the File menu
	Where to get more information

	Read and Write
	Dynamic linking to internal data structures
	Linking a parameter to an internal data structure
	Linking a data table to an internal structure
	The Link dialog
	Finding linked dialog items

	DDE links (Windows only)
	Creating a DDE link
	How to create a DDE link to ExtendSim
	How to create a DDE link from ExtendSim
	Managing DDE links
	Updating remote references

	Internal data storage and management methods
	ExtendSim databases for internal data storage
	How this section is organized
	Advantages of using internal databases
	Creating and interacting with internal databases
	How to create an ExtendSim database
	Opening an existing model
	Starting a new database
	Adding tables and fields
	Creating records
	Entering values for the cells

	Establishing Parent/Child relationships
	How to create a parent/child relationship
	The Child popup selector
	The Parent/Child Relationship dialog

	Linking a database to data
	Dynamic data linking
	Read and Write blocks for accessing a database

	Database management
	Opening a database window
	Opening a database list
	Copying, renaming, or deleting a database
	Importing or exporting a database
	Managing database tables and using tabs
	Managing fields
	Editing data
	Finding data

	Database dialogs and popup menus
	The Field Properties dialog
	Field type popup menu
	Database Random Distribution dialog

	Excel Add-In for ExtendSim databases
	Monte Carlo model

	Other internal data storage and management methods
	Global arrays
	Creating a global array
	How to create and use a global array

	Dynamic arrays
	Embedding an object (Windows only)
	How to embed an object into a worksheet
	How to embed an object into a dialog
	The Insert Object dialog

	Linked lists

	Exchanging data with external applications
	Spreadsheets
	External databases

	Blocks for data management and exchange
	Read and Write blocks
	Communicating with data structures
	Addressing the data structure
	Interface methods
	Triggers

	Data access blocks
	Data Source Create
	Data Import Export
	Data Init

	Other blocks for modelers
	Data Specs
	Command

	Blocks for developers

	Data source indexing and organization
	Transferring data between a data table and a spreadsheet
	Transferring data between a spreadsheet and a database
	Indexing and organization

	Communicating with external devices
	Technologies for communication
	Text files
	Creating and opening text files
	Working with text files
	How to create a text file
	Delimiting text file data
	Changing text file font and size

	ActiveX/COM/OLE (Windows only)
	ActiveX/OLE automation
	ActiveX controls and embedded objects

	DDE (Windows only)
	ODBC/SQL
	FTP
	DLLs and Shared Libraries
	Mailslots (Windows only)

	Miscellaneous
	Navigator
	Opening the Navigator
	Model Navigator mode
	Database List mode
	Library Window mode

	Printing
	Selecting what to print
	The Print command
	Worksheet, dialog, or plotter active
	Structure or dialog window active

	Printing and Print Setup hints

	Copy/Paste and Duplicate commands
	Copying within ExtendSim
	Blocks
	Drawing objects and text
	Data

	Copying from ExtendSim to other applications
	Data
	Pictures

	Copying from other applications to ExtendSim
	Data
	Pictures and text

	Tool tips
	Changing parameters dynamically
	Methods

	Sharing model files
	Locking the model
	The ExtendSim LT-RunTime version

	Reference
	Menu Commands and Toolbars
	ExtendSim menu (Mac OS only)
	File menu
	New Model
	New Text File
	Open
	Close
	Revert Model/Revert Text File
	Save Model and Save Model As
	Save Text File and Save Text File As
	Update Launch Control (Windows only)
	Import Data Table
	Export Data Table
	Import DXF File (Windows only)
	Show Page Breaks
	Print Setup (Windows) and Page Setup (Mac OS)
	Print
	Network License (Windows only; network license only)
	License Info (Network license only)
	Check Out License (Network license only)
	Check In License (Network license only)
	Remove License (Network license only)

	Properties
	Five most recent models or text files
	Exit/Quit

	Edit menu
	Undo
	Cut
	Copy
	Paste
	Clear
	Delete Selected Records
	Select All
	Duplicate
	Find
	Find Again
	Replace
	Replace, Find Again
	Replace All
	Enter Selection
	Create/Edit Dynamic Link
	Open Dynamic Linked Blocks
	Sensitize Parameter
	Open Sensitized Blocks
	Paste DDE Link (Windows only)
	Delete DDE Link (Windows only)
	Show DDE Links (Windows only)
	Refresh DDE Links (Windows only)
	Insert Object (Windows only)
	Design Mode (Windows only)
	Object (Windows only)
	Show Clipboard
	Options
	Model tab
	Libraries tab
	Programming tab
	Model Style tab
	3D tab
	Miscellaneous tab

