

AGENT-BASED MODELS
Second Edition

Quantitative Applications in the Social Sciences

A SAGE PUBLICATIONS SERIES

1. Analysis of Variance, 2nd Edition Iversen/Norpoth
2. Operations Research Methods Nagel/Neef
3. Causal Modeling, 2nd Edition Asher
4. Tests of Significance Henkel
5. Cohort Analysis, 2nd Edition Glenn
6. Canonical Analysis and Factor Comparison Levine
7. Analysis of Nominal Data, 2nd Edition Reynolds
8. Analysis of Ordinal Data Hildebrand/Laing/Rosenthal
9. Time Series Analysis, 2nd Edition Ostrom

10. Ecological Inference Langbein/Lichtman
11. Multidimensional Scaling Kruskal/Wish
12. Analysis of Covariance Wildt/Ahtola
13. Introduction to Factor Analysis Kim/Mueller
14. Factor Analysis Kim/Mueller
15. Multiple Indicators Sullivan/Feldman
16. Exploratory Data Analysis Hartwig/Dearing
17. Reliability and Validity Assessment Carmines/Zeller
18. Analyzing Panel Data Markus
19. Discriminant Analysis Klecka
20. Log-Linear Models Knoke/Burke
21. Interrupted Time Series Analysis

McDowall/McCleary/Meidinger/Hay
22. Applied Regression, 2nd Edition Lewis-Beck/Lewis-Beck
23. Research Designs Spector
24. Unidimensional Scaling McIver/Carmines
25. Magnitude Scaling Lodge
26. Multiattribute Evaluation Edwards/Newman
27. Dynamic Modeling Huckfeldt/Kohfeld/Likens
28. Network Analysis Knoke/Kuklinski
29. Interpreting and Using Regression Achen
30. Test Item Bias Osterlind
31. Mobility Tables Hout

32. Measures of Association Liebetrau
33. Confirmatory Factor Analysis Long
34. Covariance Structure Models Long
35. Introduction to Survey Sampling Kalton
36. Achievement Testing Bejar
37. Nonrecursive Causal Models Berry
38. Matrix Algebra Namboodiri
39. Introduction to Applied Demography Rives/Serow
40. Microcomputer Methods for SocialScientists, 2nd Edition

Schrodt
41. Game Theory Zagare
42. Using Published Data Jacob
43. Bayesian Statistical Inference Iversen
44. Cluster Analysis Aldenderfer/Blashfield
45. Linear Probability, Logit, and Probit Models Aldrich/Nelson
46. Event History and Survival Analysis,2nd Edition Allison
47. Canonical Correlation Analysis Thompson
48. Models for Innovation Diffusion Mahajan/Peterson
49. Basic Content Analysis, 2nd Edition Weber
50. Multiple Regression in Practice Berry/Feldman
51. Stochastic Parameter Regression Models Newbold/Bos
52. Using Microcomputers in Research Madron/Tate/Brookshire
53. Secondary Analysis of Survey Data Kiecolt/Nathan
54. Multivariate Analysis of Variance Bray/Maxwell
55. The Logic of Causal Order Davis
56. Introduction to Linear Goal Programming Ignizio
57. Understanding Regression Analysis, 2ndEdition

Schroeder/Sjoquist/Stephan
58. Randomized Response and RelatedMethods, 2nd Edition

Fox/Tracy
59. Meta-Analysis Wolf
60. Linear Programming Feiring
61. Multiple Comparisons Klockars/Sax
62. Information Theory Krippendorff
63. Survey Questions Converse/Presser
64. Latent Class Analysis McCutcheon
65. Three-Way Scaling and Clustering Arabie/Carroll/DeSarbo

66. Q Methodology, 2nd Edition McKeown/Thomas
67. Analyzing Decision Making Louviere
68. Rasch Models for Measurement Andrich
69. Principal Components Analysis Dunteman
70. Pooled Time Series Analysis Sayrs
71. Analyzing Complex Survey Data, 2nd Edition Lee/Forthofer
72. Interaction Effects in Multiple Regression,2nd Edition

Jaccard/Turrisi
73. Understanding Significance Testing Mohr
74. Experimental Design and Analysis Brown/Melamed
75. Metric Scaling Weller/Romney
76. Longitudinal Research, 2nd Edition Menard
77. Expert Systems Benfer/Brent/Furbee
78. Data Theory and Dimensional Analysis Jacoby
79. Regression Diagnostics, 2nd Edition Fox
80. Computer-Assisted Interviewing Saris
81. Contextual Analysis Iversen
82. Summated Rating Scale Construction Spector
83. Central Tendency and Variability Weisberg
84. ANOVA: Repeated Measures Girden
85. Processing Data Bourque/Clark
86. Logit Modeling DeMaris
87. Analytic Mapping and GeographicDatabases Garson/Biggs
88. Working With Archival Data Elder/Pavalko/Clipp
89. Multiple Comparison Procedures Toothaker
90. Nonparametric Statistics Gibbons
91. Nonparametric Measures of Association Gibbons
92. Understanding Regression Assumptions Berry
93. Regression With Dummy Variables Hardy
94. Loglinear Models With Latent Variables Hagenaars
95. Bootstrapping Mooney/Duval
96. Maximum Likelihood Estimation Eliason
97. Ordinal Log-Linear Models Ishii-Kuntz
98. Random Factors in ANOVA Jackson/Brashers
99. Univariate Tests for Time Series Models

Cromwell/Labys/Terraza
100. Multivariate Tests for Time Series Models

Cromwell/Hannan/Labys/Terraza
101. Interpreting Probability Models: Logit, Probit, and Other

Generalized Linear Models Liao
102. Typologies and Taxonomies Bailey
103. Data Analysis: An Introduction Lewis-Beck
104. Multiple Attribute Decision Making Yoon/Hwang
105. Causal Analysis With Panel Data Finkel
106. Applied Logistic Regression Analysis, 2nd Edition Menard
107. Chaos and Catastrophe Theories Brown
108. Basic Math for Social Scientists: Concepts Hagle
109. Basic Math for Social Scientists: Problems and Solutions

Hagle
110. Calculus Iversen
111. Regression Models: Censored, Sample Selected, or

Truncated Data Breen
112. Tree Models of Similarity and Association Corter
113. Computational Modeling Taber/Timpone
114. LISREL Approaches to Interaction Effects in Multiple

Regression Jaccard/Wan
115. Analyzing Repeated Surveys Firebaugh
116. Monte Carlo Simulation Mooney
117. Statistical Graphics for Univariate and Bivariate Data Jacoby
118. Interaction Effects in Factorial Analysis of Variance Jaccard
119. Odds Ratios in the Analysis of Contingency Tables Rudas
120. Statistical Graphics for Visualizing Multivariate Data Jacoby
121. Applied Correspondence Analysis Clausen
122. Game Theory Topics Fink/Gates/Humes
123. Social Choice: Theory and Research Johnson
124. Neural Networks Abdi/Valentin/Edelman
125. Relating Statistics and Experimental Design: An Introduction

Levin
126. Latent Class Scaling Analysis Dayton
127. Sorting Data: Collection and Analysis Coxon
128. Analyzing Documentary Accounts Hodson
129. Effect Size for ANOVA Designs Cortina/Nouri
130. Nonparametric Simple Regression: Smoothing Scatterplots

Fox

131. Multiple and Generalized Nonparametric Regression Fox
132. Logistic Regression: A Primer Pampel
133. Translating Questionnaires and Other Research Instruments:

Problems and Solutions Behling/Law
134. Generalized Linear Models: A Unified Approach, 2nd Edition

Gill/Torres
135. Interaction Effects in Logistic Regression Jaccard
136. Missing Data Allison
137. Spline Regression Models Marsh/Cormier
138. Logit and Probit: Ordered and Multinomial Models Borooah
139. Correlation: Parametric and Nonparametric Measures

Chen/Popovich
140. Confidence Intervals Smithson
141. Internet Data Collection Best/Krueger
142. Probability Theory Rudas
143. Multilevel Modeling, 2nd Edition Luke
144. Polytomous Item Response Theory Models Ostini/Nering
145. An Introduction to Generalized Linear Models Dunteman/Ho
146. Logistic Regression Models for Ordinal Response Variables

O’Connell
147. Fuzzy Set Theory: Applications in the Social Sciences

Smithson/Verkuilen
148. Multiple Time Series Models Brandt/Williams
149. Quantile Regression Hao/Naiman
150. Differential Equations: A ModelingApproach Brown
151. Graph Algebra: Mathematical Modeling With a Systems

Approach Brown
152. Modern Methods for Robust Regression Andersen
153. Agent-Based Models, 2nd Edition Gilbert
154. Social Network Analysis, 3rd Edition Knoke/Yang
155. Spatial Regression Models, 2nd Edition Ward/Gleditsch
156. Mediation Analysis Iacobucci
157. Latent Growth Curve Modeling

Preacher/Wichman/MacCallum/Briggs
158. Introduction to the Comparative Method With Boolean

Algebra Caramani
159. A Mathematical Primer for Social Statistics Fox

160. Fixed Effects Regression Models Allison
161. Differential Item Functioning, 2nd Edition Osterlind/Everson
162. Quantitative Narrative Analysis Franzosi
163. Multiple Correspondence Analysis LeRoux/Rouanet
164. Association Models Wong
165. Fractal Analysis Brown/Liebovitch
166. Assessing Inequality Hao/Naiman
167. Graphical Models and the Multigraph Representation for

Categorical Data Khamis
168. Nonrecursive Models Paxton/Hipp/ Marquart-Pyatt
169. Ordinal Item Response Theory Van Schuur
170. Multivariate General Linear Models Haase
171. Methods of Randomization in Experimental Design Alferes
172. Heteroskedasticity in Regression Kaufman
173. An Introduction to Exponential Random Graph Modeling

Harris
174. Introduction to Time Series Analysis Pickup
175. Factorial Survey Experiments Auspurg/Hinz
176. Introduction to Power Analysis: Two-Group Studies Hedberg
177. Linear Regression: A Mathematical Introduction Gujarati
178. Propensity Score Methods and Applications Bai/Clark
179. Multilevel Structural Equation Modeling

Silva/Bosancianu/Littvay
180. Gathering Social Network Data adams
181. Generalized Linear Models for Bounded and Limited

Quantitative Variables, Smithson and Shou
182. Exploratory Factor Analysis, Finch
183. Multidimensional Item Response Theory, Bonifay

Sara Miller McCune founded SAGE Publishing in 1965 to support the
dissemination of usable knowledge and educate a global community.
SAGE publishes more than 1000 journals and over 800 new books
each year, spanning a wide range of subject areas. Our growing
selection of library products includes archives, data, case studies and
video. SAGE remains majority owned by our founder and after her
lifetime will become owned by a charitable trust that secures the
company’s continued independence.

Los Angeles | London | New Delhi | Singapore | Washington DC |
Melbourne

AGENT-BASED MODELS
Second Edition

Nigel Gilbert

University of Surrey, United Kingdom

Los Angeles

London

New Delhi

Singapore

Washington DC

Melbourne

Copyright © 2020 by SAGE Publications, Inc.

All rights reserved. Except as permitted by U.S. copyright law, no part
of this work may be reproduced or distributed in any form or by any

means, or stored in a database or retrieval system, without permission
in writing from the publisher.

All third party trademarks referenced or depicted herein are included
solely for the purpose of illustration and are the property of their

respective owners. Reference to these trademarks in no way indicates
any relationship with, or endorsement by, the trademark owner.

FOR INFORMATION:

SAGE Publications, Inc.

2455 Teller Road

Thousand Oaks, California 91320

E-mail: order@sagepub.com

SAGE Publications Ltd.

1 Oliver’s Yard

55 City Road

London, EC1Y 1SP

United Kingdom

SAGE Publications India Pvt. Ltd.

B 1/I 1 Mohan Cooperative Industrial Area

Mathura Road, New Delhi 110 044

India

SAGE Publications Asia-Pacific Pte. Ltd.

18 Cross Street #10-10/11/12

China Square Central

Singapore 048423

ISBN: 9781506355603

Printed in the United States of America

This book is printed on acid-free paper.

Acquisitions Editor: Leah Fargotstein

Editorial Assistant: Claire Laminen

Production Editor: Gagan Mahindra

Copy Editor: Michelle Ponce

Typesetter: Hurix Digital

Proofreader: Barbara Coster

Indexer: Integra

Cover Designer: Candice Harman

Marketing Manager: Shari Countryman

CONTENTS
Series Editor’s Introduction
Preface
Acknowledgments
About the Author
1: The Idea of Agent-Based Modeling

1.1 Agent-Based Modeling
1.1.1 A Computational Method
1.1.2 Experiments
1.1.3 Models
1.1.4 Agents
1.1.5 The Environment

1.2 Some Examples
1.2.1 Urban Models
1.2.2 Opinion Dynamics
1.2.3 Consumer Behavior
1.2.4 Industrial Networks
1.2.5 Supply Chain Management
1.2.6 Electricity Markets
1.2.7 Modeling Policy
1.2.8 Participative and Companion Modeling

1.3 The Features of Agent-Based Modeling
1.3.1 Ontological Correspondence
1.3.2 Heterogeneous Agents
1.3.3 Representation of the Environment
1.3.4 Agent Interactions
1.3.5 Bounded Rationality
1.3.6 Learning

1.4 Other Related Modeling Approaches
1.4.1 Microsimulation
1.4.2 System Dynamics
1.4.3 Discrete Event Simulation

2: Agents, Environments, and Timescales
2.1 Agents

2.1.1 Agents as Objects

2.1.2 Production Rule Systems
2.1.3 Agents That Learn
2.1.4 Cognitive Models

2.2 Environments
2.2.1 Features of Environments
2.2.2 Geography
2.3 Randomness
2.4 Time
2.5 Population Learning

3: Designing an Agent-Based Model
3.1 Design Steps
3.2 An Example of Developing an Agent-Based Model

3.2.1 Macrolevel Features and Patterns
3.2.2 Microlevel Behavior
3.2.3 Designing a Model

4: Developing an Agent-Based Model
4.1 Modeling Toolkits, Libraries, Languages, Frameworks,
and Environments
4.2 Using NetLogo to Build Models
4.3 Building the Collectivities Model Step by Step
4.4 Verification: Getting Rid of the Bugs
4.5 Validation

4.5.1 Abstract Models
4.5.2 Middle-Range Models
4.5.3 Facsimile Models
4.5.4 Complexity

4.6 Techniques for Validation
4.6.1 Comparing Theory and the Model: Sensitivity
Analysis
4.6.2 Comparing the Model and Empirical Data
Appendix: The Features of Simulation Libraries and
Environments

5: Using Agent-Based Models
5.1 Planning an Agent-Based Modeling Project
5.2 Reporting Agent-Based Model Research
5.3 Agent-Based Models for Public Policy

Resources

Societies and Associations
Journals
Mailing List and Web Sites

Glossary
References
Index

SERIES EDITOR’S INTRODUCTION
Almost 50 years ago Thomas Schelling published the first agent-
based model (ABM) in the social sciences. It showed how relatively
modest residential preferences on the part of individual households
could result in marked patterns of neighborhood residential
segregation. Since then, and especially recently, applications have
blossomed in many fields ranging from opinion dynamics to supply
chain management, from language evolution to disease epidemiology,
from consumer behavior to urban planning. The second edition of
Introduction to Agent-Based Models targets this broad audience. The
author, Nigel Gilbert, is one of the founders of computational social
science and an authority on agent-based models.

As Professor Gilbert defines it, agent-based modeling is “a
computational method that enables a researcher to create, analyze,
and experiment with models composed of agents that interact within
the environment.” ABMs range from highly abstract simplified models
to facsimile models that attempt to replicate real observations. They
explicitly link micro and macro levels of analysis, as illustrated by
Schelling’s model of households and neighborhoods. Because agent-
based models incorporate dynamic interdependencies among the
individual agents, the consequences for macrolevel change in these
models are emergent, frequently nonlinear, and sometimes surprising,
as was the case with Schelling’s model.

Like the first edition, the second edition of Introduction to Agent-Based
Models is for beginners. It is suitable as a supplement for
undergraduate as well as graduate courses in formal models,
simulation, and computational social science; it is also a quick first
introduction for any interested social science practitioner. The author
carefully defines concepts, outlines the steps involved in planning,
building, and reporting ABMs, and includes a helpful glossary.
Readers are shown how to use the NetLogo modeling environment,
freely available to students, teachers, and researchers worldwide, to

build and run a simple ABM. NetLogo helps readers get their feet wet,
even those with little background in coding. The second edition of
Introduction to Agent-Based Models retains the strengths of the first
but updates the material, expands the coverage of verification,
validation, and documentation, and addresses some new topics such
as the use of ABMs to inform public policy. As was true for the first
edition, the goal is to make readers better consumers of published
ABMs and to provide the foundation for them ultimately to be creators
of these models.

Agent-based modeling is a fast-moving area, especially in breadth of
application. In addition, ABMs are increasingly a focus of
interdisciplinary collaboration, between social/behavioral scientists
from different disciplines (e.g., sociology and geography), between
social/behavioral science and natural science (e.g., environmental
science), and between social/behavioral science and computer
science. Depending on purpose, the rules central to agent-based
models can be derived from theory, past empirical research, and/or
conversations with local experts. Indeed, ABMs are increasingly used
in community-based participatory research. Given these trends, the
need for a generally accessible primer is even greater now than when
the first edition was published in 2007. This second edition fully
satisfies that need.

Barbara Entwisle

Series Editor

PREFACE
Agent-based modeling is a form of computational simulation. Although
simulation as a research technique has had a very important part to
play in the natural sciences for decades in disciplines from astronomy
to biochemistry, it was relatively neglected in the social sciences. This
may have been because a computational approach that respected the
particular needs of the social sciences was lacking. However, in the
early 1990s the value of agent-based modeling began to be realized,
and, since then, the number of studies that have used agent-based
modeling has grown rapidly (Hauke, Lorscheid, & Meyer, 2017).

Agent-based modeling is particularly suited to topics where
understanding processes and their consequences is important. In
essence, one creates a computer program in which the actors are
represented by segments of program code, and then runs the
program, observing what it does over the course of simulated time.
There is a direct correspondence between the actors being modeled
and the agents in the program, which makes the method intuitively
appealing, especially to those brought up in a generation used to
computer games. Nevertheless, agent-based modeling stands beside
mathematical and statistical modeling in terms of its rigor. Like
equation-based modeling, but unlike prose, agent-based models must
be complete, consistent, and unambiguous if they are to be capable of
being executed on a computer. On the other hand, unlike most
mathematical models, agent-based models can include agents that
are heterogeneous in their features and abilities, can model situations
that are far from equilibrium, and can deal directly with the
consequences of interaction between agents.

Because it is a new approach, there are few courses yet available to
teach the skills of agent-based modeling, although the number is
increasing, and there are few texts directed specifically at the
interested social scientist. This short book introduces the subject,
emphasizing the decisions that a social scientist needs to make when

selecting agent-based modeling as an appropriate method, and
offering some tips on how to proceed. It is aimed at practicing social
scientists and graduate students. It has been used as the
recommended reading on agent-based modeling for a graduate-level
module or doctoral program in computational social science, and it is
also suitable as background reading in postgraduate courses on
advanced social research methods. It would be a good preparation for
any of the textbooks that provide a more in-depth guide to agent-
based modeling (e.g., Hamill & Gilbert, 2015; Heppenstall, Crooks,
See, & Batty, 2012; O’Sullivan & Perry, 2013; Railsback & Grimm,
2012; Squazzoni, 2012; Wilensky & Rand, 2015).

A knowledge of and experience with computer programming in any
language would be helpful but is not essential to understand the book.

The book concludes with a list of printed and Web resources, a
glossary, and a reference section. (The glossary terms will appear in
bold at first use in the text.) Because the field is growing so rapidly, it
has been possible to mention only a few examples of current research
and some textbooks that provide more detail on some topics. There is
much more that could have been cited if there had been space. In
particular, the book mentions only briefly two closely linked areas:
network models and game theory models, both of which are covered
in much more detail in other SAGE volumes such as Knoke and Yang
(2008) and Fink, Gates, and Humes (1998).

A website to accompany the book at
study.sagepub.com/researchmethods/qass/gilbert-agent-based-
models-2e includes an annotated exemplar model using NetLogo.

https://study.sagepub.com/researchmethods/qass/gilbert-agent-based-models-2e
user
Highlight

Acknowledgments
This book is born of some 25 years of building agent-based models,
both large and small, and in domains ranging from science policy to
anthropology. What I know about agent-based modeling has benefited
immeasurably from the advice and companionship of many, including
Andrew Abbott, Petra Ahrweiler, David Anzola, Robert Axelrod, Rob
Axtell, Pete Barbrook-Johnson, Riccardo Boero, François Bousquet,
Cristiano Castelfranchi, Edmund Chattoe, Claudio Cioffi-Revilla,
Rosaria Conte, Guillaume Deffuant, Bruce Edmonds, Gusz Eiben,
Corinna Elsenbroich, Lynne Hamill, Samer Hassan, Wander Jager,
David Lane, Scott Moss, Kavin Narasimhan, Gilbert Peffer, Alex Penn,
Andreas Pyka, Juliette Rouchier, Mauricio Salgado, Stephan
Schuster, Flaminio Squazzoni, Luc Steels, Klaus Troitzsch, Paul Vogt,
and Lu Yang. I thank Riccardo Boero, Lars-Eric Cederman, Lynne
Hamill, Luis R. Izquierdo, Ken Kahn, Tim Liao, Michael Macy, Lu
Yang, and eight anonymous reviewers for their detailed and
constructive comments on drafts of the manuscripts for the first and
second editions.

SAGE Publishing would like to thank the following reviewers for their
feedback on the revision:

Andrew Crooks, George Mason University

Sally Jackson, University of Illinois at Urbana-Champaign

James Nolan, University of Saskatchewan

Oleg Smirnov, Stony Brook University

Garry Sotnik, Portland State University

ABOUT THE AUTHOR
Nigel Gilbert is professor of sociology at the University of Surrey,
Guildford, England. He is the author or editor of 34 books and many
academic papers, and was the founding editor of the Journal of
Artificial Societies and Social Simulation. His current research focuses
on the application of agent-based models to understanding social and
economic phenomena, especially the emergence of norms, culture,
and innovation. He obtained a doctorate in the sociology of scientific
knowledge in 1974 from the University of Cambridge and has
subsequently taught at the universities of York and Surrey in England.
He is one of the pioneers in the field of social simulation and is past
president of the European Social Simulation Association. He is a
Fellow of the UK Academy of Social Sciences and of the Royal
Academy of Engineering.

CHAPTER 1 THE IDEA OF AGENT-
BASED MODELING
This short book explains what agent-based modeling is. It warns of
some dangers and describes typical ways of doing agent-based
modeling. And it offers a range of examples from many of the social
sciences.

This first chapter begins with a brief overview of agent-based
modeling before contrasting it with other, perhaps more familiar forms
of modeling and describing several examples of current agent-based
modeling research. Chapter 2 goes into more detail, considering a
range of methodological and theoretical issues and explaining what an
agent is. Chapter 3 dives into the specifics, showing with a simple
example how one can design an agent-based model. Chapter 4
provides some practical advice about developing, verifying, and
validating agent-based models. Finally, Chapter 5 discusses planning
an agent-based modeling project, publishing the results, and applying
agent-based modeling to help formulate and evaluate social and
economic policies. The book concludes with a list of resources useful
to agent-based modelers on the Web and in print.

Agent-based simulation has become increasingly popular as a
modeling approach in the social sciences because it enables one to
build models where individual entities and their interactions are
directly represented. In comparison with variable-based approaches
using structural equations, or system-based approaches using
differential equations, agent-based simulation offers the possibility of
modeling individual heterogeneity, representing explicitly agents’
decision rules, and situating agents in a geographical or another type
of space. It allows modelers to represent in a natural way multiple
scales of analysis, the emergence of structures at the macro or
societal level from individual action, and various kinds of adaptation
and learning, none of which is easy to do with other modeling

user
Highlight

user
Highlight

approaches.

user
Highlight

1.1 Agent-Based Modeling
Formally, agent-based modeling is (1) a computational method that
enables a researcher to create, analyze, and (2) experiment with (3)
models composed of (4) agents that interact within (5) the
environment. Let us consider each of the five terms in this definition.

1.1.1 A Computational Method

First, agent-based modeling is a form of computational social science.
That is, it involves building models that are computer programs. The
idea of modeling is familiar in most of the social sciences: One creates
a simplified representation of social reality that serves to express as
clearly as possible the way in which one believes that reality operates.
For example, if one has a dependent variable and one or more
independent variables, a regression equation serves as a model of the
relationship between the variables. A network of nodes and edges can
model a set of friendships. Even an ordinary language description of a
relationship, such as that between the strength of protection of
intellectual property rights and the degree of innovation in a country,
can be considered a model, albeit a simple and rather unformalized
one.

Computational models are formulated as computer programs in which
there are some inputs (somewhat like independent variables) and
some outputs (like dependent variables). The program itself
represents the processes that are thought to exist in the social world
(Macy & Willer, 2002). For example, we might have a theory about
how friends influence the purchasing choices that consumers make.
As we will see, we can create a program in which there are individuals
(or agents) that buy according to their preferences. The outcome is
interesting because what one agent buys will influence the purchasing
of a friend, and what the friend buys will influence the first agent. This
kind of mutual reinforcement is relatively easy to model using agent-

user
Highlight

user
Highlight

based modeling.

One of the advantages of computational modeling is that it forces one
to be precise: Unlike theories and models expressed in natural
language, a computer program must be completely and exactly
specified if it is to run. Another advantage is that it is often relatively
easy to model theories about processes, because programs are all
about making things within the computer change. If the idea of
constructing computational models reminds you of computer games,
especially the kind where the player has a virtual world to build, such
as The Sims (https://www.ea.com/games/the-sims/), that is no
accident. Such games can be very close to computational modeling,
although to make them fun, designers often give them fancier graphics
and less social theory than they do agent-based models.

1.1.2 Experiments

Whereas in physics and chemistry and some parts of biology,
experimentation is the standard method of doing science, in most of
the social sciences conducting experiments is still rare. An experiment
consists of applying some treatment to an isolated system and
observing what happens. The treated system is compared with
another otherwise equivalent system that receives no treatment (the
control). The great advantage of experiments is that they allow one to
be sure that it is the treatment that is causing the observed effects,
because it is only the treatment that differs between the treated and
the control systems and the systems are isolated from other potential
causes of change. However, with social systems isolation is generally
impossible, and treating one system while not treating the control is
often ethically undesirable. Therefore, it is not surprising that most
social scientists do not often use experiments, despite the potential
clarity of their results.

A major advantage of agent-based modeling is that the difficulties in
ensuring isolation of the human system and the ethical problems of
experimentation are not present when one does experiments on

https://www.ea.com/games/the-sims/
user
Highlight

virtual or computational systems. An experiment can be set up and
repeated many times, using a range of parameters or allowing some
factors to vary randomly. Of course, carrying out experiments with a
computational model of some social phenomenon will yield interesting
results only if the model behaves in the same way as the human
system or, in other words, if the model is a good one, and one may not
know whether that is the case. So, experimentation on models is not a
panacea.

The idea of experimenting on models rather on the real system is not
novel. For example, when architects put a model tower block in a wind
tunnel to investigate its behavior in high winds, they are experimenting
on the model for just the same reasons as social scientists might want
to experiment on their models: the cost of experimenting on a real
tower block is too high. Another reason for experimenting with models
is that this may be the only way to obtain results. Deriving the
behavior of a model analytically is usually best because it provides
information about how the model will behave given a range of inputs,
but often an analytical solution is not possible. In these cases, it is
necessary to experiment with different inputs to see how the model
behaves. The model is used to simulate the real world as it might be
in a variety of circumstances.

1.1.3 Models

Computational social science is based on the idea of constructing
models and then using them to understand the social world (Gilbert,
2010). Models have a long history in the social sciences—much
longer than the history of using computers—but came to the fore when
statistical methods began to be used to analyze large amounts of
quantitative data in economics and demography. A model is intended
to represent or simulate some real, existing phenomenon, and this is
called the target of the model. The two main advantages of a model
are that it succinctly expresses the relationships between features of
the target, and that it allows one to discover things about the target by
investigating the model (Epstein, 2008).

user
Highlight

One of the earliest well-known social science models is the Phillips
(1950) hydraulic model of the economy in which water flowing through
interconnected glass pipes and vessels is used to represent the
circulation of money. One version of this model can still be admired at
the Science Museum, London
(http://en.wikipedia.org/wiki/MONIAC_Computer). The effect of
changing parameters such as the interest rate can be investigated by
changing the rate of flow of water through the pipes.

Models come in several varieties, and it is worth listing some of these
to clarify the differences among them:

Scale models are smaller versions of the target. Together
with the reduction in size is a systematic reduction in the
level of detail or complexity of the model. So, for example, a
scale model of an airplane will be the same shape as its
target, but probably would not show the electronic control
systems or possibly even the engines of the real plane.
Similarly, a scale model of a city will be much smaller than
the real city and may model only two dimensions (the
distances between buildings but not the heights of buildings,
for instance). When drawing conclusions about the target by
studying the model, one needs to remember that the results
from the model will need to be scaled back up to the target’s
dimensions, and that it is possible that some of the features
not modeled may affect the validity of the conclusions.

An ideal-type model is one in which some characteristics of
the target are exaggerated to simplify the model. For
example, an idealized model of a stock market may assume
that information flows from one trader to another
instantaneously, and an idealized model of traffic may
assume that drivers never get lost. The idealization has the
effect of removing one or more complicating factors from the
model; if these have negligible effects on how the model
works, the model will remain useful for drawing conclusions
about the target.

http://en.wikipedia.org/wiki/MONIAC_Computer

Analogical models are based on drawing an analogy
between some better-understood phenomenon and the
target. The most famous example is the billiard ball model of
atoms, but there are also social science examples such as
the computer model of the mind (Boden, 1988; Piccinini &
Bahar, 2013) and the garbage can model of organizations
(March, Cohen, & Olsen, 1972). Such models are useful
because well-established results from the analogy can be
carried over and applied to the target, but of course the
validity of these depends on the adequacy of the analogy.

These are not mutually exclusive categories. It is possible, and indeed
common, for a model to be a scale model and an analogy (the
hydraulic model of the economy mentioned above is such a
combination, for instance).

Some models fall into a fourth category that is somewhat different, but
also commonly encountered in the social sciences; these are often
called mathematical or equation-based models. Examples are the
structural equation models of quantitative sociology and the
macroeconomic models of neoclassical economics. These models
specify relationships between variables, but unlike models in the other
three categories, they do not imply any kind of analogy or
resemblance between the model and the target. Usually, the success
of a mathematical model is indicated by the degree to which some
data fit the equation, but the form of the equation itself is of little
interest or consequence. For example, the Cobb-Douglas production
function is a mathematical model of how manufactured outputs are
related to inputs (Cobb & Douglas, 1928):

Y= ALαKβ

where Y = output; L = labor input; K = capital input; and A, α, and β
are constants determined by technology. The form of this equation

was derived from statistical evidence, not by theorizing about the
behavior of firms. Although mathematical models have been very
successful in some parts of the social sciences in clarifying the
relationships between variables, they are often not very useful in
helping to understand why one variable is related to another; in other
words, these models are not very helpful in expressing ideas about
process and mechanism.

1.1.4 Agents

Agent-based models consist of agents that interact within an
environment. Agents are either separate computer programs or, more
commonly, distinct parts of a program that are used to represent
social actors—individual people, organizations such as firms, or
bodies such as nation-states. They are programmed to react to the
computational environment in which they are located, where this
environment is a model of the real environment in which the social
actors operate.

As will be seen later, a crucial feature of agent-based models is that
the agents can interact; that is, they can pass informational messages
to each other and act on the basis of what they learn from these
messages. The messages may represent spoken dialogue between
people or more indirect means of information flow, such as the
observation of another agent or the detection of the effects of another
agent’s actions. The possibility of modeling such agent-to-agent
interactions is the main way in which agent-based modeling differs
from other types of computational models.