	Text menu
	Library menu
	Open Library
	Close Library
	New Library
	Tools
	Open All Library Windows
	Compile Open Library Windows
	Compile Selected Blocks
	Add Debug Code to Open Library Windows
	Remove Debug Code in Open Library Windows
	Add External Code in Open Library Windows
	Remove External Code in Open Library Windows
	Protect Library
	Set Library Version
	Convert Library to RunTime Format
	RunTime Startup Screen Editor
	MacWin Conversion (Mac OS only)

	List of libraries

	Model menu
	Make Selection Hierarchical
	New Hierarchical Block
	Open Hierarchical Block Structure
	Connection Lines
	Show Named Connections
	Hide Connections
	Hide Connectors
	Controls
	Align
	Rotate Shape
	Flip Horizontally/Flip Vertically
	Border Thickness
	Shape Fill/Border
	Change Model Style
	Lock Model
	Use Grid
	Show Block Labels
	Show Block Numbers
	Show Simulation Order
	Set Simulation Order...

	Database menu
	New Database
	Import New Database
	Export Database
	Rename Database
	New Table
	Import Tables
	Export Selected Tables
	Rename Table
	New Tab
	Rename or Delete Tab
	Clone Selected Tables to Tab
	Append New Field
	Insert New Field
	Append New Records
	Insert New Records

	Develop menu
	New Block
	Open Block Structure
	Rename Block
	Set Block Category...
	Compile Block
	Generate Debugging Info
	External Source Code

	New Dialog Item
	New Tab
	Rename or Delete Tab
	Move Selected Items to Tab
	New Include File
	Open Include File
	Delete Include File
	Shift Selected Code Left
	Shift Selected Code Right
	Go To Line
	Go To Function/Message Handler
	Match Braces
	Match IFDEF/ENDIF
	Set Breakpoints
	Open Breakpoints Window
	Open Debugger Window
	Continue
	Step Over
	Step Into
	Step Out

	Run menu
	Run Simulation
	Continue Simulation
	Run Optimization
	Simulation Setup
	Prioritize Front Model
	Use Sensitivity Analysis
	Show 2D Animation
	Add Connection Line Animation
	Add Named Connection Animation

	Show 3D Animation
	Show Movies (Mac OS only)
	Launch Proof (Windows only)
	Launch StatFit (Windows only)
	Generate Report
	Report Type
	Add Selected To Report
	Add All To Report
	Remove Selected From Report
	Remove All From Report
	Show Reporting Blocks
	Stop
	Pause
	Step
	Resume
	Debugging
	Pause At Beginning
	Step Each Block
	Step Next Animation
	Step Entire Model
	Show Block Messages
	Only Simulate Messages
	Scroll To Messages
	Generate Trace
	Add Selected To Trace
	Add All To Trace
	Remove Selected From Trace
	Remove All From Trace
	Show Tracing Blocks
	Profile Block Code
	Show Debug Messages

	Window menu
	Notebook
	Navigator
	Database List
	Calendar
	E3D Window

	Help menu
	ExtendSim Help
	Support Resource Center
	Downloads and Updates
	User Forum
	What’s New
	ExtendSim Product Line
	Imagine That Inc. Online
	About ExtendSim (Windows only)

	Toolbar buttons
	ExtendSim database tool bars

	Value Library Blocks
	Submenus
	Data Access
	Holding
	Inputs
	Math
	Optimization
	Outputs
	Routing
	Statistics

	Item Library Blocks
	Submenus
	Activity
	Batching
	Data access
	Information
	Properties
	Queues
	Resources
	Routing
	Executive

	Rate Library Blocks
	Block descriptions

	Utilities Library Blocks
	Submenus
	Developer Tools
	Discrete Event Tools
	Information
	Math
	Model Control
	Time

	Upper Limits
	Cross-Platform Considerations
	Libraries
	Models
	Menu and keyboard equivalents
	Transferring files between operating systems
	File name adjustments
	Physically transferring files
	File conversion
	Model files
	Hierarchical blocks in libraries
	Libraries
	Blocks that use the equation functions
	Extensions

	Index