1.1.5 The Environment

The environment is the virtual world in which the agents act. It may be
an entirely neutral medium with little or no effect on the agents, or it
may be as carefully crafted as the agents themselves. Commonly,
environments represent geographical spaces, such as in models

concerning residential segregation, where the environment simulates
some of the physical features of a city (e.g., Portugali, Benenson, &
Omer, 2010), and in ecological models of the location of species (e.g.,
Watkins, Noble, Foster, Harmsen, & Doncaster, 2015). Models in
which the environment represents a geographical space are called
spatially explicit. In other models the environment could be a space,
but one that represents not geography but some other feature. For
example, firms in high technology areas can be modeled in knowledge
space (Gilbert, Ahrweiler, & Pyka, 2014). In these spatial models the
agents have coordinates to indicate their location. Another option is to
have no spatial representation at all but to link agents together into a
network in which the only indication of an agent’s relationship to other
agents is the list of the agents to which it is connected by network
links. For example, Walbert, Caton, and Norgaard (2018) model the
development of defense agreements and wars between countries.
The agreements are represented by links forming a global network of
countries.

To make these definitions somewhat more concrete, in the next
section we introduce some examples of agent-based models in terms
of these concepts.

1.2 Some Examples
Agent-based models are of value in most branches of social science.
The models that are briefly described in the rest of this section have
been chosen to illustrate the diversity of the problem areas where they
have been used productively.

1.2.1 Urban Models

In 1971 Thomas Schelling (1971, 1978; see also Hegselmann, 2017;
Sakoda, 1971) proposed a model to explain observed racial
segregation in American cities. The model is a very abstract one as
originally conceived, but it has been influential in work on
understanding the persistence of segregation not only in the United
States but also in urban centers in other countries. The model is
based on a regular square grid of cells representing an urban area on
which agents, representing households, are placed at random. The
agents are of two kinds (we will call them reds and greens). Each cell
can hold only one household agent at a time, and many cells are
empty. At each time step, each household surveys its immediate
neighbors (the eight cells surrounding it) and counts the fraction of
households that are of the other color. If the fraction is greater than
some constant threshold tolerance value (e.g., there are more than a
fixed proportion of reds surrounding a green, or greens surrounding a
red), that household considers itself to be unhappy and decides to
relocate. It does so by moving to some vacant cell on the grid.

At the next time step, the newly positioned household may tip the
balance of tolerance of its neighbors, causing some of them to
become unhappy, which can result in a cascade of relocations. For
levels of the tolerance threshold at or above about 0.3, an initially
random distribution of households segregates into patches of red and
green, with households of each color clustering together (Figure 1.1).
The clustering occurs even when households tolerate living adjacent

user
Highlight

to a majority of neighbors of the other color; Schelling interpreted this
as indicating that even quite low degrees of racial prejudice could yield
the strongly segregated patterns typical of U.S. cities in the 1970s.

Figure 1.1 The Schelling Model at the Start (Left) and
After Equilibrium Has Been Reached (Right), With a
Uniform Tolerance of 0.3

SOURCE: Wilensky, U. (1998). NetLogo Segregation model.
http://ccl.northwestern.edu/netlogo/models/Segregation. Center for
Connected Learning and Computer-Based Modeling, Northwestern
University, Evanston, IL.

The Schelling model has been influential for several reasons (Batty,
2013). First, the outcome—clusters of households of the same color—
is surprising and not easily predictable just from considering the
individual agents’ movement rule. Second, the model is very simple
and has only one parameter, the tolerance threshold. It is therefore
easy to understand. Third, the emergent clustering behavior is rather
robust. The same outcomes are obtained for a wide range of tolerance
values, for a variety of movement rules (e.g., the household agent
could select a new cell at random, or use a utility function to select the

http://ccl.northwestern.edu/netlogo/models/Segregation

most preferred cell, or take into account affordability if cells are priced,
and so on), and for different rules about which neighbors to consider
(e.g., those in the eight surrounding cells; in the four cells to the north,
east, south, and west; or in a larger ring two or more cells away)
(Gilbert, 2002). Fourth, the model immediately suggests how it could
be tested with empirical data (Benard & Willer, 2007; Benenson &
Hatna, 2009; Clark, 1991; Fossett & Waren, 2005; Hatna & Benenson,
2012; Laurie & Jaggi, 2003; Mahdavi Ardestani, O’Sullivan, & Davis,
2018; Pollicott & Weiss, 2001; Sander, Schreiber, & Doherty, 2000;
Zhang, 2004), although in practice it has proved quite difficult to obtain
reliable and extensive data on household location preferences to
calculate ratings of unhappiness. The advantages of the Schelling
model over others that had been previously proposed, which were
based on equations relating migration flows and the relative values of
residential properties (e.g., O’Kelly & Fotheringham, 1989), are that
the number of parameters to be estimated is lower and that it is simple
to simulate and analyze the model. Current work has focused on
making the model more concrete, replacing the abstract square grid
with actual urban geographies, and adding further factors, such as the
affordability of the locations to which households want to move.

The Schelling model is one example of a class of models that are
concerned with changing land use and mobility. There are many
examples of models that are concerned with investigating the
implications of changes to the landscape (Gotts, Matthews, Gilbert,
Polhill, & Roach, 2007), for policy analysis and planning, and for
understanding the spatial patterns of land use. Traffic simulation
agent-based models are also increasingly being used for planning
improvements to roads to improve roadside air quality or reduce
congestion (e.g., POLARIS [Argonne National Laboratory, 2018]).

1.2.2 Opinion Dynamics

Another interesting group of models with potentially important
implications is concerned with understanding the development of
political opinions, such as with explaining the spread of extremist

opinions within a population. We will review just one such study,
although there are several that explore the consequences of different
assumptions and opinion transmission mechanisms (e.g., Afshar &
Asadpour, 2010; Anderson & Ye, 2019; Deffuant, 2006; Deffuant,
Amblard, & Weisbuch, 2002; Flache et al., 2017; Krause &
Hegselmann, 2002; Kurahashi-Nakamura, Mäs, & Lorenz, 2016;
Lorenz, 2006; McKeown & Sheehy, 2006; Stauffer, Sousa, & Schulze,
2004; Stefanelli & Seidl, 2017). Deffuant and colleagues (2002) ask,

How can opinions, which are initially considered as extreme
and marginal, manage to become the norm in large parts of a
population? Several examples in world history show that
large communities can more or less suddenly switch globally
to one extreme opinion, because of the influence of an
initially small minority. Germany in the thirties is a particularly
dramatic example of such a process. In the last decades, an
initial minority of radical Islamists managed to convince large
populations in Middle East countries. But one can think of
less dramatic processes, like fashion for instance, where the
behavior of minority groups, once considered as extremist,
becomes the norm in a large part of the population (it is the
case of some gay way of dressing for instance). On the other
hand, one can also find many examples where a very strong
bipolarization of the population takes place, for instance the
Cold War period in Europe. In these cases, the whole
population becomes extremist (choosing one side or the
other). (Deffuant et al., 2002)

In Deffuant and colleagues’ (2002) model, agents have an opinion (a
real number between –1 and +1) and a degree of doubt about their
opinion, called uncertainty (a positive real number). An agent’s opinion
segment is defined as the band centered on the agent’s opinion,
spreading to the right and left by the agent’s value for uncertainty.
Agents meet at random; that is, one agent is chosen from the pool of
agents and this one interacts with another agent, also chosen

randomly from the remaining agents. When they meet, one agent may
influence the other if their opinion segments overlap. If the opinion
segments do not overlap, the agents are assumed to be so different in
their opinions that they have no chance of influencing each other. If an
agent does influence another, the opinion of one agent (agent j) is
affected by the opinion of another agent (agent i) by an amount
proportional to the difference between their opinions, multiplied by the
amount of overlap divided by agent i’s uncertainty, minus one. The
effect of this formula is that very uncertain agents influence other
agents less than those that are certain (for full details, see Deffuant et
al., 2002, Equations 1 to 6).

Every agent starts with an opinion taken from a uniform random
distribution and with a common level of uncertainty—with the
exception of a few extremists, those who have the most positive or
negative opinions. The latter are given a low level of uncertainty: the
extremists are assumed to be rather certain about their extreme
opinions. Under these conditions, extremism spreads, and eventually
the simulation reaches a steady state with all agents joining the
extremists at one or the other end of the opinion continuum.
Restarting the simulation without the politically certain extremists, the
population converges instead so that all agents share a middle view.
Thus, the model shows that a few extremists with opinions that are not
open to influence from other agents can have a dramatic effect on the
opinions of the majority. This work has some implications for the
development of terrorist movements, where a few extremists have
been able to recruit support from substantial proportions of the wider
population.

1.2.3 Consumer Behavior

Businesses are naturally keen to understand what influences their
customers to buy their products. Although the intrinsic qualities of the
product are usually important, so are the influence of friends and
families, advertising, fashion, and a range of other social factors. To
examine the often-complex interactions between these, some

researchers have started to use agent-based models in which the
agents represent consumers. Among the first to report such a model
were Jager (2017) and Janssen and Jager (1999), who explored the
processes leading to lock-in in consumer markets. Lock-in occurs
when one among several competing products achieves dominance so
that it is difficult for individual consumers to switch to rival products.
Commonly cited examples are VHS videotapes (dominating
Betamax), the QWERTY keyboard (dominating other arrangements of
the keys), social media platforms such as Facebook, and so on.
Janssen and Jager focus on the behavioral processes that lead to
lock-in, and therefore they give their agents, which they call
consumats, decision rules that are psychologically plausible and
carefully justified in terms of behavioral theories of, for example, social
comparison and imitation.

An example of using the consumat approach is work by Kangur,
Jager, Verbrugge, and Bockarjova (2017) on the diffusion of hybrid
and electric cars. Using detailed data collected from 1,795
respondents on their driving behavior, attitudes about how long
batteries took to charge, battery range, environmental concern, social
susceptibility, prior involvement with purchasing cars, and so on, a
population of consumat agents was constructed, one for each
respondent. Experiments with the model showed that effective policy
requires the implementation of a combination of monetary, structural,
and informational measures over a long period, and that the strongest
effect on emission reduction was obtained with a policy that supported
electric cars, but not hybrids.

Another example of modeling consumers is a study by Izquierdo and
Izquierdo (2007) in which the authors consider markets such as the
secondhand car market, where there is quality variability (different
quality for different items) and quality uncertainty (it is difficult to know
the quality of an item before buying it and using it). The study explores
how quality variability can damage a market and affect consumer
confidence. There are two agent roles: buyer and seller. Sellers sell
products by calculating the minimum price they will accept, and buyers
buy products by offering a price based on the expected quality of the

product. The expected quality is based on experience, either just of
the agent or accumulated from the agent’s peers over its social
network. There are a finite number of products in the system, buyers
and sellers perform one deal per round, and the market is cleared
every round as these deals are done. The social network is created by
connecting pairs of agents at random, with a parameter used to adjust
the number of connections, from completely connected to completely
unconnected.

The authors found that without a social network consumer confidence
fell to the point where the market was no longer viable, whereas with a
social network the aggregation of the agent’s own experience and the
more positive collective experience of others (which is not as volatile)
helped to maintain the market’s stability. This shows how social
information can aggregate group experience to a more accurate level
and so reduce the importance of a single individual’s bad experiences,
as exemplified in the customer reviews provided by Amazon, eBay,
and other online merchants.

1.2.4 Industrial Networks

Most economic theory ignores the significance of links between firms,
but there are many examples of industrial sectors where networks are
of obvious importance. A well-known instance is the industrial districts
of northern Italy, such as the textile production district, Prato. Industrial
districts are characterized by large numbers of small firms clustered
together in a small region, all manufacturing the same type of product,
with strong, but varying, links between them. The links may be those
between a supplier and a customer, a collaboration to share
techniques, a financial link, or just a friendship or familial relationship
(Albino, Giannoccaro, & Carbonara, 2003; Boero, Castellani, &
Squazzoni, 2004; Borrelli, Ponsiglione, Zollo, & Iandoli, 2005; Brenner,
2001; El-Tawil, Fang, Aguirre, & Best, 2017; Fioretti, 2001; Squazzoni
& Boero, 2002).

Another example is the innovation networks that are pervasive in

knowledge-intensive sectors such as biotechnology and information
technology. The firms in these sectors are not always geographically
clustered (although there tend to be concentrations in certain
locations), but they do have strong networking relationships with other,
similar firms, sharing knowledge, skills, and technology with them.

For example, Gilbert, Pyka, & Ahrweiler (2001) developed a model of
innovation networks in which agents have kenes that symbolize their
stock of knowledge and expertise. The kenes are used to develop new
products that are marketed to other firms in the model. However, a
product can be produced only if its components are available to be
purchased from other firms, and if some firm wants to buy it. Thus, at
one level the model is one of an industrial market with firms trading
between each other. In addition, firms can improve their kenes either
through internal research and development or through incorporating
knowledge obtained from other firms by collaborative arrangements.
The improved knowledge can be used to produce products that may
sell better or require fewer or more cheaply available components. At
this level, the model resembles a population that can learn through a
type of natural selection (see Section 2.5) in which firms that cannot
find a customer cease trading, whereas the fittest firms survive,
collaborate with other firms, and produce spin-offs that incorporate the
best aspects of their parents (Ahrweiler, Pyka, & Gilbert, 2011;
Ahrweiler, Schilperoord, Pyka, & Gilbert, 2014, 2015; Pyka, Ahrweiler,
& Gilbert, 2004; Watts & Gilbert, 2014b). For another example, see
Pajares, Hernández-Iglesias, & López-Paredes (2004).

1.2.5 Supply Chain Management

Manufacturers normally buy components from other organizations and
sell their products to distributors, who then sell to retailers. Eventually,
the product reaches the user, who may not realize the complex
interorganizational relationships that have had to be coordinated to
deliver the product. Maximizing the efficiency of the supply chain
linking businesses is increasingly important and increasingly difficult
as products involve more parts, drawn more widely from around the

world, and as managers attempt to reduce inventory and increase the
availability of goods. Modeling supply chains is a good way of studying
order fulfillment processes and investigating the effectiveness of
management policies, and agent-based models are increasingly being
used for this purpose.

An agent-based model fits well with the task of simulating supply
chains because the businesses involved can be modeled as agents,
each with its own inventory rules. It is also easy to model the flow of
products down the chain and the flow of information, such as order
volumes and lead times, from one organization to another. This was
the approach taken by Strader, Lin, and Shaw (1998), who described
a model they built to study the impact of information sharing in
divergent assembly supply chains. Divergent assembly supply chains
are typical of the electronics and computer industries and are those in
which a small number of suppliers provide materials and
subcomponents (e.g., electronic devices) that are used to assemble a
range of generic products (e.g., hard disk drives) that are then used to
build customized products at distribution sites (e.g., personal
computers). Strader and colleagues compared three order fulfillment
policies: make-to-order, when production is triggered by customer
orders; assembly-to-order, when components are built and held in
stock and only the final assembly is triggered by an order; and make-
to-stock, when production is driven by the stock level falling below a
threshold. They also experimented with different amounts of
information sharing between organizations and found that in the
divergent assembly supply chains that they modeled, an assembly-to-
order strategy, coupled with the sharing of both supply and demand
information among organizations along the supply chain, was the most
efficient. They also pointed out that their results reinforce the general
point that information can substitute for inventory. If one has good
information, uncertainty about demand can be reduced, and as a
result the required inventory level to satisfy orders can also be
reduced.

1.2.6 Electricity Markets

In many developed countries, in recent years, the electricity supply
has been privatized. It is now common for there to be two or three
electricity utilities that sell power to several distributors that in turn sell
the electricity to commercial and domestic users. The change from a
monopoly state-owned or state-regulated supplier to one in which
there are several supply firms bidding into a market has inspired a
range of agent-based models that aim to anticipate the effect of
market regulations; changes to the number and type of suppliers and
purchasers; and policy changes intended, for example, to reduce the
chance of blackouts or to decrease the environmental impact of
generation (Bagnall & Smith, 2005; Batten & Grozev, 2006; Bunn &
Oliveira, 2001; Guerci, Rastegar, & Cincotti, 2010; Koesrindartoto,
Sun, & Tesfatsion, 2005; Ringler, Keles, & Fichtner, 2016).

In these models the agents are the supply companies that make offers
to the simulated market to provide a certain quantity of electricity at a
certain price for a period, such as a day or an hour. This is also how
the real electricity markets work: Companies make offers to supply
and the best offer is accepted (different markets have different rules
about what is meant by the best offer). Usually, the demand varies
continuously, so supply companies have a difficult job setting a price
for the electricity that maximizes their profit. A further complication is
that the cost of generation can be very nonlinear: Matching peak
demand may mean starting up a power station that is used for only a
few hours.

By running the simulation, one can study the conditions under which
the market price comes down to near the marginal cost of generation;
the effect of mergers that reduce the number of supply companies;
and the consequences of having different types of market design,
such as allowing futures trading. Most of the current models allow the
agents to learn trading strategies using a technique known as
reinforcement learning (RL) (see Section 2.1.3). A supply agent
starts by making a bid using a pricing strategy selected at random
from a set common to all the suppliers. If the bid is accepted and
profitable, the value of this strategy is reinforced and the probability of
using it again in similar circumstances is increased, or, if it is

unsuccessful, the chance of using it again is decreased (Sutton &
Barto, 2018).

1.2.7 Modeling Policy

Computer models are increasingly being used in the formulation and
evaluation of public policy by national, regional, and local
governments and by companies to examine strategic options. For
example, governments are regularly using models to assess the
distributional impact of tax reforms (Sutherland & Figari, 2013); to
guide policies aimed at decreasing air pollution (Ghazi, Khadir, &
Dugdale, 2014); to plan new roads and transport policies (Bazzan &
Klügl, 2014); to test vaccination strategies to guard against pandemics
(Waldrop, 2017); and to quantify risk from flooding (Dubbelboer,
Nikolic, Jenkins, & Hall, 2017). Some of these models are agent-
based models, and agent-based modeling is likely to become more
important in public policy making as it becomes better known among
policy analysts.

The development and implementation of public policy is often
described in terms of the ROAMEF cycle, which is a process of
deciding the Rationale for a proposed policy, setting its Objectives,
undertaking an Appraisal of options, implementing and Monitoring the
policy, Evaluating its efficacy, and using Feedback to improve the
policy. These stages are then repeated indefinitely. Although this
description is not only very idealized compared with the messy reality
of policy making, but has also been somewhat superseded by
alternative approaches (Cairney, Heikkila, & Wood, 2019), it is helpful
in indicating how and when modeling can be useful: at the rationale,
appraisal, and evaluation stages. When developing a rationale for a
policy, a model can be used to assess likely outcomes and to discover
potential unintended consequences. At the appraisal stage models
can be used to compare costs and benefits of alternative
implementations and evaluate the resilience of each option—that is,
how resistant the policy would be if the policy environment changes in
unexpected ways. To evaluate the impact of a policy, one needs to

know what would have happened if the policy had not been
implemented in order to compare this with the actual outcome with the
policy. This means that one must have a counterfactual.
Counterfactuals are sometimes observed by applying the policy only
in some areas (or to only some people) and leaving the others
unaffected. However, this is often difficult to do for practical or ethical
reasons. Instead, a model can be used to simulate the policy domain
without the policy, thus creating a virtual counterfactual to compare
with the effect of the implemented policy.

Models are also useful in a policy context as a means of
communication. Policy development typically involves many
stakeholders—groups with an interest in the policy domain. For
example, an agricultural policy might affect landowners, farmers, farm
employees, food wholesalers and food retailers, those using rural
areas for leisure or commercial activities, and so on, as well as
politicians, trade unions, and environmental groups. Each of these is
likely to have different expertise and different interests. Developing a
model in conjunction with representatives of these stakeholders might
help to clarify the differences of perspective and interest between
them and help to improve the model.

1.2.8 Participative and Companion Modeling

Agent-based models have been used with success in rural areas in
developing countries to help with the management of scarce natural
resources such as water for irrigation. This surprising use of agent-
based models is due to their fit with participative (or participatory)
research methods. As well as being used for research, agent-based
models have been used as a support for negotiation and decision
making and for training with, for example, farmers in Senegal
(D’Aquino, Bousquet, Le Page, & Bah, 2003), foresters and farmers in
the Massif Central in France (Étienne, 2003; Étienne, Cohen, & Le
Page, 2003), and the inhabitants of an atoll in Kiribati in the South
Pacific (Dray et al., 2006).

The approach, also called companion modeling (Barnaud, van
Paassen, Trébuil, Promburom, & Bousquet, 2010; Barreteau, 2003;
D’Aquino, Barreteau, & Le Page, 2003; Étienne, 2014; Ruankaew et
al., 2010) involves building an agent-based system in close
association with informants selected from the local people. As a
preliminary, the informants may be interviewed about their
understanding of the situation; they then engage in a role-playing
game. Eventually, when enough knowledge has been gained, a
computer model is created and used with the participants as a training
aid or as a negotiation support, allowing the answering of what-if
questions about possible decisions.

For example, Barreteau, Bousquet, and Attonaty (2001) describe the
use of participative modeling in order to understand why an irrigation
scheme in the Senegal River Valley had produced disappointing
results. They developed both a role-playing game and an agent-based
system called SHADOC to represent the interactions among the
various stakeholders involved in making decisions about the allocation
of water to arable plots in the irrigated area. In this instance, the
agent-based model was developed first and then its main elements
converted to a role-playing game (in which the players were the
equivalent of the agents in the agent-based model), partly to validate
the agent-based model, and partly because the role-playing game is
easier to use in a rural environment. The authors sum up the value of
this approach as “enhancing discussion among game participants”
and enabling “the problems encountered in the field and known by
each individual separately [to be] turned into common knowledge”
(Barreteau et al., 2001).

1.3 The Features of Agent-Based Modeling
These examples, chosen to illustrate the spectrum of agent-based
modeling now being undertaken, also provide examples of some
characteristic features of agent-based modeling (Windrum, Fagiolo, &
Moneta, 2007).

1.3.1 Ontological Correspondence

There can be a direct correspondence between the computational
agents in the model and real-world actors, which makes it easier to
design the model and interpret its outcome than would be the case
with, for example, an equation-based model. For instance, a model of
a commercial organization can include agents representing the
employees, the customers, the suppliers, and any other significant
actors. In each case the model might include an agent standing for the
whole class (e.g., employees), or it might have a separate agent for
each employee, depending on how important the differences between
employees are. The models of electricity markets described above
have agents for each of the main players in the market.

1.3.2 Heterogeneous Agents

Theories in economics and organization science make the simplifying
assumption that all actors are identical or similar in most important
respects. They deal, for example, with the typical firm, a
representative agent, or the economically rational decision maker.
Actors may differ in their preferences, but it is unusual to have agents
that follow different rules of behavior; when this is allowed there may
be only a small number of sets of such actors, each with its own
behavior. This is for the good reason that, unless agents are
homogeneous, analytical solutions are very difficult or impossible to
find. A computational model avoids this limitation: Each agent can

operate according to its own preferences or even according to its own
rules of action. An example is found in the models of supply chains, in
which each business can have its own strategy for controlling
inventory.

1.3.3 Representation of the Environment

It is possible to represent the environment in which actors are acting
directly in an agent-based model. This may include physical aspects
(e.g., physical barriers and geographical hurdles that agents must
overcome), the effects of other agents in the surrounding locality, and
the influence of factors such as crowding and resource depletion. For
example, Gimblett (2002) and colleagues have modeled the
movement of backpackers in the Sierra Nevada in California to
examine the effect of management policies in helping to maintain this
area of wilderness. The agents simulated trekking in a landscape
linked to a geographical information system that modeled the topology
of the area. The environment also plays an important role in the
models of industrial districts mentioned in the previous section.

1.3.4 Agent Interactions

An important benefit of agent-based modeling is that interactions
between agents can be simulated. At the simplest, these interactions
can consist of the transfer of data from one agent to another, typically
another agent located close by in the simulated environment. Where
appropriate, the interaction can be much more complicated, involving
the passing of messages composed in some language, with one agent
constructing an utterance and the other interpreting it (and not
necessarily deriving the same meaning from the utterance as the
speaker intended). The opinion dynamics models (Section 1.2.2) are a
good example of the importance of interactions in agent-based
models.

1.3.5 Bounded Rationality

Many models implicitly assume that the individuals whom they model
are rational—that is, that they act according to some reasonable set of
rules to optimize their utility or welfare. (The alternative is to model
agents as acting randomly or irrationally, in a way that will not optimize
their welfare. Both have a place in some models.) Some economists,
especially those using rational choice theory, have been accused of
assuming that individuals are hyperrational—that is, that people
engage in long chains of complex reasoning in order to select optimal
courses of action, or even that people are capable of following chains
of logic that extend indefinitely. Simon (1955), among others, criticized
this as unrealistic and proposed that people should be modeled as
boundedly rational—that is, as limited in their cognitive abilities and
thus in the degree to which they are able to optimize their utility
(Kahneman, 2003, 2011). Agent-based modeling makes it easy to
create boundedly rational agents. In fact, the challenge is usually not
to limit the rationality of agents but rather to extend their intelligence to
the point where they could make decisions of the same sophistication
as is commonplace among people. Nevertheless, it has been found in
several contexts, such as in modeling stock markets, that the
aggregate behavior of agents with very little rationality (or zero
intelligence) matches the observed behavior at the macro level
surprisingly well (Farmer, Patelli, & Zovko, 2005; Poggio, Lo, LeBaron,
& Chan, 2001).

1.3.6 Learning

Agent-based models can simulate learning at both the individual and
population levels. Learning can be modeling in any or all of three
ways: as individual learning in which agents learn from their own
experience; as population learning in which the set of agents learns
because some agents “die” and are replaced by better agents, leading
to improvements in the population average; and social learning, in
which some agents imitate or are taught by other agents, leading to
the sharing of experience gathered individually but distributed over the

whole population (Gilbert et al., 2006). The model of innovation
networks summarized above is an example of a model incorporating
learning: The individual innovating firms learn how to make better
products, and because poorly performing firms become bankrupt to be
replaced by better start-ups, the sector can learn to improve its
performance.

1.4 Other Related Modeling Approaches
The previous section has reviewed some areas where agent-based
models have been useful. However, agent-based models are not
appropriate for every modeling task. Before starting a new project, it is
worth considering the alternatives. This section introduces three styles
of modeling used in the social sciences that stand comparison with
agent-based modeling: microsimulation, system dynamics, and
discrete event simulation.

1.4.1 Microsimulation

Microsimulation starts with a large database describing a sample of
individuals, households, or organizations and then uses rules to
update the sample members as though time were advancing. For
example, the database might be derived from a representative
national survey of households and include data on variables such as
household members’ age, sex, education level, income, employment,
and pension arrangements. These data would relate to the specific
period when the survey was carried out. Microsimulation allows one to
ask what the sample would be like in the future. For example, one
might want to know how many in the sample would be retired in 5
years’ time and how this would affect the distribution of income. If we
have some rules about the likely changes in individual circumstances
during the year, these rules can be applied to every person in the
sample to find what might have changed by the end of the first year
after the survey. Then the same rules can be reapplied to yield the
state of the sample after 2 years, and so on. After this aging process
has been carried out, aggregate statistics can be calculated for the
sample as a whole (e.g., the mean and variance of the distribution of
income, which can be compared with the distribution at the time of the
survey) and inferences made about what changes are to be expected
in the population from which the sample was drawn (Li & O’Donoghue,
2013; O’Donoghue, 2014; Orcutt, Quinke, & Merz, 1986; Rutter,

Zaslavsky, & Feuer, 2011; Sutherland, Paulus, & Figari, 2014).

Microsimulation has been used to assess the distributional
implications of changes in social security, personal tax, and pensions.
For example, it can be helpful in evaluating the effects of changing the
income threshold below which state benefits become payable and,
more generally, on the effect of taxes on income inequality (Jara &
Tumino, 2013; Sutherland & Figari, 2013). Experimental prototypes
have also been developed in which there are several databases,
describing not only individuals but also firms, and in which the aging
process is affected not only by individual characteristics but also by
macroeconomic variables such as inflation and the growth in gross
domestic product (GDP).

An advantage of microsimulation models is that they start not from
some hypothetical or randomly created set of agents but from a real
sample, as described by a sample survey. Hence, it is relatively easy,
in comparison with agent-based models, to read back from the results
of the microsimulation to make predictions about the future state of a
real population. There are two main disadvantages. First, the aging
process requires very detailed transition matrices that specify the
probability that an agent currently in some state will change to some
other state in the following year. For example, one needs to know the
probability that someone currently employed will become unemployed
1 year later. Moreover, because this transition probability will almost
certainly differ between men and women, women with and without
children, young people and old people, and so on, one needs not a
single probability value but instead a matrix of conditional probabilities,
one for each combination of individual circumstances. Obtaining
reliable estimates of such transition matrices can be very difficult,
requiring estimation from very large amounts of data. Second, each
agent is aged individually and treated as though it is isolated in the
world. Microsimulation does not allow for any interaction between
agents and typically has no notion of space or geography. So, for
instance, it is difficult to take account of the finding that the chances of
getting a job if one is unemployed are lower if one lives in an area
where the unemployment rate is high.

1.4.2 System Dynamics

In the system dynamics approach to modeling one creates a model
that expresses the temporal cause-and-effect relationships between
variables, but does not represent agents directly. One of the earliest
and best-known examples is Forrester’s model of the world, which
was used to make predictions about future population levels, growing
pollution, and rates of consumption of natural resources (Forester,
1971). System dynamics, as its name implies, models systems of
interacting variables and is able to handle direct causal links, such as
a growth in population leading to increased depletion of resources;
and feedback loops, as when population growth depends on the food
supply, but food supply depends on the level of the population
(Sterman, 2000).

It is often convenient to represent a system dynamics model with a
diagram in which arrows represent the causal links between variables.
Figure 1.2 shows a typical, although simple, model of an ecosystem in
which sheep breed in proportion to their population, wolves eat the
sheep, but if there are too few sheep, the wolves starve. The
rectangular boxes represent the stocks of sheep and wolves, the tap-
like symbols are flows into and out of the stocks, and the diamond
shapes are variables that control the rate of flow. The population of
sheep increases as sheep are born, and the rate at which this
happens is determined by the constant sheep-birth-rate. The diagram
shows that sheep die at a rate that is a function of the number of
sheep living (the curved arrow from the stock of sheep to the flow
control labeled sheep-deaths), the probability that a wolf will catch a
sheep (the arrow from the predation-rate variable), and the number of
wolves (the arrow from the stock of wolves). Although this illustrative
model is concerned with somewhat imaginary wolves and sheep,
similar models can be constructed for topics of sociological interest,
such as the number of illegal drug users and enforcement agents,
public health epidemics, and the spread of crime (Hirsch & Homer,
2006; Jacobsen & Hanneman, 1992; McMillon, Simon, & Morenoff,
2014).

Description

Figure 1.2 A System Dynamics Model of a Simple
Ecosystem, With Wolves Eating Sheep According to the
Lotka-Volterra Equations

SOURCE: Wilensky, U. (2005). NetLogo Wolf Sheep Predation (System
Dynamics) model.
http://ccl.northwestern.edu/netlogo/models/WolfSheepPredation (System
Dynamics). Center for Connected Learning and Computer-Based Modeling,
Northwestern University, Evanston, IL.

System dynamics is based on the evaluation of sets of simultaneous
differential or difference equations, each of which calculates the value
of a variable at the next time step given the values of other, causal
variables at the current time step. Software such as Stella () and
NetLogo (http://www.iseesystems.com/) and NetLogo

http://ccl.northwestern.edu/netlogo/models/WolfSheepPredation
http://www.iseesystems.com/

(http://ccl.northwestern.edu/netlogo/, described in more detail in
Chapter 4) can help with drawing the diagrams, and can execute the
simulation by computing these equations.

In comparison with agent-based modeling, the system dynamics
approach deals with an aggregate, rather than with individual agents.
For example, in the wolves and sheep model the simulation will
compute the total population of sheep at each time step, but will not
represent each individual sheep. This makes it difficult to model
heterogeneity among the agents. Although one could, in principle,
have a distinct stock for each different type of agent (e.g., a stock of
white sheep, a stock of black sheep, a stock of mottled sheep, and so
on), in practice this becomes extremely cumbersome with more than a
few different types. It is also difficult to represent agent behaviors that
depend on the agent’s past experience, memory, or learning in a
system dynamics model. On the other hand, because it deals with
aggregates, the system dynamics approach is good for topics where
there are large populations of behaviorally similar agents. Thus,
system dynamics was an appropriate method for Forrester’s models of
the global economy because individual action was unimportant, and
the focus was on the state of the world.

1.4.3 Discrete Event Simulation

In typical agent-based models, time is divided into time steps (e.g., a
day or an arbitrary unit of time) and the simulation proceeds one tick
of the simulation clock at a time, at a constant rate. However, for some
models this is a wasteful and unintuitive approach. For example, in a
model of the queue at an airport check-in desk, for much of the time
nothing happens: the agent at the head of the queue converses with
the check-in agent while the rest of the queue simply wait. The
alternative, the discrete event approach, is to advance the simulation
clock not at a constant rate, but from one event (e.g., one passenger
has been checked in) to the next event (the next passenger has been
checked in). In this example, other kinds of events might be the arrival
of a new person at the tail end of the queue and the clerk leaving the

http://ccl.northwestern.edu/netlogo/

check-in desk to take a coffee break. In between the events, the
system being modeled is assumed to be fixed and unchanging. Each
event changes the state of the system.

As well as queues and events, other elements of a discrete event
simulation are gates, which allow agents to leave a queue, and
servers, which process agents for a period (the desk clerk acts as a
server in the check-in example). The simulator has a list of events,
each with an associated time, sorted into chronological order. It picks
off the next event from the list and simulates its occurrence, which
might generate further timed events that are placed on the event list.
This continues until the event list becomes empty and the simulation
stops.

Discrete event simulation (Banks, Carson, Nelson, & Nicol, 2010;
Robinson, 2004) is useful when one needs to model a process in
which there are agents that remain in queues until an event occurs. As
well as modeling queues of people, discrete event simulation can be
used for modeling factory production processes to detect bottlenecks,
hospitals to show the effect of decreasing the number of beds on
patient throughput, and traffic to show the consequences of traffic light
sequencing, and many other issues where what is of interest is a flow
of agents or entities.

Although in classic discrete event simulation, the agents, or entities,
are passive objects that are merely acted on when events occur,
nowadays many discrete event simulations are close to being agent-
based models, the only major difference being the use of an event
scheduler rather than having a fixed time step (Lawson & Park, 2000).

Descriptions of Images and Figures
Back to Figure

The first row on this flow chart has two arrows with taps in them
represented by a circle with a lever on top. The arrows point from left
to right and have a box in the middle labeled, sheep. An arrow points
from the tip of the arrow on the left to the tap in the middle of the same
arrow. Another arrow points from the start of the right arrow to the tap
in the middle of that arrow.

The second row in the flow chart has two boxes labeled sheep-births
and sheep-deaths on the left and right respectively. These are
positioned under the taps on the arrows on the first row respectively.

The third row on this flow chart has two boxes with two diamonds
under them on the left corner. The first box is aligned to the start of the
arrow on the first row and reads, sheep-birth-rate. The second box is
aligned to the sheep box on the first row and reads, prediction-rate.

An arrow from the sheep-birth-rate box points to the tap to the left
arrow on the first row. This arrow also passes the box labeled sheep-
births on the second row.

The fourth row on this flow chart has two arrows with taps in them
represented by a circle with a lever on top. The arrows point from left
to right and have a box in the middle labeled, wolves.

An arrow points from the tip of the arrow on the left to the tap in the
middle of the same arrow.

Another arrow points from the start of the right arrow to the tap in the
middle of that arrow. A third double-sided arrow points from the tap on
the left tap on the fourth row, to the right tap on the first row. It also
passes through the prediction-rate box on the third row. An arrow from
the sheep box on the first row also points to the tap on the left arrow
on the fourth row.

An arrow from the wolves box points to the tap on the right arrow on
the first row.

The fifth row in the flow chart has two boxes labeled wolf-births and
wolf-deaths on the left and right respectively. These are positioned
under the taps on the arrows on the fourth row respectively.

The sixth row on this flow chart has two boxes with two diamonds
under them on the left corner. The first box is aligned to the start of the
arrow on the fourth row and reads, predictor-efficiency. The second
box is aligned to the right arrow on the fourth row and reads, wolf-
death-rate.

An arrow from the predictor-efficiency box points to the left tap on the
fourth row. This arrow also passes the box labeled wolf-births on the
fifth row. Another arrow points from the wolf-death-rate to the right tap
on the fourth row. This arrow passes through the wolf-deaths box on
the fifth row.

CHAPTER 2 AGENTS,
ENVIRONMENTS, AND TIMESCALES
We noted in Chapter 1 that an agent-based model consists of a set of
agents acting within an environment. In this chapter, we begin by
showing how agent-based models can be designed.

2.1 Agents
Agents generally have all or most of the following characteristics:

1. Perception. They can perceive their environment, possibly
including the presence of other agents in their vicinity. In
programming terms, this means that agents have some means of
determining what objects and agents are located in their
neighborhood.

2. Performance. They have a set of behaviors that they are capable
of performing. Often, these include the following:

a. Motion. They can move within a space (the environment).
b. Communication. They can send messages to and receive

messages from other agents.
c. Action. They can interact with the environment, for example

by picking up food.
3. Memory. They have a memory, which records their perceptions of

their previous states and actions.
4. Policy. They have a set of rules, heuristics, or strategies that

determines, given their present situation and their history, what
behaviors they will now carry out.

Agents can be implemented in many different ways.

2.1.1 Agents as Objects

Almost all agent-based models are built using an object-oriented
programming language, such as Java, C++, Python, or even Visual
Basic. This book cannot teach you object-oriented programming, but
because the idea of object-oriented programming is so important to
agent-based modeling, here is a short introduction to its main
features.

Object-oriented programming develops programs as collections of

objects, each with its own set of things it can do. An object can store
data in its own attributes, can send messages to other objects, and
has methods that determine how it is able to process data. The
general programming advantage of object orientation is that it
provides a high level of modularity. For example, the details of how an
object’s methods work can be changed without upsetting the rest of
the program. An additional advantage for agent-based modeling is
that there is an affinity between the idea of an agent and an object: It
is natural to program each agent as an object.

There are several basic concepts in object-oriented programming:

A class is an abstract specification of an object, including its
attributes and its methods. For example, a program might include
a class called Company to represent a firm in a model of an
economy. A Company might have attributes such as its
capitalization, its number of employees, and the type of product it
sells. It might also have methods that describe the processes
involved in selling the Company’s products to customers and in
buying the Company’s materials from suppliers, which could be
other companies in the model. Classes may be specialized to
form more specific classes. For example, the general Company
class could be specialized to yield Manufacturing companies and
Distribution companies. Each specialized class inherits the
attributes and methods of its more abstract class, and may add
new attributes and methods or override the ones it inherits. For
example, the Manufacturing class would need methods that
determine the volume of product that can be made from unit
volumes of materials, whereas the Distribution class would not
need this method.

As the program runs, classes are instantiated to form objects.
For example, the Manufacturing class might be instantiated to
yield two objects, one representing XYZ, Inc. and the other ABC,
Inc. Although the two objects have the same methods and the
same attributes, the values of their attributes (e.g., their names,

size, and type of product) can differ. An object’s methods may
send messages to another object, thus affecting the second
object’s state. For example, one of the methods of the XYZ object
may send a message to the ABC object requesting it to sell some
of its products; a method of the ABC object might respond with
the number and price of the products it wishes to sell.

As this summary suggests, it is a short step from object orientation to
agent-based modeling. One creates a class for each type of agent,
provides attributes that retain the agents’ current state, and adds
suitable methods that observe the agents’ environment and carry out
agent actions according to some rules. In addition, one needs to
program a scheduler that instantiates the required number of agents
at the beginning of the simulation and gives each of them a turn to act.
Chapter 4 includes an example of building such a simulation.

2.1.2 Production Rule Systems

As we noted in the previous section, the agents in most models need
to have the ability to perceive the state of their environment, receive
messages from other agents, proactively select behavior to perform
depending on their current state, and send messages to other agents.
One way to achieve these is to endow the agents with the following:

A set of rules of behavior. These rules determine what the agent
will do. One or more rules from the set will be selected depending
on the current state of the agent. Such rules are often called
condition-action rules because they include both a condition
component (what must be true if the rule is to be used) and an
action component (what will be done to carry out the rule). For
example, one such rule might be, “If I can see food in the vicinity,
then I will move a step toward it.”

A working memory. This will consist of variables that store the

agent’s current state. For example, the working memory might
store the agent’s current location and its current energy reserve.

A rule interpreter. This is some program code that uses the
working memory to select which rule should be activated, or fired.
It may need to handle the situation where the condition
component of more than one rule is satisfied, and therefore some
means of choosing between the rules is needed.

An input process. This will collect messages and perceptions from
the environment and store them in working memory for
processing by the rules.

An output process. This will pass messages to the environment,
en route to the agents that are the intended recipients.

Such an arrangement is called a production (rule) system, and the
rules are production rules (Nilsson, 1998; Russell & Norvig, 2010).
The correspondence between the elements of a production system
and the desirable features of an agent listed above should be clear. A
relatively simple production system can be constructed from a toolkit
such as Jess (the Java Expert System Shell,
http://www.jessrules.com/) (Friedman-Hill, 2003).

2.1.3 Agents That Learn

The agents in most of the models mentioned so far are not capable of
learning from experience. Simple agents driven by production rule
systems have a memory in which their current and past state is
recorded, so that they “learn” about the state of the environment as
they proceed through it. But usually we mean something much more
than this by learning. One kind of learning is learning more-effective
rules, and then changing behavior as a result of the learning.

Reinforcement learning (RL) is akin to what we do when exploring a
new city to find a tourist attraction by trial and error: You try one street,

http://www.jessrules.com/

and if it looks promising you carry on, or if not, you double back to try
another. Agents that engage in RL have a state (e.g., their current
location) and a small set of possible actions (e.g., move one cell north,
east, south, or west). The environment is set up so that it will
eventually provide a reward (gratification in reaching the attraction).
The agent must find a policy that maximizes the reward it receives
(Maini & Sabri, 2018; Sutton & Barto, 2018). Usually, each additional
step along the way to the goal reduces the eventual reward; as a
result, the goal is not just to find the reward, but also to do so in the
most efficient way. The agent can try many times to find the best
policy, exploring different routes, and so one of the issues in designing
RL algorithms is the balance between exploration (trying new routes,
which may be less efficient and waste time) and exploitation (keeping
to the old routes, which may not be the best way). RL has been used
to model firms that learn about the preferences of their customers
(Sallans et al., 2003) and decision making in organizations (Sun &
Naveh, 2004), among other phenomena. Several authors have used
simple models of RL to explain and predict behavior in the context of
experimental game theory with human subjects (e.g., Chen & Tang,
1998; Erev & Roth, 1998; Flache & Macy, 2002; Izquierdo, Izquierdo,
& Gotts, 2008).

RL is well suited to problems in which the environment and the reward
structure remain constant during the simulation run. On the other
hand, RL does badly if the environment is dynamic, especially if all the
agents are learning and the actions of one agent affect the state or the
rewards of other agents.

2.1.4 Cognitive Models

While relatively simple agents, with behavior defined by condition-
action rules or a production system, often serve very well, it is also
possible to design agents that make decisions on the basis of ideas
more aligned to psychological or social theories of human cognition
(An, 2012; Balke & Gilbert, 2014; Groeneveld et al., 2017).

The Belief-Desires-Intention Model

The Belief-Desires-Intention (BDI) model, which was originally based
on ideas expressed by the philosopher Bratman (Bratman, Israel, &
Pollack, 1988), is one of the most popular models of agent decision
making. In contrast to production rule systems, the idea behind BDI is
that agents have a mental state as the basis for their reasoning. As
suggested by its name, the BDI model is centered around three
mental attitudes: beliefs, desires, and intentions.

Beliefs are the internalized information that the agent has about the
world. These beliefs do not need to correspond with reality (e.g., the
beliefs could be based on outdated or incorrect information); it is only
required that the agent considers its beliefs to be true. Desires are all
the possible states of affairs that an agent might like to accomplish.
Goals are the subset of desires that an agent actively desires to
achieve (Dignum, Kinny, & Sonenberg, 2002). An intention is a
commitment to a particular course of action (usually referred to as a
plan) for achieving a particular goal (Cohen & Levesque, 1990).

These components are complemented by a library of plans. The plans
define procedural knowledge about low-level actions that are expected
to contribute to achieving a goal in specific situations and consist of
steps that define how to do something. Agents can reason about their
plans dynamically. Furthermore, they can reason about their own
internal states; in other words, they can reflect on their own beliefs,
desires, and intentions and, if required, modify these.

At each reasoning step, a BDI agent’s beliefs are updated, based on
its perceptions. Beliefs in BDI are usually represented as atomic
formulae of first-order logic. The intentions to be achieved are pushed
onto a stack, called the intention stack. This stack contains all the
intentions that are awaiting achievement. The agent then searches
through its plan library for any plans with a post-condition that
matches the intention on top of the intention stack. Any of these plans
that have their pre-conditions satisfied according to the agent’s beliefs
are considered possible options for the agent’s actions and intentions.

From these options, the agent selects the plans of highest relevance
to its goals. Based on these goals and plans, intentions are generated,
updated, and then translated into actions that are executed by the
agents.

An example may make this clearer. Suppose that we have a model in
which there are agents that need to maintain their energy level by
seeking out energy sources, which are distributed randomly around a
landscape. A production rule system might have rules to move the
agent in a random direction, perceive the presence of energy sources,
and tap the energy. The agent is defined in terms of what it does. In
contrast, a BDI agent would have the goal of maintaining its energy
level, beliefs about the locations of energy sources, an intention to
obtain energy from any source it finds, and plans about how to move
and what to do when energy is found. While in practice the production
rule or reactive agent and the BDI or intentional agent might perform
exactly the same actions, the BDI agent is designed not in terms of
what it does, but instead in terms of what it wants and how its desires
can be achieved (Caillou, Gaudou, Grignard, Truong, & Taillandier,
2017).

One of the seminal applications to use an implementation of BDI was
a monitoring and fault detection system for the reaction control system
on the NASA space shuttle Discovery (Georgeff & Ingrand, 1990). For
this purpose, 100 plans and more than 25 meta-level plans (including
more than 1,000 facts about it) were designed. Since then, BDI agents
have also been used for more psychologically inspired research. They
formed the basis for a computational model of child-like reasoning,
Children’s Reasoning about Intentions, Beliefs, and Behavior, or
CRIBB (Wahl & Spada, 2000), and have also been used to develop a
rehabilitation strategy to teach autistic children to reason about other
people (Galitsky, 2002) and for business games (Farrenkopf, Guckert,
Urquhart, & Wells, 2016).

BDI agents differ from those based on production rule systems in that
BDI agents are typically goal persistent. This means that if an agent
for some reason is unable to achieve a goal through a particular

intention, the agent is able to reconsider the goal in the current context
(which is likely to have changed since the agent chose the original
course of action). Given the new context, a BDI agent is then able to
attempt to find a new course of action for achieving the goal. Only
once a goal has been achieved or it is deemed to be no longer
relevant does an agent discard it. A detailed discussion on modeling
human behavior with BDI agents can be found in Norling (2014).

Normative Agents

BDI agents act because of a change in their set of beliefs and the
establishment of desires to achieve a specific state of affairs (for
which the agents then select specific intentions in the form of plans
that they want to execute). Their behavior is driven purely by internal
motivators such as their beliefs and desires. Normative agents (NoA)
also attend to social norms—that is, the standards of behavior that are
accepted by and govern social groups. In contrast to beliefs and
desires, norms are external to the agent and are established within the
society/environment where the agent is situated. Agents that take
account of norms are said to be norm-governed or normative. Two
examples of NoA are those of the EMIL project (Andrighetto et al.,
2013; EMIL Project Consortium, 2008) and NoA (Kollingbaum &
Norman, 2004), both of which extend the notion of norms to include
legal norms (Boella, van der Torre, & Verhagen, 2007).

EMIL focuses primarily on decisions about which norms to accept and
internalize and the effects of this internalization. Factual knowledge
(events) and normative knowledge (rules) are treated differently and
the agent has a separate interface to the environment for each of
these types of knowledge. The agent also has two kind of memories:
(i) an event board for facts and events, and (ii) a normative frame for
inferring and storing rules from the event board. An agent engages in
norm recognition, norm adoption, decision making, and then
normative action planning, using an approach similar to BDI, but
where the beliefs, goals, and intentions are all based on social norms
(Andrighetto, Campennì, Conte, & Paolucci, 2007).

The NoA design of Kollingbaum and Norman (2003) uses a broader
definition of norms including organizational concepts and ideas from
formal legal systems. The norms governing the behavior of an agent
refer to either actions or states of affairs that are obligatory, permitted,
or forbidden. Agents have an explicit representation of their normative
state. A normative state is a collection of norms (obligations,
permissions, and prohibitions) that an agent holds at a point in time
that is consulted when the agent wants to determine which plans to
select and execute. NoA agents construct plans that are required not
to violate any of their internalized norms to achieve their goals.

While much more complicated than the basic if-then rule or production
rule agents, these agents are still simple compared with
psychologically plausible models of human cognition, such as Soar
(Laird, Newell, & Rosenbloom, 1987; Wray & Jones, 2005; Ye &
Carley, 1995), CLARION (Sun, 2006), and ACT-R (Taatgen,
Anderson, & Lebiere, 2006). However, psychologically plausible
models are so rich and so complicated that using them within an
agent-based simulation (where each agent would have to run its own
cognitive model) can lead to models that are prohibitively slow to run
and difficult to manage. (For examples where this was done using
CLARION, see Sun and Naveh [2004]; and Naveh and Sun [2006].)

2.2 Environments
The previous section has described ways of designing agents. The
agents act within an environment, which provides the channel of
communication between agents and may also include nonreactive
objects, such as obstacles or energy sources.

2.2.1 Features of Environments

It is convenient to route all communication between agents through
the environment, not only because that is the natural way to do it,
corresponding to the role of the environment in human affairs, but also
because it makes monitoring the agents easier. It also means that
messages from one agent to another can be temporarily stored in the
environment (buffer), reducing the likelihood that the results of the
simulation will depend on the accidents of the order in which agent
code is executed. When buffering, messages from agents are stored
in a temporary variable until all the agents in the simulation have had
their turn. Then, these stored messages are delivered to the
recipients.

In many models, the environment will include passive objects, such as
landscape barriers, “roads” or links down which agents may travel,
resources to provide agents with energy or food, and so on. These
can be programmed in much the same way as agents, but more
simply, because they do not need any capacity to react to their
surroundings.

Because the environment is often straightforward to program, it tends
to get neglected, yet environmental influences are generally very
important in the real world. Much of the complexity of human life
comes from dealing with a complex environment. We also often use
the environment as a memory (e.g., placing objects in particular
locations to remind us that action needs to be taken), as a store of

value (e.g., money and other forms of wealth), and as a technological
aid to make some actions easier (e.g., devices that provide
communication and transport services). However, it is not often that
researchers recognize this environmental complexity in designing
simulation models.

2.2.2 Geography

Most agent-based models involve agents moving over a landscape,
but often this terrain is a rectangular plane or a toroid. In place of
these abstract surfaces, there is also the possibility of creating
complex artificial surfaces, or incorporating terrains mapped from real
landscapes. This is done by integrating a geographical information
system (GIS) into the model. A GIS is a software system for
managing, storing, and displaying spatial data such as maps (Chang,
2004; Heywood, Cornelius, & Carver, 2011).

GISs store spatial data in specially built or adapted spatially aware
database systems. These systems are designed to be efficient at
answering the kind of queries that one needs to ask for managing
geographical data, such as, “Tell me about all the other objects that
are no more than 10 units away from this object.” GIS data are often
arranged in layers that contain data on one or a few variables. When
displaying or manipulating a map, one can turn some layers on or off
to see just the variables in the visible layers. For example, a map
might include roads and lakes in separate layers. If one wanted to see
the road network but not the lakes, the lake layer could be turned off.
There are two kinds of GIS variables: raster and vector. Rasters are
regular grids of cells, each cell storing a single value. Raster variables
are used for data that vary continuously over the surface, such as
height and hours of sunshine. Vector variables are used for data that
are in the form of points, lines, or areas (known in GISs as polygons).
Spatial data may be displayed using a projection, which is a way of
showing the surface of a three-dimensional body such as the earth on
a two-dimensional map. There are a wide variety of projections
available, although the question of which projection to use is more

likely to trouble a geographer wanting to map the whole earth than a
modeler who wants to map just a town or region, small enough that
the differences between alternative projections become irrelevant.

With a GIS it is possible to build an agent-based model in which the
agents traverse a more realistic landscape—for example, moving only
along city streets. This is vital for projects such as modeling traffic
flows (e.g., Zheng, Waraich, Axhausen, & Geroliminis, 2012) and the
spread of epidemics (Dibble & Feldman, 2004; Dunham, 2005),
although it may be a distraction if the intention is to model an abstract
process not specifically located in any particular place. Models in
which the environment represents geographical space are called
spatially explicit. One decision that needs to be made early is whether
it is sufficient for the landscape to be unchanging throughout the
simulation run, or whether the landscape needs to change
dynamically. For example, a static representation of a city is likely to
be sufficient for a traffic model because in the period represented by
the simulation (a few hours or days) the arrangement of city streets
will not change materially. On the other hand, a model of the effects of
a hurricane on a city population may need to have its topography
updated during the simulation to account for floods, closed streets,
and storm damage. However, managing time-varying data is at the
state of the art for GISs and a challenge if one wants to integrate it
with agent-based modeling.

A second issue that needs to be considered when designing spatially
aware agents is how they will detect the features of the terrain they
are traversing. For example, if one wants to ensure that pedestrians
walk down streets and not through buildings, there needs to be a way
for agents to determine that the way ahead is a walkway. This is best
done by sending a query to the GIS to determine the locations of the
objects ahead of the agent and then decomposing (or parsing) the
returned answer to check that forward movement is not obstructed. In
principle this is not complicated, but in practice it can take a lot of
processing by both the underlying GIS and the agents and may slow
down the model.

2.3 Randomness
One way of abstracting from the complexity of the real world when
designing a model is to build in some randomness. For example, in a
model of an industrial network (Section 1.2.2) one might want to
abstract from the firms and interfirm linkages to be found in a
particular industrial sector in order to develop a general model of
networks between firms. However, the question then is, Which
linkages should be built into the model? One answer is to choose
pairs of firms at random and create links between these pairs. This
may be done in several ways, depending on the intended distribution
of linkages. For example, the chance of a firm being linked to another
could be uniform for all firms (a random network), could be related to
the number of firms already linked to the other firm (a preferential
attachment) (Barabási, 2003; Barabási & Albert, 1999), or could be
arranged so that the links form a local cluster of strongly connected
firms with a few long-distance connections between clusters (a small-
world network) (Watts, 1999, 2004; Watts & Strogatz, 1998). These
alternative schemes provide networks with different structural
properties that may have quite different behaviors (Pujol, Flache,
Delgado, & Sangüesa, 2005). Personal networks, such as networks of
friends, have specific characteristics that may be fitted better with a
social circle model (Hamill & Gilbert, 2009).

Randomness may also be used to model communication errors and
the influence of noise. For example, Axelrod (1997b) and Axelrod and
Dawkins (1990) developed an influential model of the dissemination of
culture (Axelrod, 1997c) to explain why, if the beliefs and attitudes of
people who interact tend to become more alike, all differences do not
eventually disappear. His model displays the emergence of stable
regions of homogeneous cultural traits, such as dialects, nationalistic
beliefs, or religious customs. In the model, agents have tags, which
are a set of five numbers that describe their own cultural traits on five
cultural features or dimensions. The chances of two agents interacting
depends on the similarity of their tags. If they do interact, one feature

from the five is chosen at random, and one agent adopts the other
agent’s value for that feature. After several thousand interactions,
distinct regions emerge in which all the agents share the same traits
and have no traits in common with agents in other regions. Axelrod
comments that his model shows how local convergence can give rise
to global polarization. Several subsequent papers by different authors
have used such tags to explore the emergence of differences between
groups of agents (e.g., Edmonds, 2006; Hales, 2000, 2002; Riolo,
Cohen, & Axelrod, 2001). However, later work (Klemm, Eguíluz, Toral,
& Miguel, 2003) showed that the tendency to global polarization is
critically dependent on the agents’ copying the value of the other
agents’ cultural traits exactly, as well as on there being no cultural drift
in an agent’s traits. If, instead, an agent adopts a slightly distorted
copy of the other agent’s traits, or if the agent’s beliefs occasionally
change randomly, a monoculture may emerge rather than there being
several distinct regions, each with different cultures. This is an
example of how random variation or noise can make a radical
difference to the outcome of a model.

2.4 Time
In most cases, simulations proceed as though orchestrated by a clock,
beat by beat. At each beat, all the agents are given a turn. Thus, time
is modeled in discrete time steps. Each time step lasts for the same
simulated duration. The simulation starts at time step zero and
proceeds as long as necessary, or until all the agents are “dead” or
out of action.

There are three issues about time that need consideration when
designing agent-based models using discrete time steps:

1. Synchronicity. We have already mentioned in the previous section
that one needs to be careful about the timing of messages sent
from one agent to another. For example, if Agent A sends a
message to Agent B and B replies, and then C sends a message
to B, the outcome might be quite different from the results of A
sending a message to B, then C sending a message to B, and
then B sending a message to A. (Consider these sequences in
the context of a model of insider trading, for example.) This is an
example of a more general issue of the order of agent invocation
(Huberman & Glance, 1993).

With an ordinary computer, because only one thing can happen at
once, agents cannot, in fact, engage in action simultaneously.
The three possible ways to work around this are as follows:

a. Invoke each agent in sequential order (Agent 1, Agent 2,
Agent 3, Agent 4, Agent 1, Agent 2, Agent 3, Agent 4, …)
(known as sequential asynchronous execution). This is rarely
a good solution, though, because the performance of the
model may be greatly influenced by the order that is used.

b. Invoke each agent in a different random order at each time
step (known as random asynchronous execution). The
advantage of this solution is that the effect of the ordering
can be investigated by running the simulation several times,

with a different ordering each time.
c. Invoke each agent in any convenient order, but buffer all

interactions with the agents’ environment so that all inputs to
agents are completed before all outputs (known as simulated
synchronous execution). This is the best option if it can be
achieved, because it is closest to actual synchronous
execution, although it can be complicated to arrange, and
sometimes the requirements of the model prevent it.

2. Event-driven simulation. These three ways of arranging the
ordering of agent invocation assume that all the agents need to
have a chance for action in each time step, although some agents
may do nothing during their slot. A different approach is possible:
use an event-driven design in which only those agents that need
to act are invoked. The idea of event-driven simulation is that,
instead of having a time step of constant duration, the simulation
skips from one event to another. The simulation clock is wound
forward until the time of occurrence of the next event. For
instance, suppose that we are designing a simulation of
organizational decision making and have a model in which the
agents are decision-making committees. The focus of the model
is on the decisions that each committee makes and how these
decisions are passed from one committee to another. What
happens between committee meetings is of no concern, and the
meetings themselves can be considered to be instantaneous. In
such a model having a regular time step would be inefficient,
because nothing of interest would be happening at most steps.
Instead, the model could be designed to jump from the time of
one committee meeting to the next.

3. Calibrating time. With both the regular and the event-driven
modes of simulation, there is often a problem of matching the
simulation time with real time. For example, if one has a model of
consumer behavior in which one wants to study the reactions of
consumers to the introduction of a new product, a matter of some
interest will be the time it takes for a majority of consumers to
adopt the product. The model might indicate how many time steps
this takes, but how does one translate this into weeks or months
of real time? A solution is to observe the process in reality and

match the shape of the adoption trend against the output from the
simulation, but this will give only approximate answers. Moreover,
in this and other examples there remains a difficulty about what to
take as the start or zero time points in the simulated and real
worlds. Although a simulation starts at a well-defined moment, in
the real world it is rare that any activity (e.g., the marketing of a
new product) commences at one clear moment in time. These are
issues that one needs to watch out for; there is no general
solution that always applies.

2.5 Population Learning
A very different approach to learning is that of evolutionary
computation, a family of techniques of which the simplest and best
known is the genetic algorithm (GA). (Others include Moran
processes, replicator dynamics, evolutionary programming, evolution
strategy, genetic programming, and classifier systems, which is
short for learning classifier system.) Evolutionary computation
(Michalewicz & Fogel, 2004) is loosely based on natural selection and
involves two basic processes: selection and reproduction.
Fundamental to evolutionary computation is a population whose
members reproduce to form successive generations of individuals who
inherit the characteristics of their parents. The probability of successful
reproduction is determined by an individual’s fitness: Fit individuals
are more likely to breed and pass on their characteristics to their
offspring than unfit ones.

The individuals involved in a genetic algorithm (Holland, 1975) may,
but need not, be the agents in the simulation. For example, in a model
of an industrial sector, the agents could be firms, with the sector as a
whole learning how to be productive in the industrial landscape
through successive generations of firm bankruptcies and start-ups
(Brenner, 2001; Marengo, 1992). On the other hand, each agent may
learn using a genetic algorithm that acts on the agent’s rules, each
rule being an individual as far as the genetic algorithm is concerned;
this is the way that learning classifier systems work (Bull, 2004).
Simulations of stock market trading have been built with such agents
(Arthur, Holland, LeBaron, Palmer, & Tayler, 1997; Johnson, 2002).

For a genetic algorithm, each individual must have its features
encoded in a chromosome. The encoding may be in the form of a
binary string, with zero representing the absence of a feature, and one
representing its presence, or as a more complicated structure. It is
also important that it is possible to assess the fitness of every
individual—for example, the fitness may be measured by the

accumulated capital stock of a firm agent, or by the effectiveness of a
cooperation strategy in a model of altruism. Individuals are selected
for reproduction by the algorithm in proportion to their fitness, so that
very fit individuals are very likely to breed and very unfit ones very
unlikely. The reproduction takes place by combining the parents’
chromosomes using a process called crossover: Slices are taken
from each chromosome and combined to form a new slice made of
some sections from one parent’s and some sections from the other
parent’s. In addition, to ensure that there continues to be some
variation in the population even after a great deal of interbreeding,
some bits from the offspring’s chromosomes are randomly changed,
or mutated.

The offspring’s fitness is evaluated to determine its likelihood to
reproduce to yield grandchildren. Eventually, the individuals who are
relatively unfit die out and are replaced by individuals who have
inherited from fit parents and are likely to be fit themselves. Although
no individual does any learning as a result of the genetic algorithm,
the population as a whole can be considered to be learning or
optimizing as the individuals within it become fitter.

The genetic algorithm is usually a very effective optimization device.
Whether it is a good model of any social phenomenon is more
debatable (Chattoe, 1998; Reschke, 2001). One problem is that it is
often difficult to see what an appropriate way of measuring fitness
would be or even whether the concept has any clear meaning when
applied to social phenomena. Sometimes this does not matter. For
example, in a model of a simple society one does not need a carefully
elaborated definition of fitness: Agents can be designed to breed if
they have the opportunity and have not previously died from lack of
resources. Another common problem with the basic genetic algorithm
is the difficulty of coding all the salient features of an agent into a
binary string for the chromosome. However, other evolutionary
computation techniques allow a wider range of structures. Genetic
programming (Banzhaf, 1998; Koza, 1992, 1994; Poli, Langdon, &
McPhee, 2008), for example, substitutes program code for the binary
string: Individuals evolve a program that can be used to guide their

actions, and learning classifier systems (Bull, 2004; Meyer &
Hufschlag, 2006) use condition-action rules as the equivalent of
chromosomes.

CHAPTER 3 DESIGNING AN AGENT-
BASED MODEL
Over the past decade agent-based modeling has developed a more or
less standardized research process, consisting of a sequence of
steps, at each of which design decisions need to be made. Like most
social science methods, this process is an idealization of the
procedures actually carried out, and, in practice, several of the steps
occur in parallel and the whole process is performed iteratively as
ideas are refined and developed. Nevertheless, it is useful to have
these steps made explicit as a guide to the conduct of agent-based
modeling research (see also Axelrod, 1997a; Hammond 2015).

In this chapter we start by listing the steps and then we illustrate each
step using an example, so that by the end of the chapter we have a
design for a simple model. In Chapter 4 we will show how this design
can be implemented to form a running simulation.

3.1 Design Steps
At an early stage in the research it is essential to narrow down the
general research topic to some specific research question. A
research question is something that the work should have a realistic
chance of answering. If the question is too vague or too general it will
not be much use, and the research will be disappointing because it will
not be able to provide the hoped-for answers. It is always better to err
on the side of specificity: Be too focused rather than too ambitious. It
is helpful to think of defining the research question as peeling an
onion, from the general area of investigation, through the particular
topic, to a question that could be answered in no more than a brief
statement of what you have discovered.

As we have noted above, the usual kind of research question that
agent-based models are used to study are ones where regularities at
the societal or macro level have been observed, and the issue is how
these may be explained. Economists often call these regularities
stylized facts (Kaldor, 1961). For example, the Schelling model
described in Chapter 1 starts with the observation that neighborhoods
are ethnically segregated and seeks to explain this through modeling
individual household decisions. The electricity market models also
described in Chapter 1 aim to explain and predict patterns of electricity
supply and market pricing in terms of the motivations of suppliers.

After having specified the research question clearly and having
identified the macrolevel regularities that are to be explained, the next
step is to specify the agents that are to be involved in the model
(Table 3.1). They may be all of one type, or there may be different
types. For example, while the models of opinion dynamics reviewed in
Chapter 1 involve only one type of agent—the individuals whose
opinion changes are being simulated—some of the industrial district
models mentioned in Chapter 1 involved several distinct types of
firms. For each type of agent, one needs to lay out the agent’s
behavior in different circumstances, often as a set of condition-action

rules (see Section 2.1.1). It is helpful to do this in the form of two lists:
one that shows all the different ways in which the environment
(including other agents) can affect the agent, and one showing all the
ways in which the agent can affect the environment (again, including
other agents). Then one can write down the conditions when the agent
has to react to environmental changes, and the conditions when the
agent will need to act on the environment. These lists can then be
refined to create agent rules that show how agents need to act and
react to environmental stimuli. It will then be possible to assess
whether simple rules will suffice, or whether a more complicated
intentional or cognitive agent design will be needed.

At this stage one will have a good idea of the types of agents and their
behaviors that are needed in the model. It will also be necessary to
consider what form the environment should take (e.g., does it need to
be spatial, with agents having a definite location, or should the agents
be linked in a network?) and what features of the model need to be
displayed in order to show that it is reproducing the macrolevel
regularities as hoped. Once all this has been thought through, one can
start to design and develop the program code that will form the
simulation. It is often helpful to see whether there are any existing
models that could be adapted or that could serve as inspiration. As
well as looking at published papers (which sometimes include Web
links to program code), it is worth looking at Web sites such as
OpenABM (https://www.comses.net/) where modelers have deposited
their code and documentation for others to use, and the carefully
curated demonstration models in the NetLogo Library
(http://ccl.northwestern.edu/netlogo/models/).

Table 3.1 Initial Steps When Designing an Agent-Based Model

Preliminaries

1. Topic

https://www.comses.net/
http://ccl.northwestern.edu/netlogo/models/

General area of study.

2. Users

Who are likely to be the users of the model (e.g., only oneself,
other researchers, stakeholders, the public, etc.)?

3. Research question

A specific question: one sentence that ends with a question
mark (?).

4. Background

Is there a literature and, more specifically, a theory relevant to
the model? If so, what does it suggest? Are there similar
models that can be adapted?

5. Macrolevel features and patterns

5a. Verification

What is known about the characteristics of the domain at the
macro level? Which of these features should the finished
model be able to generate? Draw some plots, including some
with a time axis, to show how macrolevel variables interact.

5b. Type

Will this be an abstract, middle-range, or facsimile model?

Statics

6. Types of entities

All the types of objects in the simulated world.

6a. Agents

The (pro)active entities, usually corresponding one to one
with the kinds of actors (people, firms, organizations,
countries, etc.) to be found in the real world. Provide a list of
all the types of agent but include as few as possible. In many
agent-based models there is only one type of agent.

6b. Resources

Those entities that are used by agents. Any changes in these
are caused by agents acting on them. Examples are food and
energy.

6c. Other objects

Passive objects that are in the background, unchanged by
agents, such as obstructions (walls).

7. Environment

Is environment spatial or nonspatial (e.g., a network)?

If spatial …

size of the environment.

shape (toroidal, bounded, square, rectangular, 3D).

size and shape of units (patches).

If nonspatial or a network …

directed or undirected links

Are the links static (created at initialization) or dynamic
(created and destroyed during the run)?

8. Agent attributes

For each type of agent list the attributes (e.g., characteristics,
features, or properties) of the agent. Divide the list into those
that change or may change during a simulation run, such as
wealth, and those that will not change.

Ensure that each type of agent has a different set of
properties to all other agent types (if not, they are not different
types).

For each attribute, describe the possible values it can take in
the model; for example, sex could be male or female, wealth
is a real number, and friends is a list of other agents.

If the environment is a network, list the attributes of the links.

9. Environment attributes

9a. Global attributes

Properties of the whole environment, e.g., the clock time

9b. Local attributes

Properties of each location, e.g., color, fertility, history

10. Initial values of all attributes

The values of the agent and environment attributes at the
start of the simulation.

Dynamics

11. Interaction between agents and environment

10a. Ways in which the environment acts on the individual
agents

10b. Ways in which the agents act on the environment

12. Agent-agent interactions

Ways in which agents interact (e.g., not bumping into each
other; sending messages from one to another).

13. Conditions for action

13a. Conditions

For each of the listed interactions (11 and 12), specify one or
more conditions in which that action should take place.

13b. Dependencies

For each condition, check that it refers only to attributes of the
agent or the environment. If, in order to evaluate the
condition, one needs to know about other values, add the
corresponding attributes to the agent or environment.

14. Create rules

For each condition, write out a condition-action rule, such as
a rule that says when the condition is true, carry out the
action.

15. Agent entry and exit

List the conditions in which an agent is created and those in
which it “dies,” if any.

If agents are created (or enter the simulation), specify the
initial values of their attributes.

User Interface

16. Outputs

Decide on the graphs and other outputs that will allow the
(macro) behavior model to be observed. These should
include at least those plots shown in Step 5.

If the agents are to be shown on a grid or view, what should
they look like? Do they change appearance according to their
internal state?

17. Parameters

List the parameters of the model (that users can use to alter
the way it behaves) and relate these to the research question
(Step 3).

18. Tests

Define some combinations of parameter values that will allow
the model to be tested (part of verification) to ensure that it
produces the expected results for known scenarios.

After the model has been constructed, one begins the long process of
checking that it is correct. Informally, this is called debugging; more
formally, it is called verification. Verification is the task of ensuring
that a model satisfies the specification of what it is intended to do. It is
quite different from validation, which is checking that the model is a
good model of the phenomenon being simulated. One can have a
simulation that satisfies the verification criterion, because it runs as it
is supposed to do; if the specification is a poor description of the target
in the social world, however, it is not a valid model.

Following successful verification, one can embark on validation. The
primary criterion of validation is whether the model shows the
macrolevel regularities that the research is seeking to explain. If it
does, then this begins to be evidence that the interactions and
behaviors programmed into the agents explain why the regularities
appear. However, one must guard against alternative explanations.
There may be other agent behaviors that are equally or more plausible
that lead to the same macrolevel regularities (known as equifinality).
There is also the possibility that minor changes in the initial state of
the model may lead to very different outcomes (known as multifinality).
Therefore, one needs to engage in a sensitivity analysis to see
whether, when model parameters are changed, the outcomes alter,
too. It is also important to consider whether a simpler model leads to
the same conclusions. If it does, the simpler model should normally be
preferred to the more complicated one, using the principle that simple
explanations are better than complicated ones if both are equally good
at explaining.

Having thus explored the macro behavior of the model, it is then
desirable to compare the output of the model with empirical data from
the social world. As we will see later, such comparisons between
model outputs and data are not easy to carry out and often do not lead
to the clear answers that one might expect. Most models are
stochastic—that is, they involve random processes, so one does not
know whether any difference between the model output and observed
data is due to random chance or a bad model. There are also often
considerable difficulties in collecting valid and reliable data, especially
the data observed over long periods of time that one needs to
compare with model outputs. Section 4.5 discusses validation in more
detail.

Finally, one can draw some conclusions, hopefully answering the
research question that started the process. In addition, if one has
confidence in the model, one can experiment with it, perhaps to
identify regularities that had been previously unsuspected.

3.2 An Example of Developing an Agent-Based
Model
In this section the process of developing a simple agent-based model
will be described using a simulation of collectivities as an example. In
Chapter 4 we will see how this model could be programmed. Because
it is a simple and rather abstract model, we will assume that the model
user to be targeted is someone like yourself, the reader.

Several related social phenomena are difficult to model, or even to
describe, because their boundaries are fluid, the people involved are
constantly changing, and there is no single characteristic shared by all
those involved. Examples include the following:

Youth subcultures such as punks (Widdicombe & Wooffitt, 1990)
or goths (Hodkinson, 2002)

Scientific research areas or specialties such as astrobiology
(Gilbert, 1997)

Art movements such as the pre-Raphaelites or the vorticists
(Mulkay & Turner, 1971)

Neighborhoods such as Notting Hill in London or the Bronx in
New York (van Ham, Manley, Bailey, Simpson, & Maclennan,
2012)

Members of armed revolutionary or terrorist movements such as
the Red Brigades in Germany (Goolsby, 2006)

Industrial sectors such as biotechnology (Gilbert et al., 2014)

Although one can easily point to familiar examples, and although they
are very common and easily identified, it is difficult to put one’s

intuitions about them on a firmer footing. For a start, there is no
commonly accepted word with which to name the phenomenon. The
terms “subculture,” “area,” “neighborhood,” “specialty,” and
“movement” are used for particular types, but none of these terms is
appropriate for describing all of them. A closely related concept is the
term “figuration” (Elias, 1939), although strictly speaking this should be
applied only to individuals, and not to organizations or other types of
actors. In this section we use “collectivity” as the generic term, for lack
of a better one. Note that the units making up the collectivity may be
people (as in most of the examples above) or organizations (e.g.,
biotechnology firms).

A second barrier to gaining a better understanding of collectivities is
that, by definition, there is no definite boundary around them. This
means that it is impossible to count their members and therefore to
engage in the more common kinds of quantitative analysis of their
development over time, their incidence, and so on.

Third, the way in which collectivities arise from the actions of their
members is not easily understood. It is the purpose of the model to be
developed here to suggest how some plausible assumptions about
individual action (micro foundations) could yield the collectivities that
are observable at a macro level. The research question is, therefore,
is it possible to generate collectivities from the individual actions of
agents, given just these assumptions.

3.2.1 Macrolevel Features and Patterns

In all collectivities, the following seem to hold, to a greater or lesser
extent:

Although instances of collectivities are usually easily named and
described at the aggregate level, precise definitions can prove to
be rather slippery and open to negotiation or argument (e.g.,
there are many slightly different areas that can be described as

Notting Hill, from the official local government area to the locality
within which the film of the same name was shot).

There is no accepted consensual definition that can be used to
sort those who are in from those who are out (or members from
nonmembers). For example, whereas some might think that
someone is a punk because of the way that he or she dresses,
this assignment might be contested by others (including the
person him- or herself) by pointing to the person’s beliefs,
behavior, or acquaintances, all of which could alternatively be
relevant to decide on membership. In particular, there is no one
observable feature that all those who are in and none of those
who are out possess. Collectivities are not, for example, formal
organizations, where being an employee with a written or verbal
contract distinguishes those who are members from those who
are not; political parties, where, at a minimum, a formal
declaration of support is required and defines membership; or
social classes, where externally specified objective criteria are
used to sort people (typically based on one’s occupation).

Nevertheless, many of the members will share characteristics in
common (e.g., the scientists in a research area may have similar
educations, have carried out similar previous research, and be
known to each other, even if there is no technique, theory, or
object of research with which all of those without exception in the
research area are involved).

Membership of the collectivity entails possessing some related
knowledge (e.g., the science of the specialty, or whatever is
accepted as cool in a youth culture, or the local geography of
Notting Hill). However, no member possesses all the knowledge:
Knowledge is socially distributed.

The features that are thought to be relevant to the collectivity
change. For example, researchers do not continue to work on the
same problems indefinitely; once they have solved some, they
move on to new ones, but still within the same research area.
Most political movements change their manifestos over time to

reflect their current thinking and the social problems that they
observe, although they remain the same movements, with many
of the same adherents. Youth cultures are constantly changing
the items that are in fashion.

Some of the people involved are widely considered (e.g., by the
others) as being more central, more influential, of greater status,
or as leaders compared with others. For example, some scientists
are considered to be more eminent than others, some members
of subcultures are cooler than the rest, and so on. (Compare the
idea of optimal distinctiveness in social psychology [Brewer,
1991].)

3.2.2 Microlevel Behavior

One of the features common to collectivities mentioned in Section
3.2.2 is that the actors (i.e., the people or organizations that make up
the collectivity) have some special knowledge or belief. For example,
scientists have knowledge about their research area, and youth
subcultures have knowledge about what is currently fashionable. Even
though this knowledge is socially distributed among the members of
the collectivity so that not every member has the same knowledge,
possession of it is often a major feature of the collectivity (Bourdieu,
1986). In the model, we assume that all individuals, both members
and nonmembers, have some knowledge, but what this knowledge is
varies both among actors and over time. We use this knowledge to
locate the actors: The position of the actor at a moment in time in an
abstract knowledge space represents the knowledge that he or she
possesses at that time.

A second assumption is that some actors are of higher status than
others and that all actors are motivated to try to gain status by
imitating high-status actors (by copying their knowledge). For
example, in a collectivity driven by fashion, all actors will want to be as
fashionable as they can, which means adopting the clothing styles,
musical tastes, or whatever of those whom they perceive to be of the

highest status (Simmel, 1907). However, status is also a function of
rarity: An actor cannot remain of high status if there are many other
actors with very similar knowledge. For example, a fashion icon must
always be ahead of the hoi polloi; a scientist will be heavily cited only
if his or her research is distinctive; a revolutionary will earn the respect
of colleagues only if he or she stands out in comparison with the foot
soldiers.

Third, we assume that actors with the highest status want to preserve
this status, which they cannot do if they start to be crowded out by
followers who have been attracted to them. In this situation, we
assume that high-status actors are motivated to make innovations—
that is, to search out nearby locations in knowledge space where there
are not yet crowds.

There are thus two countervailing tendencies for actors—on the one
hand, they want to get close to the action; on the other hand, they
want to be exclusive and can do so by changing the locations that
represent the heights of status. As we will see, working out this
tension yields patterns at the macro level that are typical of
collectivities.

3.2.3 Designing a Model

Related Models

There are several generic models that deal with similar issues:

1. Boid models (Reynolds, 1987) have agents that try to maintain a
desired distance away from all other agents and thus appear to
move with coordinated motion. Agents have three steering
behaviors: separation, to avoid nearby agents; alignment, to
move in the same direction as the average of nearby agents; and
cohesion, to move toward the average position of nearby agents.
The effect is that agents move as if they were a flock of sheep or
a school of fish. These models illustrate the effect of having

agents carrying out actions that are in tension: The separation
behavior is in tension with the cohesion behavior, for instance.
However, there are no notions of seeking status or innovation in
these models.

2. Innovation models (Watts & Gilbert, 2014a) have agents that can
learn and act according to their current knowledge. Agents also
exchange knowledge and create new knowledge. However, there
is no specific idea of collectivity in these models. The set of
agents involved in innovation is predetermined.

3. The minority game (Challet, Marsili, & Zhang, 2013) is one
example from a large literature. This model, also called the El
Farol Bar model, has agents who wish to go to the bar, but only
when a minority of the other agents also choose to go there. The
agents decide based on their own past experience of the number
they previously encountered at the bar. Each agent has several
strategies that he or she uses in combination with his or her
memory of the outcome of recent trips to the bar to decide
whether to visit the bar at the current time step. The strategies are
scored according to their success (such as whether the bar is
overcrowded when the agent arrives), and unsuccessful
strategies are dropped. Over time a dynamic equilibrium can be
established, with the number of agents at the bar matching the
threshold that agents use to judge that there are too many agents
there. This model has some features of the problem addressed
here, but there is no representation of a collectivity.

The Model

The collectivities model consists of a surface over which agents are
able to move. The surface is a toroid with each point representing
one particular body of knowledge or set of beliefs. The agents thus
move, not in a representation of physical space, but rather in
knowledge space. Although it may be oversimplifying to represent a
knowledge space in two dimensions (more exactly, on the surface of a
toroid), it makes for easier visualization.

An agent’s movement in the knowledge space represents its change

in knowledge. Thus, if an agent imitates another agent, it would move
toward that agent in the knowledge space, whereas if it innovates and
discovers knowledge that other agents do not have, it would move
away from other agents into previously empty areas.

Agents are initially distributed at random on the surface. Agents have
no memory of their own or other agents’ previous positions. Each
agent does the following:

1. It counts how many other agents there are in its immediate
neighborhood.

2. If the number of agents is above a threshold, the agent turns to
the direction opposite to the average direction of travel of other
nearby agents and then moves a random distance.

3. If the number of agents is equal to or below the threshold, the
agent looks around the locality to find a relatively full area and
then moves a random distance from its present location in the
direction of the center of that area.

Each agent acts asynchronously, repeating this sequence of actions
indefinitely. There are four parameters required by this algorithm (see
Figure 3.1):

1. The radius of the circular area surrounding an agent within which
the number of agents is counted to determine whether the agent
is crowded or lonely (local-radius).

2. The threshold number of agents below which the agent is lonely
and above which the agent is crowded (threshold).

3. The radius of the circular area surrounding an agent in which the
agent, if lonely, counts the number of agents to find where there
is a maximum or, if crowded, finds the average direction of agent
movement in order to determine the direction in which it is to
move (visible-radius).

4. The distance that an agent moves; the distance is chosen
randomly from a uniform distribution with this parameter as the
maximum (speed).

Description

Figure 3.1 Local-Radius and Visible-Radius in the
Collectivities Model

Descriptions of Images and Figures
Back to Figure

This illustration has two concentric circles. The inner circle is labeled
local-radius and the other circle is labeled visible-radius. The middle of
the inner circle has a dark star labeled, ego. There are four stars in the
outer circle – two on the bottom left and right and two grouped
together on the top left. The star in the bottom left is labeled, another
agent.

CHAPTER 4 DEVELOPING AN
AGENT-BASED MODEL

4.1 Modeling Toolkits, Libraries, Languages,
Frameworks, and Environments
In this chapter we will consider how, having designed a model, one
can implement it in programming code and how one can then check
that the design and the code are correct.

Although some modelers build their agent-based models using only a
conventional programming language (most frequently Java, although
any language could be used), this is a difficult way to start. Over the
years, it has become clear that many models involve the same or
similar building blocks with only small variations. Rather than
continually reinventing the wheel, commonly used elements have
been assembled into libraries or frameworks that can be linked into
an agent-based program. The first of these to be widely used was
Swarm (http://www.swarm.org/); although this is now more or less
completely superseded, its design has influenced more modern
libraries, such as Repast (https://repast.github.io/) (North, Collier, &
Vos, 2006) and Mason (https://cs.gmu.edu/~eclab/projects/mason/)
(Luke, Cioffi-Revilla, Panait, Sullivan, & Balan, 2005). There is also
AnyLogic (https://www.anylogic.com/features/), which provides tools
not just for agent-based modeling, but also for system dynamics and
discrete event simulation. Repast and Mason are open-source,
meaning that they are available for free download and noncommercial
use, while AnyLogic is a commercial product. These libraries are
written in the Java programming language and so link most easily to
models that are also written in Java, but they can also be used with
other languages. They all provide a similar range of features, such as
the following:

A variety of helpful example models.

A sophisticated scheduler for event-driven simulations.

http://www.swarm.org/
https://repast.github.io/
https://cs.gmu.edu/~eclab/projects/mason/
https://www.anylogic.com/features/

Several tools for visualizing on screen the models and the spaces
in which the agents move.

Tools for collecting results to a file for later statistical analysis.

Ways to specify the parameters of the model and to change them
while the model is running.

Support for network models (managing the links between agents).

Links from the model to GISs so that the environment can be
modeled on real landscapes.

A range of debugged algorithms for evolutionary computation
(Section 2.5), the generation of random numbers, and sensitivity
analysis.

Can be run on Windows, macOS, or Linux.

In addition, each of them has its own special features (see Table 4.1
in the appendix to this chapter).

Many person-years of effort have gone into the construction of these
libraries and using them can greatly reduce the time taken to develop
a model and the chance of making errors. However, they are large
software packages best suited to those with experience in
programming and, even so, it can take some practice before one can
take full advantage of the wide range of features they offer.

More suited to the beginner are modeling environments that provide
complete systems in which models can be created and executed, and
the results visualized, without leaving the system. Such environments
tend to be much easier to learn, and the time taken until one has a
working model can be much shorter than it would be if one were using
the library approach. However, the simplicity comes at the price of
less flexibility and slower speed of execution. It is worth investing time
to learn how to use a library-based framework if you need the greater

power and flexibility they provide, but often simulation environments
are all that is needed. NetLogo (Wilensky, 1999), CORMAS (Bommel,
Becu, Le Page, & Bousquet, 2016), and GAMA (Grignard et al., 2013)
are examples of simulation environments.

Environments primarily intended for other purposes can also be used
for simulation, sometimes quite effectively. For example, simple
simulations can be created using the spreadsheet package Microsoft
Excel, and the free, open source statistics package R (https://www.r-
project.org/) can be useful for models that involve processing large
amounts of data. Several significant agent-based models have been
constructed using the mathematical packages MatLab
(https://uk.mathworks.com/products/matlab.html) (e.g., Thorngate,
2000) and Mathematica (http://www.wolfram.com/mathematica/) (e.g.,
Gaylord & D’Andria, 1998). Nevertheless, an environment designed
specifically for agent-based modeling is usually the first choice.

Currently, the most popular agent-based simulation environment is
NetLogo (Wilensky, 1999). It includes a user interface builder and
other tools such as a system dynamics modeler. It is available free of
charge for use for educational and research purposes
(http://ccl.northwestern.edu/netlogo/). It will run on all common
operating systems: Windows, macOS, and Linux. NetLogo has an
active user community that answers users’ questions quickly and
thoroughly and has users at all levels of education and in the natural
as well as the social sciences.

https://www.r-project.org/
https://uk.mathworks.com/products/matlab.html
http://www.wolfram.com/mathematica/
http://ccl.northwestern.edu/netlogo/

4.2 Using NetLogo to Build Models
In the remainder of this book we will use the agent-based simulation
environment NetLogo (Wilensky, 1999). NetLogo, like the other
environments and libraries mentioned above, is undergoing
continuous development, with a major new version appearing more
frequently than annually. Wilensky and his team strive to make their
improvements to NetLogo upwards compatible, meaning that any
corresponding changes needed in your or others’ programs are made
automatically when you load the code, or may require only minor
editing.

The NetLogo system presents the user with three tabs: the Interface
tab, the Information tab, and the Code tab. The Interface tab is used to
visualize the output of the simulation and to control it (see Figure 4.1),
the Information tab provides text-based documentation of what the
simulation is for and what should be observed, and the Code tab is
where one writes the simulation program using a special language
specific to this environment (the NetLogo language). NetLogo is based
on the programming language Logo (Papert, 1983), which was
designed for teaching young children about the concepts of
procedures and algorithms and was originally used to control small toy
robots called turtles. In memory of its origins, NetLogo’s agents are
still called turtles.

The Interface tab includes a black square called the view, which is
made up of a grid of patches. This is the spatial environment in which
the agents move: A simulation program can instruct agents to move in
any direction from patch to patch, and the agents will be visible on the
view (see, e.g., Figure 4.3; the small triangles on the view are agents).
Usually, the NetLogo environment is configured so that the left-hand
edge joins on to the right-hand one and the top edge to the bottom, so
that if an agent moves off the left-hand side of the view, it immediately
reappears at the right-hand side (the environment is topologically
equivalent to the surface of a toroid, a donut-shaped solid). Patches

start colored black but can easily be recolored so that, for example,
one could create a contour map. The number of patches in the view
can also be configured: When NetLogo starts, the view consists of 33
by 33 patches, but the number can be increased to many thousands.

Description

Figure 4.1 The NetLogo Interface

A NetLogo program has three parts. First, there is a section that says
what kinds of agents there will be and names the variables that will be
available to all agents (the global variables). Second, there is a setup
procedure that initializes the simulation. Third, there is a go procedure,
which is repeatedly executed by the system in order to run the
simulation. Figure 4.2 shows a very simple example to give a flavor of
a NetLogo program in which 10 agents are created and move
randomly around indefinitely.

In this program there are no global variables, so the program starts
with the setup procedure. Any turtles left from a preceding run are
cleared away, and 10 new turtles are created (these are placed in the
center of the NetLogo view). The go procedure tells each turtle (agent)
to carry out the commands within square brackets: First, turn to the
right (i.e., clockwise) by a random number of degrees, and then move
one unit forward, where the unit is the length of the side of a patch.
Each turtle moves independently of the others, all at the same time.
(Because NetLogo runs on an ordinary computer, the agents cannot
all operate at precisely the same time, but NetLogo makes it look as
though they do by using an asynchronous random update; see
Section 2.3.)

Description

Figure 4.2 A NetLogo Program to Create 10 Agents and
Make Them Move at Random

To run this program on your own computer you would need to
download and start up NetLogo. Then click on the Code tab and type
in the lines of code shown in Figure 4.2. Move back to the Interface

tab. Click on the Add icon at the top and then on the white area next to
the view. NetLogo will open a dialog box. Type setup into the
Commands field and click OK. This will draw a button labeled “setup.”
Then do the same for a go button, also setting the check box Forever
to on. (This will cause the go procedure to be executed in a loop when
the go button is clicked, continuing until the button is clicked a second
time to stop the run.) Clicking on your setup button will create 10
turtles, shown piled on top of each other in the center of the view.
Clicking on the go button will send the agent turtles darting around the
view, following a random trajectory. Click on the go button again to
stop the program. The NetLogo interface should then look similar to
Figure 4.3.

Although this is a very simple example, it does give an idea of how
quickly one can develop agent-based simulations in an environment
like NetLogo. The graphics for buttons (and sliders, switches, etc.) to
control a simulation are available through drag and drop. The view
offers many possibilities for the visualization of agents and their
environment without doing any programming. NetLogo will also show
dynamically changing plots of output variables on the Interface tab.
Although the NetLogo programming language is somewhat different
from the usual procedural languages, it is both powerful and (mostly)
elegant, with the result that complex simulations can be programmed
in surprisingly few lines of code.

Description

Figure 4.3 The Simple Program Running

There is not enough space in this book to provide a detailed tutorial on
NetLogo, but the system includes a good built-in tutorial (located
under the Help menu) and comes with a large number of
demonstration and example models, some of which are relevant to

social science.

4.3 Building the Collectivities Model Step by
Step
Chapter 3 introduced the collectivities model. In brief, this is a model
that simulates the dynamic creation and maintenance of knowledge-
based formations such as communities of scientists, fashion
movements, and subcultures. The model’s environment is a spatial
one, representing not geographical space but rather a knowledge
space in which each point is a different collection of knowledge
elements. Agents moving through this space represent people’s
differing and changing knowledge and beliefs. The agents have only
very simple behaviors: If they are lonely (i.e., far from a local
concentration of agents) they move toward the crowd. If they are
crowded, they move away.

Thus, formally, there are two agent behavior rules:

Condition Action

The agent is lonely. Move toward the crowd.

The agent is crowded. Move away from the crowd.

The first step in building the model is to make some basic decisions
about the agents and the environment. The model specification
implies that there will be only one type of agent and that the agents
will move about in a space. We need to decide the dimensionality of
this space: For simplicity, we will use a two-dimensional grid that can
be mapped directly onto NetLogo’s view. To avoid special effects that
might occur at the edges of the grid, we will use a toroid, which has no
edges. This is the default arrangement for NetLogo, so nothing extra

is required.

Next, it is helpful to lay out the logic of the model, either graphically or
in pseudo-code. To show the logic graphically, it is convenient to use
the Unified Modeling Language (UML), a means of representing
programs that has been developed as a way of communicating
software independently of the details of programming languages
(Bersini, 2012; Fowler, 2003). UML provides a range of standardized
diagrams that can be used to show the class hierarchy of the objects
in the program; a sequence diagram that shows how one thing leads
to the next; and an activity diagram, which is similar to a flowchart.
UML is very good for describing a model in, for example, a published
paper, but the collectivities model is so simple that UML is hardly
necessary: There is only one class (for the agents) and only two agent
actions (move forward and turn around).

With such a simple model an alternative approach is more helpful:
Use pseudo-code, an informal mixture of natural language and
programming conventions that makes the structure and flow of a
program clear without requiring the reader to be familiar with any
particular programming language. Figure 4.4 shows the collectivities
program in pseudo-code.

The program is in two parts: the initialization (called Setup in NetLogo)
and the execution (Go in NetLogo). The indentation of the pseudo-
code helps to clarify which lines go with which. For example, the
program loops repeatedly carrying out the lines between Loop forever
and End loop. Constant parameters of the model are shown in italics
in Figure 4.4.

Figure 4.4 The Collectivities Program in Pseudo-Code

Once one has a pseudo-code version of the program, it is relatively
easy to translate it into a programming language such as NetLogo; the

results of doing so are shown on the Web at
https://study.sagepub.com/researchmethods/qass/gilbert-agent-
based-models-2e, where there is also a step-by-step explanation of
every line of the program. The model is also available at the
OpenABM Web site (Gilbert, 2019).

Running the model shows that the initial uniform random distribution of
agents separates into clumps, in which some agents are central and
others are distributed around them. The central agents are crowded,
and so move. In doing so, they shift the centroid of the clump slightly
and may make other agents either crowded or lonely, and they too will
move. Thus, the clump of agents, although remaining together for long
durations (as measured in time steps), drifts across the view. Lonely
agents move toward the clump, sometimes joining it and sometimes
continuing to trail behind it. The clumps never merge.

Figure 4.5 illustrates a typical snapshot. In this figure, agents that are
crowded are a dark gray and those that are lonely are a lighter gray.

https://study.sagepub.com/researchmethods/qass/gilbert-agent-based-models-2e

Description

Figure 4.5 Snapshot of the Simulation

Comparing the behavior of this model with the features of collectivities
described in Section 3.2, we see the following:

1. When we run the model, we see clumps, but drawing a boundary

around clumps involves some arbitrary definition, perhaps in
terms of local densities of agents.

2. Although a definition of which agents are in and which are out of a
clump is possible (e.g., in terms of the distance to the nearest
neighbor), any such definition seems arbitrary.

3. Agents in the same clump are close together and so could be
thought of as sharing some aspects of their knowledge.

4. The location of the clump, as indicated by the position of its
centroid, is constantly changing as some agents move more
closely into the clump and others seek new, less-crowded
locations.

5. Some agents consider themselves to be crowded, and these
behave differently from the other agents in the clump (by
innovating or trying to find less-crowded positions by moving
through the knowledge space). These agents are located more
centrally in the clumps and are influential in setting the direction of
travel of the other agents.

The features of collectivities that we observe in society thus emerge in
the model as a result of the behavior of the agents. Although other
microlevel actions could produce the same or similar macrolevel
patterns (Gilbert, 2002), it is useful to know that these do yield the
macrolevel behavior that we observe. Specifically, we can conclude
from the model that if

1. agents change their ideas in knowledge-space in response to
over-crowding (Mulkay & Turner, 1971),

2. some ideas and some agents are considered to be high status or
important, and

3. agents are motivated to copy and adopt those ideas or a variation
on them, then the phenomenon we have described as a
collectivity will emerge from the agents’ behavior.

A more detailed comparison of the model output with empirical data is
not appropriate for this abstract model (see Section 4.5.5). The value
of abstract models is twofold: They can account for the generation of
particular phenomena, following Epstein’s maxim that “to explain

macroscopic social patterns, we generate—or ‘grow’—them in agent
models” (Epstein, 2007, p. 50); and they can help to highlight
commonalities and differences between phenomena that otherwise
might be considered incomparable. A better criterion for this model’s
success is therefore the degree to which it generates further
theoretical questions or informs middle-range theory that can be
empirically validated. For example, the model suggests the question,
“What are the significant similarities and differences between punks
and scientists, given that their social formations can be re-created
using the same generic model?” It does seem that there are many
areas of social life where similar microlevel behaviors may be found
and correspondingly many emergent collectivities, and so this model
may be applied to account for a wide range of social phenomena.

4.4 Verification: Getting Rid of the Bugs
You should assume that, no matter how carefully you have designed
and built your simulation, it will contain bugs (code that does
something different from what you wanted and expected). When you
first run a new simulation model, it is likely that it will have many bugs,
most of them easily observable because the simulation gives
anomalous results or crashes. More worrying, it is quite likely that
even when you have worked on the code to remove the obvious bugs,
some will still lurk to catch you unaware. As a rule of thumb, think of
the number of bugs remaining as following a negative exponential—
the number decreases rapidly at first, but then levels off and never hits
zero. Even published simulations sometimes suffer from bugs and
misinterpretations (e.g., see Edmonds & Hales, 2003; Galan &
Izquierdo, 2005; Rouchier, 2003). Checking that code does not have
bugs is called verification.

There are techniques for reducing the chances of including bugs and
for making finding them easier. Here are some:

Code elegantly. When you are writing the simulation program, do
it carefully and steadily. Do not rush to get the code working and
do not take shortcuts. Any time saved will be lost in extra time
needed for debugging. Using an object-oriented language and
using variable names that are meaningful in the context of your
model will help.

Include lots of output and diagnostics. It will be difficult to find
bugs in sections of code that give no output to show what is
happening as the program runs. You should not be satisfied with
only displaying the results of the simulation; at least during the
debugging phase, you will need to display intermediate values
also. Some care will be needed to decide what to display so that
you get useful clues, but are not so overwhelmed that you cannot

find these clues because of the amount of other output in which
they are buried.

Code walkthrough, step by step. Run the code one line or one
function at a time, observing how the values of variables,
parameters, and attributes change and then checking that they
alter in the expected way. Although this process can be slow and
tedious, it does help to ensure that the code is doing what was
intended, at least for the runs that are observed. Often,
programming environments provide features to make stepping
through code easier to manage.

Add assertions. If you know that variables must take some values
and not others, check for valid values as the simulation runs, and
display a warning if the value is out of range; such checks are
known as assertions. For example, if two agents cannot occupy
the same spatial location at the same time, there should be a
check whether this requirement is being violated at every time
step.

Add a debugging switch. You may worry that all the code needed
to identify bugs, such as assertions and diagnostics, will slow
down the simulation unacceptably. Include a global variable in
your program that can be set to a debugging level: from none to
maximum. Precede each debugging statement with a test of this
variable to see whether the statement should be run at the current
debugging level. In some languages it is possible to achieve the
same effect with conditional compilation.

Add comments and keep them up to date. All programming
languages allow you to insert comments—text for programmers to
read that is not executed as program code. Use this feature to
add comments to every function, procedure, method, and object.
The comments should describe what the following block of code
does and how it does it, but at the conceptual level, not at the
implementation level (i.e., do not paraphrase the program code,
but state what the code is intended to achieve). As a rule of
thumb, there should be about one third as many lines of

comments as there are lines of code. Comments can easily
become obsolete, describing the program as it used to be, rather
than as it is. Reserve some time to update the comments at
regular intervals. In writing comments, assume that the reader is
someone who can program as well as you can, but who knows
little or nothing about your model. After a couple of months away
from the program, this may be a good description of you, so do
not avoid writing comments with the excuse that no one else will
see your code.

Use unit testing. Unit testing is an increasingly popular software
engineering technique for reducing bugs (Fröhlich & Link, 2003).
It consists of writing some test code to exercise the program at
the same time as you write the code itself. The idea is to develop
the program in small, relatively self-contained pieces, or units. A
test harness is created that will supply the unit with a sequence of
inputs and that will check the results against a list of expected
outputs. The test harness then automatically runs through each
input, checking that the expected output is, in fact, generated.
Once the unit has passed all its tests, you can move on to writing
the next unit. This may involve making some changes to the first
unit, which must then be put through its test sequence again to
ensure that the changes have not introduced any new bugs.
When many units have been written, the test harness is used to
automate performing all the tests on all the units, thus giving
some guarantee that bugs have not inadvertently crept in as a
result of developing the code. As the program develops,
additional tests should be written to verify assemblies of several
units and the interaction between them.

Test with parameter values for known scenarios. If there are any
scenarios for which the parameters and the output are known with
some degree of certainty, test that the model reproduces the
expected behavior. This is the test that most people carry out first
on a model, but it is a rather weak test and, by itself, will not give
much confidence that the simulation is free of bugs.

Use corner testing. Test the model with parameter values that are
at the extremes of what is possible and ensure that the outputs
are reasonable. (The name “corner testing” comes from the idea
that such parameter values mark the corners of a parameter
space enclosing all possible parameter values.) For example, test
to see what happens when your simulation is run without any
agents and when it is run with the maximum number that your
model allows.

There is further excellent advice about how to do scientific computing
in Wilson, Bryan, Cranston, Kitzes, Nederbragt, and Teal (2016).

4.5 Validation
Once one has developed an agent-based model, it seems obvious
that it needs to be checked for validity—that is, whether it is, in fact, a
good model of what it purports to represent. However, both the theory
and the practice of validation are more complicated, and more
controversial, than one might at first expect. The issues are related to
the various objectives aimed at by modelers, which imply different
criteria for validation, and the sheer difficulty of acquiring suitable
social science data in sufficient quantity to allow systematic validation
(Troitzsch, 2004). We begin by considering the conceptual issues
before discussing some techniques for carrying out validation.

Agent-based models can be directed primarily at formalizing a theory
(e.g., Schelling’s residential segregation model; see Chapter 1), in
which case the model is likely to be pitched at a very abstract level; or
they can be aimed at describing a wide class of social phenomena,
such as the development of industrial districts or the behavior of
consumers; or they can be intended to provide a very specific model
of a particular social situation, such as some of the models of
electricity markets mentioned in Chapter 1, where the precise
characteristics of one market, including the location of power plants
and pattern of consumer demand, are relevant. Each type of agent-
based models requires a different approach to validation (Boero &
Squazzoni, 2005).

4.5.1 Abstract Models

The aim of abstract models is to demonstrate some basic social
process that may lie behind many areas of social life. A good example
is Epstein and Axtell’s pioneering book on Growing Artificial Societies
(Epstein & Axtell, 1996), which presents a series of successively more
complex models of the economics of an artificial society. Another
example is the model of collectivities introduced earlier in this chapter.

With these models there is no intention to model any particular
empirical case, and for some models it may be difficult to find any
close connection with observable data at all. For example, Schelling’s
model is usually built on a toroidal regular grid with agents
dichotomized into two classes (e.g., red and green). These
characteristics of the model are plainly not intended as empirical
descriptions of any real city or real households. How then might such
models be validated?

The answer is to see such models as part of the process of
development of theory, and to apply to them the criteria normally
applied to evaluating theory. That is, abstract models need to yield
patterns at the macro level that are expected and interpretable; to be
based on plausible microlevel agent behavioral rules; and, most
important, to be capable of generating further, more-specific or
middle-range theories (Merton, 1968). It is these middle-range
theories and the models based on them that may be capable of
validation against empirical data. If an abstract model has been
created using a deductive strategy, there will already be some
hypotheses about the agent’s behavior and about the macrolevel
patterns that are to be expected. The first validation test is therefore to
assess whether the model does indeed generate the expected
macrolevel patterns. A more thorough test would be to see what
happens when parameters of the model are systematically varied (see
Section 4.6.6, on sensitivity analysis). One would hope that either the
macrolevel patterns persist unchanged with variation in parameters,
or, if they do change, that the changes can be interpreted. For
example, in Schelling’s model one can alter the tolerance level of the
agents. At low values of tolerance, households rarely find a spot
where they are happy, and the simulation takes a long time to reach a
steady state, if it ever does. At sufficiently high values of tolerance,
households are satisfied whatever the color of their neighbors and the
initial random distribution hardly changes.

Once these basic tests have been passed, one can evaluate whether
the model can be used to inform theories about specific social
phenomena, and then test those theories. For example, if one uses

the Schelling model to explain ethnic segregation, one needs to start
developing the theory to include the other factors that are of
undoubted importance in location decisions in urban areas, including
affordability and availability of the housing stock, the presence of more
than two ethnic groups and people who belong to none or more than
one, and the functional form of ethnic attitudes. Bruch and Mare
(2006) suggest that the segregation effect in the Schelling model
depends on the agents having a dichotomous attitude of being either
happy or unhappy, and that clustering does not result if agents have a
smoothly continuous attitude ranging from very unhappy to very
happy.

4.5.2 Middle-Range Models

Models such as those mentioned in Chapter 1 that simulate consumer
behavior, industrial districts, or innovation networks are intended as
middle-range simulations. They aim to describe the characteristics of
a particular social phenomenon, but in a sufficiently general way that
their conclusions can be applied widely to, for example, most industrial
districts rather than just one.

The generic nature of such models means that it is not usually
possible to compare their behavior exactly with any particular
observable instance. Instead, one expects to be satisfied with
qualitative resemblances. This means that the dynamics of the model
should be similar to the observed dynamics and that the results of the
simulation should reveal the same or similar statistical signatures as
observed in the real world; in other words, the distributions of
outcomes should be similar in shape (Moss, 2002).

For example, the firms that one finds in innovation networks have
collaborative links with other firms in the same industrial sector. If one
counts the number of partners of each firm and plots the log of the
number of partners against the log of the number of firms with that
many partners, the graph is approximately a straight line with constant
slope (e.g., Powell, White, Koput, & Owen-Smith, 2005, Fig. 3). A

linear relationship between logged variables is the statistical signature
of a power law, and it is characteristic of many social networks, from
utility power networks to the World Wide Web (Barabási, 2003). We
would expect that a simulation of an innovation network would also
show a power law distribution of interfirm links with a similar slope.

An example of a middle-range model is Malerba, Nelson, Orsenigo,
and Winter’s (2001) work on the computer industry. They describe
their model as history friendly (Windrum, Fagiolo, & Moneta, 2007), by
which they mean that while the model does not reproduce the exact
history of the computer industry, it does

capture in a stylized and simplified way the focal points of an
appreciative theory about the determinants of the evolution of
the computer industry. It is able to replicate the main events
of the industry history with a parameter setting that is
coherent with basic theoretical assumptions. (Malerba et al.,
2001, para. 6.1)

They also note, “Changes in the standard set of parameters actually
lead to different results, ‘alternative histories’ that are consistent with
the fundamental causal factors of the observed stylized facts”
(Malerba et al., 2001, para. 6.1).

4.5.3 Facsimile Models

Facsimile models are intended to provide a reproduction of some
specific target phenomenon as exactly as possible, often with the
intention of using it to make a prediction of the target’s future state, or
to predict what will happen if some policy or regulation is changed. For
example, a business may be interested in finding the consequences
for their inventory level of reducing the interval between sending out
restocking orders. It is likely to require a model that precisely
represents all their suppliers, the goods each supplies, and the unit

quantities of those goods in order to be able to make reasonable
predictions. Another, very different, example is the work by Axtell and
colleagues (2002) and Swedlund, Sattenspiel, Warren, and
Gumerman (2015) on the Anasazi Indians in the American Southwest.
These people began maize cultivation in the Long House Valley in
about 1800 BC but abandoned the area 3,000 years later. Axtell and
colleagues’ model aimed to retrodict the patterns of settlement in the
valley and match this against the archaeological record, household by
household.

If such exact matches can be obtained, they would be very useful, not
only as a powerful confirmation of the theory on which the model is
based, but also for making plausible predictions. However, there are
reasons for believing that simulations that exactly match observations
of specific phenomena are likely to be rare and confined to rather
special circumstances. Most social simulations contain some element
of randomness. For example, the agents may have initial
characteristics that are assigned from a random distribution. If the
agents interact, their interaction partners may be selected randomly,
and so on. The effect of this is that running the model several times
will yield different results each time. Even if the results are only slightly
different, the best one can hope for is that the most frequent outcome
—the mode of the distribution of outputs from the model—corresponds
to what is observed (Axelrod, 1997a; Moss, 2002). If it does not so
correspond, one might wonder whether this is because the particular
combination of random events that occurred in the real world is an
outlier and whether, if it were possible to rerun the real world several
times, the most common outcome would more closely resemble the
outcome seen in the model.

4.5.4 Complexity

Related to randomness is the idea of complexity. In the technical
sense of the word, complexity is found in systems where there are
many diverse interacting components with nonproportional
interactions between them. Some physical systems are complex, such

as the earth’s climate; many ecological systems and social systems,
such as organizations, are almost always complex. Many systems are
not only complex, but also adaptive, meaning that the components
change or learn in response to changes in their environments. Agent-
based models are well suited to modeling complex systems, because
the components can be represented as agents. Two important
implications of a system being complex are that the behavior of the
system as a whole is often emergent—that is, not merely the
aggregation of the behavior of the components—and that the
trajectory of the system over time may be impossible to predict
precisely. As an example of the former, the behavior of an
organization such as a firm is not simply the sum of the individual
activities of its employees but depends on the structure of the
organization and how the employees interact. A commonly cited
example of the impossibility of precise predictions of the future path of
a complex system is that accurate weather forecasts cannot be made
beyond a horizon of about 10 days, no matter how powerful the
computer used to make them. Similarly, the precise value of a stock
exchange index is impossible to predict far ahead.

4.6 Techniques for Validation
Two areas need to be examined when validating models: first, the fit
between a theory and the model of that theory, and second, the fit
between the model and the real-world phenomenon that the model is
supposed to simulate.

4.6.1 Comparing Theory and the Model: Sensitivity
Analysis

The fit between a theory and its model is best evaluated by using the
theory to derive several propositions about the form of the
relationships expected between variables, and then checking whether
the expected distributions do, in fact, appear when the model is run
using a variety of parameter settings (Grimm & Railsback, 2012).
Each of the parameter settings corresponds to an assumption made
by the model. One should aim to check each of the settings either by
measuring the value from empirical data or by conducting a sensitivity
analysis. Although measuring the value is preferable, there will be
many parameters that cannot be checked empirically, and for these
some form of sensitivity analysis is essential. For example, models of
science and technological innovation often involve representing the
flow of knowledge between agents, but rate of knowledge transfer is in
practice impossible to observe in the world, although it may be
possible to measure within the model.

Sensitivity analysis is aimed at understanding the conditions under
which the model yields the expected results. For example, with the
opinion dynamics model described in Chapter 1, one might ask, “How
extreme do the extremists have to be for all the agents eventually to
join one of the extreme parties?” To find out, one needs to run the
simulation for a series of values of the uncertainty parameter, perhaps
ranging from 0.5 to 1.0 in steps of 0.1 (i.e., six runs). But the model
includes random elements (e.g., the order in which agents meet and

exchange opinions is random), so one should not be content with just
six runs, but should perform several runs for each value of the
uncertainty parameter to obtain a mean and variance. If one does 10
repetitions for each parameter setting, we would need to carry out 60
runs. (The number of repetitions needs to be chosen with the amount
of variation in mind, so that one gets a statistically meaningful result.)

To make matters worse, most models include many parameters, and
their interaction may affect the simulation (e.g., the number of
extremist groups that emerge depends on both the uncertainty of the
extremists and the distribution of extremists across the political
spectrum, the parameters having an effect both independently and in
combination), so that ideally one would want to examine the output for
all values of all parameters in all combinations. Even with only a few
parameters, this can require an astronomical number of runs and thus
is not a practical strategy.

If we think of the range of each parameter as lying on an axis, the set
of all parameters defines a multidimensional parameter space, in
which each point corresponds to one combination of parameter
values. The scale of the task in doing a full sensitivity analysis can
then be quantified as the volume of this space, and any way of cutting
down the space will reduce the number of simulation runs needed.
One obvious way is to use prior empirical knowledge to restrict the
range of as many parameters as possible. For instance, we might
know that a parameter, although theoretically capable of taking any
value between 0 and 100, in fact is never observed to have a value
greater than 10. Alternatively, we can limit the applicability of the
model by constraining the range of values we test: We may state that
the model applies only if the parameter is somewhere between 5 and
10 and not investigate what happens when it is outside this range.

Another approach, which can be used in combination with limiting the
range of parameters, is to sample the parameter space. Instead of
performing simulation runs at every point in the space, we use only
some points. These points may be chosen randomly or purposively to
inspect combinations that we think are particularly interesting or that

are close to regions where major changes in the simulation’s behavior
are expected (phase changes).

The choice of which parameters to analyze and which variables to
observe can be informed by suggestions from the literature on the
Design of Experiments (Kleijnen, 2015; Lorscheid, Heine, & Meyer,
2012). This literature was originally concerned with the design of
agricultural experiments to identify the best plant breeds but has now
grown to encompass all kinds of experiments, including simulation
experiments. Using Design of Experiments one can reduce the
number of simulation runs and maximize their effectiveness by a
careful and systematic choice of what parameters to vary and by how
much, and how many simulations to carry out.

A sophisticated version of this approach uses a learning algorithm,
such as the genetic algorithm (see Section 2.5) to search the space to
identify regions where some output variable or variables take their
maximum or minimum values (Chattoe, Saam, & Möhring, 2000). It is
also possible to reverse the process: Instead of varying an input
parameter or parameters and observing what changes in the output,
one can identify the output behavior one is interested in and search for
the combination of input parameters that most strongly generate that
output, an approach called Query-Based Model Exploration
(Stonedahl & Wilensky, 2011).

Because agent-based models are stochastic—that is, the calculations
involve random numbers—the outcome from one run may not be the
same as the outcome from the next. Normally, one carries out many
runs and then takes the mean outcome, averaging over all the runs.
But how many runs should one use? The conceptually simplest
answer to this question is to plot the cumulative mean outcome and its
standard error (the standard deviation of the mean divided by the
square root of the number of runs) against the number of runs so far.
Typically, the mean will converge to a stable value, and the standard
error of the mean will decrease as more and more runs are added in.
Then, one stops the runs when the standard error has decreased to
the point where the 95% confidence interval around the mean (which

is the mean +/–1.96 * standard error) is sufficiently small for the
purpose at hand. Ritter, Schoelles, Quigley, and Klein (2011) explain
this well using a psychological simulation based on ACT-R (see
Section 2.1.1). Lee and colleagues (2015) discuss other, more-
sophisticated methods for determining minimum numbers of runs.

4.6.2 Comparing the Model and Empirical Data

As discussed in the previous section, not all models are expected to
match empirical data; there may be no data available to compare with
models whose objective is the development of theory, and no reason
to conduct empirical tests. For middle-range models the criterion is
whether the simulation generates outputs that are qualitatively similar
to those observed in the social world, but a quantitative match is not
expected. It is only with what we have called facsimile models that
there are stringent requirements for comparison between data
obtained from the simulation and empirical data. This section
considers some ways of carrying out such comparisons.

Social scientists are well used to comparing data obtained from
models and data collected from the social world. This is what is being
done implicitly every time one calculates an R2 (the coefficient of
determination) in an ordinary linear regression (Field & Iles, 2016;
Fielding & Gilbert, 2005). The model in this case is the regression
equation, which computes the predicted values of the dependent
variable. Similarly, one can measure the fit between the values of a
variable that are output from a simulation model and the values
observed empirically (this is, in fact, just the correlation coefficient
between the two sets of values). However, this simple procedure
makes several strong assumptions that, although often satisfied for
linear regressions, are much less likely to be appropriate for
simulation models. These include that the error is approximately
normally distributed, but this is often not the case with agent-based
models. There are standard techniques for checking normality (e.g.,
residual plots) and for managing nonlinearity (e.g., take logs and use
nonparametric statistics) that are described in statistics textbooks

(e.g., Huet, Bouvier, Poursat, & Jolivet, 2004).

One important characteristic of simulation models is that the values of
output variables change as the simulation runs. For example, in a
model of consumer behavior the number of purchasers of one brand
might be observed growing from zero to a majority during a simulation.
The growth trend might then be compared with the growth in sales of
an actual product. This can be done visually, comparing both time
series, but this can be difficult if there are time lags or different time
scales in the two series. A useful technique to deal with this is
dynamic time warping (Lee et al., 2015). One can also use statistical
techniques to compare time series, although one must allow for the
fact that there is autocorrelation: the value at time t + 1 is not
independent of the value at time t. Statistical procedures called
AutoRegressive Integrated Moving Average (ARIMA) can be used to
compare such time series (Chatfield, 2004).

One also needs to consider what outputs should be validated against
data. A helpful way of considering this is known as pattern-oriented
modeling (Grimm & Railsback, 2012). In the context of validation, the
idea is that one should look for patterns in the simulation and check
that each of these patterns is matched in both data and simulation
output. A pattern is a relationship between two or more variables, or a
spatial or temporal arrangement. For example, if one wanted to
validate a segregation model (see Section 1.2.2), one might first look
at the patterns of clustering of households by ethnicity. But, in
addition, one could compare the distribution of household incomes
simulated in the model with the distribution found in a city; the
microlevel distribution of attitudes to ethnic minorities; the distribution
of location preferences of household; the number of house moves per
unit of time; and so on. The more of these patterns that match, the
stronger the evidence in favor of the model. While it is possible that a
model based on a quite erroneous theory of segregation might match
reality with respect to one of these patterns—for example, the
clustering of ethnic neighborhoods (due to equifinality; see Section
3.1)—it is unlikely that it will correctly match all of them. Although
pattern-oriented modeling makes strong demands on the availability of

data, it can be a powerful approach to validation. Windrum and
colleagues (2007) review other approaches to empirical validation,
from the perspective of economics.

Table 4.1 Comparison of some agent-based modelling libraries and environments

 Repast Simphony Mason

License GPL GPL

Documentation Limited Improving, but limited

User Base Large Moderate

Modeling
Language(s)

Java, Python Java

Speed of
Execution

Fast Fastest

Support for
Graphical User
Interface
Development

Good Good

Support for
Systematic
Experimentation

Yes Yes

Ease of
Learning and
Programming

Moderate Moderate

Ease of
Installation

Moderate Moderate

Further
Information

https://repast.github.io/ https://cs.gmu.edu/~eclab/projects/mason/

GPL: General Public License, http://www.gnu.org/copyleft/gpl.html
GIS: Geographical Information System

Having now discussed how one designs and develops a simulation
model, Chapter 5 considers what one can then do with the results of
simulation, including tips on project planning, publication, and making
an impact on policy.

Appendix: The Features of Simulation Libraries and
Environments

Table 4.1 compares several popular agent-based modeling
environments on several criteria, using admittedly subjective
judgments. None is ideal for all uses. To choose among them one
needs to consider one’s own expertise and experience in
programming, the likely complexity of the model, and the aims of the
project (e.g., Is the project very exploratory and the model likely to be
fairly simple? Or does the project intend to build a relatively
complicated model and exhaustively test its behavior against data?).
They all continue to be developed and are evolving quite rapidly, so
the information in Table 4.1 needs to be checked against the current
state of each of the systems. Other comparisons and reviews can be
found in Abar, Theodoropoulos, Lemarinier, and O’Hare (2017); Allan

https://repast.github.io/
https://cs.gmu.edu/~eclab/projects/mason/
http://www.gnu.org/copyleft/gpl.html

(2010); Castle and Crooks (2006); Gilbert and Bankes (2002);
Railsback, Lytinen, and Jackson (2006); Tobias and Hofmann (2004);
and at https://www.comses.net/resources/modeling-frameworks/ and
https://en.wikipedia.org/wiki/Comparison_of_agent-
based_modeling_software.

http://ccl.northwestern.edu/netlogo/
https://gama-platform.github.io/
https://www.anylogic.com/
http://cormas.cirad.fr/
https://www.comses.net/resources/modeling-frameworks/
https://en.wikipedia.org/wiki/Comparison_of_agent-based_modeling_software

Descriptions of Images and Figures
Back to Figure

There are three tabs on the top part of the window that read interface,
info and code from left to right. The interface tab is open.

The commands seen below the tab name read:

Edit (with a pencil can icon).

Delete (with a small garbage can icon).

Add (with a plus sign icon).

A button that reads abc, on the left side.

A scale a button at the center. The scale is labeled normal speed.

A checked box hat reads, view updates.

A button labeled continuous below the view updates title.

A button labeled settings at the end.

A blank dark box is seen in the next part of the window and it titled,
ticks:.

The bottom most section of the box reads, command center and has a
clear button on the topo right corner.

A field labeled observer> is seen below this section.

Back to Figure

This image has a banner above with options that read: Find… (with a
magnifying glass icon); check (with a check mark icon) and a button
labeled procedures with a down arrow head on the right end. The

eleven rows seen below this banner is replicated below:

1. to setup.
2. clear-all.
3. create-turtles 10.
4. end
5.
6. to go.
7. ask turtles [.
8. right (random 360).
9. forward 1.

10.].
11. end.

The numbers 1 and 6 have an option to collapse the rows below them
on the right. This option is seen as a minus sign in a square next to
both these row numbers.

Back to Figure

There are three tabs on the top part of the window that read interface,
info and code from left to right. The interface tab is open.

The commands seen below the tab name read:

Edit (with a pencil can icon).

Delete (with a small garbage can icon).

Add (with a plus sign icon).

A button that reads abc, on the left side.

A scale a button at the center. The scale is labeled normal speed.

A checked box hat reads, view updates.

A button labeled continuous below the view updates title.

A button labeled settings at the end.

A dark box is seen in the next part of the window and it titled, ticks:.
Ten arrow heads in two different colors are seen in this box and are
pointing in different directions. Most of them are in the middle and
lower parts of the box.

The bottom most section of the box reads, command center and has a
clear button on the topo right corner.

A field labeled observer> is seen below this section.

Back to Figure

The image on the top left shows the tip of a cluster of arrow heads in
two colors that predominantly point downward. Most of the arrows are
in color 1 (representing agents that are lonely) and a few are in color 2
(representing agents that are crowded).

The image on the top right has a cluster of arrows with most of the top
half of the cluster pointing inward and the five rows of arrow heads
from the center are seen as five lines pointing outward, below the
cluster. One arrow head in the center and a few on the top half are in
color 2 while the rest are in color 1.

The image on the lower left has a cluster of arrow heads which raise
from bottom to top and spreads outward on top. Most of the arrow
heads point up and are in color 1. Quite a few of the arrow heads
pointing upward are in color two, throughout the cluster.

The image on the bottom right has a small cluster of arrow heads,
arranged in a semicircle, mostly pointing up. All except five are in color
1. These five arrow heads are in color 2.

CHAPTER 5 USING AGENT-BASED
MODELS

5.1 Planning an Agent-Based Modeling Project
As with any research project, it is helpful to plan a simulation project
step by step in advance. Then you can be more confident that what
you plan is likely to be achievable, and you can take remedial action if
it becomes clear that you are falling behind schedule. Although most
simulation projects are not different in their essentials from projects
using other styles of research, there are some special features that
need attention.

Do not underestimate how long it takes. It is tempting to think only
about the time spent writing the code, but it often takes as long to
design a model as to code it, and frequently longer to debug a
program than to write it. Therefore, it is not being pessimistic to
estimate the time needed to write a program and then multiply
this by at least three to give the total time for model development.
Unless one is using a modeling environment such as NetLogo,
most of the programming will be taken up with the development of
the user interface and output display routines, not with coding the
model itself. This is one reason modeling environments are so
valuable—they can save a great deal of work.

Keep a diary. Ideas will occur to you at all stages of the project,
and you risk forgetting them unless you jot them down in a diary
or lab book. Pay special attention to problems that you encounter
while building the model: Difficulties that you initially assume are
just technical programming problems may turn out to have a
wider significance. For example, if it seems that the results of the
simulation are very sensitive to the particular value of a
parameter, this may just be an issue in building the model, but it
may also suggest some substantive conclusions about the role of
this parameter in the real world.

There are some additional points that need consideration in larger
projects, where there are several researchers working in a team.

Find people with appropriate skills. If you are a lone researcher,
you will know the extent to which you are already skilled in
programming models. If the project is a larger one in which there
is some division of labor, you will probably need to recruit people
with expertise in modeling. Because agent-based simulation is
still a new approach, it is difficult to find researchers with
significant experience, and you may need to be content with
hiring people with other skills and training them in agent-based
modeling. Particularly useful skills are a familiarity with
programming in Java. Even if you are not intending to use one of
the Java-based libraries (see Section 4.1) the grounding in
programming that a Java course gives is very useful. Also useful
is some experience in researching in the domain to be modeled;
and the ability to write clearly, which is vital for preparing reports
and papers.

Attend to intra-project communication. If more than one person is
working on a project, attention needs to be paid to making sure
that everyone understands each other and is aware of what the
others are doing. Although this is true in all team tasks, in
modeling projects it is usual to have some people who are
domain experts but know little about modeling, and others who
are modeling experts but know relatively little about the domain.
Both sides may feel inhibited about asking questions and
exposing their ignorance to the others. In larger projects, it may
be worth scheduling specific training sessions, where those with
greater knowledge of particular aspects of the project teach the
others in order to bring everyone up to a common level of
knowledge and skill.

Pay attention to scheduling. Most modeling projects involve some
data collection and some model development. This can be tricky
to schedule if the specification of the model awaits the collection

and analysis of empirical data, but the collection of data rests on
the prior definition of precisely what is to be measured. Unless
care is taken, one can get into a situation in which neither
modelers nor data collectors can make a move.

Plan for and write good documentation. Documentation that
describes the model, the assumptions the model makes, how to
run it, and the interpretation and limitations of the outputs is
essential for any project, but especially for large ones. This
documentation should serve both as a means of communication
between all those involved in the model (commissioning,
specifying, building, and using it) and also as a historical record
so that at a later date the model can be reused and maintained,
and the results justified. Writing comprehensive documentation at
the right level of detail takes practice. See Etter (2016) for a short
guide.

When writing documentation, it is often helpful to use a standardized
template. A popular one is Overview, Design concepts, and Details, or
ODD (Grimm et al., 2006; Grimm, Polhill, & Touza, 2017). ODD is
“intended to facilitate readability through stipulating a structure for the
description with a logical ordering” (Polhill, Parker, Brown, & Grimm,
2008, n.p.). In an ODD description all modeling entities and
processes, as well as the purpose of the study, are introduced in the
Overview section. In the Design concepts section, the model is
discussed according to a list of concepts (e.g., emergence,
adaptation) that are derived from the complex adaptive systems
literature (Railsback, 2001). Finally, the implementation of the model,
including the experiment settings and inputs, are specified in the
Details section. Hence, ODD covers not only the description of the
model but also its purpose and the initialization and inputs of
simulation experiments. ODD + D, an adaptation and extension to the
original ODD protocol, adds features to aid describing the agents’
decision making, as well as encouraging documentation of the
underlying theoretical foundations of the model, which are both areas
where ODD, which originated in ecology, had been found to be lacking

when used for socioeconomic models (Müller et al., 2013).

5.2 Reporting Agent-Based Model Research
The best way of learning how to report the results of agent-based
modeling is to study how others have done it. Take a sample of
papers that you have found to be helpful or interesting and look
closely at how the authors constructed them and what makes them
persuasive. Although agent-based modeling is too young an area to
have a very well-developed set of conventions about how papers
should be written, there are some common elements (Axelrod,
1997a). A helpful discussion can be found in Richiardi, Leombruni,
Saam, and Sonnessa (2006).

The main sections of an agent-based modeling report or journal article
are usually as follows:

1. An abstract. This should indicate (in roughly this order)
a. the main research question considered in the paper;
b. the findings and conclusions of the paper; and
c. the methods used (e.g., agent-based modeling; survey

analysis) and, for empirical data, the sample from which data
were collected.

2. An introduction that sets out the background to the issue
addressed in the paper and explains why it is of interest.

3. A literature review that discusses previous work and shows why
the research reported in this paper is a worthwhile addition or
improvement to the prior work. Literature on both the research
problem or domain and on related models, even if these have not
previously been applied to the domain, should be reviewed. This
section should make clear in which respects the reported
research is an advance and how it is using previous work.

4. A statement of the regularities that you want to explain (this will
usually be a summary of the material in the introduction and
review). These may be stated as a set of formal hypotheses that
you aim to (dis)prove, or they may be presented less formally.

5. A description of the model. The description needs to be

sufficiently detailed that a reader could, in principle, reimplement
your model and obtain the same results, but it should not include
the program code, although this should be available for download
(some readers will not know or understand the programming
language you have used). Instead, use diagrams (e.g., UML) or
pseudo-code to describe your model (see Section 4.3). Pay
particular attention to the sequence in which events occur in the
model: This is the most frequent source of problems in
reimplementing a model accurately. Do not be afraid of including
equations relating variables if these will help to specify your
model precisely.

6. A description of the parameters. The values you have chosen for
each of the parameters need to be explained and justified. Some
may be based on observations of the social world (e.g., the
employment rate in a model of the labor market); some may be
plausible guesses after you have investigated the effect of varying
their values using a sensitivity analysis; and some may have been
inferred backwards, because it is only these values that give the
patterns of output that you want to demonstrate with the
simulation. All this needs to be explained.

7. A description of the results. This will almost certainly involve
presenting and commenting on graphs that show how variables
that you have observed from the simulation runs are related. Be
careful to be clear about the conditions under which these
simulations were carried out. For example, do the plots show
averages of several runs, and if so, how many runs and how
much variation was there between runs? (You might consider
using error bars to show the degree of variation.) If you are
showing the trend in a variable over time from step zero onward,
make sure that you have plotted a run long enough that it is clear
that the trend has become established and is unlikely to change
drastically just off the graph (Galan & Izquierdo, 2005). If you are
relating the values of variables as they are at a particular time
step, make sure that you state the time step at which the
measurements were made.

8. A discussion of what steps you took to verify (see Section 4.4)
and validate (see Section 4.5) the model, and what confidence

the reader should therefore place in your results.
9. A conclusion. This should take the hypotheses listed in Section 4

and clearly state whether the model suggests that they are true,
false, or not proven. This section can then develop the ideas from
the introduction, proposing a general conclusion and perhaps
speculating about the implications. For example, if the paper is
about the labor market, what policies might or might not be
successful in reducing rates of unemployment?

10. Acknowledgments. Brief thanks to sponsors, funders, and those
who have helped you to do the research.

11. A list of references including only those works cited in the paper
and no others. As always, you need to be sure to provide full
bibliographic details in the format required by the journal in which
you hope to publish.

12. Optionally, an appendix in which large tables and possibly the
pseudo-code version of your model is placed.

13. A link to a location on the Web from where your model code can
be downloaded (Janssen, 2017).

Almost as important as describing your model for publication is
making the program code available for others to read, inspect, and
use. Unless the code is accessible, others are unlikely to be able to
repeat your simulations, try other parameter settings, or replicate your
results. Many journals either insist or recommend that model code be
made publicly accessible. Although one can merely link the code to a
personal Web page, this is not a good idea because the code needs
to be available permanently, and personal Web pages and even
institutional Web sites get replaced or deleted over time. The best
place to lodge code is at a specialized archiving site, such as
OpenABM (https://www.comses.net/), which caters specifically for
agent-based models.

When archiving code, one needs to provide not just the program code
itself, but also a copy of the documentation and the meta-data—that
is, information about the version of the model; the date it was
archived; the operating system and modeling environment that it uses;
any libraries or files that are required; instructions about how to install,

https://www.comses.net/

start, and run the model; and so on. OpenABM has a user interface
that makes it easy to provide all these data in the required format.
Uploaded models are reviewed to ensure that they conform to the
site’s standards for model code and documentation.

5.3 Agent-Based Models for Public Policy
One of the main purposes for developing agent-based models is to
assist in the formulation of public policy. If you look back at the
examples of agent-based models in Section 1.2, many of those
mentioned relate to government or commercial policy, such as
reducing residential segregation, enhancing commercial innovation,
designing the rules for electricity markets, and managing agricultural
irrigation. There are several key considerations when one is
developing an agent-based model for use in policymaking, or indeed
for any use other than pure research (Gilbert, Ahrweiler, Barbrook-
Johnson, Narasimhan, & Wilkinson, 2018):

Models need to be at an appropriate level of abstraction. Although
this is a consideration for all modeling, it is especially true for
policy models, where there may be pressure from stakeholders to
model every detail, entailing the need for much more data than
are readily available, and making the modeling take longer
making it more difficult than is really necessary. On the other
hand, a model that is too abstract (see Section 4.5.5) risks not
yielding results that are applicable to the specifics of the target
domain.

The availability of data for calibration and validation. Often time
data series (longitudinal data) are not available at all or are
inadequate. This should not be an excuse to give up modeling
however; the effort of designing and building a model is itself
valuable in identifying the important issues in the policy domain,
may facilitate more-effective communication between
stakeholders, and may reveal that other sources of data than
those first considered could be used. In the absence of data,
sensitivity analyses may be a partial substitute (see Section
4.6.6).

Quality assurance and maintenance. Stakeholders are likely to
want assurance that the model abides by quality standards,
possibly by using an external reviewer to check the model, its
documentation, and its validation (HM Treasury, 2015). Also, if
the model will continue to have a role in the policymaking process
(e.g., a model developed to assist in the appraisal of policy
options that may be of value when conducting an evaluation of
the policy), there need to be arrangements for maintaining the
model so that it continues to work, possibly over a period of
years, as personnel, programming languages, hardware, and
organizational structures evolve.

Ethics. Because policy models are part of a process of
policymaking that can potentially directly affect people’s lives, it is
important consider the ethical implications of the modeling. Often,
the data used for calibration are personal data and must be
processed in accordance with data protection laws and within the
terms of the data subject’s informed consent. One must also
consider whether the data are representative rather than biased
(e.g., obtained only from segments of the population such as
white males). Turning to the outputs of the model, these must be
communicated ethically, with due attention paid to the degree of
certainty or uncertainty in the results, and to presenting the
findings clearly so that the assumptions and logic of the model
can be understood by those using it.

RESOURCES

Societies and Associations
There are three regional societies that promote social simulation and
agent-based modeling, each with an annual conference. Every other
year, they organize a World Congress together.

Computational Social Science Society of the Americas (CSSSA).
Web site: https://computationalsocialscience.org/

Pacific Asian Association for Agent-Based Approach in Social
Systems Sciences (PAAA). Web site: http://www.paaa.asia/

European Social Simulation Association (ESSA). Web site:
http://essa.eu.org/

You can join these associations for a modest annual membership fee,
and they provide a very useful entry to the agent-based modeling
research community.

https://computationalsocialscience.org/
http://www.paaa.asia/
http://essa.eu.org/

Journals
Research using agent-based modeling appears both in discipline-
specific journals and in interdisciplinary journals focusing on social
simulation. The two most prominent interdisciplinary journals are the
following:

Journal of Artificial Societies and Social Simulation (JASSS). This
is an online electronic journal, available only on the Web. It is free
with no subscription. On the front page, at
http://jasss.soc.surrey.ac.uk/, you can sign up to receive an e-mail
when each issue is published (four issues per year).

Computational and Mathematical Organization Theory (CMOT).
This is a hard-copy journal, with an online, charged-for version at
https://www.springer.com/business+%26+management/journal/10588

Other journals with more than occasional agent-based modeling
papers include the following:

Artificial Life

Complexity

Computational Economics

Ecology and Society

Emergence: Complexity and Organization

Environment and Planning B

Environmental Modeling and Software

http://jasss.soc.surrey.ac.uk/
https://www.springer.com/business+%26+management/journal/10588

Journal of Economic Dynamics and Control

Physica A: Statistical and Theoretical Physics

Simulation and Gaming

Simulation Modeling Practice and Theory

Social Networks

Social Science Computer Review

Mailing List and Web Sites
The SIMSOC e-mail distribution list sends out notices of forthcoming
conferences, workshops, and jobs of interest to agent-based
modelers. You can subscribe to the list or view the list archives at
http://www.jiscmail.ac.uk/lists/simsoc.html.

There is an excellent Web site maintained by Leigh Tesfatsion called
Agent-Based Computational Economics, which has many well-
categorized links to a wide range of literature, at
http://www.econ.iastate.edu/tesfatsi/ace.htm.

This book’s Web site is at
https://study.sagepub.com/researchmethods/qass/gilbert-agent-
based-models-2e. There you will find the code for the collectivities
model and other resources.

http://www.jiscmail.ac.uk/lists/simsoc.html
http://www.econ.iastate.edu/tesfatsi/ace.htm
https://study.sagepub.com/researchmethods/qass/gilbert-agent-based-models-2e

GLOSSARY
agent

A computer program, or part of a program, that can be considered
to act autonomously and that represents an individual,
organization, nation-state, or other social actor.

analogical model
A model that is based on an analogy between the target being
modeled and the form of the model.

attribute
A characteristic or feature of an agent. It may be set at the
beginning of a simulation, and may alter in value during the run to
indicate changes in the agent.

boundedly rational
There are many situations where making a perfectly rational
decision would involve infinite computation or require infinite
amounts of information. It is therefore assumed that people are
boundedly rational—that is, that they are limited in the amount of
cognitive processing in which they can engage when making
decisions.

buffer
An area of computer memory used to store values temporarily,
often on a first-in, first-out basis.

chromosome
In a genetic algorithm, a chromosome is a set of parameters that
defines a proposed solution. The chromosome is often composed
of a sequence of binary digits, or of floating point or integer
values.

class
In object-oriented programming, a class is a specification of a

type of object, showing what attributes and methods instances of
that class would have.

classifier system
(Short for learning classifier system.) First described by Holland
(1975), a classifier system consists of a collection of binary rules.
A genetic algorithm modifies and selects the best rules. The
fitness of a rule is decided by a reinforcement learning technique.

companion modeling
A form of modeling in which models are developed in close
association with the people who might be represented in the
model and who might benefit from the knowledge and
understanding that the model yields.

control
In the social and medical sciences, an experiment is typically
carried out on two similar groups, one of which receives the
treatment while the other, the control group, does not. The
outcomes in the two groups are then compared.

crossover
In evolutionary computation, a method of creating a new
chromosome from corresponding parts of its parents’
chromosomes. Crossover is often used in genetic algorithms.

environment
The simulated surroundings in which an agent is located, possibly
including simulated physical elements and other agents.

equation-based model
A model consisting of one or more equations that relate variables
describing a system (Van Dyke Parunak, Savit, & Riolo, 1998).

equifinality
The idea that similar outcomes may be obtained from different
initial conditions and in many different ways.

fitness
In evolutionary computation, a measure of the adequacy of an
individual within an environment. The fitness is used to determine
the likelihood that the individual will reproduce and pass parts of
its chromosome to the next generation.

framework
A program or library intended to make it easier to develop agent-
based models. The framework provides some standardized
components and possibly a basic design for the model.

genetic algorithm (GA)
A method of simulating evolution. A population of individuals each
with a fixed-length chromosome is evolved by employing
crossover and mutation operators and a fitness function that
determines how likely individuals are to reproduce. GAs perform a
type of search in a fitness landscape, aiming to find an individual
that has optimum fitness.

geographical information system (GIS)
A type of database in which a common spatial coordinate system
is the primary means of reference. GISs provide facilities for data
input, storage, retrieval, and representation; data management,
transformation, and analysis; and data reporting and visualization.

global variable
A variable whose value may be accessed and set throughout a
program, rather than only within some restricted context.

ideal type
An ideal-type model is one that is formed by the one-sided
accentuation of one or more characteristics to create a unified
analytical construct that abstracts from the variety actually found
in concrete social phenomena.

instantiate
The process of forming an object (in an object-oriented computer
language) by following the specifications represented by a class.

The object is an instance of the class.

message
A symbolic communication between two agents, often
represented as a string of characters.

method
In object-oriented programming, a piece of program code
associated with a class that performs some function, often in
response to a message received by an instance of the class.

micro foundation
Assumptions and theories about individual behavior that inform
the design of agents. The actions of the agents are expected to
lead to the emergence of features that correspond to real-world
macro phenomena.

model
A simplified representation of some social phenomenon.
Executing or running the model yields a simulation whose
behavior is intended to mirror some social process or processes.

modeling environment
A computer program that allows the user to create, execute, and
visualize the outputs of a simulation.

patch
In NetLogo, a cell of the grid that constitutes the environment for
a model’s agents (called turtles in NetLogo).

phase change
An abrupt change in the state of a system as a whole,
consequent on a small change in one variable. By analogy to
phase transitions in materials, for example, the change from a
solid to a liquid when the material’s temperature is raised through
its melting point.

policy

In reinforcement learning a policy maps states of the world to the
actions the agent ought to take in those states.

power law
A relationship between two variables such that one is proportional
to a power of the other. If one takes logarithms of each variable,
the relationship between the logged variables is linear and can be
represented as a straight line on a plot of the two logged
variables. Many relationships between variables describing
complex systems follow a power law.

production (rule) system
A problem-solving system consisting of a knowledge base of rules
and general facts, a working memory of facts concerning the
current case, and an inference engine for manipulating both. The
rules are generally of the form, “If [condition], then [action].”

reinforcement learning (RL)
A type of machine learning concerned with how an agent ought to
take actions in an environment to maximize some long-term
reward.

research question
A question whose answer can be found by carrying out research.
It needs to be sufficiently specific that the research has a
reasonable likelihood of obtaining a result, but not so specific that
the results will be of limited use or generality.

retrodict
To make predictions about the past. Normal predictions estimate
what will happen in the future from the basis of some theory and
assumptions; retrodictions use theory and assumptions to
estimate a past state. Because the past state can be known
empirically through measurements, retrodiction can be used as a
method of assessing the validity of the theory and assumptions.

scale model
A model in which the simplifications of reality come mainly from

making the model smaller than the target being modeled.

sensitivity analysis
A systematic analysis of changes in simulation results as the
model’s parameters are changed. Sensitivity analysis is used to
assess the extent to which the outcomes are dependent on the
precise parameter values that have been assumed.

simulate
To run a model and observe its behavior through time.

spatially explicit
A spatially explicit model is one in which geography is
represented within the model, for example by locating all
simulated objects on a grid or other spatial representation.
Spatially explicit simulations often use a geographical information
system to manage the location of objects.

stylized fact
A simplified presentation of an empirical finding that, although
broadly true, may ignore particular exceptions. Usually, stylized
facts describe whole societies or economies rather than the
characteristics of individuals.

target
The social phenomenon or process that is represented by a
model.

toroid
A donut-shaped object that can be constructed by rotating a circle
around an axis external to the circle. Topologically, a toroid is
formed by connecting the left and right edges, and then the top
and bottom edges, of a rectangle.

treatment
In an experiment, the application of some process selectively to
the treatment group, while leaving the control group unaffected.
Changes to the treatment group that are not found in the control

group are considered to be due to the treatment.

validation
The process of checking that a model is a good representation of
the target.

verification
The process of checking that a model conforms to its specification
—that is, that it does not include errors, also called bugs.

REFERENCES
Abar, S., Theodoropoulos, G. K., Lemarinier, P., & O’Hare, G. M. P.

(2017). Agent based modelling and simulation tools: A review of the
state-of-art software. Computer Science Review, 24, 13–33.
https://doi.org/10.1016/j.cosrev.2017.03.001

Afshar, M., & Asadpour, M. (2010). Opinion formation by informed
agents. Journal of Artificial Societies and Social Simulation, 13(4),
5. https://doi.org/10.18564/jasss.1665

Ahrweiler, P., Pyka, A., & Gilbert, N. (2011). A new model for
university-industry links in knowledge-based economies. Journal of
Product Innovation Management, 28(2), 218–235.
https://doi.org/10.1111/j.1540-5885.2010.00793.x

Ahrweiler, P., Schilperoord, M., Pyka, A., & Gilbert, N. (2014). Testing
policy options for Horizon 2020 with SKIN. In N. Gilbert, P.
Ahrweiler, & A. Pyka (Eds.), Simulating knowledge dynamics in
innovation networks (pp. 155–183). Heidelberg, Germany: Springer.
https://doi.org/10.1007/978-3-662-43508-3_7

Ahrweiler, P., Schilperoord, M., Pyka, A., & Gilbert, N. (2015).
Modelling research policy: Ex-ante evaluation of complex policy
instruments. Journal of Artificial Societies and Social Simulation,
18(4), 5. https://doi.org/10.18564/jasss.2927

Albino, V., Giannoccaro, I., & Carbonara, N. (2003). Coordination
mechanisms based on cooperation and competition within industrial
districts: An agent-based computational approach. Journal of
Artificial Societies and Social Simulation, 6(4), 3. Available at

https://doi.org/10.1016/j.cosrev.2017.03.001
https://doi.org/10.18564/jasss.1665
https://doi.org/10.1111/j.1540-5885.2010.00793.x
https://doi.org/10.1007/978-3-662-43508-3_7
https://doi.org/10.18564/jasss.2927

http://jasss.soc.surrey.ac.uk/6/4/3.html

Allan, R. (2010). Survey of agent based modelling and simulation
tools. STFC Daresbury Laboratory, Warrington, UK. Available at
http://www.grids.ac.uk/Complex/ABMS/

An, L. (2012). Modeling human decisions in coupled human and
natural systems: Review of agent-based models. Ecological
Modelling, 229, 25–36.
https://doi.org/10.1016/j.ecolmodel.2011.07.010

Anderson, B. D. O., & Ye, M. (2019). Recent advances in the
modelling and analysis of opinion dynamics on influence networks.
International Journal of Automation and Computing (Institute of
Automation, Chinese Academy of Sciences), 16(2), 129–149.
https://doi.org/10.1007/s11633-019-1169-8

Andrighetto, G., Campennì, M., Conte, R., & Paolucci, M. (2007). On
the immergence of norms: A normative agent architecture. AAAI
Symposium, Social and Organizational Aspects of Intelligence.
Available at http://www.aaai.org/Papers/Symposia/Fall/2007/FS-07-
04/FS07-04-003.pdf

Andrighetto, G., Castelfranchi, C., Mayor, E., McBreen, J., Lopez-
Sanchez, M., & Parsons, S. (2013). (Social) norm dynamics. In G.
Andrighetto, G. Governatori, P. Noriega, P., & L. W. N. van der
Torre (Eds.), Normative multi-agent systems (pp. 135–170).
Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik (Dagstuhl Follow-Ups).
https://doi.org/10.4230/DFU.Vol4.12111.135

Argonne National Laboratory. (2018). How Argonne makes super
models. Available at https://www.anl.gov/es/article/how-argonne-

http://jasss.soc.surrey.ac.uk/6/4/3.html
http://www.grids.ac.uk/Complex/ABMS/
https://doi.org/10.1016/j.ecolmodel.2011.07.010
https://doi.org/10.1007/s11633-019-1169-8
http://www.aaai.org/Papers/Symposia/Fall/2007/FS-07-04/FS07-04-003.pdf
https://doi.org/10.4230/DFU.Vol4.12111.135
https://www.anl.gov/es/article/how-argonne-makes-super-models

makes-super-models

Arthur, W. B., Holland, J. H., LeBaron, B. D., Palmer, R. G., & Tayler,
P. (1997). Asset pricing under endogenous expectations in an
artificial stock market. SSRN Electronic Journal, 1001, 48109.
https://doi.org/10.2139/ssrn.2252

Axelrod, R. M. (1997a). Advancing the art of simulation in the social
sciences. In R. Conte, R. Hegselmann, & P. Terna (Eds.),
Simulating social phenomena. Lecture Notes in Economics and
Mathematical Systems, vol 456. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-662-03366-1_2

Axelrod, R. M. (1997b). The complexity of cooperation: Agent-based
models of competition and collaboration. Princeton, NJ: Princeton
University Press (Princeton Studies in Complexity).

Axelrod, R. M. (1997c). The dissemination of culture. Journal of
Conflict Resolution, 41(2), 203–226.

Axelrod, R. M., & Dawkins, R. (1990). The evolution of cooperation.
Harmondsworth, UK: Penguin.

Axtell, R. L., Epstein, J. M., Dean, J. S., Gumerman, G. J., Swedlund,
A. C., Harburger, J., Chakravarty, S., Hammond, R., Parker, J., &
Parker, M. (2002). Population growth and collapse in a multiagent
model of the Kayenta Anasazi in Long House Valley. Proceedings
of the National Academy of Sciences, 99(Suppl. 3), 7275–7279.
https://doi.org/10.1073/pnas.092080799

Bagnall, A. J., & Smith, G. D. (2005). A multiagent model of the UK
market in electricity generation. Evolutionary Computation, 9(5),

https://doi.org/10.2139/ssrn.2252
https://doi.org/10.1007/978-3-662-03366-1_2
https://doi.org/10.1073/pnas.092080799

522–536.

Balke, T., & Gilbert, N. (2014). How do agents make decisions? A
survey. Journal of Artificial Societies and Social Simulation, 17(4),
13. https://doi.org/10.18564/jasss.2687

Banks, J., Carson, J. S., Nelson, B. L., & Nicol, D. M. (2010). Discrete-
event system simulation, 5th ed. London: Pearson.

Banzhaf, W. (1998). Genetic programming: An introduction; On the
automatic evolution of computer programs and its applications. San
Francisco: Morgan Kaufmann.

Barabási, A.-L. (2003). Linked: How everything is connected to
everything else and what it means for business, science, and
everyday life. New York: Plume.

Barabási, A.-L., & Albert, R. (1999). Emergence of scaling in random
networks. Science, 286(5439), 509–512.
https://doi.org/10.1126/science.286.5439.509

Barnaud, C., van Paassen, A., Trébuil, G., Promburom, T., &
Bousquet, F. (2010). Dealing with power games in a companion
modelling process: Lessons from community water management in
Thailand highlands. Journal of Agricultural Education and
Extension, 16(1), 55–74.
https://doi.org/10.1080/13892240903533152

Barreteau, O. (2003). Our companion modelling approach. Journal of
Artificial Societies and Social Simulation, 6(2), 1. Available at
http://jasss.soc.surrey.ac.uk/6/2/1.html

https://doi.org/10.18564/jasss.2687
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1080/13892240903533152
http://jasss.soc.surrey.ac.uk/6/2/1.html

Barreteau, O., Bousquet, F., & Attonaty, J.-M. (2001). Role-playing
games for opening the black box of multi-agent systems: Method
and lessons of its application to Senegal River Valley irrigated
systems. Journal of Artificial Societies and Social Simulation, 4(2),
5. Available at http://jasss.soc.surrey.ac.uk/4/2/5.html

Batten, D., & Grozev, G. (2006). NEMSIM: Finding ways to reduce
greenhouse gas emissions using multi-agent electricity modelling. In
P. Perez & D. Batten (Eds.), Complex science for a complex world:
Exploring human ecosystems with agents (pp. 227–252). Canberra,
Australia: ANU Press. Available at
https://www.jstor.org/stable/j.ctt2jbhz2.17

Batty, M. (2013). The new science of cities. Cambridge:
Massachusetts Institute of Technology Press.

Bazzan, A. L. C., & Klügl, F. (2014). A review on agent-based
technology for traffic and transportation. Knowledge Engineering
Review (Cambridge University Press), 29(03), 375–403.
https://doi.org/10.1017/S0269888913000118

Benard, S., & Willer, R. (2007). A wealth and status-based model of
residential segregation. Journal of Mathematical Sociology, 31(2),
149–174. https://doi.org/10.1080/00222500601188486

Benenson, I., & Hatna, E. (2009). The third state of the Schelling
model of residential dynamics. Available at
http://arxiv.org/abs/0910.2414 (Accessed August 7, 2018).

Bersini, H. (2012). UML for ABM. Journal of Artificial Societies and
Social Simulation, 15(1), 9. https://doi.org/10.18564/jasss.1897

http://jasss.soc.surrey.ac.uk/4/2/5.html
https://www.jstor.org/stable/j.ctt2jbhz2.17
https://doi.org/10.1017/S0269888913000118
https://doi.org/10.1080/00222500601188486
http://arxiv.org/abs/0910.2414
https://doi.org/10.18564/jasss.1897

Boden, M. A. (1988). Computer models of mind: Computational
approaches in theoretical psychology. Cambridge, UK: Cambridge
University Press.

Boella, G., van der Torre, L., & Verhagen, H. (2007). Introduction to
Normative Multiagent Systems. In G. Boella, L. van der Torre, & H.
Verhagen (Eds.), Normative multi-agent systems. Internationales
Begegnungs- und Forschungszentrum fuer Informatik (IBFI),
Schloss Dagstuhl, Germany (Dagstuhl Seminar Proceedings).
Available at
http://drops.dagstuhl.de/opus/volltexte/2007/918/pdf/07122.VerhagenHarko.Paper.918.pdf

Boero, R., Castellani, M., & Squazzoni, F. (2004). Micro behavioural
attitudes and macro technological adaptation in industrial districts:
An agent-based prototype. Journal of Artificial Societies and Social
Simulation, 7(2), 1. Available at
http://jasss.soc.surrey.ac.uk/7/2/1.html

Boero, R., & Squazzoni, F. (2005). Does empirical embeddedness
matter? Methodological issues on agent based models for analytical
social science. Journal of Artificial Societies and Social Simulation,
8(4), 6. Available at http://jasss.soc.surrey.ac.uk/8/4/6.html
(Accessed August 23, 2018).

Bommel, P., Becu, N., Le Page, C., & Bousquet, F. (2016). Cormas:
An agent-based simulation platform for coupling human decisions
with computerized dynamics. In T. Kaneda, H. Kanegae, Y. Toyoda,
& P. Rizzi (Eds.), Simulation and gaming in the network society (pp.
387–410). Translation. Singapore: Springer.
https://doi.org/10.1007/978-981-10-0575-6_27

Borrelli, F., Ponsiglione, C., Zollo, G., & Iandoli, L. (2005). Inter-
organizational learning and collective memory in small firms

http://drops.dagstuhl.de/opus/volltexte/2007/918/pdf/07122.VerhagenHarko.Paper.918.pdf
http://jasss.soc.surrey.ac.uk/7/2/1.html
http://jasss.soc.surrey.ac.uk/8/4/6
https://doi.org/10.1007/978-981-10-0575-6_27

clusters: An agent-based approach. Journal of Artificial Societies
and Social Simulation, 8(3), 4. Available at
http://jasss.soc.surrey.ac.uk/8/3/4.html

Bourdieu, P. (1986). Distinction: A social critique of the judgement of
taste. Abingdon, UK: Routledge.

Bratman, M. E., Israel, D. J., & Pollack, M. E. (1988). Plans and
resource-bounded practical reasoning. Computational Intelligence,
4(3), 349–355. https://doi.org/10.1111/j.1467-8640.1988.tb00284.x

Brenner, T. (2001). Simulating the evolution of localised industrial
clusters; An identification of the basic mechanisms. Journal of
Artificial Societies and Social Simulation, 4(3), 4. Available at
http://jasss.soc.surrey.ac.uk/4/3/4.html.

Brewer, M. B. (1991). The social self: On being the same and different
at the same time. Personality and Social Psychology Bulletin, 17(5),
475–482. https://doi.org/10.1177/0146167291175001

Bruch, E. E., & Mare, R. D. (2006). Neighborhood choice and
neighborhood change. American Journal of Sociology, 112(3),
667–709. https://doi.org/10.1086/507856

Bull, L. (2004). Learning classifier systems: A brief introduction. In L.
Bull (Ed.), Applications of learning classifier systems (pp. 1–12).
Berlin: Springer. https://doi.org/10.1007/978-3-540-39925-4_1

Bunn, D., & Oliveira, F. S. (2001). Agent-based simulation: An
application to the new electricity trading arrangements of England
and Wales. Evolutionary Computation, 2001, 5(5), 493–503.
https://doi.org/10.1109/4235.956713

http://jasss.soc.surrey.ac.uk/8/3/4.html
https://doi.org/10.1111/j.1467-8640.1988.tb00284.x
http://jasss.soc.surrey.ac.uk/4/3/4.html
https://doi.org/10.1177/0146167291175001
https://doi.org/10.1086/507856
https://doi.org/10.1007/978-3-540-39925-4_1
https://doi.org/10.1109/4235.956713

Caillou, P., Gaudou, B., Grignard, A., Truong, C. Q., & Taillandier, P.
(2017). A simple-to-use BDI architecture for agent-based modeling
and simulation. In W. Jager, R. Verbrugge, A. Flache, G. de Roo, L.
Hoogduin, & C. Hemelrijk (Eds.), Advances in social simulation
2015 (pp. 15–28). Berlin: Springer. https://doi.org/10.1007/978-3-
319-47253-9_2

Cairney, P., Heikkila, T., & Wood, M. (2019). Making policy in a
complex world: Elements in public policy. Cambridge: Cambridge
University Press. https://doi.org/10.1017/9781108679053

Castle, C. J. E., & Crooks, A. T. (2006). Principles and concepts of
agent-based modelling for developing geospatial simulations. CASA
working paper series. Available at http://discovery.ucl.ac.uk/3342/

Challet, D., Marsili, M., & Zhang, Y.-C. (2013). Minority games.
Oxford: Oxford University Press.

Chang, K.-T. (2004). Introduction to geographic information systems
(2nd ed). Boston: McGraw-Hill.

Chatfield, C. (2004). The analysis of time series: An introduction (6th
ed.). Boca Raton, FL: Chapman & Hall.

Chattoe, E. (1998). Just how (un)realistic are evolutionary algorithms
as representations of social processes? Journal of Artificial
Societies and Social Simulation, 1(3), 2. Available at
http://jasss.soc.surrey.ac.uk/1/3/2.html

Chattoe, E., Saam, N. J., & Möhring, M. (2000). Sensitivity analysis in
the social sciences: Problems and prospects. In R. Suleiman, G. N.
Gilbert, & K. Troitzsch (Eds.), Tools and techniques for social

https://doi.org/10.1007/978-3-319-47253-9_2
https://doi.org/10.1017/9781108679053
http://discovery.ucl.ac.uk/3342/
http://jasss.soc.surrey.ac.uk/1/3/2.html

science simulation (pp. 243–273). Heidelberg: Physica-Verlag HD.
https://doi.org/10.1007/978-3-642-51744-0_13

Chen, Y., & Tang, F. (1998). Learning and incentive-compatible
mechanisms for public goods provision: An experimntal study.
Jounal of Political Economy, 106, 633–662.

Clark, W. A. V. (1991). Residential preferences and neighborhood
racial segregation: A test of the Schelling segregation model.
Demography, 28(1), 1–19. https://doi.org/10.2307/2061333

Cobb, C. W., & Douglas, P. H. (1928). A theory of production.
American Economic Review, 18(Supplement), 139–165.

Cohen, P. R., & Levesque, H. J. (1990). Intention is choice with
commitment. Artificial Intelligence, 42(2–3), 213–261. Available at
http://www.cs.uu.nl/docs/vakken/iag/CohLev.intention.pdf

D’Aquino, P., Barreteau, O., & Le Page, C. (2003). Role-playing
games, models and negotiation processes. Journal of Artificial
Societies and Social Simulation, 6(2), 10. Available at
http://jasss.soc.surrey.ac.uk/6/2/10.html

D’Aquino, P., Bousquet, F., Le Page, C., & Bah, A. (2003). Using self-
designed role-playing games and a multi-agent system to empower
a local decision-making process for land use management: The self
cormas experiment in Senegal. Journal of Artificial Societies and
Social Simulation, 6(3), 5. Available at
http://jasss.soc.surrey.ac.uk/6/3/5.html

Deffuant, G. (2006). Comparing extremism propagation patterns in
continuous opinion models. Journal of Artificial Societies and Social

https://doi.org/10.1007/978-3-642-51744-0_13
https://doi.org/10.2307/2061333
http://www.cs.uu.nl/docs/vakken/iag/CohLev.intention.pdf
http://jasss.soc.surrey.ac.uk/6/2/10.html
http://jasss.soc.surrey.ac.uk/6/3/5.html

Simulation, 9(3), 8. Available at
http://jasss.soc.surrey.ac.uk/9/3/8.html

Deffuant, G., Amblard, F., & Weisbuch, G. (2002). How can extremism
prevail? A study based on the relative agreement interaction model.
Journal of Artificial Societies and Social Simulation, 5(4), 1.
Available at http://jasss.soc.surrey.ac.uk/5/4/1.html

Dibble, C., & Feldman, P. G. (2004). The GeoGraph 3D
Computational Laboratory: Network and terrain landscapes for
RePast. Journal of Artificial Societies and Social Simulation, 7(1), 7.
Available at http://jasss.soc.surrey.ac.uk/7/1/7.html

Dignum, F., Kinny, D., & Sonenberg, L. (2002). From desires,
obligations and norms to goals. Cognitive Science Quarterly,
2(3–4), 407–430.

Dray, A., Perez, P., Jones, N., Le Page, C., D’Aquino, P., White, I., …,
& Dray, A. (2006). The AtollGame experience: From knowledge
engineering to a computer-assisted role playing game. Journal of
Artificial Societies and Social Simulation, 9(1), 6. Available at
http://jasss.soc.surrey.ac.uk/9/1/6.html

Dubbelboer, J., Nikolic, I., Jenkins, K., & Hall, J. (2017). An agent-
based model of flood risk and insurance. Journal of Artificial
Societies and Social Simulation, 20(1), 6.
https://doi.org/10.18564/jasss.3135

Dunham, J. B. (2005). An agent-based spatially explicit
epidemiological model in MASON. Journal of Artificial Societies and
Social Simulation, 9(1), 3. Available at
http://jasss.soc.surrey.ac.uk/9/1/3.html

http://jasss.soc.surrey.ac.uk/9/3/8.html
http://jasss.soc.surrey.ac.uk/5/4/1.html
http://jasss.soc.surrey.ac.uk/7/1/7.html
http://jasss.soc.surrey.ac.uk/9/1/6.html
https://doi.org/10.18564/jasss.3135
http://jasss.soc.surrey.ac.uk/9/1/3.html

Edmonds, B. (2006). The emergence of symbiotic groups resulting
from skill-differentiation and tags. Journal of Artificial Societies and
Social Simulation, 9(1), 10. Available at
http://jasss.soc.surrey.ac.uk/9/1/10.html

Edmonds, B., & Hales, D. (2003). Replication, replication and
replication: Some hard lessons from model alignment. Journal of
Artificial Societies and Social Simulation, 6(4), 11. Available at
http://jasss.soc.surrey.ac.uk/6/4/11.html

El-Tawil, S., Fang, J., Aguirre, B., & Best, E. (2017). A computational
study of the station nightclub fire accounting for social relationships.
Journal of Artificial Societies and Social Simulation, 20(4), 10.
https://doi.org/10.18564/jasss.3519

Elias, N. (1939). The civilising process. Oxford: Blackwell.

EMIL Project Consortium. (2008). Emergence in the loop: Simulating
the two way dynamics of norm innovation; Deliverable 3.3 EMIL-S:
The simulation platform. Available at
emil.istc.cnr.it/file_download/7/D3.3.Project033841.EMIL.pdf

Epstein, J. M. (2007). Generative social science: Studies in agent-
based computational modeling. Princeton, NJ: Princeton University
Press.

Epstein, J. M. (2008). Why model? Journal of Artificial Societies and
Social Simulation, 11(4), 12.
https://doi.org/10.1080/01969720490426803

Epstein, J. M., & Axtell, R. (1996). Growing artificial societies: Social
science from the bottom up. Washington, DC: Brookings Institution

http://jasss.soc.surrey.ac.uk/9/1/10.html
http://jasss.soc.surrey.ac.uk/6/4/11.html
https://doi.org/10.18564/jasss.3519
http://emil.istc.cnr.it/file_download/7/D3.3.Project033841.EMIL.pdf
https://doi.org/10.1080/01969720490426803

Press (Complex adaptive systems).

Erev, I., & Roth, A. E. (1998). Predicting how people play games:
Reinforcement learning in experimental games with unique, mixed
strategy equilibria. American Economic Review, 88(4), 848–881.

Étienne, M. (2003). SYLVOPAST: A multiple target role-playing game
to assess negotiation processes in sylvopastoral management
planning. Journal of Artificial Societies and Social Simulation, 6(2),
5. Available at http://jasss.soc.surrey.ac.uk/6/2/5.html

Étienne, M. (ed.). (2014). Companion modelling. Dordrecht, the
Netherlands: Springer. https://doi.org/10.1007/978-94-017-8557-0

Étienne, M., Cohen, M., & Le Page, C. (2003). A step-by-step
approach to building land management scenarios based on multiple
viewpoints on multi-agent system simulations. Journal of Artificial
Societies and Social Simulation, 6(2), 2. Available at
http://jasss.soc.surrey.ac.uk/6/2/2.html

Etter, A. (2016). Modern technical writing: An introduction to software
documentation. Kindle, Amazon. Available at
https://www.amazon.co.uk/Modern-Technical-Writing-Introduction-
Documentation-ebook/dp/B01A2QL9SS

Farmer, J. D., Patelli, P., & Zovko, I. I. (2005). The predictive power of
zero intelligence in financial markets. Proceedings of the National
Academy of Sciences, 102(6), 2254–2259.
https://doi.org/10.1073/pnas.0409157102

Farrenkopf, T., Guckert, M., Urquhart, N., & Wells, S. (2016). Ontology
based business simulations. Journal of Artificial Societies and

http://jasss.soc.surrey.ac.uk/6/2/5.html
https://doi.org/10.1007/978-94-017-8557-0
http://jasss.soc.surrey.ac.uk/6/2/2.html
https://www.amazon.co.uk/Modern-Technical-Writing-Introduction-Documentation-ebook/dp/B01A2QL9SS
https://doi.org/10.1073/pnas.0409157102

Social Simulation, 19(4), 14. https://doi.org/10.18564/jasss.3266

Field, A. P., & Iles, J. (2016). An adventure in statistics: The reality
enigma. London: Sage.

Fielding, J., & Gilbert, N. (2005). Understanding social statistics, 2nd
ed. London: Sage.

Fink, E. C., Gates, S., & Humes, B. D. (1998). Game theory topics:
Incomplete information, repeated games and n-player games.
Thousand Oaks, CA: Sage (Quantitative Applications in the Social
Sciences).

Fioretti, G. (2001). Information structure and behaviour of a textile
industrial district. Journal of Artificial Societies and Social
Simulation, 4(4), 1. Available at
http://jasss.soc.surrey.ac.uk/4/4/1.html

Flache, A., & Macy, M. (2002). Learning dynamics in social dilemmas.
Proceedings of the National Academy of Sciences, 99(Suppl. 3),
7229–7236.

Flache, A., Mäs, M., Feliciani, T., Chattoe-Brown, E., Deffuant, G.,
Huet, S., & Lorenz, J. (2017). Models of social influence: Towards
the next frontiers. Journal of Artificial Societies and Social
Simulation, 20(4), 2. https://doi.org/10.18564/jasss.3521

Forester, J. W. (1971). World dynamics. Cambridge: Massachusetts
Institute of Technology Press.

Fossett, M., & Waren, W. (2005). Overlooked implications of ethnic

https://doi.org/10.18564/jasss.3266
http://jasss.soc.surrey.ac.uk/4/4/1.html
https://doi.org/10.18564/jasss.3521

preferences for residential segregation in agent-based models.
Urban Studies, 42(11), 1893–1917.
https://doi.org/10.1080/00420980500280354

Fowler, M. (2003). UML distilled, 3rd ed. Boston: Addison-Wesley
Professional.

Friedman-Hill, E. (2003). Jess in action: Rule-based systems in Java.
Greenwich, CT: Manning.

Fröhlich, P., & Link, J. (2003). Unit testing in Java: How tests drive the
code. San Francisco, Calif.: Morgan Kaufmann.

Galan, J. M., & Izquierdo, L. R. (2005). Appearances can be
deceiving: Lessons learned re-implementing Axelrod’s “evolutionary
approach to norms.” Journal of Artificial Societies and Social
Simulation, 8(3), 2. Available at
http://jasss.soc.surrey.ac.uk/8/3/2.html

Galitsky, B. (2002). Extending the BDI model to accelerate the mental
development of autistic patients. In Proceedings of the 2nd
International Conference on Development and Learning (ICDL’02)
(pp. 82–88). https://doi.org/10.1109/DEVLRN.2002.1011803

Gaylord, R. J., & D’Andria, L. (1998). Simulating society: A
mathematica toolkit for modeling socioeconomic behavior. New
York: Springer Verlag.

Georgeff, M., & Ingrand, F. (1990). Real-time reasoning: The
monitoring and control of spacecraft systems. Artificial Intelligence
Applications, 1990, Sixth Conference on, 198–204.
https://doi.org/10.1109/CAIA.1990.89190

https://doi.org/10.1080/00420980500280354
http://jasss.soc.surrey.ac.uk/8/3/2.html
https://doi.org/10.1109/DEVLRN.2002.1011803
https://doi.org/10.1109/CAIA.1990.89190

Ghazi, S., Khadir, T., & Dugdale, J. (2014). Multi-agent based
simulation of environmental pollution issues: A review. In
International Conference on Practical Applications of Agents and
Multi-Agent Systems (pp. 13–21). Cham, Switzerland: Springer-
Verlag. https://doi.org/10.1007/978-3-319-07767-3_2

Gilbert, N. (1997). A simulation of the structure of academic science.
Sociological Research Online, 2(2), 3. Available at
http://www.socresonline.org.uk/socresonline/2/2/3.html

Gilbert, N. (2002). Varieties of emergence. In D. Sallach (Ed.), Agent
2002: Social agents: Ecology, exchange, and evolution (pp. 41–56).
Chicago: University of Chicago and Argonne National Laboratory.
Available at
https://www.researchgate.net/profile/Nigel_Gilbert/publication/228792799_Varieties_of_emergence/links/004635230df90ceb7f000000/Varieties-
of-emergence.pdf

Gilbert, N. (2010). Computational social science, SAGE benchmarks
in social research methods series. London: Sage.

Gilbert, N. (2019). Collectivities (Version 1.1.0). CoMSES
Computational Model Library. Available at
https://doi.org/10.25937/qmc0-r354

Gilbert, N., Ahrweiler, P., Barbrook-Johnson, P., Narasimhan, K. P., &
Wilkinson, H. (2018). Computational modelling of public policy:
Reflections on practice. Journal of Artificial Societies and Social
Simulation, 21(1), 14. https://doi.org/10.18564/jasss.3669

Gilbert, N., Ahrweiler, P., & Pyka, A. (2014). Simulating knowledge
dynamics in innovation networks. Berlin: Springer (Understanding
Complex Systems). https://doi.org/10.1007/978-3-662-43508-3

https://doi.org/10.1007/978-3-319-07767-3_2
http://www.socresonline.org.uk/socresonline/2/2/3.html
https://www.researchgate.net/profile/Nigel_Gilbert/publication/228792799_Varieties_of_emergence/links/004635230df90ceb7f000000/Varieties-of-emergence.pdf
https://doi.org/10.25937/qmc0-r354
https://doi.org/10.18564/jasss.3669
https://doi.org/10.1007/978-3-662-43508-3

Gilbert, N., & Bankes, S. (2002). Platforms and methods for agent-
based modeling. Proceedings of the National Academy of Sciences,
99(Supplement 3), 7197–7198.
https://doi.org/10.1073/pnas.072079499

Gilbert, N., den Besten, M., Bontovics, A., Craenen, B. G. W. W.,
Divina, F., Eiben, A. E. E., …, & Yang, L. (2006). Emerging artificial
societies through learning. Journal of Artificial Societies and Social
Simulation, 9(2). http://jasss.soc.surrey.ac.uk/9/2/9.html (Accessed:
June 28, 2010).

Gilbert, N., Pyka, A., & Ahrweiler, P. (2001). Innovation networks—A
simulation approach. Journal of Artificial Societies and Social
Simulation, 4(3), 8. Available at
http://jasss.soc.surrey.ac.uk/4/3/8.html

Gimblett, H. R. (2002). Integrating geographic information systems
and agent-based modeling techniques for simulating social and
ecological processes. London: Oxford University Press.

Goolsby, R. (2006). Combating terrorist networks: An evolutionary
approach. Computational and Mathematical Organization Theory,
12, 7–20.

Gotts, N., Matthews, R., Gilbert, N., Polhill, G., & Roach, A. (2007).
Agent-based land-use models: A review of applications. Landscape
Ecology, 22(10), 1447–1459.

Grignard, A., Taillandier, P., Gaudou, B., Vo, D. A., Huynh, N. Q., &
Drogoul, A. (2013). GAMA 1.6: Advancing the art of complex agent-
based modeling and simulation. In G. Boella, E. Elkind, B. T. R.
Savarimuthu, F. Dignum, & M. K. Purvis (Eds.), PRIMA 2013:
Principles and practice of multi-agent systems. PRIMA 2013 (pp.

https://doi.org/10.1073/pnas.072079499
http://jasss.soc.surrey.ac.uk/9/2/9.html
http://jasss.soc.surrey.ac.uk/4/3/8.html

117–131). Berlin: Springer. https://doi.org/10.1007/978-3-642-
44927-7_9

Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske,
J., …, & DeAngelis, D. L. (2006). A standard protocol for describing
individual-based and agent-based models. Ecological Modelling,
198(1–2), 115–126. https://doi.org/10.1016/j.ecolmodel.2006.04.023

Grimm, V., Polhill, G., & Touza, J. (2017). Documenting social
simulation models: The ODD protocol as a standard. In B. Edmonds
& R. Meyer (Eds.), Simulating social complexity (pp. 117–133).
Berlin: Springer.

Grimm, V., & Railsback, S. F. (2012). Pattern-oriented modelling: A
“multi-scope” for predictive systems ecology. Philosophical
Transactions of the Royal Society of London. Series B, Biological
Sciences (The Royal Society), 367(1586), 298–310.
https://doi.org/10.1098/rstb.2011.0180

Groeneveld, J., Müller, B., Buchmann, C. M., Dressler, G., Guo, C.,
Hase, …, & Schwarz, N. (2017). Theoretical foundations of human
decision-making in agent-based land use models: A review.
Environmental Modelling & Software (Elsevier), 87, 39–48.
https://doi.org/10.1016/J.ENVSOFT.2016.10.008

Guerci, E., Rastegar, M. A., & Cincotti, S. (2010). Agent-based
modeling and simulation of competitive wholesale electricity
markets. In S. Rebennack, P. M. Pardalos, M. V. F. Pereira, & N. A.
Iliadis (Eds.), Handbook of power systems II (pp. 241–286). Berlin:
Springer. https://doi.org/10.1007/978-3-642-12686-4_9

Hales, D. (2000). Cooperation without space or memory: Tags, groups
and the prisoner’s dilemma. In P. Davidsson & S. Moss (Eds.),

https://doi.org/10.1007/978-3-642-44927-7_9
https://doi.org/10.1016/j.ecolmodel.2006.04.023
https://doi.org/10.1098/rstb.2011.0180
https://doi.org/10.1016/J.ENVSOFT.2016.10.008
https://doi.org/10.1007/978-3-642-12686-4_9

Multi-agent-based simulation. MABS 2000 (pp. 157–166). Berlin:
Springer-Verlag (Lecture Notes in Artificial Intelligence).

Hales, D. (2002). Evolving specialisation, altruism and group-level
optimisation using tags. In J. S. Sichman, P. Davidsson, & F.
Bousquet (Eds.), Lecture notes in artificial intelligence (pp. 26–35).
Berlin: Springer-Verlag.

Hamill, L., & Gilbert, N. (2009). Social circles: A simple structure for
agent-based social network models. Journal of Artifical Societies
and Social Simulation, 12(2), 3. Available at
http://jasss.soc.surrey.ac.uk/12/2/3.html (Accessed: August 20,
2018).

Hamill, L., & Gilbert, N. (2015). Agent-based modelling in economics.
Chichester, UK: John Wiley & Sons.
https://doi.org/10.1002/9781118945520

Hammond, R. A. (2015). Considerations and best practices in agent-
based modeling to inform policy. In R. Wallace, A. Geller, & V.
Ogawa (Eds.), Assessing the use of agent-based models for
tobacco regulation (Appendix A). Washington DC: National
Academies Press. Available at
https://www.ncbi.nlm.nih.gov/books/NBK305917/

Hatna, E., & Benenson, I. (2012). The Schelling model of ethnic
residential dynamics: Beyond the integrated-segregated dichotomy
of patterns. Journal of Artificial Societies and Social Simulation,
15(1), 6. https://doi.org/10.18564/jasss.1873

Hauke, J., Lorscheid, I., & Meyer, M. (2017). Recent development of
social simulation as reflected in JASSS between 2008 and 2014: A
citation and co-citation analysis. Journal of Artificial Societies and

http://jasss.soc.surrey.ac.uk/12/2/3.html
https://doi.org/10.1002/9781118945520
https://www.ncbi.nlm.nih.gov/books/NBK305917/
https://doi.org/10.18564/jasss.1873

Social Simulation, 20(1), 5. https://doi.org/10.18564/jasss.3238

Hegselmann, R. (2017). Thomas C. Schelling & James M. Sakoda:
The intellectual, technical, and social history of a model. Journal of
Artificial Societies and Social Simulation, 20(3), 15.
https://doi.org/10.18564/jasss.3511

Heppenstall, A. J. J., Crooks, A. T., See, L. M., & Batty, M. (2012).
Agent-based models of geographical systems.
https://doi.org/10.1007/978-90-481-8927-4

Heywood, D. I., Cornelius, S., & Carver, S. (2011). An introduction to
geographical information systems. Saddle River, NJ: Prentice Hall.

Hirsch, G. B., & Homer, J. B. (2006). System dynamics modeling for
public health: Background and opportunities. American Journal of
Public Health, 96(3), 452–458.

HM Treasury. (2015). The aqua book: Guidance on producing quality
analysis for government. Available at
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/416478/aqua_book_final_web.pdf
(Accessed: August 30, 2018).

Hodkinson, P. (2002). Goth identity, style and subculture. Oxford:
Berg.

Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann
Arbor: University of Michigan Press.

Huberman, B. A., & Glance, N. (1993). Evolutionary games and
computer simulations. Proceedings of the National Academy of

https://doi.org/10.18564/jasss.3238
https://doi.org/10.18564/jasss.3511
https://doi.org/10.1007/978-90-481-8927-4
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/416478/aqua_book_final_web.pdf

Sciences, 90, 7716–7718.

Huet, S., Bouvier, A., Poursat, M.-A., & Jolivet, E. (2004). Statistical
tools for nonlinear regression. New York: Springer-Verlag (Springer
Series in Statistics). https://doi.org/10.1007/b97288

Izquierdo, S. S., & Izquierdo, L. R. (2007). The impact of quality
uncertainty without asymmetric information on market efficiency.
Journal of Business Research, 60(8), 858–867.
https://doi.org/10.1016/j.jbusres.2007.02.010

Izquierdo, S. S., Izquierdo, L. R., & Gotts, N. M. (2008).
Reinforcement learning dynamics in social dilemmas. Journal of
Artifical Societies and Social Simulation, 11(2), 1. Available at
http://jasss.soc.surrey.ac.uk/11/2/1.html (Accessed: August 17,
2018).

Jacobsen, C., & Hanneman, R. A. (1992). Illegal drugs: Past, present
and possible futures. Journal of Drug Issues, 22(1), 105–120.
https://doi.org/10.1177/002204269202200107

Jager, W. (2017). Enhancing the Realism of Simulation (EROS): On
implementing and developing psychological theory in social
simulation. Journal of Artificial Societies and Social Simulation,
20(3), 14. https://doi.org/10.18564/jasss.3522

Janssen, M. A. (2017). The practice of archiving model code of agent-
based models. Journal of Artificial Societies and Social Simulation,
20(1), 2. https://doi.org/10.18564/jasss.3317

Janssen, M. A., & Jager, W. (1999). An integrated approach to
simulating behavioural processes: A case study of the lock-in of

https://doi.org/10.1007/b97288
https://doi.org/10.1016/j.jbusres.2007.02.010
http://jasss.soc.surrey.ac.uk/11/2/1.html
https://doi.org/10.1177/002204269202200107
https://doi.org/10.18564/jasss.3522
https://doi.org/10.18564/jasss.3317

consumption patterns. Journal of Artificial Societies and Social
Simulation, 2(2), 2. Available at
http://jasss.soc.surrey.ac.uk/2/2/2.html

Jara, H. X., & Tumino, A. (2013). Tax-benefit systems, income
distribution and work incentives in the European Union. International
Journal of Microsimulation, 1(6), 27–62. Available at
https://econpapers.repec.org/RePEc:ijm:journl:v:1:y:2013:i:issnum:6:p:27-
62

Johnson, P. E. (2002). Agent-based modeling: What I learned from
the artificial stock market. Social Science Computer Review, 20,
174–186.

Kahneman, D. (2003). Maps of bounded rationality: Psychology for
behavioral economics. American Economic Review, 93(5),
1449–1475.

Kaldor, N. (1961). Capital accumulation and economic growth. In The
Theory of Capital (pp. 177–222). London: Palgrave Macmillan UK.
https://doi.org/10.1007/978-1-349-08452-4_10

Kangur, A., Jager, W., Verbrugge, R., & Bockarjova, M. (2017). An
agent-based model for diffusion of electric vehicles. Journal of
Environmental Psychology, 52, 166–182.
https://doi.org/10.1016/J.JENVP.2017.01.002

Kleijnen, J. P. C. (2015). Design and analysis of simulation
experiments. Cham, Switzerland: Springer International
(International Series in Operations Research & Management
Science). https://doi.org/10.1007/978-3-319-18087-8

http://jasss.soc.surrey.ac.uk/2/2/2.html
https://econpapers.repec.org/RePEc:ijm:journl:v:1:y:2013:i:issnum:6:p:27-62
https://doi.org/10.1007/978-1-349-08452-4_10
https://doi.org/10.1016/J.JENVP.2017.01.002
https://doi.org/10.1007/978-3-319-18087-8

Klemm, K., Eguíluz, V. M., Toral, R., & Miguel, M. S. (2003). Global
culture: A noise-induced transition in finite systems. Physical
Review E, 67(4), 045101.
https://doi.org/10.1103/PhysRevE.67.045101

Knoke, D., & Yang, S. (2008). Social network analysis, 2nd ed.
Thousand Oaks, CA: Sage. https://doi.org/10.4135/9781412985864

Koesrindartoto, D., Sun, J., & Tesfatsion, L. (2005). An agent-based
computational laboratory for testing the economic reliability of
wholesale power market designs. Power Engineering Society
General Meeting, 2005. IEEE. San Francisco: IEEE Power
Engineering Society, (January), 2818–2823, Vol. 3.
https://doi.org/10.1109/PES.2005.1489273

Kollingbaum, M. J., & Norman, T. J. (2003). Norm adoption in the NoA
agent architecture. In Proceedings of the Second International Joint
Conference on Autonomous Agents and Multiagent Systems (pp.
1038–1039). New York: ACM.
http://doi.acm.org/10.1145/860575.860784

Kollingbaum, M. J., & Norman, T. J. (2004). Norm adoption and
consistency in the NoA agent architecture. In M. Dastani, J. Dix, &
A. El Fallah-Seghrouchni (Eds.), Programming multi-agent systems
(pp. 169–186). Berlin: Springer. https://doi.org/10.1007/978-3-540-
25936-7_9

Koza, J. R. (1992). Genetic programming. Cambridge: Massachusetts
Institute of Technology Press.

Koza, J. R. (1994). Genetic programming 2. Cambridge:
Massachusetts Institute of Technology Press.

https://doi.org/10.1103/PhysRevE.67.045101
https://doi.org/10.4135/9781412985864
https://doi.org/10.1109/PES.2005.1489273
http://doi.acm.org/10.1145/860575.860784
https://doi.org/10.1007/978-3-540-25936-7_9

Krause, U., & Hegselmann, R. (2002). Opinion dynamics and bounded
confidence models, analysis and simulation. Journal of Artificial
Societies and Social Simulation, 5(3), 2. Available at
http://jasss.soc.surrey.ac.uk/5/3/2.html

Kurahashi-Nakamura, T., Mäs, M., & Lorenz, J. (2016). Robust
clustering in generalized bounded confidence models. Journal of
Artificial Societies and Social Simulation, 19(4), 7.
https://doi.org/10.18564/jasss.3220

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). Soar: An
architecture for general intelligence. Artificial Intelligence, 33(1),
1–64.

Laurie, A. J., & Jaggi, N. K. (2003). Role of “vision” in neighbourhood
racial segregation: A variant of the Schelling segregation model.
Urban Studies, 40(13), 2687–2704.
https://doi.org/10.1080/0042098032000146849

Lawson, B. G., & Park, S. (2000). Asynchronous time evolution in an
artificial society model. Journal of Artificial Societies and Social
Simulation, 3(1), 2. Available at
http://jasss.soc.surrey.ac.uk/3/1/2.html (Accessed: August 28,
2018).

Lee, J.-S., Filatova, T., Ligmann-Zielinska, A., Hassani-Mahmooei, B.,
Stonedahl, F., Lorscheid, I., …, & Parker, D. C. (2015). The
complexities of agent-based modeling output analysis. Journal of
Artificial Societies and Social Simulation, 18(4).
https://doi.org/10.18564/jasss.2897

Li, J., & O’Donoghue, C. (2013). A survey of dynamic microsimulation
models: Uses, model structure and methodology. International

http://jasss.soc.surrey.ac.uk/5/3/2.html
https://doi.org/10.18564/jasss.3220
https://doi.org/10.1080/0042098032000146849
http://jasss.soc.surrey.ac.uk/3/1/2.html
https://doi.org/10.18564/jasss.2897

Journal of Microsimulation, 6, 3–55.
https://doi.org/10.1093/jae/ejm029

Lorenz, J. (2006). Consensus strikes back in the Hegselmann-Krause
Model of continuous opinion dynamics under bounded confidence.
Journal of Artificial Societies and Social Simulation, 9(1), 8.
Available at http://jasss.soc.surrey.ac.uk/9/1/8.html

Lorscheid, I., Heine, B.-O., & Meyer, M. (2012). Opening the “black
box” of simulations: Increased transparency and effective
communication through the systematic design of experiments.
Computational and Mathematical Organization Theory, 18(1),
22–62. https://doi.org/10.1007/s10588-011-9097-3

Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., & Balan, G. (2005).
MASON: A Java multi-agent simulation environment. Simulation:
Transactions of the Society for Modeling and Simulation
International, 81(7), 517–527.

Luke, S., R. Simon, A. Crooks, H. Wang, E. Wei, D. Freelan, … & C.
Cioffi-Revilla. (2019). The MASON Simulation Toolkit: Past, present,
and future. In P. Davidsson & H. Verhagen (Eds.), Multi-agent-
based simulation XIX. MABS 2018. Lecture Notes in Computer
Science, vol 11463. Springer, Cham. https://doi.org/10.1007/978-3-
030-22270-3_6

Macy, M., & Willer, R. (2002). From factors to actors: Computational
sociology and agent-based modeling. Annual Review of Sociology,
28, 143–166.

Mahdavi Ardestani, B., O’Sullivan, D., & Davis, P. (2018). A multi-
scaled agent-based model of residential segregation applied to a
real metropolitan area. Computers, Environment and Urban

https://doi.org/10.1093/jae/ejm029
http://jasss.soc.surrey.ac.uk/9/1/8.html
https://doi.org/10.1007/s10588-011-9097-3
https://doi.org/10.1007/978-3-030-22270-3_6

Systems (Pergamon), 69, 1–16.
https://doi.org/10.1016/J.COMPENVURBSYS.2017.11.002

Maini, V., & Sabri, S. (2018). Machine learning for humans. Online.
Available at
https://www.dropbox.com/s/e38nil1dnl7481q/machine_learning.pdf?
dl=0 (Accessed: August 17, 2018).

Malerba, F., Nelson, R., Orsenigo, L., & Winter, S. (2001). History-
friendly models: An overview of the case of the computer industry.
Journal of Artificial Societies and Social Simulation, 4(3), 6.
Available at http://jasss.soc.surrey.ac.uk/4/3/6.html

March, J. G., Cohen, M. D., & Olsen, J. P. (1972). A garbage can
model of organizational choice. Administrative Science Quarterly,
17(1), 1–25.

Marengo, L. (1992). Coordination and organizational learning in the
firm. Journal of Evolutionary Economics, 2(3), 313–326.

McKeown, G., & Sheehy, N. (2006). Mass media and polarisation
processes in the bounded confidence model of opinion dynamics.
Journal of Artificial Societies and Social Simulation, 9(1), 11.
Available at http://jasss.soc.surrey.ac.uk/9/1/11.html

McMillon, D., Simon, C. P., & Morenoff, J. (2014). Modeling the
underlying dynamics of the spread of crime. PLoS ONE (edited by
M. Perc, Public Library of Science), 9(4), e88923.
https://doi.org/10.1371/journal.pone.0088923

Merton, R. K. (1968). Social theory and social structure (1968 enl.).
New York: Free Press.

https://doi.org/10.1016/J.COMPENVURBSYS.2017.11.002
https://www.dropbox.com/s/e38nil1dnl7481q/machine_learning.pdf?dl=0
http://jasss.soc.surrey.ac.uk/4/3/6.html
http://jasss.soc.surrey.ac.uk/9/1/11.html
https://doi.org/10.1371/journal.pone.0088923

Meyer, M., & Hufschlag, K. (2006). A generic approach to an object-
oriented learning classifier system library. Journal of Artificial
Societies and Social Simulation, 9(3), 9. Available at
http://jasss.soc.surrey.ac.uk/9/3/9.html (Accessed: August 22,
2018).

Michalewicz, Z., & Fogel, D. B. (2004). How to solve it: Modern
heuristics. Berlin: Springer. https://doi.org/10.1007/978-3-662-
07807-5

Moss, S. (2002). Policy analysis from first principles. Proceedings of
the National Academy of Sciences, 99(Suppl. 3), 7267–7274.

Mulkay, M. J., & Turner, B. S. (1971). Over-production of personnel
and innovation in three social settings. Sociology, 5(1), 47–61.

Müller, B., Bohn, F., Dreßler, G., Groeneveld, J., Klassert, C., Martin,
R., …, & Schwarz, N. (2013). Describing human decisions in agent-
based models – ODD + D, an extension of the ODD protocol.
Environmental Modelling & Software, 48, 37–48.
https://doi.org/10.1016/J.ENVSOFT.2013.06.003

Naveh, I., & Sun, R. (2006). A cognitively based simulation of
academic science. Computational and Mathematical Organization
Theory, 12(4), 313–337. https://doi.org/10.1007/s10588-006-8872-z

Nilsson, N. (1998). Artificial intelligence: A new synthesis. San
Francisco: Morgan Kaufmann.

Norling, E. J. (2014). Modelling human behaviour with BDI agents
(Doctoral dissertation, Computer Science and Software
Engineering, The University of Melbourne, Australia). Available at

http://jasss.soc.surrey.ac.uk/9/3/9.html
https://doi.org/10.1007/978-3-662-07807-5
https://doi.org/10.1016/J.ENVSOFT.2013.06.003
https://doi.org/10.1007/s10588-006-8872-z

http://hdl.handle.net/11343/37081

North, M. J., Collier, N. T., & Vos, J. R. (2006). Experiences creating
three implementations of the repast agent modeling toolkit. ACM
Transactions on Modeling and Computer Simulation (TOMACS),
16(1), 1–25. https://doi.org/10.1145/1122012.1122013

O’Donoghue, C. (2014). Handbook of microsimulation modelling.
Bingley, UK: EmeraldInsight. https://doi.org/10.1108/S0573-
855520140000293020

O’Kelly, M. E., & Fotheringham, A. S. (1989). Spatial interaction
models: Formulations and applications. Dordrecht, Netherlands:
Kluwer.

O’Sullivan, D., & Perry, G. L. W. (2013). Spatial simulation: Exploring
pattern and process. Chichester, UK: John Wiley.
https://doi.org/10.1002/9781118527085

Orcutt, G., Quinke, H., & Merz, J. (1986). Microanalytic simulation
models to support social and financial policy. Amsterdam: North-
Holland (Information research and resource reports, v.7).

Pajares, J., Hernández-Iglesias, C., & López-Paredes, A. (2004).
Modelling learning and R&D in innovative environments: A cognitive
multi-agent approach. Journal of Artificial Societies and Social
Simulation, 7(2), 7. Available at
http://jasss.soc.surrey.ac.uk/7/2/7.html

Papert, S. (1983). Mindstorms: Children, computers and powerful
ideas. New Ideas in Psychology, 1(1), 87.
https://doi.org/10.1016/0732-118X(83)90034-X

http://hdl.handle.net/11343/37081
https://doi.org/10.1145/1122012.1122013
https://doi.org/10.1108/S0573-855520140000293020
https://doi.org/10.1002/9781118527085
http://jasss.soc.surrey.ac.uk/7/2/7.html
https://doi.org/10.1016/0732-118X(83)90034-X

Phillips, A. W. (1950). Mechanical models in economic dynamics.
Economica, 17(67), 283–305.

Piccinini, G., & Bahar, S. (2013). Neural computation and the
computational theory of cognition. Cognitive Science, 37(3),
453–488. https://doi.org/10.1111/cogs.12012

Poggio, T., Lo, A. W., LeBaron, B. D., & Chan, N. T. (2001). Agent-
based models of financial markets: A comparison with experimental
markets. SSRN Electronic Journal.
https://doi.org/10.2139/ssrn.290140

Polhill, J. G., Parker, D., Brown, D., & Grimm, V. (2008). Using the
ODD protocol for describing three agent-based social simulation
models of land-use change. Journal of Artificial Societies and Social
Simulation, 11(2), 3. Available at
http://jasss.soc.surrey.ac.uk/11/2/3.html (Accessed: April 12, 2019).

Poli, R., Langdon, W. B., & McPhee, N. F. (2008). A field guide to
genetic programming. Web site. http://www.gp-field-guide.org.uk

Pollicott, M., & Weiss, H. (2001). The dynamics of Schelling-type
segregation models and a nonlinear graph Laplacian variational
problem. Advances in Applied Mathematics, 27(1), 17–40.
https://doi.org/10.1006/aama.2001.0722

Portugali, J., Benenson, I., & Omer, I. (2010). Sociospatial residential
dynamics: Stability and instability within a self-organizing city.
Geographical Analysis, 26(4), 321–340.
https://doi.org/10.1111/j.1538-4632.1994.tb00329.x

Powell, W. W., White, D. R., Koput, K. W., & Owen-Smith, J. (2005).

https://doi.org/10.1111/cogs.12012
https://doi.org/10.2139/ssrn.290140
http://jasss.soc.surrey.ac.uk/11/2/3.html
http://www.gp-field-guide.org.uk
https://doi.org/10.1006/aama.2001.0722
https://doi.org/10.1111/j.1538-4632.1994.tb00329.x

Network dynamics and field evolution: The growth of
interorganizational collaboration in the life sciences. American
Journal of Sociology (University of Chicago Press), 110(4),
1132–1205.

Pujol, J. M., Flache, A., Delgado, J., & Sangüesa, R. (2005). How can
social networks ever become complex? Modelling the emergence of
complex networks from local social exchanges. Journal of Artificial
Societies and Social Simulation, 8(4), 12. Available at
http://jasss.soc.surrey.ac.uk/8/4/12.html (Accessed August 22,
2018).

Pyka, A., Ahrweiler, P., & Gilbert, N. (2004). Simulating knowledge
dynamics in innovation networks. In M. Richiardi & R. Leombruni
(Eds.), Industry and labor dynamics: The agent-based
computational economics approach (pp. 284–296). Singapore:
World Scientific Press. Available at
http://link.springer.com/book/10.1007/978-3-662-43508-3

Railsback, S. F. (2001). Concepts from complex adaptive systems as
a framework for individual-based modelling. Ecological Modelling,
139(1), 47–62. https://doi.org/10.1016/S0304-3800(01)00228-9

Railsback, S. F., & Grimm, V. (2012). Agent-based and individual-
based modeling: A practical introduction. Princeton, NJ: Princeton
University Press.

Railsback, S. F., Lytinen, S. L., & Jackson, S. K. (2006). Agent-based
simulation platforms: Review and development recommendations.
Simulation: Transactions of the Society for Modeling and Simulation
International, 82(9), 609–623.
https://doi.org/10.1177/0037549706073695

http://jasss.soc.surrey.ac.uk/8/4/12.html
http://link.springer.com/book/10.1007/978-3-662-43508-3
https://doi.org/10.1016/S0304-3800(01)00228-9
https://doi.org/10.1177/0037549706073695

Reschke, C. H. (2001). Evolutionary perspectives on simulations of
social systems. Journal of Artificial Societies and Social Simulation,
4(4), 8. Available at http://jasss.soc.surrey.ac.uk/4/4/8.html
(Accessed: August 22, 2018).

Reynolds, C. W. (1987). Flocks, herds, and schools: A distributed
behavioral model. Computer Graphics, 21(4), 25–34.

Richiardi, M., Leombruni, R., Saam, N., & Sonnessa, M. (2006). A
common protocol for agent-based social simulation. Journal of
Artificial Societies and Social Simulation, 9(1), 15. Available at
http://jasss.soc.surrey.ac.uk/9/1/15.html

Ringler, P., Keles, D., & Fichtner, W. (2016). Agent-based modelling
and simulation of smart electricity grids and markets: A literature
review. Renewable and Sustainable Energy Reviews, 57, 205–215.
https://doi.org/10.1016/J.RSER.2015.12.169

Riolo, R. L., Cohen, M. D., & Axelrod, R. M. (2001). Evolution of
cooperation without reciprocity. Nature, 411, 441–443.

Ritter, F. E., Schoelles, M. J., Quigley, K. S., & Klein, L. C. (2011).
Determining the number of simulation runs: Treating simulations as
theories by not sampling their behavior. In L. Rothrock & S.
Narayanan (Eds.), Human-in-the-loop simulations (pp. 97–116).
London: Springer. https://doi.org/10.1007/978-0-85729-883-6_5

Robinson, S. (2004). Simulation: The practice of model development
and use. Chichester, UK: Wiley.

Rouchier, J. (2003). Re-implementation of a multi-agent model aimed
at sustaining experimental economic research: The case of

http://jasss.soc.surrey.ac.uk/4/4/8.html
http://jasss.soc.surrey.ac.uk/9/1/15.html
https://doi.org/10.1016/J.RSER.2015.12.169
https://doi.org/10.1007/978-0-85729-883-6_5

simulations with emerging speculation. Journal of Artificial Societies
and Social Simulation, 6(4), 7. Available at
http://jasss.soc.surrey.ac.uk/6/4/7.html

Ruankaew, N., Le Page, C., Dumrongrojwattana, P., Barnaud, C.,
Gajaseni, N., van Paassen, A., & Trébuil, G. (2010). Companion
modelling for integrated renewable resource management: A new
collaborative approach to create common values for sustainable
development. International Journal of Sustainable Development &
World Ecology, 17(1), 15–23.
https://doi.org/10.1080/13504500903481474

Russell, S., & Norvig, P. (2010). Artificial intelligence: A modern
approach, 3rd ed. Upper Saddle River, NJ: Prentice Hall.

Rutter, C. M., Zaslavsky, A. M., & Feuer, E. J. (2011). Dynamic
microsimulation models for health outcomes. Medical Decision
Making, 31(1), 10–18. https://doi.org/10.1177/0272989X10369005

Sakoda, J. M. (1971). The checkerboard model of social interaction.
Journal of Mathematical Sociology, 1(1), 119–131.

Sallans, B., Pfister, A., Karatzoglou, A., & Dorffner, G. (2003).
Simulation and validation of an integrated markets model. Journal of
Artificial Societies and Social Simulation, 6(4), 2. Available at
http://jasss.soc.surrey.ac.uk/6/4/2.html

Sander, R., Schreiber, D., & Doherty, J. (2000). Empirically testing a
computational model: The example of housing segregation. In D.
Sallach & T. Wolsko (Eds.), Proceedings at the Workshop on
Simulation of Socialagents: Architectures and Institutions (pp.
109–116). Chicago: ANL/DIS/TM-60, Argonne National Laboratory.

http://jasss.soc.surrey.ac.uk/6/4/7.html
https://doi.org/10.1080/13504500903481474
https://doi.org/10.1177/0272989X10369005
http://jasss.soc.surrey.ac.uk/6/4/2.html

Schelling, T. C. (1971). Dynamic models of segregation. Journal of
Mathematical Sociology, 1, 143–186.

Schelling, T. C. (1978). Micromotives and macrobehavior. New York:
Norton.

Simmel, G. (1907). Fashion. International Quarterly, 10, 130–155.

Simon, H. A. (1955). A behavioral model of rational choice. Quarterly
Journal of Economics, 69(1), 99–118.

Squazzoni, F. (2012). Agent-based computational sociology.
Chichester, UK: John Wiley & Sons.
https://doi.org/10.1002/9781119954200

Squazzoni, F., & Boero, R. (2002). At the edge of variety and
coordination. An agent-based computational model of industrial
district. Journal of Artificial Societies and Social Simulation, 5(1), 1.
Available at http://jasss.soc.surrey.ac.uk/5/1/1.html

Stauffer, D., Sousa, A., & Schulze, C. (2004). Discretized opinion
dynamics of the deffaunt model on scale-free networks. Journal of
Artificial Societies and Social Simulation, 7(3), 7. Available at
http://jasss.soc.surrey.ac.uk/7/3/7.html

Stefanelli, A., & Seidl, R. (2017). Opinion communication on contested
topics: How empirics and arguments can improve social simulation.
Journal of Artificial Societies and Social Simulation, 20(4), 3.
https://doi.org/10.18564/jasss.3492

Sterman, J. (2000). Business dynamics: Systems thinking and

https://doi.org/10.1002/9781119954200
http://jasss.soc.surrey.ac.uk/5/1/1.html
http://jasss.soc.surrey.ac.uk/7/3/7.html
https://doi.org/10.18564/jasss.3492

modeling for a complex world. Boston: Irwin McGraw-Hill.

Stonedahl, F., & Wilensky, U. (2011). Finding forms of flocking:
Evolutionary search in ABM parameter-spaces. In T. Bosse, A.
Geller, & C. M. Jonker (Eds.), Multi-agent-based simulation XI (pp.
61–75). Berlin: Springer. https://doi.org/10.1007/978-3-642-18345-
4_5

Strader, T. J., Lin, F., & Shaw, M. J. (1998). Simulation of order
fulfillment in divergent assembly supply chains. Journal of Artificial
Societies and Social Simulation, 1(2), 5. Available at
http://jasss.soc.surrey.ac.uk/1/2/5.html

Sun, R. (2006). The CLARION cognitive architecture: Extending
cognitive modeling to social simulation. In R. Sun (Ed.), Cognition
and multi-agent interaction: From cognitive modeling to social
simulation (pp. 79–99). New York: Cambridge University Press.

Sun, R., & Naveh, I. (2004). Simulating organizational decision-
making using a cognitively realistic agent model. Journal of Artificial
Societies and Social Simulation, 7(3), 5. Available at
http://jasss.soc.surrey.ac.uk/7/3/5.html

Sutherland, H., & Figari, F. (2013). EUROMOD: The European Union
tax-benefit microsimulation model. International Journal of
Microsimulation, 1(6), 4–26. Available at
http://www.microsimulation.org/IJM/V6_1/2_IJM_6_1_Sutherland_Figari.pdf
(Accessed: August 30, 2018).

Sutherland, H., Paulus, A., & Figari, F. (2014). Micro-simulation and
policy analysis. In A. Atkinson & F. Bourguignon (Eds.), Handbook
of income distribution. Vol. 2B (pp. 2141–2221). Amsterdam:
Elsevier.

https://doi.org/10.1007/978-3-642-18345-4_5
http://jasss.soc.surrey.ac.uk/1/2/5.html
http://jasss.soc.surrey.ac.uk/7/3/5.html
http://www.microsimulation.org/IJM/V6_1/2_IJM_6_1_Sutherland_Figari.pdf

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An
introduction, 2nd ed. Cambridge: Massachusetts Institute of
Technology Press.

Swedlund, A. C., Sattenspiel, L., Warren, A. L., & Gumerman, G. J.
(2015). Modeling archaeology: Origins of the artificial Anasazi
project and beyond. In G. Wurzer, K. Kowarik, & H. Reschreiter
(Eds.), Advances in geographic information science (pp. 37–50).
Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-
00008-4_2

Taatgen, N., Anderson, J., & Lebiere, C. (2006). Modeling paradigms
in ACT-R. In R. Sun (Ed.), Cognition and multi-agent interaction:
From cognitive modeling to social simulation (pp. 29–52). New York:
Cambridge University Press.

Thorngate, W. (2000). Teaching social simulation with Matlab. Journal
of Artificial Societies and Social Simulation, 3(1). Available at
http://jasss.soc.surrey.ac.uk/3/1/forum/1.html

Tobias, R., & Hofmann, C. (2004). Evaluation of free Java-libraries for
social-scientific agent based simulation. Journal of Artificial
Societies and Social Simulation, 7(1), 6. Available at
http://jasss.soc.surrey.ac.uk/7/1/6.html

Troitzsch, K. G. (2004). Validating simulation models. In Proceedings
of 18th European Simulation Multiconference on Networked
Simulation and Simulation Networks (pp. 265–270). Wilhelmshaven,
UK: SCS Europe.

Van Dyke Parunak, H., Savit, R., & Riolo, R. L. (1998). Agent-based
modeling vs. equation-based modeling: A case study and users’
guide. In J. S. Sichman, N. Gilbert, & R. Conte (Eds.), Multi-agent

https://doi.org/10.1007/978-3-319-00008-4_2
http://jasss.soc.surrey.ac.uk/3/1/forum/1.html
http://jasss.soc.surrey.ac.uk/7/1/6.html

systems and agent-based simulation. MABS 1998 (pp. 10–25).
Paris, July 4–6. Berlin: Springer.
https://doi.org/10.1007/10692956_2

van Ham, M., Manley, D., Bailey, N., Simpson, L., & Maclennan, D.
(2012). Understanding neighbourhood dynamics: New insights for
neighbourhood effects research. In M. van Ham, D. Manley, N.
Bailey, L. Simpson, & D. Maclennan (Eds.), Understanding
neighbourhood dynamics (pp. 1–21). Dordrecht: Springer
Netherlands. https://doi.org/10.1007/978-94-007-4854-5_1

Wahl, S., & Spada, H. (2000). Children’s reasoning about intentions,
beliefs and behaviour. Cognitive Science Quarterly, 1(1), 3–32.

Walbert, H. J., Caton, J. L., & Norgaard, J. R. (2018). Countries as
agents in a global-scale computational model. Journal of Artificial
Societies and Social Simulation, 21(3), 4.
https://doi.org/10.18564/jasss.3717

Waldrop, M. M. (2017). News feature: Special agents offer modeling
upgrade. Proceedings of the National Academy of Sciences,
114(28), 7176–7179. https://doi.org/10.1073/pnas.1710350114

Watkins, A., Noble, J., Foster, R. J., Harmsen, B. J., & Doncaster, C.
P. (2015). A spatially explicit agent-based model of the interactions
between jaguar populations and their habitats. Ecological Modelling,
306, 268–277. https://doi.org/10.1016/J.ECOLMODEL.2014.10.038

Watts, C., & Gilbert, N. (2014a). Simulating innovation: Computer-
based tools for rethinking innovation. Cheltenham, UK: Edward
Elgar. https://doi.org/10.4337/9781783472536

https://doi.org/10.1007/10692956_2
https://doi.org/10.1007/978-94-007-4854-5_1
https://doi.org/10.18564/jasss.3717
https://doi.org/10.1073/pnas.1710350114
https://doi.org/10.1016/J.ECOLMODEL.2014.10.038
https://doi.org/10.4337/9781783472536

Watts, C., & Gilbert, N. (2014b). Simulating innovation: Comparing
models of collective knowledge, technological evolution and
emergent innovation networks. In B. Kamiński & G. Koloch (Eds.),
Advances in intelligent systems and computing (pp. 189–200).
Berlin: Springer. https://doi.org/10.1007/978-3-642-39829-2_17

Watts, D. J. (1999). Network dynamics and the small world
phenomenon. Americal Journal of Sociology, 105(2), 493–527.

Watts, D. J. (2004). The “new” science of networks. Annual Review of
Sociology, 30(1), 243–270.
https://doi.org/10.1146/annurev.soc.30.020404.104342

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of “small-
world” networks. Nature, 393(6684), 440–442.

Widdicombe, S., & Wooffitt, R. C. (1990). “Being” versus “doing” punk
(etc): On achieving authenticity as a member. Journal of Language
and Social Psychology, 9, 257–277.

Wilensky, U. (1998). NetLogo Segregation model. Center for
Connected Learning and Computer-Based Modeling, Northwestern
University, Evanston, IL. Available at
http://ccl.northwestern.edu/netlogo/models/Segregation

Wilensky, U. (1999). NetLogo. Center for Connected Learning and
Computer-Based Modeling, Northwestern University, Evanston, IL.

Wilensky, U. (2005). NetLogo wolf sheep predation (system dynamics)
model. Center for Connected Learning and Computer-Based
Modeling, Northwestern University, Evanston, IL.

https://doi.org/10.1007/978-3-642-39829-2_17
https://doi.org/10.1146/annurev.soc.30.020404.104342
http://ccl.northwestern.edu/netlogo/models/Segregation

Wilensky, U., & Rand, W. (2015). An introduction to agent-based
modeling: Modeling natural, social, and engineered complex
systems with NetLogo. Cambridge: Massachusetts Institute of
Technology Press.

Wilson, G., Bryan, J., Cranston, K., Kitzes, J., Nederbragt, L., & Teal,
T. K. (2016). Good enough practices in scientific computing. CoRR,
abs/1609.0. Available at http://arxiv.org/abs/1609.00037

Windrum, P., Fagiolo, G., & Moneta, A. (2007). Empirical validation of
agent-based models: Alternatives and prospects. Journal of Artificial
Societies & Social Simulation, 10(2), 8. Available at
http://jasss.soc.surrey.ac.uk/10/2/8.html

Wray, R. E., & Jones, R. M. (2005). Considering SOAR as an agent
architecture. In R. Sun (Ed.), Cognition and multi-agent interaction:
From cognitive modeling to social simulation (pp. 53–78).
Cambridge: Cambridge University Press.
https://doi.org/10.1017/CBO9780511610721.004

Ye, M., & Carley, K. M. (1995). RADAR-SOAR: Towards an artificial
orgnization composed of intelligent agents. Journal of Mathematical
Sociology, 20(2–3), 219–246.

Zhang, J. (2004). Residential segregation in an all-integrationist world.
Journal of Economic Behavior & Organization, 54(4), 533–550.
https://doi.org/10.1016/j.jebo.2003.03.005

Zheng, N., Waraich, R. A., Axhausen, K. W., & Geroliminis, N. (2012).
A dynamic cordon pricing scheme combining the macroscopic
fundamental diagram and an agent-based traffic model.
Transportation Research Part A: Policy and Practice, 46(8),
1291–1303. https://doi.org/10.1016/J.TRA.2012.05.006

http://arxiv.org/abs/1609.00037
http://jasss.soc.surrey.ac.uk/10/2/8.html
https://doi.org/10.1017/CBO9780511610721.004
https://doi.org/10.1016/j.jebo.2003.03.005
https://doi.org/10.1016/J.TRA.2012.05.006

INDEX

Abstract models, 62–63

Agent-based modeling

advantages of, 2, 3

agent-to-agent interactions, 5–6, 17, 48

characteristic features, 16–18

companion modeling, 15–16

complexity, 66

as computational method, 2

consumer behaviors, 10–11

definition, 1–6

design elements (See Model design)

energy market models, 13–14

GIS and, 31–33

industrial networks, 11–12, 33

learning simulations, 18

opinion dynamics, 8–10, 17

planning considerations, 72–74

public policy decisions, 14–15, 77–78

research reporting, 74–77

Schelling model, 6–8, 7 (figure) 38, 63

supply chain management, 12–13

traffic simulations, 8

validation approaches, 62–66

See also Agents; Simulation

Agents

actions of, 44–45, 47–48

Belief-Desires-Intention, 28–29

boundedly rational, 17–18

characteristics of, 24

in collectivities model, 56–59, 58 (figure)

environment and, 17, 30–33

genetic algorithms, 36–37

heterogeneous, 16–17

interaction between, 5–6, 17, 48

in NetLogo simulations, 52–54

normative, 29–30

as objects, 24–26

reinforcement learning, 14, 27

rules of behavior, 26, 39, 56

Ahrweiler, P., 12

Amblard, F., 9

Analogical models, 4–5

AnyLogic framework, 50, 70 (table)

Attonaty, J.-M., 15

Attributes, object, 25

Axelrod, R. M., 33

Axtell, R. L., 65

Barreteau, O., 15

Belief-Desires-Intention (BDI) model, 28–29

Bockarjova, M., 10

Boid models, 47

Boundedly rational, 17–18

Bousquet, F., 15

Bruch, E. E., 63

Bryan, J., 62

Buffer, 31

Caton, J. L., 6

Children’s Reasoning about Intentions, Beliefs, and Behavior
(CRIBB) model, 29

Chromosome, 36–37

Class, object, 25

Classifier system, 36–37

Cobb-Douglas production function, 5

Cognitive models, 28–29

Collectivities model

agents’ actions in, 47–48, 49 (figure), 56–59, 58 (figure)

macrolevel features, 44–45

microlevel behaviors, 46

programming code for, 56–59, 57 (figure), 58 (figure)

research question, 44

Companion modeling, 15–16

Computational methods

advantages of, 2

experiments and, 2–3

social science models, 3–4

Consumer behavior models, 10–11

Control group, 3

CORMAS simulation environment, 51, 70 (table)

Cranston, K., 62

CRIBB model, 29

Crossover process, 37

Cultural traits, 33–34

Dawkins, R., 33

Dean, J. S., 65

Debugging, 59–62

Deffuant, G., 9

Design of Experiments, 68

Diary, project, 72

Discrete event simulation, 22–23

El Farol Bar model, 47

EMIL project, 30

Energy market models, 13–14

Environment

agents and, 30–33

features of, 31, 70 (table), 71

geographical information system (GIS), 31–33

reinforcement learning and, 27

spatially explicit, 6, 17

Epstein, J. M., 59, 65

Equation-based models, 5

Equifinality, 42

Ethical considerations, 78

Etter, A., 73

Experiments, 2–3

Facsimile models, 65

Fagiolo, G., 71

Filatova, T., 68

Fitness, individual, 36

Frameworks, 50, 70 (table)

GAMA simulation environment, 51, 70 (table)

Genetic algorithm, 36–37

Geographical information system (GIS), 31–33

Gilbert, N., 12

Gimblett, H. R., 17

Global variables, 53

Growing Artificial Societies (Epstein & Axtell), 62

Gumerman, G. J., 65

Hassani-Mahmooei, B., 68

Hydraulic model of economy, 4

Ideal-type models, 4

Industrial networks, 11–12, 33

Innovation networks, 11–12, 47

Instantiated classes, 25

Izquierdo, L. R., 11

Izquierdo, S. S., 11

Jager, W., 10

Janssen, M. A., 10

Java programming language, 50

Jess (Java Expert System Shell) toolkit, 26

Kangur, A., 10

Kitzes, J., 62

Klein, L. C., 68

Kollingbaum, M. J., 30

Learning, simulation of, 18

Lee, J.-S., 68

Leombruni, R., 74

Ligmann-Zielinska, A., 68

Lin, F., 12

Macrolevel regularities

agent interactions and, 42

in collectivities model, 44–45

stylized facts, 38–39

Malerba, F., 64

Mare, R. D., 63

Mason framework, 50, 70 (table)

Methods, 25

Microsimulation modeling, 18–20

Model design

agent specifications, 39

code development, 39

environment, 30–33

preliminary steps, 40–42 (table)

randomness, 33–34, 43

research question, 38–39

time considerations, 34–36

validation, 42–43, 62–69

verification, 42, 59–62

See also Model programming code

Model programming code

for collectivities model, 56–59, 57 (figure), 58 (figure)

framework features, 50–51

modeling environments, 51–52

pseudo-code, 56–57, 57 (figure)

UML, 56

validation techniques, 66–69

verification techniques, 59–62

Model types

abstract, 62–63

advantages of, 3–4

analogical, 4–5

Belief-Desires-Intention, 28–29

boid, 47

cognitive, 27–30

complexity, 65–66

discrete event simulation, 22–23

environment and, 30–33

equation-based, 5

facsimile, 65

ideal-type, 4

innovation, 47

microsimulation, 18–20

scale, 4

system dynamics, 20–22, 21 (figure)

target of, 3–4

Moneta, A., 71

Nederbragt, L., 62

Nelson, R., 64

NetLogo Library, 39, 51

agent-based simulations in, 52–54, 54 (figure), 55 (figure)

Code tab, 52

features of, 51–52, 70 (table)

Information tab, 52

Interface tab, 52, 53 (figure)

patches, 52

Norgaard, J. R., 6

Norling, E. J., 29

Norman, T. J., 30

Normative agents, 29–30

Object-oriented programs, 24–26

OpenABM web site, 39, 76–77

Opinion dynamics, 8–10, 17

Orsenigo, L., 64

Overview, Design concepts, and Details (ODD), 74

Participative research methods, 15–16

Phillips, A. W., 4

Planning considerations, 72–74

Power law, 64

Production rule systems, 26

Pseudo-code, 56–57, 57 (figure)

Public policy modeling, 14–15, 77–78

Pyka, A., 12

Quality assurance, 78

Query-Based Model Exploration, 68

Quigley, K. S., 68

Randomness, 33–34

Rationality, 17–18

Regression equation, 2, 69

Reinforcement learning, 14, 27

Repast framework, 50, 70 (table)

Research question, 38–39, 44

Research reporting, 74–77

Retrodict, 65

Richiardi, M., 74

Ritter, F. E., 68

ROAMEF cycle, 14–15

Saam, N., 74

Sattenspiel, L., 65

Scale models, 4

Schelling, Thomas, 6

Schelling model, 6–8, 7 (figure), 38, 63

Schoelles, M. J., 68

Sensitivity analysis, 42–43, 66–68

Shaw, M. J., 12

Simon, S. A., 17

The Sims game, 2

Simulation

discrete event, 22–23

of learning, 18

microsimulation, 18–19

model behavior and, 3

modeling environments, 51–52, 70 (table), 71

planning considerations, 72–74

supply chains and, 12–13

validation techniques, 69–71

Social networks, 11, 33

Sonnessa, M., 74

Spatially explicit environments, 6, 32

Strader, T. J., 12

Stylized facts, 38–39

Supply chain management models, 12–13

Surface, model, 47–48

Swarm framework, 50

Swedlund, A. C., 65

Systems dynamics model, 20–22, 21 (figure)

Systems-based approaches, 1

Teal, T. K., 62

Tesfatsion, Leigh, 80

Time considerations, 34–36

Toroid surface, 47–48

Traffic simulation, 8

Unified Modeling Language, 56

Unit testing, 61

Validation

for abstract models, 62–63

data comparisons, 68–71

for middle-range models, 64

sensitivity analysis, 42–43, 66–68

Variable-based approaches, 1

Variables

global, 53

output, 69

power law relationship, 64

raster and vector, 32

regression equation and, 2

Verbrugge, R., 10

Verification, 42

Verification techniques, 59–62

Virtual experiments, 3

Walbert, H. J., 6

Warren A. L., 65

Weisbuch, G., 9

Wilensky, U., 52

Wilson, G., 62

Windrum, P., 71

Winter, S., 64

	Series Editor’s Introduction
	Preface
	Acknowledgments
	About the Author
	1: The Idea of Agent-Based Modeling
	1.1 Agent-Based Modeling
	1.1.1 A Computational Method
	1.1.2 Experiments
	1.1.3 Models
	1.1.4 Agents
	1.1.5 The Environment

	1.2 Some Examples
	1.2.1 Urban Models
	1.2.2 Opinion Dynamics
	1.2.3 Consumer Behavior
	1.2.4 Industrial Networks
	1.2.5 Supply Chain Management
	1.2.6 Electricity Markets
	1.2.7 Modeling Policy
	1.2.8 Participative and Companion Modeling

	1.3 The Features of Agent-Based Modeling
	1.3.1 Ontological Correspondence
	1.3.2 Heterogeneous Agents
	1.3.3 Representation of the Environment
	1.3.4 Agent Interactions
	1.3.5 Bounded Rationality
	1.3.6 Learning

	1.4 Other Related Modeling Approaches
	1.4.1 Microsimulation
	1.4.2 System Dynamics
	1.4.3 Discrete Event Simulation

	2: Agents, Environments, and Timescales
	2.1 Agents
	2.1.1 Agents as Objects
	2.1.2 Production Rule Systems
	2.1.3 Agents That Learn
	2.1.4 Cognitive Models

	2.2 Environments
	2.2.1 Features of Environments
	2.2.2 Geography
	2.3 Randomness
	2.4 Time
	2.5 Population Learning

	3: Designing an Agent-Based Model
	3.1 Design Steps
	3.2 An Example of Developing an Agent-Based Model
	3.2.1 Macrolevel Features and Patterns
	3.2.2 Microlevel Behavior
	3.2.3 Designing a Model

	4: Developing an Agent-Based Model
	4.1 Modeling Toolkits, Libraries, Languages, Frameworks, and Environments
	4.2 Using NetLogo to Build Models
	4.3 Building the Collectivities Model Step by Step
	4.4 Verification: Getting Rid of the Bugs
	4.5 Validation
	4.5.1 Abstract Models
	4.5.2 Middle-Range Models
	4.5.3 Facsimile Models
	4.5.4 Complexity

	4.6 Techniques for Validation
	4.6.1 Comparing Theory and the Model: Sensitivity Analysis
	4.6.2 Comparing the Model and Empirical Data
	Appendix: The Features of Simulation Libraries and Environments

	5: Using Agent-Based Models
	5.1 Planning an Agent-Based Modeling Project
	5.2 Reporting Agent-Based Model Research
	5.3 Agent-Based Models for Public Policy

	Resources
	Societies and Associations
	Journals
	Mailing List and Web Sites

	Glossary
	References
	Index

